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Abstract 

This paper presents an analysis of static and dynamic 
organizational structures for naturally distributed, ho­
mogeneous, cooperative problem solving environ­
ments, exemplified by distributed sensor networks. 
We first show how the performance of any static orga­
nization can be statistically described, and then show 
under what conditions dynamic organizations do bet­
ter and worse than static ones. Finally, we show how 
the variance in the agents' performance leads to un­
certainty about whether a dynamic organization wi l l 
perform better than a static one given only agent a 
priori expectations. In these cases, we show when 
meta-level communication about the actual state of 
problem solving wi l l be useful to agents in construct­
ing a dynamic organizational structure that outper­
forms a static one. Viewed in its entirety, this paper 
also presents a methodology for answering questions 
about the design of distributed problem solving sys­
tems by analysis and simulation of the characteristics 
of a complex environment rather than by relying on 
single-instance examples. 

1 Introduction 

Organizational theorists have long held that the organization of 
a set of agents cannot be analyzed separately from the agents' 
task environment, that there is no single best organization for all 
environments, and that different organizations are not equally ef­
fective in a given environment [Galbraith, 1977]. Most of these 
theorists view the uncertainties present in the environment as 
a key characteristic, though they differ in the mechanisms that 
l ink environmental uncertainty to effective organization. In 
particular, the transaction cost economics approach [Moe, 1984] 
focuses on the relative efficiencies of various organizations given 
an uncertain environment, while the modern contingency theory 
approach [Stinchcombe, 1990] focuses on the need for an orga­
nization to expand toward the earliest available information that 
resolves uncertainties in the current environment. 

•This work was supported by DARPA contract N00014-92-J-1698, 
Office of Naval Research contract N00014-92-J-1450, and NSF con­
tract CDA 8922572. The content of the information does not nec­
essarily reflect the position or the policy of the Government and no 
official endorsement should be inferred. 

In this paper we use both of these concepts to analyze poten­
tial organizational structures for a class of naturally distributed, 
homogeneous, cooperative problem solving environments where 
tasks arrive at multiple locations, exemplified by distributed sen­
sor networks [Lesser and Corki l l , 1983]. Previous approaches 
to analyzing organizations in distributed sensor networks have 
either not focused on the effectiveness of the organization [Davis 
and Smith, 1983], or have only analyzed organizational effective­
ness in particular, single-instance examples [Durfee et al., 1987]. 
Our approach is to model the task environment mathematically, 
using a formalism developed specifically to study distributed 
coordination and scheduling [Decker and Lesser, 1993b]. We 
then develop expressions for the expected efficiencies of static and 
dynamic organizational structures, in terms of the cost of com­
munication and time to complete a given set of tasks. Finally, 
we validate these mathematical models by using simulations. 

A dynamic organization is one in which the responsibili­
ties of agents can be reassigned based on a developing view of 
the problem at hand. Due to the uncertainties explicitly rep­
resented in the task environment model, there may not be a 
clear performance tradeoff between static and dynamic organi­
zational structures when agents use just their own local views 
to make a reorganization decision. Agents that have a dynamic 
organization have the option of meta-level communication— 
communicating about the current state of problem solving as 
opposed to communicating about solving the problem itself. In 
this way, information that resolves uncertainties about the current 
environment becomes available to the agents, allowing the agents 
to then create the most efficient organization for the situation. 

Section 2 describes the task environment model, the assump­
tions behind it, and analyzes the uncertainties present. Section 3 
describes static and dynamic organizational structures, and de­
velops expressions for the expected performance of each organi­
zational style. In Section 4 we then show how the variance in 
performance without communication can lead to the efficient 
use of meta-level communication to customize a dynamic orga­
nizational structure. Finally, we discuss how these results can be 
used by designers of distributed problem solvers, and how our 
methodology can be used by other researchers. Throughout each 
section, we wi l l illustrate and confirm the analytical results ex­
perimentally, using as an example a simulated distributed sensor 
network similar to the Distributed Vehicle Moni tor ing Testbed 
(DVMT) [Lesser and Corki l l , 1983]. 
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2 Task Environment Model 

