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Abstract 

Diagnosing a system requires the identification of a set of 
components whose abnormal behavior could explain the faulty sys­
tem behavior. Previously, model-based diagnosis schemes have pro­
ceeded through a cycle of assumptions -* predictions observa­
tions assumptions-adjustment, where the basic assumptions entail 
the proper functioning of those components whose failure is not esta­
blished. Here we propose a scheme in which every component's 
status is treated as a variable; therefore, predictions covering all pos­
sible behavior of the system can be generated. Remarkably, the algo­
rithm exhibits a drastic reduction in complexity for a large family of 
system-models. Additionally, the intermediate computations pro­
vide useful guidance for selecting new tests. 

The proposed scheme may be considered as either an 
enhancement of the scheme proposed in [de Kleer, 1986] or an adap­
tation of the probabilistic propagation scheme proposed in [Pearl, 
1986] for the diagnosis of deterministic systems. 

I Introduction 

The diagnosis of a system exhibiting abnormal behavior con­
sists of identifying those subsystems whose abnormal behavior 
could produce the manifested behavior. In model-based diagnosis, 
the system is treated as an idealized structure of components whose 
local behaviors interact to produce overall system behavior. Previous 
diagnostic schemes have tackled the task by partitioning the problem 
into two phases. First, making use of a set of observations and as­
suming the proper local behavior of components, predictions arc 
generated about the behavior of unobserved points. In the second 
phase, the assumptions underlying those predictions contradicted by 
observations are identified, and a set of hypotheses about the indivi­
dual component's behavior which "bes t " explains the manifested 
system behavior is assembled. 

While many proposed schemes fit within this paradigm 
[Reiter 86, Genesereth 84], the work of [de Kleer et al„ 1986] has 
especially focused on algorithms for performing these two tasks 
efficiently. In their scheme, predictions are generated by constraint 
propagation [Stallman et al.91977], while the process of identifying 
the (minimal) set(s) of assumptions underlying a contradicted pred­
iction (conflict sets) is facilitated by the ATMS machinery [de Kleer 
86]. The diagnoses chosen as "best" are those minimal sets of as­
sumptions (candidates) which, if removed, render the model 
behavior compatible with the manifested behavior. These are assem­
bled from the conflict sets by a set-covering algorithm. 

♦This work was supported in part by the National Science 
Foundation Grant DSR 83-13875. 

The diagnostic algorithm we propose including here consists 
of a single task: Instead of predicting only those behaviors which 
assume the proper functioning of components, the proposed algo­
rithm generates explanations for all possible behaviors, including, in 
particular, the optimal diagnoses that account for each new observa­
tion. The algorithm takes advantage of the fact that there is usually a 
small set of hypotheses compatible with the current set of observa­
tions that w i l l best explain any single new observation. The result­
ing scheme 

• diagnoses failures due to multiple faults; 
• is incremental; and (in contrast to two-phase approaches) 
• fully exploits the topology of the system model under 

diagnosis. 

The diagnostic algorithm reported here grew out of the 
analysis and comparison between the probabilistic scheme proposed 
in [Pearl 1986], and applied to diagnosis in [Geffher et al. 1987], and 
the non-probabilistic approach exemplified by [de Kleer et al. 1986]. 
As it w i l l be discussed below, the resulting scheme can be viewed 
either as an enhancement of the latter or as a non-probabilistic 
simplification of the former. 

We shall first introduce some notation and present the propa­
gation algorithm for singly-connected constraint networks models 
(section II). Its application to the diagnosis of a simple digital circuit 
is discussed in section I I I . We then extend the propagation scheme to 
properly handle both multiply-connected networks as well as com­
ponent models wi th different prior probabilities of failure (section 
IV) . We conclude with a discussion of related work (section V) , and 
a summary of the main results (section VI) . 

