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ABSTRACT

For recommending songs to a user, one effective approach
is to represent artists and songs with latent vectors and
predict the user’s preference toward the songs. Although
the latent vectors represent the characteristics of artists and
songs well, they have typically been used only for comput-
ing the preference score. In this paper, we discuss how
we can leverage these vectors for realizing applications
that enable users to search for songs from new perspec-
tives. To this end, by embedding song/artist vectors into
the same feature space, we first propose two concepts of
artist-song relationships: overall similarity and prominent
affinity. Overall similarity is the degree to which the char-
acteristics of a song are similar overall to the characteris-
tics of the artist; while prominent affinity is the degree to
which a song prominently represents the characteristics of
the artist. By using Last.fm play logs for two years, we an-
alyze the characteristics of the concepts. Moreover, based
on the analysis results, we propose three applications for
song search. Through case studies, we demonstrate that
our proposed applications are beneficial for searching for
songs according to the users’ various search intents.

1. INTRODUCTION

Embedding songs into a feature space is beneficial for re-
alizing various applications for music information retrieval
(MIR). For example, by using tags of each song, songs can
be embedded into a tag-based feature space [1]; this en-
ables a user to search for similar songs of her favorite song.
In another example, by embedding songs into the Arousal-
Valence space [2] according to their audio features [3], a
user can search for the song with the highest Arousal value
from her favorite artist’s songs. The same can be said for
artists; by embedding artists into a feature space based on
the topics of lyrics, artists similar to a user’s favorite artist
in terms of topic similarity can be retrieved [4].

Embedding heterogeneous data into a feature space is
also useful for MIR tasks: song recommendations for
playlists by embedding tags and songs [5, 6], comput-
ing tag similarity by embedding artists and tags [7], etc.
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Figure 1. Overview of our proposed ideas: (a) embed-
ding artists’ latent vectors and songs’ latent vectors into
the same feature space and (b) concepts of overall similar-
ity and prominent affinity.

In spite of the potential to embed heterogeneous data,
there have been few studies that have embedded songs and
artists [8]. If both songs and artists are embedded into the
same feature space, greater variety of MIR applications can
be realized. For example, given an artist, we can search for
songs that have similar characteristics to those of the artist
(i.e., songs whose feature vectors are close to the feature
vector of the artist).

To realize this, we use Factorization Machines (FM) [9],
which is an item recommendation technique. By using
FM, each song, user, and artist can be represented by K-
dimensional latent vectors. Although such vectors are usu-
ally used to compute a user’s preference toward a song, we
leverage the latent vectors of songs and artists to embed
songs and artists into the same feature space (Fig. 1 (a)).

In the embedded feature space, we propose two con-
cepts of artist-song relationships: overall similarity and
prominent affinity. Suppose the vector’s direction of artist
a1 in Fig. 1 (b) represents the sadness. The length of the
vector indicates the degree of sadness. In this case, song
s1 has almost the same degree of sadness and s1 is simi-
lar overall to a1. On the other hand, song s2 has a higher
degree of sadness. This means that s2 prominently repre-
sents a1’s characteristics and has a higher prominent affin-
ity with a1 in terms of sadness. We can recommend s1 and
s2 to a user as a1’s characteristic songs because of the high
overall similarity and the high prominent affinity, respec-
tively. Such a recommendation would be useful when the
user listens to one of a1’s songs for the first time because
she can decide whether to listen to a’s other songs after lis-
tening to a characteristic song of a1. By using these con-
cepts, we can realize not only such song recommendations



but also various applications for MIR, as in Section 5.
Our main contributions in this paper are as follows.

• We propose the concepts of overall similarity and
prominent affinity between an artist and a song by
leveraging their latent vectors learned through FM
(Section 3).

• By using Last.fm play logs for two years, we show var-
ious characteristics of overall similarity and prominent
affinity. For example, we reveal that an artist’s popu-
lar songs tend to have high prominent affinity with the
artist (Section 4).

• We demonstrate that the concepts of overall similar-
ity and prominent affinity can be used to realize vari-
ous applications for MIR. Specifically, we show three
applications: familiarity-oriented search, typicality-
oriented search, and analogy search (Section 5).

