
 

  
Abstract—This paper describes Herald, an agent based toolkit 

for dispatching and processing items in a distributed 
environment. Herald is suitable for scenarios where the process 
could be modeled as a tree: starting from the root node the 
collection of items is distributed along the nodes where they can 
be processed, forwarded to other nodes, and duplicated if 
necessary. Herald assigns a specific software agent to each node 
of the tree which participates into the dispatching process 
according to the knowledge base of the multi-agent system. 
Herald works as a general infrastructure for simulating, testing 
and executing dispatching algorithms that can be easily 
integrated into the system by changing the decision making 
process of the agents composing the architecture. A prototypal 
implementation, based on the AgentService programming 
framework, is then presented as a proof of its applicability in 
industrial scenarios. 
 

Index Terms—Agent Oriented Software Engineering, Agent-
based coordination, software agents for logistics. 
 

I. INTRODUCTION 
The problem of distributing items on a somehow 

hierarchical structure is common to many different application 
contexts, for example logistics [1], routing [2], and scheduling 
[3]. In all the previously cited contexts a collection of 
elements (packets, orders, or simply items) has to be 
dispatched according to a certain strategy. Moreover, the 
distribution takes place on a structure exposing a sort of 
hierarchical organization: routing algorithms generally operate 
on graphs while in the case of scheduling orders are allocated 
to production area and then assigned to specific machines. The 
nature of items and the use of dispatching strategies, normally 
being aware of the structure, are what specializes the problem 
in each context. For these reasons, providing a general 
solution to the dispatching problem is limiting: it would not be 
possible to consider the specific issues of each scenario for 
effectively optimizing the dispatching process. A better idea 
could be providing a general framework for creating a 
dispatching system that is easily customizable for each 
specific context. In order to provide such a flexible structure 
the use of the agent-oriented technology could be an 

 
 

 

interesting approach. Multi-agent systems are flexible and 
dynamic software systems [4]. Software agents natively adopt 
high-level interaction patterns [5] and this is a relevant aspect 
for application interoperability and component coordination. 
By using software agent we can either provide the general 
structure of the dispatching or leave room for the 
specializations. 

In this paper we will present Herald a toolkit for 
dispatching items in a distributed environment: the system is 
composed by a collection of agents, which manages the 
dispatching process, and a collection of additional components 
used to integrate the multi-agent system with the existing 
software. The main idea behind Herald is not to provide a 
ready to used product but a toolkit which is customizable to 
different scenarios with little effort. Herald provides a 
collection of agents implementing the dispatching 
infrastructure and describes a methodology to customize the 
toolkit for the different application contexts. The strength of 
Herald resides in exploiting the flexibility of agents for 
implementing the hierarchical dispatching infrastructure 
according to the structure required by the real application 
scenario. The multi-agent system, developed with the 
AgentService programming framework [6], is the core 
component of Herald along with a base class library defining 
the common data structures defined by these agents. 
Developers have to provide an application-based version of 
items, the elements to be dispatched, and custom dispatching 
strategies if required by the application scenario. Developers 
can also integrate external components for driving the 
dispatching activities since the systems allows callbacks at 
each stage of the process. 

This paper is organized as follows: in Section II we will 
introduce the key elements of agent-based dispatching; in 
Section III we will present a selected collection of the most 
representative work in the field; Section IV describes in detail 
the architecture of Herald while in Section V we will present a 
practical application of the toolkit by describing the prototype 
developed in collaboration with Siemens A&D for a real 
scheduling scenario. Conclusions and final remarks follow. 

II. AGENT-BASED DISPATCHING 
The relatively large number of solutions based on multi-

agent systems, demonstrates the usefulness of an agent based 

An Agent Based Solution for Dispatching Items 
in a Distributed Environment 

Christian Vecchiola, Alberto Grosso, Andrea Passadore, Davide Anghinolfi, Antonio Boccalatte, 
Massimo Paolucci, DIST – Department of Communications Computer and System Sciences, University 

of Genova 



 

infrastructure for the development of distributed and 
hierarchical applications managing logistic, routing and 
dispatching issues. 

