
September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

AN EXACT SOLVER FOR THE DCJ MEDIAN PROBLEM

MENG ZHANG

College of Computer Science and Technology, Jilin University, China
Email: zhangmeng@jlu.edu.cn

WILLIAM ARNDT AND JIJUN TANG

Dept. of Computer Science and Engineering, Univ. of South Carolina, USA
Email: {arndtw, jtang}@cse.sc.edu

The “double-cut-and-join” (DCJ) model of genome rearrangement proposed by
Yancopoulos et al. uses the single DCJ operation to account for all genome rear-
rangement events. Given three signed permutations, the DCJ median problem is
to find a fourth permutation that minimizes the sum of the pairwise DCJ distances
between it and the three others. In this paper, we present a branch-and-bound
method that provides accurate solution to the multichromosomal DCJ median
problems. We conduct extensive simulations and the results show that the DCJ
median solver performs better than other median solvers for most of the test cases.
These experiments also suggest that DCJ model is more suitable for real datasets
where both reversals and transpositions occur.

1. Introduction

Once a genome has been annotated to the point where gene homologs can

be identified, each gene family can be assigned a unique integer and each

chromosome represented by an permutation of signed integers, where the

sign indicates the strand. Rearrangement of genes under reversal (also

called inversion), transposition, and other operations such as translocation,

fusion and fission are known to be an important evolutionary mechanism 4

and have attracted great interests from phylogenists, evolutionary biologists

and comparative genomicists.

Yancopoulos et al. 12 proposed a “universal” double-cut-and-join (DCJ)

operation to account for all rearrangement events. Although there is no

direct biological evidence for DCJ operations, these operations are very

attractive because it provides a simpler and unifying model for genome

rearrangement 2.

One important problem in genome rearrangement analysis is to find the

Pacific Symposium on Biocomputing 14:138-149 (2009)

September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

median of three genomes, that is, finding a fourth genome that minimizes

the sum of the pairwise genomic distances between it and the three given

genomes 7. This problem is important since it provides a maximum parsi-

mony solution to the smallest binary tree, thus can be used as the basis for

more complex methods. The median problem is NP-hard for when DCJ dis-

tance is used 9. Since phylogenetic reconstruction based on reconstructing

ancestral states may need to compute such medians repeatedly, fast approx-

imations or heuristics are often needed, although exact methods have done

well for small genomes 6,8. With more and more whole genome information

available, it becomes very important to develop accurate median solvers for

these multichromosomal genomes.

In this paper, we present an exact solver for the DCJ median problem

and show our experimental results on various combinations of probabilities

of reversals and transpositions. Our tests suggest that this solver is efficient

and accurate, and provides better median solutions for most of the cases.

2. Background and Notions

2.1. Genome Rearrangements

We assume a reference set of n genes {1, 2, · · · , n} through which a genome

can be represented by an ordering of these genes. Gene i is assigned

with an orientation that is either positive, written i, or negative, writ-

ten −i. Specifically, we regard a multichromosomal genome as a set

A = A(1), . . . , A(Nc) of Nc chromosomes partitioning genes 1, . . . , n; where

A(i) = 〈A(i)1, . . . , A(i)ni
〉 is the sequence of signed genes in the ith chro-

mosome. In this paper, we also assume that each gene i occurs exactly

once in the genome, and the chromosomes are undirected 10, i.e. the flip of

chromosomes is regarded as equivalent.

Let G be the genome with signed ordering of 1, 2, · · · , n. An reversal

between indices i and j (i ≤ j), produces the genome with linear ordering

1, 2, · · · , i−1,−j,−(j−1), · · · ,−i, j+1, · · · , n. A transposition on genome

G acts on three indices i, j, k, with i ≤ j and k /∈ [i, j], picking up the

interval i, i+1, · · · , j and inserting it immediately after k. Thus genome G

is replaced by: 1, · · · , i− 1, j + 1, · · · , k, i, i + 1, · · · , j, k + 1, · · · , n (assume

k > j). A transversion is a transposition followed by an inversion of the

transposed subsequence.

