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Abstract
Amidst the growing reliance on Conflict-free Replicated Data Types (CRDTs) for synchronizing data across

distributed networks, our research introduces a novel implementation of Prolly trees. This innovative approach

overcomes the limitations of existing Prolly tree models by simplifying design complexities and enabling faster

implementation. Our design strategically mitigates existing performance bottlenecks and operational intricacies

by introducing an advanced architecture that curtails complexities associated with chunk splitting and minimizes

the necessity for updating tree nodes. Furthermore, our implementation incorporates an ingenious Anchor

Nodes design and supports batch insertions, substantially elevating the structure’s proficiency in managing

updates, insertions, and deletions. Developed using Golang, to leverage its execution speed, and Python, for its

readability and straightforward adaptability, our version presents significant improvements over conventional

Prolly tree configurations. Through exhaustive evaluation and comparative analysis against existing benchmarks,

our model underscores a pronounced enhancement in performance metrics. Our method significantly improves

both creation and insertion operations, achieving a 30% to 50% enhancement for Dolthub and a multiple-fold

increase in performance for Canvas.
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1. Introduction

With the continuous growth of decentralized technologies, the necessity for scalable and efficient data

structures has intensified. Conflict-free Replicated Data Types (CRDTs) [1] have gained prominence

within the decentralized computing arena. CRDTs are specifically engineered to allow replication

across multiple nodes within a network, facilitating convergence towards a consistent state without

necessitating a centralized authority [2].

One notable example of a CRDT is the Prolly (Probabilistically Balanced) tree, a distributed data

structure optimized for replicating data across multiple nodes within a network, particularly beneficial

in the context of State Machine Replication systems such as blockchains [3, 4]. Here, Prolly trees

play a crucial role in assisting client software [5], operating atop communication layers like libp2p [6]

or devp2p [7], to synchronize states. These states may encompass sets of transactions, for example,

facilitating a seamless state synchronization process. The Prolly tree [8, 9], a variant of the Merkle tree

[10], utilizes a tree-like structure to store the hashes of individual data blocks within a large dataset.

This arrangement facilitates efficient verification of the dataset’s contents. By calculating a set difference

between two Prolly trees in logarithmic time, it is possible to synchronize the state between multiple

parties. Designed for environments requiring weak consistency, the Prolly tree offers both scalability

and efficiency, enabling the synchronization of large datasets under eventual consistency paradigms.

The key performance metrics for a Prolly tree are multifaceted, including the chunking algorithm

which significantly influences the tree’s structure, the capability for inserts to minimally impact the
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existing structure, and the efficiency of random reads amidst continuous insertions, among others.

Existing designs [11, 12, 13] have underscored the necessity for optimizing the Prolly tree to enhance

its performance and scalability. In production environments to synchronize the extensive datasets, the

goal is to develop a Prolly tree that not only processes large volumes of data effortlessly but also scales

efficiently in response to a high influx of messages. The performance of Prolly trees is significantly

affected by the order of message or data insertion. However, within the framework of causal broadcast,

data tend to follow a linear sequence, mitigating the complexities associated with random insertions

and thereby enhancing the operational efficiency of Prolly trees. Nevertheless, designing a system

that accommodates random insertions with minimal disruption to the existing tree structure remains

paramount.

In this paper, we introduce an optimized iteration of the Prolly tree, specifically engineered for

enhanced efficiency and scalability, particularly under conditions of sequential insertion. This refined

version of the Prolly tree has been developed and tested using Python and Golang, with extensive

performance evaluations conducted to ascertain its efficacy and scalability. The findings from our

analysis indicate that the optimized Prolly tree exhibits superior capability in managing large datasets

and demonstrates potential to significantly improve scalability across an extensive network of nodes

compared to prior implementations.

Our contributions are manifold: (1) We propose a novel chunking algorithm that markedly influences

the height and structure of the Prolly tree. (2) We unveil a design modification that ensures random

insertions into the Prolly tree exert minimal impact on its structural integrity. (3) We introduce an

innovative tree backbone design aimed at accommodating a sequence of insertions without impacting

the tree’s existing structure or its performance. (4) We provide an open-source implementation of the

optimized Prolly Tree, complemented by comprehensive performance testing to evaluate its efficiency

and scalability.

In our experiments with the Prolly Tree implementation on commodity hardware, we observed a

minimum time improvement of around 30% compared to existing implementations. The structure of

this paper is organized as follows: Section 2 provides an overview of the CRDTs focused on Prolly

tree-related data structures. In Section 3, we introduce our proposed design for the optimized Prolly tree,

detailing how it diverges from existing models. Section 4 details the implementation of the optimized

Prolly Tree in Python and Golang, accompanied by a discussion of various performance metrics. Section

5 reviews relevant prior work on CRDT solutions akin to Prolly trees. We conclude the paper in Section

6, where we summarize our findings and outline directions for future research.

2. Background

In this section, we briefly explain the fundamentals of the CRDTs in the context of Prolly tree, a brief

introduction to the tree-based technology that facilitates data indexing and integrity preservation.

