@inproceedings{chen-etal-2017-adversarial,
title = "Adversarial Multi-Criteria Learning for {C}hinese Word Segmentation",
author = "Chen, Xinchi and
Shi, Zhan and
Qiu, Xipeng and
Huang, Xuanjing",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1110",
doi = "10.18653/v1/P17-1110",
pages = "1193--1203",
abstract = "Different linguistic perspectives causes many diverse segmentation criteria for Chinese word segmentation (CWS). Most existing methods focus on improve the performance for each single criterion. However, it is interesting to exploit these different criteria and mining their common underlying knowledge. In this paper, we propose adversarial multi-criteria learning for CWS by integrating shared knowledge from multiple heterogeneous segmentation criteria. Experiments on eight corpora with heterogeneous segmentation criteria show that the performance of each corpus obtains a significant improvement, compared to single-criterion learning. Source codes of this paper are available on Github.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2017-adversarial">
<titleInfo>
<title>Adversarial Multi-Criteria Learning for Chinese Word Segmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinchi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhan</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Different linguistic perspectives causes many diverse segmentation criteria for Chinese word segmentation (CWS). Most existing methods focus on improve the performance for each single criterion. However, it is interesting to exploit these different criteria and mining their common underlying knowledge. In this paper, we propose adversarial multi-criteria learning for CWS by integrating shared knowledge from multiple heterogeneous segmentation criteria. Experiments on eight corpora with heterogeneous segmentation criteria show that the performance of each corpus obtains a significant improvement, compared to single-criterion learning. Source codes of this paper are available on Github.</abstract>
<identifier type="citekey">chen-etal-2017-adversarial</identifier>
<identifier type="doi">10.18653/v1/P17-1110</identifier>
<location>
<url>https://aclanthology.org/P17-1110</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>1193</start>
<end>1203</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adversarial Multi-Criteria Learning for Chinese Word Segmentation
%A Chen, Xinchi
%A Shi, Zhan
%A Qiu, Xipeng
%A Huang, Xuanjing
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F chen-etal-2017-adversarial
%X Different linguistic perspectives causes many diverse segmentation criteria for Chinese word segmentation (CWS). Most existing methods focus on improve the performance for each single criterion. However, it is interesting to exploit these different criteria and mining their common underlying knowledge. In this paper, we propose adversarial multi-criteria learning for CWS by integrating shared knowledge from multiple heterogeneous segmentation criteria. Experiments on eight corpora with heterogeneous segmentation criteria show that the performance of each corpus obtains a significant improvement, compared to single-criterion learning. Source codes of this paper are available on Github.
%R 10.18653/v1/P17-1110
%U https://aclanthology.org/P17-1110
%U https://doi.org/10.18653/v1/P17-1110
%P 1193-1203
Markdown (Informal)
[Adversarial Multi-Criteria Learning for Chinese Word Segmentation](https://aclanthology.org/P17-1110) (Chen et al., ACL 2017)
ACL