There are additional events for multiple-chromosome genomes, such as

translocation (the end of one chromosome is broken and attached to the

end of another chromosome), fission (one chromosome splits and becomes

Pacific Symposium on Biocomputing 14:138-149 (2009)

September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

two) and fusion (two chromosomes combine to become one).

Two genes i and j are said to be adjacent in genome A if i is immedi-

ately followed by j, or if −j is immediately followed by −i. Given genomes

A and B, a breakpoint is defined as an ordered pair of genes (i, j) such that

i and j are adjacent in A but not in B.

2.2. Genomic Distance and Median Problem

We define the edit distance as the minimum number of events required to

transform one genome into the other. Hannenhalli and Pevzner developed

an elegant theory for unichromosomal genomes and provided a polynomial-

time algorithm to compute the reversal distance (and the corresponding

sequence of events). They also extends the algorithms to handle multichro-

mosomes 5. Yancopoulos et al. 12 proposed a universal double-cut-and-join

(DCJ) operation that accounts for events such as reversals, translocations,

fissions and fusions.

The median problem on three genomes is to find a single genome that

minimizes the sum of pairwise distances between itself and each of the three

given genomes. The median problems are generally named after the dis-

tance they use. For example, the reversal median problem uses reversal

distances and the DCJ median problem uses DCJ distances. Many solvers

have been proposed for the reversal median problem. Among them, the one

proposed by Caprara 3 is the most accurate. As a branch-and-bound al-

gorithm, Caprara’s solver enumerates all possible solutions and tests them

edge by edge. Very recently, Adam and Sankoff 1 presented a heuristic

inspired by MGR for the DCJ median problem. Experiments on various

biological data suggest it is at least as good as MGR. Xu and Sankoff 11

developed a decomposition theory based on multiple breakpoint graphs, en-

abling the possibility of very fast and exact algorithms for the DCJ median

problem in case of circular genomes. Our new DCJ median solver presented

in this paper is inspired by Caprara’s solver, but adjusted to handle both

DCJ edit distance and the complexities introduced by multiple linear and

circular chromosomes.

3. Adjacency Graph for Undirected Genome

In this section we review the notations of the Adjacency Graph 2. A gene is

an oriented sequence of DNA that starts with a head and ends with a tail.

We call these the extremities of the gene. The tail of a gene a is denoted by

at, and its head is denoted by ah. An adjacency of two consecutive genes

Pacific Symposium on Biocomputing 14:138-149 (2009)

September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

a and b, depending on their respective orientation, can be of the following

four different types: {ah, bt}, {ah, bh}, {at, bt}, {at, bh}. An extremity that

is not adjacent to any other gene is called a telomere, represented by a

singleton set {ah} or {at}.
5

{1 , 6 }
t h

{6 , 3 }
t h

{2 , 4 }
t h

 {4 }
 t

{3 , 5 }
t t

 {2 }
 h

{5 , 1 }
h h

{1 , 6 }
t h

 {2 }
 h

{5 , 4 }
h t

 {1 }
 h

 {6 }
 t

 {5 }
 t

{4 , 3 }
h t

{3 , 2 }
h t

1 6 3 −5 2 4, 1 6 2 3 4 5

AG(A,B)

Genomes

Canonical Chromosome Ordering

−3−6

−1

A = { , <2 4> }, B = { <−6 −1>, <−5 −4 −3 −2> }

Figure 1. In AG(A, B), n = 6, c(A, B) = 1,|AB| = 2, DCJ distance of A, B is 4.

We define the adjacency graph AG(A, B) as a graph whose vertices

are the adjacencies and telomeres of genomes A and B. For each vertices

u ∈ A and v ∈ B there are |u ∩ v| edges between u and v. The adjacency

graph is a union of paths and cycles. Paths of odd length (odd paths),

connect telomeres of different genomes, and paths of even length (even

paths), connect telomeres of the same genome. An example of adjacency

graph is shown in Fig 1.