2.1. Conflict-free Replicated Data Types (CRDTs)

Conflict-free Replicated Data Types (CRDTs) are a class of data structures designed to facilitate reliable

data replication across multiple nodes in distributed systems, without necessitating central coordination

[1]. The fundamental idea of CRDTs is to permit updates at various nodes independently, ensuring that

such updates can be consolidated in a manner that deterministically resolves any conflicts, thereby

achieving eventual consistency throughout the system. CRDTs are particularly valuable in settings

where network partitions are common or where latency and continuous availability are critical concerns,

such as in decentralized applications. A set difference is calculated between two instances of a CRDT,

and the resulting data can be applied to synchronize the original data layers.



2.1.1. B-Tree and N-ary Tree

B-tree [14, 15] is a self-balancing tree data structure that maintains sorted data, allowing for efficient

insertion, deletion, and search operations, even in large datasets. They scale gracefully with the size of

the dataset, and are widely utilized in the implementation of databases and filesystems. Each node in a

B-tree contains a number of keys that are in a specific, sorted order and can have a variable number of

child nodes within predefined limits. This structure not only ensures that the tree remains balanced,

with all leaf nodes at the same depth, but also minimizes disk accesses—making B-trees particularly

efficient for storage systems that rely on sequential block access. Each internal node has at most 2

children in the case of B-tree.

Similarly, n-ary trees share the same foundational properties as binary trees, with the key difference

being their capacity to have at most n children, as opposed to the binary tree’s limit of two. This

significantly reduces the height of the tree but impacts the width of the tree. For B-tree operations such

as search, insert, and delete have 𝑂(log2𝑁) complexity where N is the number of keys in the tree. For

n-ary trees, operational complexity is 𝑂(log𝑛𝑁).

2.1.2. Merkle Tree

Merkle trees, serve as a cryptographically secure and efficient structure for verifying the contents

of large datasets [10]. They are essentially binary trees with same operational complexity in which

every leaf node represents a data block’s cryptographic hash, and each non-leaf node is the hash of its

children. This hierarchical hashing strategy ensures that any alteration in a single data block can be

quickly detected by observing changes in the root hash, facilitating efficient and secure verification

processes. The sequential arrangement of leaf data within a Merkle tree is of paramount importance, as

altering the position of the same data can lead to a different root hash, fundamentally changing the

tree’s integrity. The construction of a Merkle tree exhibits a complexity of O(N), while the verification

process benefits from a more efficient complexity of O(log N), where N represents the total number of

data blocks.

In the realms of blockchains and cryptocurrencies, Merkle trees play a crucial role for light clients

in verifying data inclusion within a tree structure. Notably, in leading cryptocurrencies like Bitcoin

and Ethereum, Merkle trees are instrumental in confirming the presence of transactions within a block.

This verification process is remarkably efficient, requiring only a logarithmic number of data nodes

from the Merkle tree to ascertain the inclusion of a specific transaction. Additionally, a specialized

variant known as the Merkle Patricia trie [16] is extensively utilized in Ethereum, serving a pivotal

function in maintaining the blockchain’s state.

2.1.3. Prolly Tree

Prolly trees data structures are designed to optimize storage and retrieval in distributed databases

and version control systems. First introduced by Noms [9], Prolly tree structure is a variant of the

B-tree and Merkle tree, distinguished by its probabilistic approach to node splitting and merging, which

enhances performance in distributed environments. Prolly trees are particularly adept at handling large

datasets that require efficient synchronization across multiple clients or servers, due to their efficient

data deduplication and conflict-free replication capabilities. Each node in a Prolly tree can contain a

mix of data and hashes, facilitating both direct data access and verification of large data blocks without

necessitating complete traversal of the tree. In the design the number of children each node can have is

probabilistically deterministic.

Prolly Trees comprise of the following notable components:

• Node: It is the simplest unit of data storage in Prolly tree. It represents a key-value pair at Level

0 of the Prolly tree. At non-zero levels, only the key is used to traverse the tree. Each Node also

stores a Merkle hash of the children nodes below it. In this paper, Node is sometimes referred to

as a key-value pair or a key.



• Level: It is the level of the tree at which the node is present. Level 0 is the leaf level of the tree

where Nodes have both key and value filled in them. At Non-zero levels, only the key is used to

traverse the tree.

• Boundary Node: It is any node in the Prolly tree whose node_hash attribute falls below a certain

threshold, leading to its promotion to the subsequent level in the tree. This node contains the

rolling Merkle-hash of a group of non-boundary nodes present in the level just below it until the

first boundary node or None is seen when moving from right to left. It is also called a Promoted

Node.