Our task environment model of naturally distributed problems 
assumes that several independent groups of computational tasks 
arrive at mult iple locations over a period of time called an episode. 
For example, in a distributed sensor network (DSN) episode the 
movements of several independent vehicles wi l l be detected over 
a period of time by one or more distinct sensors, where each 
sensor is associated wi th an agent. The performance of agents 
in such an environment wi l l be based on how long it takes 
them to process all the task groups necessary to interpret their 
sensed data, which wi l l include the cost of communicating data, 
task results, and mcta-Ievel communication, if any. The orga­
nizational structure of the agents wi l l imply which subsets of 
which task groups are available to which agents and at what 
cost. For example, if D S N agents have overlapping sensors, 
either agent can potentially work on data in the overlapping 
area (from its own sensor) without any extra communication 
costs. We make several simplifying assumptions: that the agents 
are homogeneous (have the same capabilities with respect to 
receiving data, communicating, and processing tasks), that the 
agents are cooperative (interested in maximizing the system per­
formance over maximizing their individual performance), that 
the data for each episode is available simultaneously to all agents 
as specified by their init ial organization, and that there are only 
structural (precedence) constraints wi th in the subtasks of each 
task group. 

Any single episode can be specified by listing the task groups, 
and what part of each task group was available to which agents, 
given the organizational structure. Our analysis wi l l be based 
on the statistical properties of episodes in an environment, not 
any single instance of an episode. The properties of the episodes 
in a D S N environment are summarized by the tuple 

where A specifies the number of agents, n the 
expected number of task groups, and o specify the structural 
portion of the organization by the range of each agent and the 
overlap between agents, and specifies the homogeneous task 
group structure (Section 2.5 and Figure 4 describes how task 
group structures are specified). 

Our analysis initially focuses on what a priori knowledge 
agents have about the distribution of task groups in an episode. 
First we wi l l look at the distribution of the lowest-level sensor 
subtasks of a single task group among multiple agents (deriv­
ing the maximum expected number of subtasks), and then we 
wil l look at the distribution of task groups themselves. These 
results wi l l then be used in subsequent sections to derive the 
total amount of work, and therefore expected termination per­
formance, under various organizational structures and control 
schemes. 

2.1 Task environment simulation 

In the next sections and for the rest of the paper, we wil l test 
the model we are developing against simulated DSN problems. 
Each simulated D S N episode wi l l take place on a grid where 
the concepts of length and size correspond directly to physi­
cal distances. For example, Figure 1 illustrates several simple 
organizations imposed on such a grid in our simulation. 

In the simulation we assume that each vehicle is sensed at 

' in general there arc usually more complex interrelationships be­
tween subtasks that affect scheduling decisions, such as facilitation 
[Decker and Lesser, 1993b). 

discrete integer locations (as in the DVMT), randomly entering 
on one edge and leaving on any other edge. In between the ve­
hicle travels along a track moving either horizontally, vertically, 
or diagonally each time unit using a simple D D A line-drawing 
algorithm (see Figure 5). In an 18 x 18 grid, the (empirical) 
average length of a track is 14 units—the actual length of any 
one track wi l l range from 2 to 19 units and is not distributed 
normally. Given the organization (r, o, and A, and the geom­
etry), we can calculate what locations are seen by the sensors 
of each agent. This information can then be used along wi th 
the locations traveled by each vehicle to determine what part of 
each task group is initially available to each agent. Section 2.5 
wil l detail what the structure of each task group is for the DSN 
simulation. 

Figure 1: Examples of DSN organizations on an 18 x 18 grid 

2.2 Expected number of sensor subtasks 

In order to analyze the performance of a particular organization, 
we wil l want to know what proportion of each task group each 
agent is likely to process. There wil l be some upper l imit on 
this proportion (related to the agent's range r ) , and sometimes 
the agent wil l process less than this upper l imit . Especially in 
static organizational structures where tasks are not exchanged, 
the termination of the system as a whole can be tied to the com­
pletion of all tasks at the most heavily loaded agent. Normally, 
we would use the average part of a task group to be seen, but 
since the focus of our analysis is the termination of problem 
solving, we need to examine the expected maximum port ion of a 
task group to be seen. This section wi l l develop an equation for 
the expected maximum workload at an agent by counting the 
expected number of low-level sensor subtasks (each individually 
associated with a sensed vehicle location) that the maximally 
loaded agent wi l l have. 

