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Abs t rac t 
Max and min operations have interesting prop­
erties that facilitate the exchange of informa­
tion between the symbolic and real-valued do­
mains. As such, neural networks that employ 
max-min activation functions have been a sub­
ject of interest in recent years. Since max-min 
functions are not strictly di f ferent iate, we pro­
pose a mathematically sound learning method 
based on using Fourier convergence analysis 
of side-derivatives to derive a gradient descent 
technique for max-min error functions. This 
method is applied to a " typical" fuzzy-neural 
network model employing max-rnin activation 
functions. We show how this network can be 
trained to perform function approximation; its 
performance was found to be better than that 
of a conventional feedforward neural network. 

1 In t roduc t i on 
Max and min operators are widely used in systems which 
performs fuzzy logic, multi-valued logic or other forms 
of uncertainty reasoning. Besides generalizing the bi­
nary OR and AND operators to the real-valued domain, 
max and min operators also have attractive properties 
such as commutativity, monotonicity and associativity. 
In addit ion, the max and min operators are the only real-
valued logical operators that are continuous and idem-
potent [Kl i r and Folger, 1988]. From a theoretical point 
of view, they form a bridge between the symbolic and 
real-valued domains. Hence, they facilitate the encoding 
and extraction of symbolic knowledge in hybrid systems 
which combine logic and neural networks. 

However, the problem with neural networks which em­
ploy max and min operators has always been wi th learn­
ing using gradient descent techniques such as backprop-
agation [Rumelhart et al., 198G]. This is because gradi­
ent descent requires the activation functions to be fully 
differentiable. Activation functions wi th max or min op­
erations, unfortunately, do not satisfy this requirement. 

One of the goals of this paper is to analyze the calcu­
lus of max-min functions, especially w i th regard to the 
side-differentiability of such functions. In particular, we 
show how Fourier convergence analysis can be used to 
obtain the pseudo-derivatives. This in turn leads to a 
gradient descent technique for neural networks that em­
ploy max-min activation functions. Such an approach is 
obviously mathematically sound compared wi th ad hoc 
methods found in the literature. 

Side-differentiability implies quasi-differentiability, 
but not conversely. Higher-order derivatives may also 
exist. Interested readers can learn more about side-
differentiability and quasi-differentiability in reference 
[Fulks, 1981]. In this paper, we shall only be concerned 
wi th functions which are side-differentiable in the first 
order and quasi-differentiable in the second order. 
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2.1 O the r gradient descent techniques 
In the fuzzy-neural research literature [Buckley and 
Hayashi, 1994; Gupta and Rao, 1994; lshibuchi et a/., 
1993; Keller et a/., 1992; Mi t ra and Pal, 1994; Pedrycz, 
1993; Simpson, 1992; Simpson, 1993], many ad hoc gradi­
ent descent techniques for max-min functions have been 
proposed. Some suggested using simple intuition-based 
heuristics. Yet others side-stepped the differentiability 
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problem by replacing a max-min function wi th a differ-
entiable one, for example by replacing the max and min 
operators wi th sum and product operators respectively. 

A more interesting approach would be to use a pa­
rameterized function which l imits to the max or min 
operator. One such function is the softmax operation 
commonly used in winner-take-all neural architectures. 
The softmax operation is defined as follows: 

In fact, this inconsistency arises whenever pseudo-
derivatives of max and min operations are used directly 
when "differentiating" a nested max-rnin function. 

The method proposed in this paper, on the other hand, 
does not have this problem. In our method, each of the 
side-derivatives of the entire function must be evaluated 
before they are combined. Hence, we apply Theorem 1 
and Theorem 4 to give 

3 A Fuzzy-Neural Ne twork M o d e l 
The synthesis of fuzzy logic and neural networks has 
been a popular theme in research in the past decade 
[Buckley and Hayashi, 1994; Gupta and Rao, 1994; 
Ishibuchi et a/., 1993; Keller et a/., 1992; Mi t ra and 
Pal, 1994; Pedrycz, 1993; Simpson, 1992; Simpson, 1993]. 
This is not surprising considering that neural networks 
and fuzzy logic complement each other. Neural networks 
are well known for their learning capabilities, which al­
low them to model accurately almost any input-output 
relationship. Fuzzy logic, on the other hand, facilitates 
the encoding of experts' knowledge in linguistic terms 
and inferencing from such knowledge using mathemat­
ical techniques. Fuzzy-neural networks, by combining 
these two technologies, can, among other things, allow 
the fine-tuning of of experts' knowledge as well as a more 
natural interpretation of the knowledge learnt. 

Max and min are the standard logical operations used 
in fuzzy set theory [Kl i r and Folger, 1988]. In addi­
t ion, they have many attractive properties as described 
in the introduction of this paper. Hence, we employ max-
min activation functions in a " typical" fuzzy-neural net­
work architecture commonly found in the fuzzy-neural 
research literature. Since max-min functions are non-
differentiable, we show how such a network can be 
trained wi th gradient descent based on using Fourier con­
vergence analysis. 