II The Proposed Scheme 
For the purpose of illustrating the ideas underlying the pro-

posed scheme, let us first introduce some convenient notation. Let 
L(SjO) denote a labeling that assigns a status to each component of 
a system S, compatible with a set of observations 0. For the time 
being, we shall assume that the merit of a given diagnosis is deter­
mined by the number of faulty components involved; so, every label­
ing L(S,O) w i l l be assigned a figure of (de)merit denoted by 
N(S ,0), representing the number of S -components labeled "faulty" 

Let us now consider two complex system circuits, S 1 and S2 , 
with outputs X 1 and X2* and observation sets 01 and 0 2. respective­
ly, as depicted in Figure 1. Let us also assume that, for each of these 
circuits, we have computed a set of diagnoses accounting for both 
their observation sets and each of the possible values of their output 
variables, Xx and X 2 . In other words, two sets of labelings, 

are available, each 
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Figure 1 

We can now consider the composite circuit formed by an adder A 
with output Y and inputs Xx and X 2 . We are interested in finding the 
best labelings over the components of S compatible wi th the set of 
observations and each of the possible values yofY. 
In other words, we want to determine the labeling. 
for each value y of Y. 

The main point to note is that, to determine 
we need not reconsider all the combinations of 

labelings over the individual circuits S 1 and 
is made up of labelings that were already found optimal overS , and 
S2 for some values of X1 and X 2 . In particular, assuming that the 
adder A is working properly (denoted by A ■ ok)t the weight associ­
ated with the optimal labeling w i l l be given by: 

(1) 

where x1 and x2 range over the possible values of X1 andX2 , respec­
tively. Thus, if the minimum is achieved at values x1 and x2, the 
optimal labeling for y=y under the assumption A = 0 k , c a n be con­
structed from: 

(2) 

To find the overall optimal labeling, we must also include the possi­
bil i ty that A is not working properly, denoted by A = -ok, yielding: 

(3) 

The constant 1" stands for the penalty associated with component A 
being faulty, which in turn removes the constraint between the 
values of and Notice that the terms required to compute (1) 
and (3) depend only on the subcircuits and and were assumed 
to be available. 

The overall best iabeling(s) compatible wi th Y =y can now 
be obtained simply by comparing the weight computed from (1) wi th 
the one computed from (3) and choosing the labeling(s) correspond-
ing to the lowest one. If Y =y is now observed, 
would emerge as the labeling defining the best diagnosis. 

A question remains, however, of how to minimize over sets 
of values that, in principle, may have infinite cardinality. Its solution 
is based on the fact that there w i l l be labelings which are compatible 
with all the values a variable can take. For example, in the simple 
adder circuit depicted in Figure 2, we have only two labelings, 

, The best labeling compatible with X =6 is 
(A mok) while, for any other value of X, {A =-ok; is the best and, 
in fact, the only compatible labeling. Moreover, {A = - o k } is the 
best labeling compatible wi th any value of X except X = 6 . We w i l l 
take advantage of this fact and w i l l use the symbol as a place 

Figure 2 - Best Labelings far X 

holder for all those, possible infinite, values of X which share the 
same optimal labelings. Refeming to the example above, we w i l l say 
that {A m=-ok} is the best labeling compatible wi th , mean­
ing that it is the best (and probably only) labeling compatible with 
any value of X. The introduction of these "special" values w i l l allow 
us to keep the state representation of the problem concise; the algo­
rithm, however, should behave as though an explicit representation 
were used for each possible value. 

The example above illustrates two important properties on 
which our algorithm is based: first, that the problem of determining 
the optimal labeling for a variable can be solved from information 
associated wi th neighboring variables, making feasible a distributed 
diagnostic inference engine in the form of constraint propagation; 
and secondly, that it is possible to incrementally predict all the possi­
ble model behaviors by encoding a finite (and usually small) set of 
"explanations," allowing the constraint propagation algorithm to ac­
complish the global identification task without appealing to non-
local set-covering procedures. 

A critical assumption implicit in the example of Figure 1 is 
that circuits S 1 and S 2 are only connected via A or, more generally, 
that the constraint network induced by the composite circuit S is 
singly-connected. In Section IV this assumption w i l l be relaxed and 
we shall generalize the algorithm to deal with multiply-connected 
constraint networks. These extensions w i l l provide interesting points 
of comparison with [de Kleer, 1986]. 

