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Abstract:

Many problems in early vision are ill posed'. Edge
detection is a typical example. This paper applies regular-
ization techniques to the problem of edge detection. We
derive an optimal filter for edge detection with a size con-
trolled by the regularization parameter A and compare it to
the Gaussian filter. A formula relating the signal-to-noise
ratio to the parameter A is derived from regularization
analysis, showing that the scale of the filter is a function
of the signal-to-noise ratio. We also discuss the method
of Generalized Cross Validation for obtaining the optimal
filter scale. Finally, we use our framework to explain two
perceptual phenomena: coarsely quantized images becom-
ing recognizable by either blurring or adding noise.

1. Introduction

If edge detection is considered as a problem of numerical
differentiation, the first step is to regularize it. Standard
regularization techniques suggest the use of Gaussian-like
filters before differentiation®*. In this paper, we address
the important issue of how to estimate the optimal scale
of the filter, that is, the amount of smoothing required by
the given image data.

2. Framework for Edge Detection

Regularization Techniques for Ill-Posed Problems
A problem

Ar=u (2.1)
for which the class 5 of solutions z, given A and u, is not
compact (changes on the right-hand side of the equation
can take u outside the set AS) is called ill-posed. The
approach suggested by Tikhonov' to deal with ill-posed
problems is to construct approximate solutions of equation
(2.1) that are stable under small changes in the data u.
If the right-hand side of equation (2.1) is known only ap-
proximately, we have u(z,y) = uT(r,y) + U(z,y), where
v(z,y) is noise. Then,

2w, v) = %:—"—3— = zr{w,v) + %‘—3

where
Az = f_m /_w k(z — &,y — )z(&, r)dE dr (2.2)

and k{w,r) is the Fourier transform of k(z,y). It would
seem natural to take the solution of equation {2.1) as being

z(z,y) = ﬁ[[_ﬂ .[_00 2p(w, v)e W dydy,

oo Kl )

since yp{w, v} = ¥ w,¥)zr(w,¥). However, this function
may not exist since the last integral may diverge. Fur-
thermore, even if this ratio does have an inverse Fourier
transform, the deviation from zero (in the C- or Ly-metric)
can be arbitrarily large, and, thus we cannot think of the
exact solution of equation (2.1) as an approximate solution
of the equation with approximate right-hand side.

Finding edges in an image is in general an ill-posed
problem*, since it involves taking an appropriate deriva-
tive of noisy data (notice that we do not specify which
derivative operator should be used: it may be a direc-
tional derivative® or any other desirable differential oper-
ator). The differentiation of u{x) is ill-posed, since it can
be viewed as a solution of equation 2.1 for the operator A
of the form

[ w0s= [ be - 0u(00dt = ute)

where h(x) is the step function. As described by Rheinsch’
and by Poggio and Torre®, this problem can be regularized
by smoothing the data before taking derivatives. The idea
is to consider the regularized solution 2 to equation (2.1),
with A being the imaging operator, such that z is suffi-
ciently well-behaved for numerical differentiation.

To approximate a solution of equation (2.1) one takes the
solution of a different problem, that of minimizing the
functional given bv.

M z,u) = f * f Az - uPdody + 300 (23)

that is close to the solution of the original problem for
small values of the error in the data. Tikhonov' proved
that for the case of one dimensional image data. Here
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u{x, y) is the image data, A is the regularization parameter,
A is in our special case a convolution operator and 2z} is
the stabilizing operator. We will be considering the apecial

case where f3

afs] = f f

The Fourier transform of oy + ;-,)rﬁz is M(w,v)2(w,v),
where M(w, v) = (w?+? )’ The order of the derivative in
£i[z], controlled by the parameter p, should be high enough
to ensure the appropriate degree of differentiability in =z
required by the desired derivative operation that has to be
performed next.

It should be pointed out that, whereas the original problem
(2.1) does not have the property of stability, the problem
of minimizing the functional M*{z, u] is stable under amall
changes in the right-hand side u. This stability has been
attained by narrowing the class of possible solutions by
introducing the stabilizing functional Q{z].

2
dr dy.

3. The Optimal Filter

Using Parseval’s theorem, we can rewrite equation (2.3) as

Mz, u] = (?:'_ji{im'[.m[k(w,u)z(w,y) — u{w, )]
[k{—w, —t)2(—w, —v} — u(—w, —v)] dw dv

+ A/_: f_:(w’ + v‘}’z(u,v)z[—u,—v)dwdu}.