3.1 Description of the model 
The fuzzy-neural network model we use has five layers: 
one input, one output and three hidden (Figure 1). Each 
unit in the input layer corresponds to an input variable, 
and is connected to several antecedent fuzzy set units 
in the first hidden layer. The units in the antecedent 
layer can be divided into sub-groups, each correspond­
ing to a fuzzy variable. From every sub-group, only one 
fuzzy set uni t may be connected to a rule unit in the 
second hidden layer, depending on the fuzzy rule asso­
ciated wi th that rule unit . The rules comprises of all 
possible combinations of antecedent fuzzy sets; hence, if 
there are 3 input variables w i th each having 2 fuzzy sets, 
then there wi l l be a total of 2x2x2=8 rules. Each rule 
u n i t is connected to the consequent fuzzy set units in 
the th i rd hidden layer. Like the units in the first hidden 
layer, consequent fuzzy set units are also grouped in a 
similar fashion. Each sub-group has connections to the 
output unit corresponding to its fuzzy output variable. 
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Table 1: Comparison between the fuzzy-neural 
network and the sigmoidal neural network in 
terms of the Mean Squared Error (M.S.E.), av­
eraged over 10 trials, on both the training data 
and the testing data after being trained. The 
size of each network, in terms of the number of 
modifiable parameters, is also given. 

from a uniform distr ibution over the range [0.45,0.55]. 
During learning, each value is constrained to lie below 
1.0, because it was found that when the Gaussian radius 
of a fuzzy set is too wide, it practically becomes useless. 

For comparison, we also train a conventional feedfor­
ward sigmoidal neural network using standard backprop-
agation. The network has 3 inputs units and 1 output 
unit . In order that we may make a fairer comparison, the 
number of hidden units was chosen such that the num­
ber of modifiable network parameters, which includes 
the biases and connection weights, is as close to that of 
the fuzzy-neural network as possible. As such, there are 
132 hidden units, making a total of G61 modifiable net­
work parameters. A l l weights and biases are initialized 
wi th random values from a uniform distribution over the 
range [-0.01,0.01]. 

In a training session, presentation of an input-target 
pattern constitutes an iteration, while presentation of 
the entire training set constitutes an epoch. Weights 
update is performed via pattern mode, i.e. after the 
presentation of each pattern, the weights are changed ac­
cording the equations given in the previous sub-section. 

Al l learning rates and momentum terms for both the 
fuzzy-neural network and the sigmoidal network are 0.3 
and 0.1 respectively. Both networks are trained for 200 
epochs over 10 trials. 

Finally, in each t r ia l , each trained network is tested 
for generalization on the testing data. 

Resu l t s and D iscuss ion 

We evaluate each network's performance using the Mean 
Squared Error (M.S.E.), i.e. the total squared error over 
all the patterns in a data set divided by the number of 
patterns. 

Figure 2 show the M.S.E. curves on the training data 
for the fuzzy-neural network and the sigmoidal neural 
network, averaged over 10 trials, w i th 200 epochs in each 
t r ia l . The fuzzy-neural network is able to reach a much 
lower mean squared error in a shorter t ime than the sig­
moidal neural network. 
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Figure 2: Mean Squared Error (M.S.E.) curves 
on the training data for the fuzzy-neural net­
work and the sigmoidal neural network, aver­
aged over 10 trials, wi th 200 epochs in each 
tr ia l . 

Table 3.3 gives the comparison between the fuzzy-
neural network and the sigmoidal neural network in 
terms of the Mean Squared Error (M.S.E.), averaged 
over 10 trials, on both the training data and the test­
ing data after being trained. As expected, the fuzzy-
neural network has a much lower mean squared error 
on the training data than the sigmoidal neural network. 
Its generalization power, as seen by the performances on 
the testing data, is also better than that of the sigmoidal 
neural network. 

Both Figure 2 and Table 3.3 demonstrate how the 
fuzzy-neural network can effectively model a highly non-
linear function as compared to a sigmoidal neural net­
work wi th nearly the same number of network parame-
ters. The authors did not make an exhaustive search of 
all possible network architectures and learning param­
eters in either model, so this comparison cannot be a 
universal one. 

4 Conclusions 
A learning method that utilizes gradient descent based 
on using Fourier convergence analysis for max-min func­
tions was presented. It has been applied to effectively 
train a feedforward fuzzy-neural network model. This 
model employs max and min as its logical operations 
and Gaussian functions as its input fuzzy sets. We have 
shown how the network can be trained to approximate 

a highly non-linear function. It learns and generalizes 
better than a conventional feedforward neural network. 

In conclusion, we have shown that our proposed gra­
dient descent technique does allow max-min neural net­
works to learn effectively. Our approach should be 
extensible to other neural networks that have non-
differentiable activations functions. This remains a topic 
of further research. 
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