Computer Science > Data Structures and Algorithms
[Submitted on 26 Aug 2024]
Title:An Efficient and Exact Algorithm for Locally h-Clique Densest Subgraph Discovery
View PDF HTML (experimental)Abstract:Detecting locally, non-overlapping, near-clique densest subgraphs is a crucial problem for community search in social networks. As a vertex may be involved in multiple overlapped local cliques, detecting locally densest sub-structures considering h-clique density, i.e., locally h-clique densest subgraph (LhCDS) attracts great interests. This paper investigates the LhCDS detection problem and proposes an efficient and exact algorithm to list the top-k non-overlapping, locally h-clique dense, and compact subgraphs. We in particular jointly consider h-clique compact number and LhCDS and design a new "Iterative Propose-Prune-and-Verify" pipeline (IPPV) for top-k LhCDS detection. (1) In the proposal part, we derive initial bounds for h-clique compact numbers; prove the validity, and extend a convex programming method to tighten the bounds for proposing LhCDS candidates without missing any. (2) Then a tentative graph decomposition method is proposed to solve the challenging case where a clique spans multiple subgraphs in graph decomposition. (3) To deal with the verification difficulty, both a basic and a fast verification method are proposed, where the fast method constructs a smaller-scale flow network to improve efficiency while preserving the verification correctness. The verified LhCDSes are returned, while the candidates that remained unsure reenter the IPPV pipeline. (4) We further extend the proposed methods to locally more general pattern densest subgraph detection problems. We prove the exactness and low complexity of the proposed algorithm. Extensive experiments on real datasets show the effectiveness and high efficiency of IPPV.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.