Since the operative management of resources is a critical 
aspect of the business activity of an enterprise, there exist 
several industrial solutions, involving multi-agent systems too. 
On the other hand, the research activity in this sector is lively 
and ready to exploit every new approach. The aim is to 
provide systems with an intrinsic intelligence, then denoting a 
particular adaptiveness to the environment changes and 
unexpected events. Multi-agent systems seem to satisfy these 
requirements. The typical socio-technical functions that we 
find in an enterprise can be easily modeled by means of a 
software agent playing a management role. For this reason an 
agent denotes a natural predisposition to collaborate with 
peers in order to achieve a common goal, through cooperation 
protocols. It could have skills and behaviours that can 
implement different solving strategies [7]. As we will see in 
the following, multi-agent systems represent a basis on which 
different and original solutions can be implemented. 

A.  Industrial solutions 
In the panorama of industrial solutions regarding the 

management of resources, two strengthened products are on 
the market: Magenta and LS/ATN (Living System Adaptive 
Transportation Network).  

Magenta [8] is a MAS framework for the development of 
ad hoc applications focused on the design, planning, 
scheduling, and management of enterprise resources. Typical 
examples of Magenta applications are the supply chain 
management, enterprise resource planning, transportation 
logistics, crew scheduling and knowledge management. 
Magenta integrates three crucial technologies: multi-agent 
systems, semantic web and J2EE. One of the main features of 
Magenta is the strong support for modeling the relevant 
entities of the enterprise through an ontology representation. 
Ontologies can be modified and updated online, during the 
execution of the application. 

LS/ATN [9] is a comprehensive solution for optimization 
and dispatching of full and part truck loads including tracking 
and real-time event handling. It is produced by Whitestein 
Technologies Inc. and it is oriented to the European logistics 
companies. LS/ATN is based on the LS/TS (Living System 
Technology Suite) agent development framework. The 
implementation of the agent-based solution takes into account 
the geographically dispersed nature of transportation. For this 
reason agents represent the geographical regions and they 
exchange objects representing the cargo loads. The 
transportation operations are allocated to the different 
dispatching regions which are managed by an agent region 
manager; a broker agent named agent distributor deals with 
incoming transportation requests. The optimization process 
involves two steps: a first local optimization within the region 
(it involves the broker agent and the agent region manager) 
and the global optimization through the collaboration of 
different agent region manager. 

B. Research solutions 
Different proposals involve the agent technology, in order 

to implement original solutions: from the imitation of social 
insects to genetic algorithms. A more pragmatic approach is 
the identification of relevant entities involved in the 
dispatching process (machines, raw materials, tools, 
management units, etc.), establishing a direct correspondence 
among these entities and software agents. The significant 
observation is that every approach can be implemented by a 
multi-agent platform. 

There is an immediate similarity between agents and ants: 
the power of an ant colony is not the single individual but the 
cooperation of every insect. In the solution presented in [10] 
the agents-ants collaborate in order to provide a heuristic 
scheduling solution in a parallel machine environment. The 
proposed solution is applied in a complex context regarding a 
manufacturing company. 

Another solution [11] to the dispatching problem involves 
genetic algorithms and an agent community particularly 
reactive and adaptive to the environment changes. The agents 
do not have a predefined set of rules or instruction to reach 
their goal. In particular, an agent is defined by the knowledge 
about the environment condition (i.e. processing resources and 
the status of other agents), the agent status (position, process 
plan status, completed and remaining operations), and a tuning 
vector (to weight the decision rules). There are two types of 
agent: the part agent able to select the machine which will 
process the part and the workstation agent, which select the 
part to process on the basis of different parameters as: 
processing time, deadlines, and setup times. These agents 
adapt their actions to the plant status using a multi-criteria 
decision-making algorithm that encompasses multiple 
weighted dispatching rules, in particular using fuzzy set 
concepts to implement a trade-of among different decision 
rules. The performance of each agent is evaluated by a 
performance indicator. Cyclically, every agent is replaced by 
another one with different tuning parameters. The “natural 
selection” detects the best agent; this approach leads up to two 
considerations: in case of stationary conditions of the plant, 
the dynamic optimization acts as an online strategy that 
improves the whole MAS performance. In case of unexpected 
perturbations (e.g. a machine failure), the genetic adaptation 
allows searching of more effective agents for the new 
operating context. 