2. RELATED WORK

2.1 Matrix Factorization for Song Recommendations

Matrix Factorization (MF) [10] has been widely used for
item recommendations. In the context of song recom-
mendations, too, the effectiveness of MF has been re-
ported [11–14]. One of the characteristics of MF for song
recommendations is that each user and song are repre-
sented by K-dimensional latent vectors. This enables the
model to learn a user’s latent preference toward songs. Al-
though MF typically considers interactions between users
and songs, Factorization Machines (FM) [9] can include
side information in addition to information about users and
songs. Side information can be an artist, category of a
song, and even the weather when a user listens to a song.
Because of such flexibility, FM has also been used for song
recommendations [15–18]. The idea of using artist infor-
mation in FM for song recommendations has already been
proposed [15, 16]; in this case, each user, song, and artist
are represented by K-dimensional latent vectors.

Although such latent vectors in FM represent the char-
acteristics of users, songs, and artists well, they have typ-
ically been used for computing a user’s preference score
toward a song and generating a personalized ranked list of
songs for each user. Different from existing studies, we
analyze latent vectors of songs and artists based on new
relationships between artists and songs (overall similarity
and prominent affinity) and show their potential to imple-
ment MIR applications.

2.2 Heterogeneous Embedding for MIR

The usefulness of embedding heterogeneous data into a
feature space has been reported in various MIR tasks,
where data has been embedded by a Markov-model-based
method [5, 19], co-occurrence-based method [20], etc. For
example, by embedding tags and songs, song recommen-
dations for playlists have been realized [5, 6]. Other ex-
amples include computing tag similarity by embedding
artists and tags [7], retrieving songs by words by embed-
ding songs and words in playlist titles [20], and visualizing

the time-dependent listening preferences of a population
by embedding users and songs [19]. Our study is differ-
ent from theirs in that we embed artists and songs into a
feature space.

The study closest to ours is that by Weston et al. [8].
They proposed a method for embedding artists and songs
into a feature space and solved tasks such as predicting
songs for a given artist and retrieving similar songs for a
given song. To embed songs, their method requires audio
data for all songs. In contrast, we use users’ play logs.
Although comparing the embedding accuracy of these two
approaches is beyond the scope of this paper, our approach
using play logs has an advantage over their approach in
terms of the applicability of insights into the MIR com-
munity because various kinds of large play logs are easily
accessible [21–27] compared to the accessibility of large
audio data.

2.3 MIR Applications for Song Search

In the MIR community, various kinds of applications for
song search have been proposed. These applications have
enabled users to more easily find their desired songs and
search for songs from a new perspective. For example,
query by humming [28–34] and query by singing [35–38]
enable users to search for songs even when they do not
know the song title. Similarity-based song search is also
beneficial for searching for new songs that are similar to
a user’s favorite song, where similarity between songs is
measured by low-level acoustic features [39, 40], voice
timbres of vocals [41], tags [1], and a combination of these
characteristics [42]. When a user has a specific search in-
tent, searching for songs using metadata [43,44] and words
in lyrics [45] is also helpful to find her desired songs.

In this paper, we propose two concepts of artist-song
relationships. These concepts can be used to search for an
artist’s characteristic songs, as we will show in Section 4.3.
In addition, in Section 5, we demonstrate application ex-
amples that can be realized by leveraging these concepts
and latent vectors of artists and songs. Our proposed ap-
plications are also helpful for searching for users’ desired
songs and new songs. We believe our study is beneficial
for other researchers to implement MIR applications based
on our proposed concepts.

3. OVERALL SIMILARITY AND PROMINENT
AFFINITY

In this section, we first describe how to generate latent vec-
tors of artists and songs through FM. We then propose the
concepts of overall similarity and prominent affinity.

3.1 Notation

Let U , I, andA denote the sets of users, songs, and artists,
respectively. I+

u represents the set of songs preferred by
user u ∈ U . Following Lim et al. [46], we define the songs
played ≥ µ times by u as the preferred songs of u. By
using the data, we first aim to accurately generate a per-



sonalized ranked list of songs for each user u from I \ I+
u ,

which is a set of songs not included in u’s preferred songs.

3.2 FM for Song Recommendation

FM [9] is a method for predicting a user’s preference to-
ward an item based on MF [10]. A typical MF deals with
only interactions between users and items; while in FM,
side information (e.g., the artist or category of a song) can
also be included in the model. By considering artist infor-
mation, we can extract new relationships between artists
and songs, as we will describe in Section 3.3. Below, we
describe FM considering artist information.