The double-cut-and-join (DCJ) operation cuts the chromosome in two

places and joins the four ends of the cut in a new way. The DCJ distance

can be computed using the following theorem:

Theorem 3.1. 2 Let A and B be two genomes defined on the same set of n

genes. Denote the DCJ distance for two genomes A and B by dDCJ(A, B),

then we have dDCJ(A, B) = n− (C + I/2) where C is the number of cycles

and I is the number of odd paths in the adjacency graph AG(A, B).

As a metric distance, the DCJ distance satisfies the triangle inequality:

Lemma 3.1. Given three genomes A,B,C, dDCJ(A, C)) + dDCJ(C, B) ≥

dDCJ(A, B).

4. Branch-and-bound algorithm

In this section, we describe a branch-and-bound algorithm for the multi-

chromosomal DCJ median problem.

Pacific Symposium on Biocomputing 14:138-149 (2009)

September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

4.1. Basic Notions

We formally define the DCJ Median Problem (DMP) here. For a genome

G, let Q := {1, 2, 3}, γ(G) =
∑

k∈Q dDCJ(G, Gk). We define DMP as

the following: given undirected genomes G1, G2, G3, find a genome G such

that γ(G) is minimized. The genome obtained after a DCJ operation may

contain circular chromosome; thus we should allow circular chromosomes

in the input genomes. In this paper, we also consider the solution genomes

with circular chromosomes.

The following lower bound on DCJ median value is based on the fact

that the DCJ distance satisfies the triangle inequality.

Lemma 4.1. Given three undirected genomes G1, G2, G3. Let γ∗ be the

optimal DCJ median value of these genomes,

γ∗ ≥
dDCJ(G1, G2) + dDCJ(G2, G3) + dDCJ(G3, G1)

2
. (1)

We introduce the following operation in our algorithm. Given a

genome A and a pair of extremities {p, q}. Let {p, x}, {q, y} be ad-

jacencies or telomeres of A. DCJ({p, q}, A) denotes the DCJ opera-

tion on A that cuts {p, x} and {q, y}, then connects p with q and x

with y. For input genomes G1, G2, G3, we use DCJ({p, q}) to denote

the set {DCJ({p, q}, G1), DCJ({p, q}, G2), DCJ({p, q}, G3)}. By apply-

ing DCJ({p, q}) to the input genomes, we get G′

1, G
′

2, G
′

3.

For a set of genomes and DCJ({p, q}), the following lemma holds.

Lemma 4.2. Given three undirected genomes G1, G2, G3 and a pair of ex-

tremities {p, q}, an optimal DMP solution containing the adjacency {p, q}

is also an optimal solution of the set of genomes obtained by applying

DCJ({p, q}) to the input genomes.

As a direct consequence of Lemma 4.1 and 4.2, a new lower bound on

DCJ median can be computed from G′

1, G
′

2, G
′

3.

Lemma 4.3. Given three undirected genomes G1, G2, G3 and a pair of

extremities {p, q}. Let γ∗ be the optimal DCJ median value of these

genomes, G′

1, G
′

2, G
′

3 are the resulting genomes by applying DCJ({p, q})

to G1, G2, G3. If {p, q} is in an optimal DMP solution, then

γ∗ ≥ dDCJ(G1, G
′

1) + dDCJ(G2, G
′

2) + dDCJ(G3, G
′

3)

+
dDCJ(G

′

1, G
′

2) + dDCJ(G
′

2, G
′

3) + dDCJ(G
′

3, G
′

1)

2
.

(2)

Pacific Symposium on Biocomputing 14:138-149 (2009)

September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

Proof. Let S be an optimal DMP solution that contains {p, q}. If

{p, q} ∈ Gi, i ∈ {1, 2, 3}, then any cycle or path in AG(S, G′

i) corre-

sponds to a unique cycle or path in AG(S, Gi). Otherwise AG(S, G′

i)

has the cycle from {p, q} to {p, q}, and any cycle or path in AG(S, G′

i)

corresponds to a unique cycle or path in AG(S, Gi). In the for-

mer case, Gi = G′

i, dDCJ(Gi, S) = dDCJ(G
′

i, S). In the latter case,

dDCJ(Gi, G
′

i) = 1 and dDCJ(S, Gi) = dDCJ(S, G′

i) + 1. Therefore,

γ∗ =
∑3

k=1 dDCJ(S, Gk) =
∑3

k=1 dDCJ(G
′

k, Gk) +
∑3

k=1 dDCJ(S, G′

k).