A. Notation 

We assume that a component can be in either of two 
states: it is working properly, denoted by or it is fail ing, 
denoted by . Since we are going to treat components as 
any other variable in the model, we w i l l usually draw them as nodes 
as in Figure 3b. rather than depict them as blocks as in Figure 3a., 
where stands for the name of the variable 
corresponding to the component status and j denotes the undirec-
tional constraint among the component inputs), its output(s) and its 
status. 

a. b. 
Figure 3 • Components as Nodes of a Constraint Network 

The resulting network is composed of 

• nodes (or variables), denoted by upper-case letters 
(X, y, W,.... for observable system points and 

C,, Cj,..., for components); 
• constraints, denoted by small letters (ij,...); and 
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• links connecting nodes to constraints. 

The set of nodes linked to a constraint k w i l l be denoted by 
Pk. A more useful set is / which reads as the port k of 
node X, and stands for the set of all other nodes different than X 
linked to constraint k. w i l l refer to the set of constraints 
linked to X. Lower-case letters x, y, w ,...,c', cj,..., w i l l refer to the 
values of variables X, Y, IV,..., C' C ; , and subindices wi l 
be used to differentiate among the values of a single variable. We 
w i l l extend this convention to refer to px as the values of the vari­
ables in the port Px. For example, the port Px in Figure 3 is the set 
of variables {Y,Z,Cj}, while px stands for their associated values 

As stated before, the "value" fy wi l l serve as a place 
holder for all those values of node Y that are not explicitly represent­
ed. 

In constraint-propagation algorithms such as the one used 
here, the ports of a variable contain enough information for the vari­
able to update its state. This updating is usually done incrementally, 
whenever a new state of a variable can be deduced from a neighbor 
constraint and its associated ports. We wi l l use messages, denoted as 

where node X is the recipient and port the origin, to 
encode the influence of the values of the variables in Px upon X 
through the constraint k. 

B. The Algorithm 

Messages: Messages m(Px x) are built from a vector of 
sub-messages where the x, 's refer to values X may 
take. Each of these submessages is composed of three fields: x,, 

and p , where the last parameter stands for the set of 
values of Px which would "best" support the potential observa­
tion X =x,- and the second one for the weight associated with such 
support (i.e., the minimum number of faulty components, in the sub­
network behind the port , necessary to account for 

In short, a message can be expressed as: 

i 
while eachi ) is a tr iplet: 

, for some value x, of X, we simply remove x, from the 
set of values X that needs to be considered. 

Message Combination: The first requirement for message 
combination is that every node save the last message received from 
each of its ports. New messages override old messages from any one 
port. From this set of messages, every node computes its state 
m(X). That is, if we denote the combination of messages by the 
symbol then, for each of its values xt, X computes the states: 

(4) 

where 

(5) 

is called the weight associated with x, and represents the minimum 
number of faulty components necessary to account both for the 
current set of observations and the instantiation X = xi;, and 

(6) 

the support of xi, encodes the state(s) of the neighborhood of X that 
w i l l best account for all the observations and the instantiation 
Upon observing X = xi;, the set of optimal diagnoses can be easily re­
trieved by tracing the support associated with represents 
the number of faults involved in any of these hypothetical diagnoses. 

Message Assembling: Let port Px contain the variables Y1, 
Then the parameters of the message are com­

puted from: 

(7) 

and 

(8) 

where the y; 's range over the values of Yj, and 
denotes a predicate indicating the compatibility of its arguments ac­
cording to constraint k. The substraction of the component Nk(y) 
from the weight N(y) in (7) and (8) amounts to subtracting the con­
tribution to N(y) that originated in the port Pk. This "orthogonaliza-
tion" is required to avoid counting the same fault more than once 
within a single diagnosis. 

Initialization: The propagation algorithm requires that nodes be 
properly initialized. A node, C, representing a component status 
wi l l be initialized to: 

while any other variable Y w i l l have an initial state: 

Observations: The observation X =x is codified as a message from 
a virtual port Ox of X: 

(9) 

where absence of sub-messages corresponding to other values of X 
is interpreted as for any x, # x. For the purpose of ap­
plying formulas for any observable node X, virtual ports Ox 

are taken to be members of the set of ports linked to X. 

Control of the Propagation Process: While an orderly and incre­
mental propagation scheme would be the most efficient implementa­
tion in serial machines, the algorithm can also work under distribut­
ed control, in which each node inspects the state of its ports at its 
own discretion. The final state reached at equilibrium would be the 
same. 