In FM, user u, song s, and artist a have K-dimensional
latent vectors νu, νs, and νa, respectively. The preference
score of user u toward song s based on the second-order
estimator of FM is computed with the following model:

x̂us = α+βu+βs+βas+〈νu,νs〉+〈νu,νas〉+〈νas ,νs〉,
(1)

where α is the global offset, as is the artist of s, and βu, βs,
and βas

are the user/song/artist bias terms. As can be seen
in the model, the preference score is computed by a user’s
affinity with a song (〈νu,νs〉), user’s affinity with an artist
(〈νu,νas〉), and artist’s affinity with a song (〈νas ,νs〉).
Regarding the last term 〈νas ,νs〉, if artist as tends to sing
calm songs and song s is also calm, the value of 〈νas ,νs〉
becomes high; while if s is exciting music, the value be-
comes low. Note that because a song’s popularity is re-
flected in βs (i.e., more popular songs tend to have higher
values of βs), popular songs do not always have high val-
ues of 〈νas ,νs〉. Rather, the value of 〈νas ,νs〉 is deter-
mined purely by the affinity between a and s.

Note that although we use simple FM just by adding
artist information, our goal in this paper is not to improve
recommendation accuracy. Rather, we aim to study how to
leverage latent vectors of songs and artists. Although this
simple FM can learn reliable latent vectors because it can
achieve high enough recommendation accuracy, as we will
report in Section 4.2, we can adopt more sophisticated FM
(e.g., FM considering song co-occurrence [47] and audio
information [11]); we leave this for future work.

We adopt Bayesian Personalized Ranking (BPR) [48] to
learn latent vectors. BPR is a pairwise ranking optimiza-
tion framework and is designed to deal with users’ implicit
consumption behaviors such as playing a song rather than
explicit ones such as rating. In BPR, the training set D
used for optimizing parameters is defined as follows:

D = {(u, i, j) | u ∈ U ∧ i ∈ I+
u ∧ j ∈ I \ I+

u }.
That is, a triad (u, i, j) means that user u prefers song i to
song j. The optimization criterion for D is given by:∑

(u,i,j)∈D

lnσ(x̂uij)− λΘ‖Θ‖2, (2)

where σ is the sigmoid function, Θ = {βs, βa,νu,νs,νa}
represents all model parameters, and λΘ is a regularization
hyperparameter. x̂uij represents the difference between
u’s preference for i and that for j, which is defined as
x̂uij = x̂ui − x̂uj . Finally, we learn the parameters by
using TensorFlow [49] with Adam optimizer [50].

3.3 Overall Similarity and Prominent Affinity

The learned model parameters are usually used for com-
puting a user’s preference score toward a song by using
Eq. 1. In this paper, we propose using the learned model
parameters (i.e., latent vectors) νa and νs for capturing the
relationships between artists and their songs. In Eq. 1, be-
cause the affinity between νa and νs is considered, the nth
(1 ≤ n ≤ K) dimension of νa and that of νs have the
same meaning. For example, if the first dimension of νa
represents the calmness, the first dimension of νs also rep-
resents the calmness of the song. Hence, we can embed νa
and νs into the same feature space, as shown in Fig. 1 (a).
In the feature space, the angle and length of a vector repre-
sents its qualitative and quantitative aspects, respectively.
Specifically, the difference of the angle between two vec-
tors represents the difference of their characteristics as a
song or artist because each dimension represents a charac-
teristic of songs and artists. While the length of a vector
represents the degree of its characteristics: if the value of
νs’s nth dimension is large, νs represents nth character-
istic well. By using the embedded feature space, we pro-
pose two concepts of the relationships between artists and
songs: overall similarity and prominent affinity.

3.3.1 Overall Similarity

Suppose artist a1’s song s1 is mapped fairly close to a1 in
the feature space, as shown in Fig. 1 (b). In this case, we
can say that s1 is similar overall to a1. Thus, we define
the closeness between an artist and a song in the feature
space as the overall similarity between them. More for-
mally, given artist a and song s, the overall similarity be-
tween a and s is computed based on the Euclidean distance
between them: fos(a, s) = 1

‖νa−νs‖+1 .
The concept of overall similarity can be used to search

for an artist’s song that represents the artist’s characteris-
tics well. Searching for such a song and listening to it
is useful to quickly understand the artist’s characteristic
songs. In particular, when a user listens to an artist’s song
for the first time, it might be helpful for her to listen to the
artist’s characteristic song and then decide if she wants to
listen to the artist’s other songs.