By lemma 4.1,
∑3

k=1 dDCJ(S, G′

k) ≥
dDCJ(G

′

1
,G′

2
)+dDCJ(G

′

2
,G′

3
)+dDCJ(G

′

3
,G′

1
)

2 .

Thus the lemma is proved.

4.2. The Branch-and-Bound Algorithm

By Lemma 4.2 and Lemma 4.3, we extend the branch-and-bound algorithm

in 13 to deal with both circular and linear chromosomes. In each step, it

either selects a gene (negative or positive) as an end or an inner gene of a

chromosome of the solution (median) genome. In terms of the DCJ model,

the former operation fixes a telomere in the solution genome and the latter

one fixes an adjacency in the solution genome, these are called telomere

fixing and adjacency fixing respectively. In the fixing of an adjacency, say

α, DCJ(α) is applied to each input genome and a lower bound on the γ

value of the solution is computed.

In the beginning, the algorithm enumerates all partial genomes by first

fixing, in turn, all genes ±1,. . .,±n as the first gene, say f , in a chromosome

of the solution. Since this chromosome is not completed yet, we call this

chromosome an opening chromosome. Recursively, let the latest fixed gene

be a, we proceed the enumeration by fixing in the solution gene b for all

genes not fixed so far or fixing a as an end gene of the current opening

chromosome. In the former case, the adjacency {at, bh} is fixed in the

solution. In the latter case, the telomere {at} or the adjacency {at, fh} is

fixed and the current opening chromosome is closed as a linear or circular

chromosome. A closing of a chromosome is followed by an opening of a new

chromosome except that a complete genome is available.

In adjacency fixing, the operation DCJ
(

{p, q}
)

is applied to the input

genomes and the lower bound of all DMP solutions containing all adjacen-

cies fixed so far up to {p, q} in the median genomes can be derived according

to Lemma 4.3. If it is greater than the lower bound {p, q} is not an adja-

Pacific Symposium on Biocomputing 14:138-149 (2009)

September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

cency in the best solution and can be pruned. Otherwise, {p, q} is fixed in

the current solution as an adjacency.

After adjacency fixing, the number of common adjacencies of the inter-

mediate genomes increases by one. In other words, the three genomes move

simultaneously by DCJ operations. In the case that {p, q} is already an ad-

jacency in one of the intermediate genomes, say G, the DCJ
(

{p, q}, G
)

will

not change G, therefore G will not move in this step.

The algorithm also generates three series of DCJ operations that trans-

form G1, G2, G3 to the median genome accordingly. Each of the three DCJ

series is one of the shortest DCJ series from each of the input genomes to

the median genome.

The lower bound can be computed very efficiently. For the current fixed

adjacencies set Sl = {α1, α2, . . . , αl}, let Gi
k, k ∈ {1, 2, 3}, be the genome af-

ter applying the operations DCJ(α1, Gk), DCJ(α2, Gk), . . . , DCJ(αi, Gk)

to Gk, G0
k = Gk. We have that

∑l

i=1 |{k : αi ∈ Gi−1
k }| equals the number of

cycles in AG(Sl, G1), AG(Sl, G2) and AG(Sl, G3). Since a DCJ operation

alters at most two cycles or paths in the adjacency graph for two genomes,

the new lower bound can be easily computed from the old one, avoiding

the need to compute from scratch.

It’s worth mentioning that the treatment of the telomere fixing plays

an important role in reducing the complexity of the branch-and-bound al-

gorithm. In adjacency fixing, we can find three unique DCJ operations

such that Lemma 4.2 holds. However, in telomere fixing, it is difficult to

find such DCJ operations with the property like Lemma 4.2. Other than

treating the adjacency fixing and telomere fixing in a uniform way, we do

not change any genome in telomere fixing and the number of paths in the

adjacency graph of a solution and each input genome can be computed very

efficiently as described above.The complexity is therefore avoided.