We now proceed to illustrate the working of the algorithm 
on a simple circuit discussed in [de Kleer 86], [Oenesereth 84] and 
[Davis 84]. 

I l l Example 
Let us consider the circuit depicted in Figure 4: Components M.M2 

and M 3 are multipliers, while A 1 and A 2 are adders. The former w i l l 
correspond to constraints C\1 C2 and C 3 , and the latter to constraints 
C4 and C5. Initially, all inputs are known and propagated through 
the rest of the network, generating the pattern of messages shown in 
Figure 5(a). Figure 5(b) displays the new states of nodes X and F. 
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Since the value F = 10, has now three unit-weight supports, we can 
immediately assert that there are at least three different, equally mer­
itorious, diagnoses accounting for the enhanced set of observations, 
each of which is encumbered by a single faulty component 
or M 2). We can uncover the identity of the faulty components in­
volved in these diagnoses by simply tracing their respective sup-
ports. For instance, underlying the support of 
F = 10, we find a single fault M \ = -*ok associated, in turn, with the 

support of X 

The new message also causes a pattern of addi­
tional messages to propagate throughout the network. However, this 
propagation is necessary not for rinding the diagnoses, (these can be 
found by tracing the existing supports) but for preparing the support 
lists of the network to accommodate new observations. Figure 6 i l­
lustrates the computation of one of these messages, 

Figure 6 

Note that, for the purpose of computing the weights 
associated with the variables in do not include 
the contributions of messages originated from PA, as specified by 
Eq.(7). Figure 7(a) illustrates the new pattern of messages resulting 
after the observation F = 10. Each message is depicted next to its ori­
ginating port; additionally, any node that has received messages 
from more than one port computes its new state according to Eq.(4). 
Figure 7(b) displays the updated state of nodes A1, and G. 
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The computations required by the algorithm also provide 
useful information for selecting points to test. Not only do the 
resulting data structures encode the best diagnoses accounting for 
any potential observation at any point in the circuit, but they also en­
code, through the supports attached to component nodes, the net­
work state most compatible with any component status. This turns 
out to be especially useful when we want to select test points to 
discriminate between different hypotheses. 

Let us also note here that the scheme proposed does not 
guarantee rinding all irredundant diagnoses [Peng 86], but only those 
with a minimum number of faults, i.e., the optimal diagnoses. 

IV Enhancements 
In this section we wi l l discuss some modifications to the 

scheme introduced in Section II to enhance the types of models with 
which the algorithm can deal. We first discuss how to extend the 
message-passing algorithm to handle constraint networks containing 
loops and then propose a slight modification to accommodate 
models with specified component-failure probabilities. 

A. Handling Constraint Networks with Loops 

The strength of the proposed scheme lies in its ability to 
decompose global optimization problems into local ones. To achieve 
this, we assumed that messages received by a node from different 
ports carried independent information, i.e., do not emanate from 
common observations. It is easy to find systems in which this as­
sumption is violated, as in the example of Figure 8. 

Figure 8 - A Circuit Containing a Loop. 

Clearly, the information carried by both inputs of C4 wi l l depend on 
the status of C1. Thus, knowing m (Y) and m (W) no longer suffices 
to compute m(Z). The reason is simply that, for some pairs of 
values y and w of Y and W, respectively, m (y) and m (w) might in­
volve a common set of faulty components; so, the weight associated 
with a value z of Z supported by y and w wi l l not necessarily be the 
sum of the weights of its supporters. In addition, m(y) and m(w) 
may involve incompatible labelings of X; so, we must ensure that 
they do not appear in a same support set. 

