2016 Volume E99.D Issue 9 Pages 2381-2384
Considering an uncertain multi-objective optimization system with interval coefficients, this letter proposes an interval multi-objective particle swarm optimization algorithm. In order to improve its performance, a crowding distance measure based on the distance and the overlap degree of intervals, and a method of updating the archive based on the acceptance coefficient of decision-maker, are employed. Finally, results show that our algorithm is capable of generating excellent approximation of the true Pareto front.