We also extend the efficient genome enumeration method in 13 to enu-

merate and test the genomes containing both linear and circular chromo-

somes at most once, which saves considerable computing time.

Let the linear chromosome X = 〈X1, . . . , XM 〉. The canonical flipping

of X is 〈−XM , . . . ,−Xj , . . . ,−X1〉, if |XM | < |X1|, otherwise, X itself.

For a circular chromosome Y = 〈Y1, . . . , Yl, Ym, Yr, . . . , YM 〉, let |Ym| be

the minimal gene in Y . The canonical flipping of Y is 〈Ym, . . . , Yl〉, if

Ym > 0; Otherwise, 〈−Ym, . . . ,−Yr〉. After canonical flipping of each chro-

mosome, we order the chromosomes by their first genes in an increasing

order. Obviously, each genome has a unique canonical ordering, and it can

be uniquely represented by the canonical ordering along with the markers

Pacific Symposium on Biocomputing 14:138-149 (2009)

September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

of open and closed genes and an indicator of linear or circular chromosome.

We proceed the branch-and-bound algorithm in a depth first order,

which can be viewed as the depth-first traversal of the trie of all canon-

ical chromosome ordering of genomes, as illustrated in Fig 2. With this

scheme we can perform the lower bound test after each adjacency fixing as

described in section 4.2.

−4

2

2

3

−3

...
...
...

...

...

...

...

...

$

4

−4

−4

4

−1

 1

3

−3 4

4

−4

−4

Figure 2. A sketch of the trie of canonical chromosome ordering of all genomes on
gene 1..4. Solid edges correspond to adjacencies and each dotted edge corresponds to
telomeres. The branch-and-bound algorithm can be viewed as the depth-first traversal
of the trie. When lower bound test is failed, it backtracks and tries other genes. We
assume that all genomes start at a virtual gene $.

In our implementation, the initial lower bound LD is computed from the

initial input genomes (Eq. 1) based on triangular inequalities. The branch-

and-bound algorithm starts searching for a DMP solution of target value

L = LD and if a solution of value L is found, it is optimal and we stop,

otherwise there is no solution of value LD. The algorithm then restarts

with an increased target value L = LD +1, and so on. The search stops as

soon as we find a solution with the target value.

5. Experimental Results

We have implemented the algorithm and conducted simulations to assess

its performance and compare its results against other solvers.

5.1. Performance of the New Solver

We test the performance of our new solver on genomes with 100 ∼ 200 genes

and 2 ∼ 8 chromosomes. We create each dataset by first generating a tree

Pacific Symposium on Biocomputing 14:138-149 (2009)

September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

topology with three leaves and assigning each edge with different length.

We assign a genome G0 to the root, then evolve the signed permutation

down the tree, applying along each edge a number of operations that equals

the assigned edge length. We test a large range of evolutionary rates: letting

r denote the expected number of evolutionary events along an edge of the

model tree, we used values of r in the range of 4 to 32. The actual number

of events along each edge is sampled from a uniform distribution on the

set {r/2, . . . , 3r/2}. For each combination of parameters, we generate 10

datasets and average the results.

Table 1 shows the speed of the new solver on 200 genes (results of 100

genes are similar). From this table, we find that the number of chromo-

somes has very large impact on the speed and genomes with one or two

chromosomes can be analyzed quickly, while genomes with 8 chromosomes

are much more difficult to compute than unichromosomal genomes.