The amount of a single task group seen by an agent (which is 
the same as the number of sensor subtasks in the D S N example) 
can be viewed as a random variable S w i th a probability density 
function and corresponding cumulative distribution function. 
In the DSN environment, S is discrete, and its probability 
function (determined empirically) is heavily weighted toward r 
(the maximum). To simplify the analysis, instead of letting S 
correspond to the number of subtasks in a single task group seen 
by an agent, we have it equal 1 if the agent sees the maximum 
amount, and 0 otherwise. Now S has a Bernoulli (coin-tossing) 
distribution wi th parameter p corresponding to the chance of 
an agent seeing the maximum amount r of a task group. Let's 
assume we know that N < n is the number of task groups 
at the maximally loaded agent, and that on average a < A 
agents see a single task group. The number of times an agent 
sees the maximum out of N task groups (N coin flips) then 
has a binomial distribution (6;v,p(*))- We need to know, given 
that a agents each flip N coins, what the distribution is of the 
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(1) 
Figure 3: Actual versus predicted maximum number of task 
groups (tracks) seen by any one agent for various A, and n 
(left); Actual versus predicted average number of agents seeing a 
single task group (track) for various and A (right). 

2.4 Expected Number of Agents 

The only remaining term we need to analyze before deriving an 
expression for system performance is a, the expected number of 
agents that wi l l see a single task group. In general, a wi l l depend 
on the total number of agents A and the organization (r and 
o). When there is only one agent, it w i l l see every task group 

When the agents overlap completely, every agent sees 
every task group . When the agents in a 
square environment do not overlap, a = The relationship 
follows the ratio of the area solely covered by an agent plus the 
area of the overlapping section, to the total area covered alone: 

(3) 
Figure 3 shows a regression of the actual average value of a over 
1000 runs verses the predicted value for all 630 DSN organiza­
tions 

2.5 Work Involved in a Task Structure 

Finally we turn to modeling the performance of the system as 
a whole, which is based on the structure of the tasks involved. 
We have developed a characterization of task environments that 
formally captures the range of features, processes, and especially 
interrelationships that occur during computationally intensive 
coordination and scheduling [Decker and Lesser, 1993b], The 
model of environmental and task characteristics we propose has 
three levels: objective, subjective, and generative-, the subjective 
level is not discussed here. 

The objective level describes the essential structure of a partic­
ular problem-solving situation or instance over time. It focuses 
on how task interrelationships dynamically affect the quality and 
duration of each task. In this paper we wi l l concentrate only on 
duration as a performance metric. The basic model is that task 
groups T occur in the environment at some frequency, and in­
duce tasks to be executed by the agents under study. Task groups 
are independent of one another, but tasks wi th in a single task 
group have interrelationships. An individual task that has no 
sub tasks is called a method M and is the smallest schedulable 
chunk of work. The quality and duration of an agents per­
formance on an individual task is a function of the t iming and 
choice of agent actions ('local effects*), and possibly previous 
task executions ('non-local effects*). The basic purpose of the 
objective model is to formally specify how the execution and 
t iming of tasks affect quality and duration. 
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At the lowest level, each method (leaf task) M at time t can 
produce, if executed, some maximum quality q ( A f , t) in some 
amount of time d ( M , t) (each method has an initial maximum 
quality qo (A f ) and duration d o ( M ) ) . Any task execution that 
starts before the execution of M completes may potentially affect 
M s execution through non-local effects. The effect is dependent 
on the relative t iming of the two task executions, the quality 
of the task causing the effect, and whether information was 
transmitted between the two tasks. 

This work considers a single non-local effect, precedence. If 
task A precedes task B, then the maximum quality q(«0, t ) = 
0 unti l A is completed and the result is available, when the 
maximum quality wi l l change to the initial maximum quality 
q(B,0 = qo(B). 
2.5.1 Execution Model 

For this paper we use an extremely simple model of execution. 
Agents can perform three actions: method execution, commu­
nication, and information gathering. The control component of 
an agent determines the next action an agent wi l l perform based 
on the agent's current set of beliefs [Cohen and Levesquc, 1990; 
Shoham, 1991]. A method execution action, of method M, 
that is begun at time t wi l l conclude at time t + d ( M , t). An in­
formation gathering action has duration do(7) and updates the 
agents set of beliefs with any new information in the environ­
ment, for example, the arrival of data at the start of an episode, 
or communications from other agents. A communication action 
has duration and, after a communication delay, makes 
information (such method execution results) available to other 
agents. The agent on the receiving side must perform an infor­
mation gathering action before the communication can affect 
its local beliefs. 

