Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Nov 2023]
Title:Adversarial Purification of Information Masking
View PDFAbstract:Adversarial attacks meticulously generate minuscule, imperceptible perturbations to images to deceive neural networks. Counteracting these, adversarial purification methods seek to transform adversarial input samples into clean output images to defend against adversarial attacks. Nonetheless, extent generative models fail to effectively eliminate adversarial perturbations, yielding less-than-ideal purification results. We emphasize the potential threat of residual adversarial perturbations to target models, quantitatively establishing a relationship between perturbation scale and attack capability. Notably, the residual perturbations on the purified image primarily stem from the same-position patch and similar patches of the adversarial sample. We propose a novel adversarial purification approach named Information Mask Purification (IMPure), aims to extensively eliminate adversarial perturbations. To obtain an adversarial sample, we first mask part of the patches information, then reconstruct the patches to resist adversarial perturbations from the patches. We reconstruct all patches in parallel to obtain a cohesive image. Then, in order to protect the purified samples against potential similar regional perturbations, we simulate this risk by randomly mixing the purified samples with the input samples before inputting them into the feature extraction network. Finally, we establish a combined constraint of pixel loss and perceptual loss to augment the model's reconstruction adaptability. Extensive experiments on the ImageNet dataset with three classifier models demonstrate that our approach achieves state-of-the-art results against nine adversarial attack methods. Implementation code and pre-trained weights can be accessed at \textcolor{blue}{this https URL}.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.