A more conventional solution [12] follows the usual 
methodology to create agents representing the main entities 
involved in the dispatching of resources. A set of highly 
specialized agents is provided in order to adapt the system to 
the perturbations and disturbances. A system editing agent 
(SEA) is in charge of the composition of the whole system, as 
the agent instantiation and the centralized database filling. It is 
an interface between the human user and the multi-agent 
platform. The manufacturing management agent (MMA) is 
associated to a production area, receives orders (composed by 
a set of operations), instantiates a job order agent (JOA) 
monitoring its activity. The JOA is able to evaluate the 



 

feasibility of an order and communicates with the production 
area. A logistic management agent (LMA) holds the logistic 
data of a production area, while the logistic agent (LA) helps 
the JOA and the agents associated to the machines (machine 
agent, MA), tools (tool agent, TA), and jigs (jig agent, JA) to 
evaluate the feasibility of an order or operation. 

All the proposed solutions show how a hierarchical 
structure of cooperative agents is helpful in the resolution of 
dispatching problems. The variety of agents which belong to 
the tree hierarchy suggests that a toolkit for the 
implementation of a custom project is an interesting approach. 
All the analyzed solutions propose specific algorithms for 
driving agents’ behaviors, i.e. swarm intelligence and genetic 
algorithms; on the other hand, the aim of the toolkit proposed 
in this paper is to provide an high level infrastructure for 
developing distributed systems where different kinds of 
algorithms can be applied. 

III. THE HERALD TOOLKIT 
In the Middle Age the term herald was used to identify 

those people which acted like factotums at the king’s court. 
Among the other tasks, heralds were in charge of dispatching 
messages, managing negotiations, and accomplishing 
missions. As the ancient herald, the Herald toolkit is aimed to 
resolve logistic and decision problems. 

A.  Introduction 
Herald is a toolkit that implements agent based software 

systems and aims to act as a generic distribution network. 
Herald proposes an approach which is independent from the 
specific nature either of the items dispatched or of the problem 
domain. Hence, it proposes a general infrastructure that needs 
to be further customized in order to be effectively applied to 
real-life scenarios. The core features of Herald are its agent 
based architecture and the protocol adopted to dispatch and 
assign items to the processing units. External software 
components customizing the dispatching infrastructure are 
integrated into the system and their activities mainly cover the 
collection of the items to dispatch, the selection of the 
dispatching policies, and the management of results. The 
external components are also responsible of activating the 
multi-agent system and controlling the dispatching process if 
needed. In this section we will discuss the architecture of the 
system and the details of the protocol proposed by Herald. 

B.  Architecture 
The core of Herald is based on a protocol execution engine 

constituted by a collection of software agents which create the 
dispatching process by interoperating with external software 
modules driving the protocol.  Figure 1 gives an overview of 
the organization of the components constituting an 
implementation of Herald. 

The architecture proposed by Herald is based on the 
assumption that the dispatching process takes place within a 
hierarchical structure that can be easily represented by a tree: 
the process originates from one root node and at each node 

items are distributed among the child nodes. Such a structure 
is re-created within the multi-agent system by three different 
types of agents representing the different roles which nodes 
have in the dispatching process. Additional agents take care of 
the interaction with external world. The multi-agent system is 
implemented with the AgentService programming framework 
which provides advanced features for the creation of multi-
agent systems and their integration with non-agent based 
software. 

 
Fig. 1 – View of the System 
 

1) Multi-agent System 
The dispatching process is mostly performed by the 

collection of agents which constitute the multi-agent system 
designed in Herald. Herald proposes two different kinds of 
software agents: logical agents and physical agents. Physical 
agents represent physical entities existing in the hierarchy of 
the real structure, while logical agents are mostly related with 
the elaboration of the input and the output data of the whole 
process. 