2.5.2 Simple Objective D S N Model 
Recall that the summary of a DSN environment was the tuple 

; this wi l l become our generative model, 
especially the parameter n (expected number of task groups). 
A particular episode in this environment can be described by 
the tuple where n is a random 
variable drawn from an unknown distribution with location 
parameter (central tendency) of Note that we make almost no 
assumptions about this distribution; its characteristics wi l l differ 
for different environments. For example, in the description of 
our DSN simulation early in Section 2 we noted the physical 
process by which vehicle tracks were generated and that the 
length of the tracks was not normally distributed. 

Each task group is associated wi th a track of length li and 
has the same basic objective structure, based on the DVMT: 

• li Vehicle Location Methods (VLM's) that represent pro­
cessing raw signal data at a single location to a single vehicle 
location hypothesis. 

• li — 1 Vehicle Tracking Methods (VTM's) that represent 
short tracks connecting the results of the V L M at time t 
wi th the results of the V L M at time 

• 1 Vehicle Track Completion Method (VCM) that repre­
sents merging all the VTM's together into a complete ve­
hicle track hypothesis. 

Non-local precedence effects exist between each method at one 
level and the appropriate method at the next level as shown 
in Figure 4—two VLMs precede each V T M , and all VTM 'S 
precede the lone V C M . 

Figure 4: Objective task structure associated wi th a single vehicle 
track. 

If we assume that each V L M has initial duration 
and each V T M has the initial duration do ( V T M ) , then we can 
see from the task structure that for each task group the total 
execution time taken by a single processor agent wi l l be: 

(4) 

This task structure is a simplification of the real DVMT task 
structure. For example, there is no sensor noise (which wi l l 
cause facilitation relationships between tasks, and there is no 
confusion caused by 'ghost tracks'. Adding these features to 
the task structure wil l cause some interesting phenomena that 
we wil l discuss briefly in the conclusions (see also [Decker and 
Lesser, 1993b] for a representation of these extensions). 

3 Static vs. Dynamic Organizational Structures 

Now we have the necessary background to analyze static and 
dynamic organizational structures. The key to static structures 
is to divide up the overlap area a priori (rather than to penalize 
agents for doing redundant work in the overlap area [Durfee et 
al., 1987]). The key to dynamic organizational structures is to 
transfer tasks so that all the agents' resources are used efficiently. 
We wi l l repeat the assumptions we discussed at the start of 
Section 2 on page 2: the agents are homogeneous, cooperative, 
the data for each episode arrives in a single burst, and the only 
non-local effect is precedence. 

3.1 Analyzing Static Organizations 

In a static organization, agents divide the overlapping areas of 
their ranges as evenly as possible. The result is a new area of 
responsibility for each agent wi th no overlap (see 
Figure 5 ) 2 Given the task structure as described in Section 2.5 
and shown in Figure 4, and any raw data or communicated task 
results provided by information gathering actions, the agent can 
at any time build a list of currently executable methods (under 
the set of precedence constraints). Also, at any time an agent 
can build a list of methods that need to be executed, but cannot 
be executed because their precedence constraints have not yet 
been met. The communication action in this algorithm is a 
broadcast of the highest level results of all the task groups an 

2Thc reason for overlap will be apparent in dynamic structures— 
multiple agents can work in an overlapping area without paying any cost 
for communicating raw data between them. Overlap can also provide 
redundancy in case of agent failure. 
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agent has worked on. Each agent follows the same control 
algorithm (remember, all the raw data is available at the start) 
and terminates when all task groups are completed (either locally 
or by reception of the result from another agent): 

(Repeat 
Do Information-Gathering-Action 
(Repeat 

Let E = [get set of currently executable methods] 
(For method In E 

Do Method-Execution-Action(mcthod)) 
Until (null E)) 
Do Communication-Action(broadcast highest-level results) 
Let W = [get set of methods waiting on precedence constraints] 

Until (null W)) 

Figure 5: Example of a 3x3 organization, = 1 1 , 0 = 5 , with 
5 tracks. The thick dark grey boxes outline the default static 
organization, where there is no overlap among agents. 