Table 1. Running time of 200 genes, 2 ∼ 8 chromosomes. For each combination
of parameters, average running time is shown (in seconds) if all ten datasets
finished in 1 hour; otherwise the percentage of finished datasets is shown.

r=8 r=16 r=24 r=32 r=40 r=48

1 chromosome < 1 < 1 < 1 < 1 1.1 70%

2 chromosomes < 1 < 1 < 1 40.1 81.4 60%

4 chromosomes < 1 26.1 142.2 421.4 40% 20%

8 chromosomes 62.0 2352.0 7691.6 20% 0% 0%

5.2. Comparing with Other Median Solvers

In this experimental study, each genome has 100 genes. We test each dataset

with the following four methods: MGR, the most cited method for genome re-

arrangement analysis; Caprara’s reversal median solver, the most accurate

for the reversal median problem; breakpoint median solver; and the new

DCJ median solver presented in this paper. We only use unichromosomal

genomes in this study, because no multichromosomal breakpoint median

solver is available. Comparing DCJ medians with breakpoint medians is

interesting because the breakpoint model is independent of any particu-

lar rearrangement mechanism, hence can be viewed as a neutral model for

genome rearrangements.

In this study, we used values of r in the range of 4 to 32. To test the ro-

bustness of the DCJ model, we use five combinations of events: 1) reversals

are the only events; 2) 75% events are reversals, 25% are transpositions; 3)

reversals and transpositions are equally likely; 4) 75% events are transpo-

sitions, 25% are reversals; 5) all three events (reversals, transpositions and

Pacific Symposium on Biocomputing 14:138-149 (2009)

September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

transversions) are equally likely; 6) all events are transpositions.

Since the true ancestor is known in our simulations, we use the break-

point distance between the inferred median and the true ancestor to assess

the accuracy of a median solver. For each combination of parameters, we

generate 10 datasets, and show the averaged results in Fig. 3 to Fig. 5.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 8 12 16 20 24 28 32

B
P

 d
is

t t
o

th
e

tr
ue

 a
nc

es
to

r

number of events (r)

DCJ
 Reversal

 MGR
BP

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 8 12 16 20 24 28 32

B
P

 d
is

t t
o

th
e

tr
ue

 a
nc

es
to

r

number of events (r)

DCJ
 Reversal

 MGR
BP

Figure 3. Breakpoint distance from the inferred median to the true ancestor when
reversals are the only events (left), and when 75% of the events are reversals, 25% are
transpositions (right).

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 8 12 16 20 24 28 32

B
P

 d
is

t t
o

th
e

tr
ue

 a
nc

es
to

r

number of events (r)

DCJ
 Reversal

 MGR
BP

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 8 12 16 20 24 28 32

B
P

 d
is

t t
o

th
e

tr
ue

 a
nc

es
to

r

number of events (r)

DCJ
 Reversal

 MGR
BP

Figure 4. Breakpoint distance from the inferred median to the true ancestor when 50%
of the events are reversals, 50% are transpositions (left), and when 25% of the events are
reversals, 75% are transpositions (right). DCJ and reversal median solvers cannot finish
all datasets for r = 32.

From these figures, we find that the DCJ median solver outperforms

the other solvers for most of the test cases. Even for the case that favors

the reversal median, i.e. when reversals are the only events, using the DCJ

median solver has performance equals to the Caprara’s solver for r < 24,

and has better performance when r = 32. With the increasing probabilities

Pacific Symposium on Biocomputing 14:138-149 (2009)

September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 8 12 16 20 24 28 32

B
P

 d
is

t t
o

th
e

tr
ue

 a
nc

es
to

r

number of events (r)

DCJ
 Reversal

 MGR
BP

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 8 12 16 20 24 28 32
B

P
 d

is
t t

o
th

e
tr

ue
 a

nc
es

to
r

number of events (r)

DCJ
 Reversal

 MGR
BP

Figure 5. Breakpoint distance from the inferred median to the true ancestor when when
all three events (reversals, transpositions and transversions) are equally likely (left), and
when all events are transpositions (right). All median solvers cannot finish all datasets
for r > 24.

of transpositions, the performance gap widens and the DCJ median solver

has the best performance for almost all test cases. Although both DCJ

and breakpoint models do not deal with actual biological events, the better

performance of the DCJ median solver suggests that it is a better choice

for real data where both reversals and transpositions occur.