The solution that we wi l l pursue is not new [Peart 86.a] 
[Dechter & Peari 86] and rests on the idea of treating a "loopy" net­
work as a family of singly-connected networks in which some of the 
variables (usually those corresponding to a cycle cutset and referred 
to here as "assumption" nodes) have been assigned a fixed value 
(Figure 9). A fixed-value node can be duplicated into a set of identi­
cal nodes, each connected to one and only one of its original ports 
while stil l preserving the overall behavior. To illustrate the 
modifications needed to handle loops, let us consider constraint net­
work S (Figure 10) in which the instantiation of assumption node 
A decomposes it into a pair of singly-connected networks, S, and 
S2. Let Oi denote the set of observations gathered in the subnetwork 
j . t ^ f o rep resen t the complete set o f 

observations. Recalling the notation introduced in Section I I , 
N(S,0) stands for the number of faulty components needed to ac-

Fig. 9 - Loopy Network Treated as a Family of Singly-Connected Networks. 

and 

(12) 

Notice that since the S, 's are singly-connected, the measure 
Wa (x) , i.e. the minimum number of faults in 5,, needed to account 
for the observations , can be computed according 
to the procedure discussed above. We are interested, however, in 
computing the weight i.e., the total 
number of faults in S needed to account for the entire set of observa­
tions without any assumption about the value of A. 
This can be obtained by writing: 

where 

(13) 

(14) 

Thus, if the minimum is achieved at A = a *, the optimal set of diag­
noses wi l l be obtained from the supports associated with X=x under 
the assumption A =a* and from those associated with A =a* itself. 
From (10H14) it is clear that we wi l l be able to compute N(y) for 
any node Y,if we can compute Wa (x) for every value a of A and 
every value x of the nodes X in S. 

B. The Algorithm 
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Figure 10 - Breaking Loops by Introducing Assumptions. 

count for the set of observations 0 in system S.N(y) was then used 
as a shorthand for We shall now use the abbrevia­
tions: 



Each instantiation of the cutset variables identifies a set of 
singly-connected networks. We shall refer to the instantiated nodes 
as assumption nodes, to their instantiations as assumptions or tags, 
and to the states of the net compatible with a given set of assump­
tions as contexts. The manner in which tags are treated in this 
modified scheme bears a strong resemblance to the way assumptions 
are treated in the ATMS [de Kleer 86]. 

As with node values, the message-passing algorithm wi l l not 
exp l i c i t l y represent each of the possible values but w i l l appeal, in­
stead, to the special values introduced in Section I I . Now, howev­
er, tags containing values wi l l be required to specify the range of 
values for which any -value stands. For that purpose, we wi l l use 

i as the place holder for values of X other than 
This w i l l render a tag containing the instantiation incompati­
ble wi th any tag containing the instantiation The 

-values assigned to non-assumption nodes are not required to keep 
this extra information explicit; so, for them, we use our previous, 
simpler notation. 

Messages w i l l now have the form : 

where a represents the tag of the message, and each submessage 
contains five fields: 

where 

represents the component of W0(x) originated in the ik-th 
port o f X ; 

denotes its underlying support and 
stands for the contribution , as 

received from the it -th port. 

Note that does not depend on the value of X. We 
have included it among the sub-messages in order to simplify the 
presentation. 

The state of a node is computed by combining all messages 
with compatible tags received by the node from its different ports. 
For a value x of node X, the resulting state m (x) is given by: 

(15) 

where are computed as usual, within the context 
defined by each a, while the weight is computed from: 

(16) 

Messages are now assembled as in the case of singly-
connected networks, wi th the additional constraints imposed by the 
tags. 

When a new observation, Y =y, is obtained, the optimal weight can 
be computed according to Eq.(13): 

(17) 

where the weight N(a) is available at node A, and both NY(a) and 

Wa (y) are available at Y. , and the minimum is achieved at 
A = a * , the set of optimal diagnoses can be obtained by tracing the 
supports . Additionally, the message 
posted by the observation Y=y w i l l have the form: 

(18) 

where the last component amounts to setting N'(a) to the current 
value of Wa (y), as specified by Eqs.(lO) and (12). 

Another problem generated by the presence of loops in con­
straint networks is the inability of unaided local constraint-
propagation methods to enumerate, in advance, all the distinguished 
instantiations of the cutset variables. For instance, if we regard the 
components in Figure 8 as adders, and we happen to observe Z=13 
instead of the predicted Z=15, the only value of X compatible with 

To arrive at this conclusion, we need either to 
solve a linear equation or to step sequentially through 
all the values in the domain of X. One way to obtain these solutions 
would be to permit the engine to propagate symbolic values [Stall-
man 77]. This approach seems suitable for implementation in the 
scheme proposed here and corresponds to viewing the i values of 
assumption nodes as symbolic values. 