There are three different types of physical agents – also 
called entity agents – they are: 

 
 EA Root (Entity Agent Root): commonly, there is 

only one agent of this type since it abstracts the 
root of the tree. This agent receives the whole 
collection of items and distributes them among its 
child nodes. It can also perform additional 
operations specific to the role of the root in the real 
scenario. 

 EA Node (Entity Agent Node): these agents 
represent all the intermediate levels of the 
hierarchy and dispatch items among to their 
children nodes. 

 EA Leaf (Entity Agent Leaf): they represent the 
leaf of the tree structure. These agents process the 
items and send up to the hierarchy the data 
collected during their activity on the items. 

 
Tree structure having more than one intermediate level are 

modeled by introducing the required number of EA Node 
agents representing each node in these levels. 

During the dispatching process items can be manipulated at 
each level: items can be aggregated, duplicated, or split. The 
nature of these operations strictly depends on the application 
context and Herald gives the opportunity to external software 



 

components to control the dispatching process. 
The multi-agent system is completed by two logical agents 

that are the Item Manager Agent and the Output  Data Agent: 
 

 Item Manager (IM) Agent: the IM Agent collects 
the items that have to be processed and distributed 
along the hierarchy. As happens, for the EA Root 
it can pre-elaborate the collection of items but its 
main role is to represent the access point to the 
dispatching process by the external software; 

 Output Data Agent (ODA): the ODA is activated 
at the end of the dispatching process; it receives 
the mapping between the items and the EA Leaf 
agents composing the system. Additional 
information, specific to the application context, 
can decorate this mapping. 

 
All the agents defined in the system mostly manipulate 

items (split, duplicate, or change properties): these are abstract 
entities that can be further customized with additional 
properties. 

2) AgentService 
Even though the practical implementation of Herald does 

not strictly require a specific agent programming framework, 
its canonical model adopts the AgentService framework for 
which we have developed all the required class libraries and 
software agents. AgentService [6] is an agent programming 
framework built on top of the Common Language 
Infrastructure [13], whose .NET Framework is the most 
popular implementation. The framework provides the 
programmers with the following features: 

 
 definition of autonomous, independent, and 

persistent agents; 
 concurrent execution of agents and their multi-

behavior activity; 
 persistent shared data structures within a single 

agent; 
 transactional agent communication based on 

message exchange; 
 access to the FIPA service components (AMS, DF, 

MTS). 
 

One of the key features of AgentService is its agent model 
that is not particularly tied to specific agent architectures, but 
is flexible enough to implement different ones. Within 
AgentService, an agent is constituted by a set of knowledge 
objects and a set of behaviour objects. Knowledge objects 
define the agents’ knowledge base while behaviour objects 
define the activities that an agent can perform and the services 
it offers to the others. Knowledge objects are shared among 
the different behaviours that are scheduled in a concurrent 
manner. The definition of a new type of agent leads to the 
definition of a template which specifies the behaviour and 
knowledge objects that characterize it. It also leads to the 
definition of these behaviour and knowledge types. 

AgentService supports mobile agents [15] and provides 
programming tools for managing ontologies and interaction 
protocols [16]. AgentService also allows an easy integration 
of multi-agent systems with external applications by using 
agent avatars: agent avatars are application stubs that are seen 
as software agents inside multi-agent system. By using avatars 
external software modules can interact with agents and access 
platform services as if they were like real agents. 

3) External Software Components 
External software components connect the multi-agent 

system with the external world and the problem domain. 
These components have the following responsibilities: 

 
 they provide the collection of items to the MAS; 
 they activate the system; 
 they control the execution of the protocol; 
 they elaborate results. 

 
These components manage all the customization aspects of 

the system: they create the items, they add the required 
additional properties, and they provide the custom dispatching 
policies when needed. Within a default installation of Herald 
external software components constitute the software 
environment into which the multi-agent system is created and 
executed. By using an agent avatar they interoperate with the 
MAS, drive the dispatching protocol, and get the results. 