6. Conclusions and Future Work

In this paper we present a new branch-and-bound method for the DCJ me-

dian problem. Our extensive experiments show that this method is more

accurate than the existing methods. However, this solver is still primitive

and further improvements of efficiency are needed. This solver (as almost

all other solvers) requires equal gene content which limits the range of data

we can analyze. To improve this solver, we need to develop new distance

lower bounds so that complex events such as gene losses and duplications

can be handled. Recent developments on breakpoint graph decomposition

have shown potential and we plan to include some of these new results to

further reduce the search space and improve the speed.

7. Acknowledgments

WA and JT were supported by US National Institutes of Health (NIH grant

number R01 GM078991). All experiments were conducted on a 128-core

shared memory computer supported by US National Science Foundation

grant (NSF grant number CNS 0708391).

Pacific Symposium on Biocomputing 14:138-149 (2009)

September 22, 2008 21:11 Proceedings Trim Size: 9in x 6in TangPSB09

References

1. Z. Adam and D. Sankoff. The abcs of mgr with dcj. Evolutionary Bioinfor-
matics, 4:69–74, 2008.

2. A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rear-
rangements. In Proc. 6th Int’l Workshop Algs. in Bioinformatics (WABI’06),
number 4175 in Lecture Notes in Computer Science, pages 163–173, 2006.

3. A. Caprara. On the practical solution of the reversal median problem. In
Proc. 1st Int’l Workshop Algs. in Bioinformatics (WABI’01), volume 2149
of Lecture Notes in Computer Science, pages 238–251, 2001.

4. S.R. Downie and J.D. Palmer. Use of chloroplast DNA rearrangements in
reconstructing plant phylogeny. In P. Soltis, D. Soltis, and J.J. Doyle, editors,
Plant Molecular Systematics, pages 14–35. Chapman and Hall, 1992.

5. S. Hannenhalli and P.A. Pevzner. Transforming mice into men (polynomial
algorithm for genomic distance problems). In Proc. 36th Ann. IEEE Symp.
Foundations of Comput. Sci. (FOCS’95), pages 581–592, 1995.

6. B.M.E. Moret, A.C. Siepel, J. Tang, and T. Liu. Inversion medians outper-
form breakpoint medians in phylogeny reconstruction from gene-order data.
In Proc. 2nd Int’l Workshop Algs. in Bioinformatics (WABI’02), volume 2452
of Lecture Notes in Computer Science, pages 521–536, 2002.

7. D. Sankoff and M. Blanchette. The median problem for breakpoints in com-
parative genomics. In Proc. 3rd Int’l Conf. Computing and Combinatorics
(COCOON’97), volume 1276 of Lecture Notes in Computer Science, pages
251–264. Springer Verlag, Berlin, 1997.

8. A.C. Siepel and B.M.E. Moret. Finding an optimal inversion median: Ex-
perimental results. In Proc. 1st Int’l Workshop Algs. in Bioinformatics
(WABI’01), volume 2149 of Lecture Notes in Computer Science, pages 189–
203. Springer Verlag, Berlin, 2001.

9. E. Tannier, C. Zheng, and D. Sankoff. Multichromosomal genome median
and halving problems. In Proc. 8th Int’l Workshop Algs. in Bioinformatics
(WABI’08), volume 5251 of Lecture Notes in Computer Science, pages 1–13,
2008.

10. G. Tesler. Efficient algorithms for multichromosomal genome rearrangements.
J. Comput. Syst. Sci., 63(5):587–609, 2002.

11. W. Xu and D. Sankoff. Decompositions of multiple breakpoint graphs and
rapid exact solutions to the median problem. In Proc. 8th Int’l Workshop
Algs. in Bioinformatics (WABI’08), volume 5251 of Lecture Notes in Com-
puter Science, pages 25–37, 2008.

12. S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic per-
mutations by translocation, inversion and block interchange. Bioinformatics,
21(16):3340–3346, 2005.

13. M. Zhang, W. Arndt, and J. Tang. A branch-and-bound method for the mul-
tichromosomal reversal median problem. In Proc. 8th Int’l Workshop Algs.
in Bioinformatics (WABI’08), volume 5251 of Lecture Notes in Computer
Science, pages 14–24, 2008.

Pacific Symposium on Biocomputing 14:138-149 (2009)