3.3.2 Prominent Affinity

Now suppose a1’s song s2 is mapped fairly close to the
extended position of a1 as shown in Fig. 1 (b). This means
that s2 prominently represents a1’s characteristics because
the degree of each characteristic of s2 is higher than that
of a1. Thus, we define the inner product of an artist vector
and a song vector as the prominent affinity between them.
More formally, given artist a and a’s song s, the prominent
affinity between a and s is given by fpa(a, s) = 〈νa,νs〉.

The concept of prominent affinity can be used to search
for an artist’s song that strongly represents the artist’s char-
acteristics. Similar to the overall similarity, searching for
such a song would be helpful when a user listens to an
artist’s song for the first time.
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Number of users (|U|) 84,708
Number of songs (|I|) 390,158
Number of artists (|A|) 32,448
Sum of preferred songs (

∑
u∈U |I+

u |) 18,478,304

Table 1. Dataset statistics.

4. ANALYSIS

In this section, we analyze the characteristics of overall
similarity (OS) and prominent affinity (PA).

4.1 Dataset

We use the LFM-1b dataset that includes music listening
logs on Last.fm [21]. Each listening log consists of user
ID, song ID, artist ID, and timestamp. The dataset also in-
cludes data for converting song ID and artist ID to song
name and artist name, respectively. We use logs for two
years (between 1/1/2012 and 12/31/2013). The µ in Sec-
tion 3.1 is set to five, where µ is the threshold to determine
that song s is included in I+

u when u listens to s equal to
or more than µ times. To increase the reliability of learned
model parameters, songs and artists that have been listened
to by less than 10 different users and users who have lis-
tened to less than 10 different songs are discarded. Table 1
shows the dataset statistics after the preprocessing.

4.2 Model Development

For each user, we split I+
u into training/validation/test sets.

To this end, we randomly select one preferred song (i.e.,
i ∈ I+

u ) for validation Vu and another for testing Tu [51].
All the remaining songs are used for trainingRu. The rec-
ommendation performance is evaluated by the AUC (Area
Under the ROC Curve), which is widely used to evaluate
whether model parameters are appropriately learned [52,
53]: AUC = 1

|U|
∑

u∈U
1
|Du|

∑
(i,j)∈Du

δ (x̂ui > x̂uj),
where Du = {(i, j) | i ∈ Tu ∧ j ∈ I \ I+

u }, and
δ(z) is 1 when z is true and 0 otherwise. The AUC value
ranges between 0 and 1, and a higher value represents bet-
ter performance (i.e., the model parameters are appropri-
ately learned). The hyperparameters (i.e., λΘ in Eq. 2 and
the learning rate) are tuned on a validation set in terms
of the AUC, where the hyperparameters are selected from
{0.0001, 0.001, 0.01, 0.1, 1}. We set the latent dimen-
sionality K to 50. 1 We emphasize that our goal here is
not to evaluate the recommendation accuracy of FM by
comparing with other methods. Rather, we aim to evaluate
whether the parameters in FM developed by our dataset are

1 We evaluated the AUC on the validation dataset by changing K from
10 to 100 in increments of 10. The AUC saturated when K = 50.

Rank OS PA
1 I’m So Tired Something
2 Get Back All You Need Is Love
3 The End Come Together
4 Sun King Hey Jude
5 Here Comes the Sun I Am the Walrus
6 She’s Leaving Home Lucy in the Sky with Diamonds
7 Glass Onion Eleanor Rigby
8 You Like Me Too Much A Hard Day’s Night
9 You Never Give Me Your Money I Want to Hold Your Hand

10 The Night Before Golden Slumbers

Rank OS PA
1 Minor Thing Californication
2 Police Station Scar Tissue
3 If Dani California
4 Can’t Stop Snow (Hey Oh)
5 Fortune Faded By the Way
6 Annie Wants a Baby The Adventures of Rain Dance Maggie
7 Happiness Loves Company The Zephyr Song
8 Brendan’s Death Song Brendan’s Death Song
9 Give It Away Torture Me

10 Emit Remmus Dosed

Table 2. Ranking results of songs in terms of OS and PA
(top: “The Beatles,” bottom: “Red Hot Chili Peppers”).

appropriately learned by showing that the AUC is close to
1 after the learning process.