C. Dispatching Protocol 
Herald uses a flexible dispatching structure in which the 

decisions concerning the distribution of items can be taken in 
cooperation with external software entities providing either 
the complete set of allocations or just simple indications. 

 
Fig. 2 – Protocol execution step 
 
This gives a high degree of flexibility since it allows 



 

developers to modify the course of actions with the highest 
level of detail and it makes Herald suitable for many different 
scenarios. The only requirement of Herald is the hierarchical 
structure of the distribution process which strongly 
characterizes the architecture of Herald. 

As previously said in section III.B.3 the process is activated 
by an external software component which has to create the 
collection of agents described in section III.B.1. Once the 
multi-agent system is activated by the external software 
components the following steps apply: 

 
1. the external software component creates/retrieves the 

collection of items that have to be dispatched and send 
them to Item Manager agent along with additional 
ordering criteria and an objective function that has to 
be minimized or maximized; 

2. the Item Manager pre-elaborates the items, sorts them 
according to the suggested criteria and communicates 
to the EA Root the collections of sorted items; 

3. the EA Root creates a unique dispatching identifier 
that will be tagged to the collection of items while they 
flow through the child nodes. If necessary, the EA 
Root performs additional operations on the items (i.e. 
aggregation of items) before sending them to child 
nodes. The EA Root asks to the external software 
module for a dispatching strategy of the collections of 
items: if the external software component gives 
suggestions (i.e. by providing a mapping from items to 
child nodes or by explicitly giving a partition 
algorithm to apply) these suggestions are applied 
otherwise the default partitioning is applied. Then the 
items are sent to the child nodes according to the 
partition previously performed; 

4. each EA Node which does not receive an empty list of 
items executes the dispatching. As happened for the 
EA Root the EA Node can, if required, manipulate 
items by aggregating or splitting them according to the 
requirements of the possible final targets (the subset of 
EA Leaf agents that can be reached from this node) of 
the items; 

5. the EA Node asks to the external software component 
indications about the partition of items by sending the 
request along with some context information (i.e.: the 
identifier of the node and the collections of items). If 
there are any suggestions they are applied otherwise 
the default distribution takes place. The items are then 
sent to child nodes; 

6. steps 4 and 5 are repeated for each level of the tree 
until leaf nodes are reached; 

7. each EA Leaf that receives a collection of items 
elaborates them and eventually computes some key 
performance indexes as suggested by the external 
software component and its contribute for the 
objective function; 

8. each EA Leaf sends a feedback – composed by the key 
performance indexes and the value of the objective 

function – to the parent EA Node and the list of 
assigned items along with additional information to the 
ODA; 

9. each EA Node aggregates the feedbacks received from 
the child nodes and compute the value of the objective 
function for the node, then sends back to the parent 
node the data; 

10. the EA Root aggregates the feedback received by the 
child nodes, computes the final value of the objective 
function and, according to these data, decides if the 
current partition of the items is acceptable, by 
eventually asking to the external component. In case of 
successful partition the EA Root broadcasts an 
acknowledge message to all the entity agents and the 
ODA by specifying the dispatching identifier. If the 
partition is not acceptable the entire process starts 
again from step 3 by using different criteria; 

11. the entity agents – and  the ODA – receiving an 
acknowledge message keep track of the partition 
related to the acknowledged dispatching identifier and 
delete all the other partitions; 

12. the external component is notified by the ODA the 
successful termination of the dispatching process. 

 
Figure 2 gives a graphical representation of the steps 

described above. We can observe that the protocol simplifies 
the introduction of on-line decisions. On-line decisions are 
taken while the system is running and they can modify its 
course of action. This is accomplished by letting the entity 
agents interact with the external software components which 
should maintain an updated view of the state of the problem 
domain. Finally, keeping separate the general infrastructure of 
the protocol and all those aspects customizing the algorithm 
for a specific problem we are able to obtain a very flexible 
structure. Such structure can be easily applied to different 
scenarios and problem domains. In each customization what 
really changes is the external software component driving the 
protocol and what this module provides to the multi-agent 
system which remains almost the same. 