For an illustration of how the proposed algorithm would 
handle the diagnosis of a circuit l ike the one depicted in Fig. 8, the 
reader might refer to [Gefrher etal. 1986]. 

C. Varying Failure Rates 

The criterion of minimizing the number of faulty com­
ponents is reasonable in situations where there are no reasons to be-
lieve that different components fail with significantly different rates. 
If such is not the case, information about component failure rates 
could be easily integrated in the scheme proposed. One needs only to 
change the initial states of the component nodes. For example, in­
stead of initializing component node C,, to: 

j 

we can initialize it at: 

where Pi is the probability of failure in component Ct, and k is any 
suitable constant 

For those cases (the majority) in which the components* 
failures are independent, the set of diagnoses obtained with this 
slight modification, w i l l be those with the highest probability. 

V Related Work 
The diagnostic algorithm presented here grew out from the 

analysis and comparison of the scheme proposed in [de Kleer et ai 
86] and the one reported in [Geffner et al. 87]. The former is a typi­
cal two stage algorithm. Predictions that assume the proper function­
ing of components whose failure was not established, are matched 
against the observations. A mismatch identifies a set of assumptions 
(conflicts) which cannot simultaneously hold. These sets are ob­
tained from the tags attached to the predictions refuted. From these 
sett, a non-local set-covering algorithm constructs the set of minimal 
diagnosis, i.e. minimal sets of violated assumptions which explain 
the observations. 
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The diagnostic scheme reported in [Geffher et al. 87] is a 
probabilistic scheme in which both "right" and "wrong" behavior are 
considered on the same basis. Knowledge of the network topology 
(the singly-connectedness of the network is embedded in the algo­
rithm) and a set of probabilistic goodness measures attached to hy­
potheses, allow copious prunning, avoiding the combinatorial explo­
sion characteristic of unaided multi-hypothesis diagnostic algo­
rithms. On the other hand, the scheme seems unnecessarely expen­
sive for many applications, and it also requires the assessment of the 
probability distribution associated with the component's I/O which, 
generally, is not available. 

The scheme proposed here borrows from the latter what we 
consider to be its two main features : knowledge of the network to­
pology, and numeric qualification of candidate hypotheses. The algo­
rithm however can be interpreted as embedding two further assump­
tions : very small failure rates and uniform probability over the pos­
sible output values of failed components. The resulting diagnostic 
scheme can be thought then, as the non-probabilitic version of 
[Oeffner et al. 87], in the sense that it can only accommodate a nar­
row set of probabilistic models. On the other hand, it only requires to 
propagate one type of message, it does not require the assessment of 
probabilities and it is sensibly less computationally expensive. 
Compared to [de Kleer et al. 86] and [Reiter 85], it does not require 
a non-local set covering procedure for identifying the culprits. More­
over in the singly-connected case, the knowledge of the network to­
pology permits to tag messages only with a numeric measure rather 
than with the identity of the assumption set In the multiply-
connected case however, tags identifying the cutset assumptions are 
needed. In this respect, the scheme reported in [de Kleer et al. 86] 
which does not presuppose any knowledge about the type of net­
work, appears to be treating all variables as cutset variables. For 
sparse networks however, the preprocessing step needed to identify a 
cut set may be worthwhile. 

VI Conclusions 

We have introduced a distributed diagnostic algorithm 
which ful ly exploits the topology of the network of the system being 
diagnosed. The algorithm has linear complexity for singly-connected 
networks and a worst-case complexity of exp(\ cycle-cutset I) for 
multiply-connected networks. 

The proposed scheme departs from previous work by treat­
ing each component status as a variable, thus facilitating the predic­
tion of all possible model behaviors. This allows the message-
passing algorithm to perform the diagnostic task without appealing 
to non-local set-covering procedures. It also simplifies probabilistic 
approaches like [Pearl 86] by taking advantage of the deterministic 
nature of the models analyzed. 

The intermediate computations generated by the algorithm 
provide information useful for the selection of new tests. Addition­
ally, information about component failure rates can easily be accom­
modated. 
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