Activity scheduling and resource allocation with uncertainties and learning in activities
Industrial Management & Data Systems
ISSN: 0263-5577
Article publication date: 7 June 2019
Issue publication date: 7 August 2019
Abstract
Purpose
The purpose of this paper is to develop a model which schedules activities and allocates resources in a resource constrained project management problem. This paper also considers learning rate and uncertainties in the activity durations.
Design/methodology/approach
An activity schedule with requirements of different resource units is used to calculate the objectives: makespan and resource efficiency. A comparisons between non-dominated sorting genetic algorithm – II (NSGA-II) and non-dominated sorting genetic algorithm – III (NSGA-III) is done to calculate near optimal solutions. Buffers are introduced in the activity schedule to take uncertainty into account and learning rate is used to incorporate the learning effect.
Findings
The results show that NSGA-III gives better near optimal solutions than NSGA-II for multi-objective problem with different complexities of activity schedule.
Research limitations/implications
The paper does not considers activity sequencing with multiple activity relations (for instance partial overlapping among different activities) and dynamic events occurring in between or during activities.
Practical implications
The paper helps project managers in manufacturing industry to schedule the activities and allocate resources for a near-real world environment.
Originality/value
This paper takes into account both the learning rate and the uncertainties in the activity duration for a resource constrained project management problem. The uncertainty in both the individual durations of activities and the whole project duration time is taken into consideration. Genetic algorithms were used to solve the problem at hand.
Keywords
Acknowledgements
The work described in this paper was supported by grant from The Natural Science Foundation of China (Grant No. 71471158), China Postdoctoral Science Foundation funded project (Grant No. 2018M631792) and The Department of Education of Liaoning Province (Grant No. LN2017QN006).
Citation
Chan, F.T.S., Wang, Z., Singh, Y., Wang, X.P., Ruan, J.H. and Tiwari, M.K. (2019), "Activity scheduling and resource allocation with uncertainties and learning in activities", Industrial Management & Data Systems, Vol. 119 No. 6, pp. 1289-1320. https://doi.org/10.1108/IMDS-01-2019-0002
Publisher
:Emerald Publishing Limited
Copyright © 2019, Emerald Publishing Limited