The AUC on the test set achieved a high value: 0.973.
This result means that the model parameters and the em-
bedded feature space are appropriately learned and the
artist-song relations based on OS and PA are reliable. We
also computed the Spearman rank correlation between the
values of βs and song popularities to evaluate if βs cor-
rectly reflects song popularity, as mentioned in Section 3.2.
The popularity of song s was measured by the number of
different users who have played s. The popularity ranking
of songs are obtained by sorting them in descending order
of their popularities. For each artist, we compute the corre-
lation between the popularities of the artist’s all songs and
their values of βs. The average of the correlations over all
artists was relatively high: 0.502. When we define the pop-
ularity of artist a as the number of different users who have
played at least one of a’s songs, the average of the correla-
tions became high with increasing artist popularity: artists
whose popularities are ≥ 100 and ≥ 300 had correlation
values of 0.682 and 0.755 on average, respectively. From
these results, we can say that the bias term βs certainly re-
flects the song’s popularity, and the value of 〈νas ,νs〉 in
Eq. 1 is determined mainly by the affinity between as and
s especially for popular artists. Hereafter, the parameter
values computed in this section are used for artist latent
vectors and song latent vectors.

4.3 Analysis Results

Although we showed that the model parameters are appro-
priately learned, if most of an artist’s songs are mapped



Rank Area (a) Area (b) Area (c) Area (d)
1 Gold on the Ceiling Have Love Will Travel Yearnin’ Can’t Find My Mind
2 Lonely Boy Same Old Thing Keep Your Hands Off Her Her Eyes Are A Blue Million Miles
3 Tighten Up I Got Mine Grown So Ugly Howlin For You
4 Little Black Submarines Run Right Back Till I Get My Way The Wicked Messenger
5 Everlasting Light Your Touch Just Got To Be The Baddest Man Alive

Table 3. Ranking results of familiarity-oriented search for “The Black Keys” in terms of PA.

very close to the artist, it would be useless to rank songs ac-
cording to the subtle difference of their positions. To con-
firm whether artists’ songs are well distributed, we evaluate
the distributions of (A) distance between νs and νa, (B)
angle between νs and νa, and (C) ratio of ‖νs‖ to ‖νa‖.
Fig. 2 shows the results. In all cases, the value distribution
is close to the Gaussian distribution. These results indi-
cate that songs are well distributed in the feature space and
it is meaningful to rank songs according to OS, which is
affected by (A), and PA, which is affected by (B) and (C).

Next, we analyze the ranked results of songs by OS/PA.
Table 2 shows the top 10 songs of “The Beatles” and “Red
Hot Chili Peppers.” Since the top ranked songs are largely
different between the two concepts, it would be meaning-
ful to generate two ranked lists so that we can show one
of them (or both of them) to a user according to her in-
tent. We can also see that the top ranked songs in PA
tend to be more popular than those in OS. To evaluate this,
we compute the Spearman rank correlation between OS-
based/PA-based song ranking and popularity-based song
ranking. As expected, the correlation of PA-based rank-
ing is high (0.577), while that of OS-based ranking is low
(-0.147). As mentioned in Section 4.2, the effect of song
popularity is eliminated by the bias terms βs. Therefore,
this high correlation of PA-based ranking is caused purely
by the characteristics of the songs: songs strongly reflect-
ing the artist’s characteristics tend to be popular.

5. APPLICATIONS

In Section 4.3, we showed how to directly use the con-
cepts of OS and PA to rank an artist’s songs. In this sec-
tion, by leveraging the concepts and learned parameters of
νa and νs, we demonstrate three applications: familiarity-
oriented search, typicality-oriented search, and analogy
search. Through these demonstrations, we show that this
paper brings reusable insights in that our proposed con-
cepts can be used for various kinds of MIR applications.

5.1 Familiarity-oriented Search

By considering PA and song popularity, an application to
search for songs according to a user’s familiarity with an
artist can be realized. As we mentioned in Section 4.3,
songs with a high PA tend to be popular, but some of them
are unpopular. Similarly, some popular songs have a low
PA. Hence, according to the degree of PA and the degree
of popularity, an artist’s songs can be classified into four
areas, as shown in Fig. 3. Searching for songs in area (a)
would be beneficial especially for a user who listens to the
artist’s song for the first time because these songs are pop-
ular and represent the artist’s typical characteristics well;
she can decide if she wants to listen to the artist’s other

High PALow PA

High popularity

Low popularity

(a) For users who
are not familiar
with the artist.