Another important aspect of this system is the ability of 
executing multiple dispatching processes in parallel without 
increasing the number of agents. Each Entity Agent 
instantiates a behaviour for executing a new incoming 
dispatching strategy: item partitions belonging to different 
strategies are identified by different unique dispatching 
identifiers. Thanks to the natural and effective multi-threading 
management system of the AgentService framework the 
execution of multiple dispatching processes comes with no 
additional cost. The ability of executing dispatching processes 
in parallel allows implementations of Herald to try more 
different solutions for the same problem at the same time and 
then select the best one. 

D. Application Scenarios and Customization 
There are many different domains in which there is the need 

of using a dispatching policy for some kind of items. If we 



 

have a network the routing of packets is a common application 
of dispatching policies. Other examples involve logistics and 
scheduling: in the case of logistics there is the need to select 
the best route for a given item while in the case of scheduling 
we have to process a collection of orders in a given time 
constraint. The execution of orders eventually results in a set 
of tasks that have to be assigned to a set of machines 
according to a given algorithm. These are only the most 
evident domains in which the problem of dispatching items 
has to be managed. Not all the possible instances of these 
domains are eligible as case studies for Herald. In particular 
those exposing a structure that is inherently a graph and that 
cannot be reduced as a tree cannot be considered. Fortunately 
there are many cases in which the original hierarchy is a tree 
or can be reduced to a tree: these are the instances eligible for 
Herald and now we will see what is required to customize 
Herald for a practical application. 

The first thing that needs to be customized is the item: in 
order to fully represent the entities of the problem domain, 
items need to be enriched with additional properties. The 
Herald Toolkit provides a library defining all the data 
structures required to apply the dispatching process: by sub-
classing the Item type developers can enrich the item class 
with all the required properties. In order to fully exploit the 
personalization applied to items all the data structures which 
operate on item have to be specialized: in particular, 
algorithms for distributing items and those evaluating the key 
performance indexes have to take into account the value of 
additional properties. Herald defines interfaces and delegates 
for these objects and developers just have to adhere to these 
type contracts while implementing the specialization. The last 
component that needs to be implemented is the external 
software module which drives the protocol and connects the 
multi-agent system with the problem domain. The 
implementation of this component is a common activity when 
designing multi-agent systems with AgentService: developers 
are normally required to create a batch which sets up the 
multi-agent system and interact with it if necessary. The 
implementation of a protocol driver for Herald does not take 
any additional burden. 

In the next section we will see a practical example of the 
customization described here by describing a case study where 
Herald as been effectively applied. 

IV. CASE STUDY 

A.  The Problem Context 
In order to test its feasibility we implemented a prototype of 

Herald in the field of production scheduling as a result of 
collaboration with Siemens Automation & Drive (A&D). 
Siemens A&D is a leading firm in the field of MES 
(Manufacturing Execution System) production and 
scheduling. In order to satisfy the customers’ needs Siemens 
A&D offers the SimaticIT Production Suite which is a suite of 
cooperating applications which takes care of production 
process by starting from the Enterprise Resource Planning 

(ERP) and by reaching the machine level. The Production 
Suite controls many different tasks: low level plant 
monitoring, resources allocation, logistics, and scheduling. In 
this context we developed a prototype based on Herald for 
scheduling a collection of production orders into a production 
plant. The Agent Based Detailed Production Scheduler, which 
is the name of the prototype, relies on the AgentService 
programming framework for the design and the 
implementation of software agents constituting the 
architecture defined by Herald. 

B. The Multi-agent System 
The structure of plant, which is defined by the S-95 

standard [14], naturally resembles a hierarchical tree: the 
standard defines a production site as a collection of areas 
which are subsequently partitioned into production cells 
constituted by units. Production units host production 
machines which execute real production operations. Hence, 
mapping such a hierarchy into a tree structure – having the 
root node in the site and developing till the production units – 
has been a natural and seamless task. In order to complete the 
case study in the scope of this paper we will consider a 
simplified example of this hierarchy that is the sub-tree 
representing a production area. The hierarchy of the system is 
mapped onto collection of three different entity agents: EA 
Area, EA Cell, EA Unit. Moreover, a collection of specific 
logical agents, namely the WOM (Work Order Manager) and 
the OSA (Output Schedule Agent), are provided to retrieve 
data and present results of the scheduling process. 

