Computer Science > Hardware Architecture
[Submitted on 27 Nov 2024]
Title:Addressing Architectural Obstacles for Overlay with Stream Network Abstraction
View PDF HTML (experimental)Abstract:Overlay is an effective approach for creating FPGA-based AI accelerators, enabling software-programmable specialized hardware datapaths to flexibly support various DNN operations. Traditional DNN overlays typically base their instruction set design on the von Neumann model but adapt them to be more coarse-grained. These instruction sets control execution at the layer granularity and impose restricted patterns for mapping computation and bandwidth resources. Such constraints cause inefficiencies from the imperfect match between supported execution patterns and diverse DNN layer shapes and types. This work proposes a Reconfigurable Stream Network architecture, a unique ISA abstraction tailored for flexible FPGA overlay execution at low cost, marking it as the first known FPGA design to support dynamic sequential linear layer pipelining. This novel architecture presents a datapath abstraction modeled after a specialized circuit-switched network with stateful functional units (FUs) as nodes and data streaming on edges. Programming a computation corresponds to triggering a network path in this stream-connected datapath. The program can individually control FUs to form paths that exploit both spatial and pipeline parallelism between independent and dependent concurrent computations. We present a proof-of-concept design RSN-XNN on the Versal VCK190. Evaluations show a 22x latency reduction for BERT compared to the state of the art, along with throughput improvements of 3.2x, 2.4x, 2.5x, and 2.8x for BERT, VIT, NCF, and MLP, respectively. RSN-XNN matches the latency of the T4 GPU with the same FP32 performance but only 18% of the memory bandwidth. Compared to the A100 GPU under the same 7nm process node, it achieves 2.1x/4.5x better operating/dynamic energy efficiency in FP32.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.