(b) For users who
want to know the
artist’s diversity.

(c) For users who
want to listen to
unexpected songs.

(d) For users who
want to become
an artist devotee.

Figure 3. Properties of songs classified by the degree of
PA and the degree of popularity.

songs by listening to the searched songs. After listening
to such songs, searching for songs in area (b) would be
useful to let her understand the diversity of the artist be-
cause area (b) includes songs that are popular but different
from the artist’s typical characteristics. Moreover, search-
ing for songs in area (c) enables her to listen to unexpected
songs in terms of the fact that the searched songs match
the artist’s typical characteristics well but are not known
by many people. Finally, searching for songs in area (d)
would be helpful for her to become an artist devotee by
listening to them.

In light of the above, given artist a, we rank all a’s songs
for each area in terms of PA as follows. For area (a), the
score of song s is computed by rap(s, Ia) + rpop(s, Ia),
where Ia is a set of all songs of a and rap(s, Ia) and
rpop(s, Ia) represent the ranks of s among Ia in terms
of AP and popularity, respectively. The songs are then
ranked in ascending order of score. For area (b), (c),
and (d), the score is given by rpop(s, Ia) − rap(s, Ia),
rap(s, Ia) − rpop(s, Ia), and −rap(s, Ia) − rpop(s, Ia),
respectively. In these areas, the songs are also ranked in
ascending order. Regarding OS, songs in each area has the
same meaning as with PA and we can also make a song
ranking for each area in the same manner as with PA.

Table 3 shows example results of the top five song rank-
ings in each area for “The Black Keys” in terms of PA. It
would be beneficial to show each ranking to a user accord-
ing to her familiarity with “The Black Keys.”

5.2 Typicality-oriented Search

Because the parameters of all artists and all of their
songs are learned by using the same optimization crite-
rion (Eq. 2), all artists and all songs can be embedded into
the same feature space. This means that given artist a, all
songs in the dataset can be ranked in terms of OS or PA.
In other words, we can search for songs that represent a’s
typical characteristics well even if they were not a’s songs.
By showing such songs to a user who is a fan of a, she
may be willing to listen to unfamiliar songs because they
are highly related to her favorite artist. This is also benefi-



Rank OS PA
1 California Gurls / Katy Perry Circus / Britney Spears
2 Racy Lacey / Girls Aloud ...Baby One More Time / Britney Spears
3 Gimme More / Britney Spears I Wanna Go / Britney Spears
4 Cannibal / Ke$ha Hung Up / Madonna
5 Piece of Me / Britney Spears I Kissed a Girl / Katy Perry

Rank OS PA
1 Cymbal Rush / Thom Yorke Untitled / Interpol
2 Atoms for Peace / Thom Yorke The Clock / Thom Yorke
3 And It Rained All Night / Thom Yorke I’ve Seen It All / Björk
4 Convergence / Jonny Greenwood Svefn-g-englar / Sigur Rós
5 Quick Canal / Atlas Sound Kingdom of Rust / Doves

Table 4. Ranking results of typicality-oriented search (top:
“Lady Gaga,” bottom: “Radiohead”).

cial for online music streaming services because they can
expand users’ interests and let users listen to more songs.

Given artist a, when we generate a ranked list of all
songs in I in terms of OS, we compute the score of each
song by fos(a, s), which was defined in Section 3.3.1, and
rank all songs in descending order of scores. Similarly, for
PA, we use fpa(a, s), which was defined in Section 3.3.2,
and rank all songs in descending order of scores.

Table 4 shows the top five song rankings for “Lady
Gaga” and “Radiohead.” Although we do not use acous-
tic features and metadata of songs, in the case of “Lady
Gaga,” all artists in the table are female artists. Similarly,
in the case of “Radiohead,” members of the band such as
“Thom Yorke” and “Jonny Greenwood” are retrieved. In
addition, because “Radiohead” is a rock band, rock bands
such as “Interpol,” “Sigur Rós,” and “Doves” are ranked at
higher positions. These results show the potential of this
application to enable users to find new attractive songs.