In the environment if we let S' 
represent the largest amount of initial low-level data in one task 
group seen by any agent, and a the total number of agents that 
see the task group (from Eqn. 3), then the amount of time it 
wi l l take that agent to construct a complete solution is equal 
to the amount of time it wi l l take for the initial information 
gathering action plus the amount of time to do all the 
local work communicate 
that work get the other agents' results plus the 
amount of time to combine results from the other a — 1 agents 

plus time to produce the final complete 
task group result , plus communicate that result to 
everyone For simplicity we wil l assume that 
and are constant and do not depend on the amount of 
data. Note that the maximally loaded agent wi l l be the last to 
finish any local work. 

If the system sees n total task groups, then the expected size 
of the initial low-level data set at the maximally loaded agent 
can be derived from the marginal expected value for S given the 
joint distribution of 

Similar to the single task group case, the total time until ter­
mination for an agent receiving an initial data set of size S is 
the time to do local work, combine results from other agents, 
and build the completed results, plus two communication and 
information gathering actions: 
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both the basic method durations and the agents' organizational 
structure). This simple control algorithm can be analyzed easily, 
unlike many other systems where control costs are ignored. If we 
view the cost of control as the time spent by an agent when not 
performing an action (executing a method, information gath­
ering, communication), then our algorithm runs in constant 
time between actions except for the two tests [get set of currently 
executable methods] and [get set of methods still waiting]. Each 
of these in the worst case requires a constant-time test of each 
element of the ful l task structure, which is of size . Thus 
we see how the control costs, too, are related to organizational 
structure. 

3.3 Analyzing Dynamic Organizations 

In the dynamic organizational case, agents are not l imited to the 
original organization and initial distribution of data. Agents can 
reorganize by changing the initial static boundaries (changing 
responsibilities in the overlapping areas), or by shipping raw 
data to other agents for processing (load balancing). 

In the case of reorganized overlapping areas, agents may shift 
the initial static boundaries by sending a (very short) message to 
overlapping agents, telling the other agents to do all the work in 
the overlapping areas. The effect at the local agent is to change 
its effective range parameter from its static value of 
to some value where changing the 
first two terms of Eqn. 6, and adding a communication action 
to indicate the shift and an extra information gathering action 
to receive the results. Another paper [Decker and Lesser, 1993a] 
discusses a particular implementation of this idea that chooses 
the partit ion of the overlapping area that best reduces expected 
differences between agent's loads and averages competing desired 
partitions from multiple agents. 

In the second case, an agent communicates some proportion 
p of its initial data to a second agent, who does the associated 
work and communicates the results back. Instead of altering 
the effective range and overlap, this method directly reduces the 
first two terms of Eqn. 6 by the proportion p. The proportion p 
can be chosen dynamically in a way similar to that of choosing 
where to partit ion the overlap between agents (sec [Decker and 
Lesser, 1993a]). 

Whether or not a dynamic reorganization is useful is a func­
tion of both the agents local uti l i ty and also the load at the 
other agent. We wi l l again be concentrating on the agent with 
the heaviest load. Looking first at the local utility, to do local 
work under the init ial static organization wi th n task groups, 
the heaviest loaded agent wi l l take time: 

(8) 

When the static boundary is shifted before any processing is 
done, the agent wi l l take time: 

to do the same work, where Cshort is a very short communication 
action which is potentially much cheaper than the result com­
munications mentioned previously, and 5" is calculated using 

When balancing the load directly, local actions wil l take 
time: 

where is potentially much more expensive than the 
communication actions mentioned earlier (since it involves send-
ing a large amount of raw data). If the other agent had no work 

to do, a simple comparison between these three equations would 
be a sufficient design rule for deciding between static and cither 
dynamic organization. 

4 Using Meta-Level Commun ica t i on 

For some environments one of the three 
organizational choices may be clearly better in the long run, 
but for most environments the choice is not so clear given the 
variance in system performance. The choice that optimizes per­
formance over the long run is often not optimal in any particular 
episode. Taking the equations for local work in Section 3.3 along 
wi th Eqn. 5, we can compute confidence intervals on the pre­
dicted performance of an organization under each of the three 
coordination regimes by combining the local confidence interval 
on the expected load of the heaviest loaded agent, and the con­
fidence interval on the average agent load. These results, for the 
50% confidence interval, arc shown in Figures 7 and 8. Again 
we have assumed that all execution, communication, and infor­
mation gathering action durations have the same value (making 
communication relatively expensive). The first figure, Figure 7, 
highlights how the relationship between performance under a 
static organization and a dynamically load balanced organiza­
tion changes as the number of agents increases. As expected, 
load balancing becomes more desirable as the number of agents 
increases (in relation to the average number of tracks): when 
there arc many agents, the average agent load becomes very low, 
which offsets the cost of transferring tasks. In this figure the per­
formance difference between static and overlap reorganization 
remains nearly constant relative to the number of agents. 