The associated Euler-Lagrange equation is
aM*
F [k(w, v)2(w, v) — u(w, v)]k(—w, =)
+A:w +v)Pz(w, v} = 0.
For the apecial case where p = 2 (stabilize with Lapla-
cian} and the operator A given by (2.2) and k(w,v) =
e=¥w'4+v1)/2 e ohtain the regularized solution
1 ) 2{w, V)e-:{u:‘{rvx)
2z, y) = —'—(2“')2 /_mf_ 1+ Mo + v1)e N+ 47)
This corresponds, in the Fourier domain, to filtering the
input data with

flw,v,A) =

dw di-.

1
1+ Aw? + 122l ++7)’

(3.1)

The case b=0.0 {degree)® gives the PVY filter 2, For
& = 0.0 the filter is not smooth enough to ensure differ-
entiability with a second order differential operator such
as the Laplacian and a higher order stabilizer is needed
2, For b > 0 this problem disappears however. The term
k(w,v) approximates the modulation transfer function of
the imaging device. For the human eye it has bandwith
w=060 (degree)™", implying that 5=0.2216 {degree)?. The
filter is plotted (6=0.2216) in the space domain for differ-
ent values of A (figure 1), which controls the size of the
filter,
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Figure 1. The optimal filler in the space domain for
different velues of the regularisation parameter A
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In order to compare the optimal filter with the Gaus-
sian flter, we have to use some measure for the filter's
size. A possible criterion is the frequency at which the
amplitude drops to half of its maximun value. This gives

and optimal-filter:} = -—.’—,—--—

w, +M‘

Goussian:§ = e_!"'

Therefore X = f%‘c__.%gi Another criterion is to chose
filters that have the same width in their {appropriate)
derivative. An example is given in figure 3 where the
derivative operator is the Laplacian; both filters give very
similar zero-croesings.

4. The Optimal Scale

In order to find the optimal scale we vary ) to obtain the
closeat solution to the true solution. More precisely, we
minimize
EH‘A(I ¥) = zr(z. v’} =

® 2w + P S(w,¥) + e NI N (W, 0)
4,,2 [T+ 1 A (w? + 7))
where E{} is the expectation value operator, S{w, v) is the
spectral denaity (power spectrum) of zr(z, y) and N{w, )
is the spectral density of v(z,y), sssuming that v(zx,y) is
wide sense stationary. In practice, it is 8 good approxima-
tion to assume white noise N(w,v) = N, and the naymp-
totic value

+ — 2 2r=¢

w'yﬂlm S{w,v) = Sa(w” + v*)7".

§:~ and for ¢ = 8, A is the

diw d

For ¢ = 2, we obtain A =
solution of

-5% =ln(A’( )’(2b TA+T)/ (b3 A+5)) (41)

For the case b = 0, O(thepvvﬂlm)wegeu = (5/T)h ()b
A graph of signal-to-noise ratio versun A for b = 0.2218
(degree)? is plotted in figure 2. Thus the optimal size of
the filter can be obtained directly from an estimnate of the
signal-to-noise ratio for any given image.



Figure 2. Signal-to-noise ratio versus A, for b = 0.2216
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5. Noise Estimation

To estimate the noise we use a technique .developed by
Voorhees'®. First, the gradient of the image is computed.
A Rayleigh distribution is then fitted to the histogram of
the norm of the gradient and the noise parameters are es-
timated. The signal power is obtained from the standard
deviation of the histogram of the image. With this method
the program estimates the signal-to-noise ratio from the
image data. This ratio gives the parameter A from rela-
tions such as equation 4.1. The results are shown in figures
3 and 4.

Figure S. Zero-crossings using Gaussian filter and
optimal-filter with the same width for the second-derivative
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6. Two Perceptual Phenomena

6.1. Coarse quantized images can be better
recognized when noise is added

We first discuss the perceptual phenomena of improved
recognizability of coarse quantized images when noise is
added®. Consider the image of figure 4a with 320 by 384
pixels. A coarsely quantized version of it is shown in figure
4c. The optimal filter for figure 4c, estimated as explained
above, turns out to have a small scale of R 2.0 pixels cor-
responding to very low noise §3/N, = 100.0. The sign of
the zero-crossings (figure 4d) do not easily reveal a face.
Gaussian white noise with standard deviation 70 is the
added to figure 4c (see figure 4e), making recognition eas-
ier. Estimation of the optimal scale gives now a width
of &2 8.5 pixels. The corresponding zero-crossing contours
reveal the face in a much better way. These results may
shed some light on what the visual system may be do-
ing. Harmon and Julesz® claim that for the quantized
image "high frequencies introduced by quantized blocking
mask the lower spatial frequencies which convey informa-
tion about the face, preventing recognition".

