Mathematics > Numerical Analysis
[Submitted on 28 Jul 2022 (v1), last revised 1 Jul 2024 (this version, v2)]
Title:Adaptive meshfree approximation for linear elliptic partial differential equations with PDE-greedy kernel methods
View PDFAbstract:We consider the meshless approximation for solutions of boundary value problems (BVPs) of elliptic Partial Differential Equations (PDEs) via symmetric kernel collocation. We discuss the importance of the choice of the collocation points, in particular by using greedy kernel methods. We introduce a scale of PDE-greedy selection criteria that generalizes existing techniques, such as the PDE-P -greedy and the PDE-f -greedy rules for collocation point selection. For these greedy selection criteria we provide bounds on the approximation error in terms of the number of greedily selected points and analyze the corresponding convergence rates. This is achieved by a novel analysis of Kolmogorov widths of special sets of BVP point-evaluation functionals. Especially, we prove that target-data dependent algorithms that make use of the right hand side functions of the BVP exhibit faster convergence rates than the target-data independent PDE-P -greedy. The convergence rate of the PDE-f -greedy possesses a dimension independent rate, which makes it amenable to mitigate the curse of dimensionality. The advantages of these greedy algorithms are highlighted by numerical examples.
Submission history
From: Tizian Wenzel [view email][v1] Thu, 28 Jul 2022 09:26:53 UTC (512 KB)
[v2] Mon, 1 Jul 2024 19:50:28 UTC (557 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.