The EA Area agent is a specialization of the EA Root agent 
and basically dispatches the production orders to the EA Cell 
agents, waits for the KPI indexes, and eventually sends the 
acknowledge to terminate the process. The dispatching 
strategy is selected by the external component. EA Cell agents 
specialize the EA Node agent. EA Cell agents dispatch the 
entry received by the EA Area to the EA Units according to 
some dispatching strategy decided by the external component. 
They wait for the KPI from the units and assemble them 
before sending them to EA Area. EA Unit agents are EA Leaf 
agents: they process the entries, execute the scheduling 
algorithm, register the KPI, and send them back to EA Cell 
agent. 

The Work Order Manager agent is the specialization of the 
IM agent. It receives the collection of orders to be scheduled 
and sets up the multi-agent system constituting the production 
area to which these orders have been dispatched. Finally, the 
Output Schedule Agent specializes the ODA and has been 
introduced to the system to organize and present the schedule 
data collected from the units in a more convenient format: the 
OSA uses these data and organizes them into a Gantt diagram. 

C. The Protocol 
Due to the requirements provided by Siemens A&D the 

entire dispatching process must be controlled by the 
Production Modeler (PM) which is the component of the 
Production Suite actively controlling the physical plant. For 



 

this reason the dispatching protocol is said to be PM driven: 
the Production Modeler is the component which starts the 
scheduling process and it is also the one which is constantly 
queried by physical agents during the process. Finally, the 
results collected by the OSA agent are returned back to the 
PM which evaluates the performance indexes computed by the 
multi-agent system and chooses the best schedule. For all 
these reasons, the PM represents the external component 
which is involved in the dispatching process as described in 
Herald. Thanks to the flexible structure of Herald and 
advanced features of AgentService the customization has been 
simple and quick. 

We decided to centralize the interaction with the PM by 
using a specific software module implemented as an agent 
avatar and that we called PM Gateway: the PM Gateway 
represents the PM in the multi-agent systems and the other 
agents interact with the PM by exchanging messages with this 
agent. This design decision represents a slight variation of the 
architecture proposed by Herald but it is mostly an 
implementation issue which helped us while testing the system 
off-line. The use of the PM Gateway allowed us to deploy the 
multi-agent system by only changing the implementation of 
the agent avatar and without modifying the code of the other 
software agents. 

V. CONCLUSIONS 
In this paper we presented an agent-based toolkit for 

implementing flexible dispatching infrastructures. Flexibility 
is given by the adoption of agent technology as a core 
component of Herald and by the high degree of customization 
offered to end users who can drive the process at each stage. 
Software agents are adopted to replicate the hierarchical 
structure of the real life system where the dispatching process 
takes place. Users just have to develop the software 
interconnection layer between the multi-agent system and the 
software legacy system requiring the support of Herald. The 
features provided by the AgentService programming 
framework make the interaction with multi-agent system an 
easy task and allow developers to quickly customize the 
model provided by Herald to their own problem context. 

As noticed in the introduction, even though the model 
proposed by Herald is based on a tree hierarchy for 
dispatching the items it remains general enough to be 
applicable to a wide range of scenarios. As a future 
improvements we consider the adoption of a more flexible 
holonic architecture. We developed a case study in the field of 
production scheduling in collaboration with Siemens A&D 
and the results have been interesting. The case study showed 
also that the use of parallel dispatching strategies is valuable 
since this features makes easier comparing the application of 
different strategies side by side during their execution. 

The Herald toolkit is actually developed in its core 
components and it has been tested on a real case study, we are 
now working on creating libraries of dispatching strategies 
and on providing a graphical user interface for using Herald as 
a standalone tool. In particular, in order to definitely improve 
Herald usability, a “drag and drop” interface for graphically 

model the hierarchical structure of the system and a tool for 
monitoring the dispatching process at runtime have to be 
implemented. 