Figure §. a,b) Image of & face and sign of the zero-crossings
{s2c) using Laplacian operator. ¢,d) Quantized image ond
sze with ¢ = 2.0 pizels. ¢,f) White noise, standard devia-
tion of 70 units, was added to the quantized image. Now
azc is o = 6.5 pizels.

In our framework two process determine recognizability of
the face. The first process consists of the estimation of the
signal-to-noise ratio {S§,/N,). The second step is to use
S,/N,, to set the optimal A for then computing an appro-
priate derivative and corresponding "edges". In the case
of the quantized image the ratio §,/N, islarge. X is then
small, which implies that a large bandwidth channel (in
the spatial-frequency domain) is selected. The zero cross-
ings for this channels do not easily allow face recognition
because they mostly capture the box outlines. For noisy
quantized images the ratio .S',,/N,, is small and correspond-
ingly A is large. This imply a filter with small bandwidth.
In this case the small bandwidth filter suppresses the noise
and, as a side effect, also the high frequency outlines of the
boxes.

This explanation is not in contrast with the one given by
Canny7 or by Morrone, Burr and Ross when they claim
"that added noise (more high frequencies) destroys the
propensity to organize the image according to its spurious
high-frequency structure, ...", but is more precise.
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6.2. Improved recognizability of coarse
quantized images by blurring

Blurring coarsely quantized images also improve recognitions.

The explanation for this second perceptual phenomena is
natural in our model. Blurring is equivalent to using an
effectively larger filter for edge detection. This has the
effect of suppressing the spurious high frequency edges in-
troduced by coarse quantization.”

7. The Method of Generalized Cross
Validation and Regularization

When So/N, cannot be directly estimated, it is natural
to consider the method of Generalized Cross Validation
(GCVY. The GCV method states that the optimal value
of A, can be obtained by minimizing the functional (here
in one dimension)

n Y — gy l?
V(i) = %g%ﬁéj—wﬂ,\) (7.3)
where wi(A} = (1 — apa(A})/(1 - £
are(A) = 2(Aza 2 )(ta)

Assuming the filter to be Gaussian-like, using the optimal-
filter would be computationally more expensive, equation

7 rni:ri_nc tn 1 n 1 " - 2
V)= oo — g[ 2m§=“+=- z(k)—z(a)} .

The method is computationally expensive but intrinsically
parallel. We have implemented it on Connection Machine.
We tested this method on different images including the
ones in figure 4 with various amounts of noise. The im-
portant result was the consistence of the GCV with the
results obtained by a method described earlier. Slices of
the image 80 pixels require 20 miliseconds for computing
V(e). Using Newton's method to find the minimun, the
algorithm converges after 10 intensions of ¥(g). There-
fore the GCV method takes in this case 0.2 seconds to find
the optimal a.

:-o a,,(A)} and

8. Conclusion

We have derived rigorously the optimal way of filtering im-
ages prior to numerical differentiation. We also obtained
the precise relation between the scale of the filterA and
the signal-to-noise ratio of the image. Some biological im-
plications were also considered. In particular we suggested
that humans can estimate the signal-to-noise ratio in the
image from which the scale A is computed. Only channels
channels with the appropriate spatial-frequency band

"Notice that blurring the quantized noisy image has the effect
of increasing the estimate of signal-to-noise ratio, thereby re-
ducing 0, to a value close to the one obtained for the quan-
tized image.
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are then used, the others being inhibited. In this frame-
work it is possible to understand the perceptual phenom-
ena of improved recognizability of coarsely quantized im-
age when noise is added. When the signal-to-noise ratio
is large, the estimated A is small and the associated zero-
crossings do not provide good information for recognition.
When §,/N, is smaller, the estimated A is larger: the zero-
crossings provide then a better information for recognizing
the face in the image. When the signal-to-noise ratio can-
not be estimated,it is possible to use the method of Cross
Validation for estimating the optimal A.
Acknowledgments: We are grateful to A. Yuille for many
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