5.3 Analogy Search

When a user searches for an object in an unfamiliar domain
and obtains the desired search results, it is helpful to give
an example object in her familiar domain to the search sys-
tem. This kind of search is known as analogy search and its
usefulness to search for persons [54] and restaurants [55]
has been studied. An analogy search for MIR can also be
an attractive application as follows. Suppose a user is a big
fan of “Eminem” and likes his song “Not Afraid.” She has
recently become interested in “Lady Gaga.” However, be-
cause she has little knowledge on “Lady Gaga” and there
are too many “Lady Gaga” songs, she is at a loss as to
which song she should listen to. In such a case, by using
an analogy, she can ask something like “what Lady Gaga
song corresponds to Not Afraid by Eminem?” If we can
return search results for such a query, it would be helpful
for her to try some songs of “Lady Gaga.”

In an analogy search for MIR, given a query consist-
ing of source artist as, source song ss, and target artist at,
our goal is to return at’s song st where the relation be-
tween at and st corresponds to that between as and ss. We
compute the relation between an artist and a song based on
the angle between their latent vectors and the ratio of their
lengths because they respectively represent the qualitative
and quantitative aspects of artists/songs as we described in
Section 3.3. Intuitively, if the angle between as and ss is
similar to that between at and st, and the ratio of ‖νss‖ to
‖νas‖ is also similar to that of ‖νst‖ to ‖νat‖, we regard

Query
Source artist: Madonna
Source song: Like a Prayer
Target artist: Lady Gaga

●

Rank Song title
1 Yoü and I
2 Poker Face
3 Telephone

Query
Source artist: Eminem
Source song: Not Afraid
Target artist: Lady Gaga

●

Rank Song title
1 The Edge of Glory
2 Bad Romance
3 Yoü and I

Query
Source artist: The Beatles
Source song: That Means A Lot
Target artist: Aerosmith

●

Rank Song title
1 Milk Cow Blues
2 Face
3 Temperature

Table 5. Ranking results of analogy search.

st as a good analogy search result of the query. However,
because the degree of the scatter of songs in the feature
space is different from one artist to another, we need to
normalize the angles and ratios between an artist and its
songs. Formally, given as, we first compute the angle be-
tween νas and the vector of each of as’s songs. The angles
are then normalized to fit into the interval [0, 1] by min-
max normalization. Let θss denote the normalized angle of
ss. We also compute the ratio of the length of each of as’s
songs to νas ’s length (i.e., ‖νs‖/‖νas‖ where s ∈ Ias ).
Again, min-max normalization is applied and let rss be the
normalized ratio of ss. Similarly, we compute the normal-
ized angles and ratios for each of at’s songs. The score of
st ∈ Iat for analogy search is then computed as follows:

fanalogy(as, ss, at, st) = γ|θss − θst |+ (1−γ)|rss − rst |,
where γ is a parameter to determine the weights on angle
similarity and length-ratio similarity. Finally, at’s songs
are ranked in ascending order of fanalogy(as, ss, at, st).

In Table 5, we show example results where the top three
songs are listed for each query. The value of γ is set to 0.5.
In the top table, the source song is “Like a Prayer,” which
is a signature piece for “Madonna,” and the target artist is
“Lady Gaga.” In this case, the signature pieces for “Lady
Gaga” are ranked higher. Even when the source artist is
“Eminem,” whose music is largely different from that of
“Lady Gaga,” her signature pieces are retrieved for his sig-
nature piece “Not Afraid.” When the source song is “That
Means A Lot,” which has a low PA with “The Beatles,”
songs with a low PA with “Aerosmith” are retrieved. From
these results, we can say that this application can search
for the target artist’s songs that have a similar relationship
between the source artist and the source song.

6. CONCLUSION
This paper analyzed song/artist latent features by embed-
ding them into a same feature space. Based on the analysis
results, we suggested three applications for song search.
We acknowledge a limitation of this paper in that we did
not quantitatively evaluate the search results of those appli-
cations. Nonetheless, we believe this study is worthwhile
contribution as a first step toward leveraging latent vectors
of songs and artists. In future work, we plan to quantita-
tively evaluate the usefulness of our proposed applications
by conducting user studies. We also want other researchers
to leverage the concepts of OS/PA and realize useful music
information retrieval systems.
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