REFERENCES 
[1] M. Walliser, M. Calisti, T. Hempfling, S. Brantschen, F. Klügl, A. 

Bazzan, and S. Ossowski, “Agent-Based Approaches to Transport 
Logistics, Applications of Agent Technology in Traffic and 
Transportation, Birkhäuser Basel, pp. 1-15, March 30, 2006. 

[2] I. Kassabalidis, A.K. Das, M.A. El-Sharkawi, R.J. Marks II, P. 
Arabshahi, and A. Gray, “Intelligent routing and bandwidth allocation in 
wireless networks”, Proc. NASA Earth Science Technology Conf. 
College Park, MD, August 28-30, 2001. 

[3] D. Ouelhadj, C. Hanach, and B. Bouzouia, “Multi-agent system for 
dynamic scheduling and control in manufacturing cells”, Robotics and 
Automation, 1998, Proceedings, 1998 IEEE International Conference on 
V. 3, pp. 2128–2133, 1998. 

[4] H. Nwana, “Software agents: An Overview”, Knowledge and 
Engineering Review, November, Vol. 11, No 3, 1996. 

[5] K. Sycara, and D. Zeng, “Coordination of Multiple Intelligent Software 
Agents”, International Journal of Cooperative Information Systems Vol. 
5, 1996. 

[6] C. Vecchiola, A. Grosso, A.Gozzi, and A. Boccalatte, “AgentService”, 
Proceedings of the 16th International Conference on Software 
Engineering and Knowledge Engineering (SEKE04), Banff, Alberta 
Canada, KSI Publisher, 2004. 

[7] M. Wooldridge, “Intelligent Agents”, Multiagent Systems: A modern 
Approach to Distributed Artificial Intelligence, Weiss, MIT Press, 1999. 

[8] Magenta Technology, “Software Platform v2.1”, Magenta Technology 
Whitepaper, [Online document] 2005, Available at HTTP: 
www.magenta-technology.com/ 

[9] Whitestein Technologies, “LS/TS – Living Systems ® Technology 
Suite”, [Online document], Available at HTTP: 
http://www.whitestein.com/resources/products/whitestein_lsts_flyer.pdf 

[10] C.A. Silva, J.M. Sousa, T.A. Runkler, and J.M. Sà da Costa, “A Multi-
Agent Dispatching Heuristic for Manufacturing Systems Using Ant 
Colonies”, Proceedings of the European Network of Excellence on 
Intelligent Technologies for Smart Adaptive Systems (EUNITE 2002), 
2002. 

[11] B. Maione, and D. Naso, “Evolutionary adaptation of dispatching agents 
in heterarchical manufacturing systems”, International Journal of 
Production Research, Vol. 39, N. 7, pp. 1481-1503(23), 2001. 

[12] S. Heinrich, H. Durr, T. Hanel, and J. Lassig, “An Agent-based 
Manufacturing Management System for Production and Logistics within 
Cross-Company Regional and National Production Networks”, 
International Journal of Advanced Robotic Systems, Vol. 2, N. 1, pp. 7-
14, 2005. 

[13] Standard ISO/IEC 23271:2003: Common Language Infrastructure, ISO, 
2003. 

[14] ISA, S95—Enterprise-Control System Integration, Part 1: Models and 
Terminology, Instrumentation, Systems and Automation Soc., 2000.  
ISA, S95—Enterprise-Control System Integration, Part 2: Object Model 
Attributes, Instrumentation, Systems and Automation Soc., 2001 
[Online]. Available: http://www.isa.org. 

[15] A. Boccalatte, A. Grosso, C. Vecchiola, “Implementing a Mobile Agent 
Infrastructure on the .NET Framework”, 4th International Conference in 
Central Europe on .NET Technologies, Plzen, 2006. 

[16] A. Passadore, C. Vecchiola, A. Grosso, and A. Boccalatte, “Designing 
agent interactions with Pericles”, ONTOSE 2007, Second International 
Workshop on Ontology, Conceptualization and Epistemology for 
Software and Systems Engineering, Milan, Italy, Giugno 2007. 