Figure 7: Predicted 50% confidence intervals on the expected 
termination of a system under three coordination regimes, dif­
ferent numbers of agents, and three values of n (number of 
tracks). This figure is based on Eqns. 8, 9, and 10. 

The second, Figure 8, points out how dynamically reorga­
nizing the overlap area increases the performance over static 
organization as the amount of overlap increases. For this graph 
we assumed that the agents would shrink their entire area of 
responsibility (as opposed to minimizing the difference in max­
imum versus average work as described in [Decker and Lesser, 
1993a]). This graph shows the need for dynamically calcu­
lating the shrinkage parameter (p) especially at high levels of 
overlap (note how the dynamically reorganized organization is 
predicted to do worse at high levels of overlap in the n = 20 
portion). The expected performance difference between the 
static organization and load balancing remains relatively con­
stant across changing values of o. In both figures we have let 

changing these values wi l l 
move the corresponding curves directly up or down. 
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Figure 8: Predicted 50% confidence intervals on the expected 
termination of a system under three control regimes, different 
overlaps, and three values of n (number of tracks). 

These figures bring us to the final point of this paper: often 
system performance can be improved significantly by dynamic 
reorganization, but it wi l l rarely always be improved. There­
fore, meta-level communication between agents about their lo­
cal loads can, wi th a small communication cost, pinpoint the 
true costs and benefits of the various organizational structures, 
allowing an informed organizational decision to be made. In­
stead of an agent making a decision about restructuring or load 
balancing by assuming the average load, the agent wil l have the 
actual load for the neighboring agents. As we said in the in­
troduction, the proper organization is often one that exploits 
information that resolves uncertainties about the current environ­
ment as it becomes available to the agents, allowing the agents 
to then create the most efficient organization for the situation. 

5 Conclusions 

The results of this paper can be looked at from three points of 
view. From the practitioners viewpoint, the analysis presented 
here resulted in a set of design equations that can be used directly 
to optimize the performance of a simple DSN, or explore the 
design space given some model of how expensive agents are and 
what bounds (mean, median, 90% quantile) on their perfor­
mance are required. Several of the simplifying assumptions we 
used, such as constant communication and information gather­
ing costs, can be easily replaced wi th submodels chosen by the 
designer. From the viewpoint of the distributed Al community, 
we have returned to look at the some of the problems first stud­
ied by Durfee, Lesser, and Corki l l [Durfee et ai, 1987]. They 
concluded that "Our intent is to show that overly specialized 
organizational structures allow effective network performance 
in particular problem-solving situations, but that no such orga­
nization is appropriate in all situations." In this paper we reach 
the same abstract conclusion, but also show precisely what the 
effect is of a particular organizational structure (characterized 
by both its structural components and its coordination algo­
rithm) in an environment (characterized by the structure and 
frequency of its tasks) in a clear way that not only allows us to 
predict performance but to explain it. The technique of using 
binomial approximations should also prove useful in different 
domains. From the viewpoint of the general research commu­
nity this paper presents a methodology for answering questions 
about the design of a system by analysis and simulation. In such 
a methodology, the observation of particular phenomena in a 
complex system (the DVMT) leads to the building and verifica­
tion of general models that predict and explain such phenomena. 

In the short term, this work leads to the explanation of other 
interesting distributed problem solving phenomena displayed in 
[Durfee et alt 1987]. The addition of noise at D S N sensors 
leads to the necessity of more complex coordination wi th the 
introduction of more complex task interrelationships (such as 
facilitation [Decker and Lesser, 1993b]). The addition of corre­
lated noise in the environment can then cause these new, more 
complex coordination mechanisms to break down, producing 
the phenomenon recognized as distraction. In the long term, we 
are working towards a complete characterization of generalized 
partial global planning [Decker and Lesser, 1992] as a first step 
towards a theory of coordination in distributed problem solving. 

A longer technical report version of this paper is available 
from the authors. 
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