• Tail/Anchor Node: It is a special concept where a Node (non-data) is inserted at each level of

the Prolly Tree. It can also be termed as a Fake node. It acts as a backbone for the Prolly tree. It

is always a boundary node by default. This is a design put forward by Canvas [11], where the

position of Anchor Node is on the left side of the Tree, other Prolly tree implementations such as

Dolthub [8] and IPLD [12] do not have this concept. In our proposed Prolly tree, the anchor Node

is positioned on the rightmost side of each level, so that for the most recent incoming Nodes that

are inserted in the tree and happen to be non-boundary nodes, their Merkle hash state is tracked

with such Node.

• Bucket/Chunk: It is a collection of nodes that are present at the same level in the Prolly tree and

on either end there are boundary nodes (left side boundary node excluded). The bucket/chunk

boundary starts from the last seen boundary node in a sequence until the first seen Boundary

node. The chunk is also represented using the rolling Merkle hash of all the nodes that are present

in the chunk/bucket. This Merkle hash is subsequently stored in the boundary node positioned at

the immediate upper level, thereby cryptographically encapsulating the chunk’s state.

Throughout the rest of the document, the terms "bucket" and "chunks" are used interchangeably to

refer to the same concept.

3. Optimized Prolly Tree

In this section, we first elaborate on the design of our optimized Prolly tree as per the different

components involved, then examine its distinctive properties that enhance its efficiency compared to

other implementations.

3.1. Chunking and Height of Prolly Tree

Before commencing the construction of the Prolly tree, it is essential to define the mechanisms for

controlling the tree’s width and height. The width pertains to the number of children each Node in the

tree can accommodate, essentially the chunk or bucket size. The height, conversely, is determined by

this width in relation to the total number of Nodes, reflecting the overall structure’s vertical dimension.

Width and height are crucial as they introduce a level of determinism to the Prolly tree’s structure.

Adopting a probabilistic methodology for tree structure, wherein the sizes of chunks or buckets

are determined by the hash of key-value pairs—essentially, the content of the tree Nodes—we put

forward a model to estimate the chunk size and anticipated height of the tree. The hash of each Node

(content-defined structure) is utilized to ensure that, even within a probabilistic framework, any entity

in the network can reconstruct the identical Prolly tree. This model relies on the division of the hash

value space into Q equally sized segments and identifies boundary nodes according to specific criteria

that involve analyzing the last few hexadecimal digits of each node’s hash value.

The model operates under the following assumptions:

• Uniform Distribution: The hash function is assumed to uniformly distribute values across its

range. This assumption ensures that any segment of its output, including the last few hex digits,

exhibits a uniform distribution.

• Independent Selection: Each node’s determination as a boundary node is considered an inde-

pendent event, with the probability 𝑃𝑏 of being a boundary node defined as 𝑃𝑏 =
1
𝑄 .



Figure 1: Proposed Prolly Tree

3.1.1. Model Description

Under these assumptions, the expected height 𝐻 of the tree, for a total of 𝑁 nodes, can be estimated

by acknowledging the relationship between the number of nodes and the frequency at which nodes

become boundary nodes:

𝑃𝑏 =
1

𝑄
(1)

Given 𝑃𝑏, the expected height 𝐻 of a tree with N number of unique Nodes can be approximated by:

𝐻 ≈ log𝑄(𝑁) (2)

3.2. Construction of Prolly Tree

The construction of the Prolly tree is pivotal, serving as the foundational step to initialize the tree

using existing key-value data. This data, irrespective of its origin, is seamlessly integrated into the

tree’s framework, demonstrating the implementation’s flexibility. The process of building the Prolly

tree adheres to two methodologies outlined in Base Level construction Algorithms 1 and Other Levels

construction Algorithm 2. These two algorithms play a vital role in bootstrapping a Prolly tree.

3.2.1. Base Level Construction

As detailed in Algorithm 1, it begins with the incorporation of key-value data store to form the tree’s

base level. Each piece of data undergoes hashing with the SHA-256 algorithm, and the resultant hash is

assigned as the node_hash attribute in a Prolly tree Node. A Node is elevated to the next level if the

hexadecimal digit furthest to the right of node_hash falls below a predefined threshold. This elevation

process is iteratively applied until all data is allocated to level 0, with a probabilistic selection of nodes

ascending to level 1. Promoted nodes encapsulate the rolling hash of their child nodes from the lower

level within the merkle_hash attribute, facilitating the identification and comparison of subtree or

chunk contents. As depicted in Figure 1, an Anchor node is introduced at the extremity of level 0,



Algorithm 1 Prolly Tree Construction - Base Level

1: procedure Base_Level(data)

2: Initialize the Data Store in key-value format

3: Level 0← Φ ◁ No Node at initialization

4: Anchor_Node← Initialized
5: while Data Store is not empty do
6: Node← key-value
7: Node(node_hash)← sha-256_hash(key-value)

8: Level 0← Node ◁ Node Added to Level 0

9: if Node(node_hash) < threshold then
10: if Level 1 does not exist then
11: Level 1← Φ ◁ Level 1 Initialized

12: end if
13: Node(merkle_hash)← Rolling Hash of child chunk

14: Level 1← Node ◁ Node promoted to Level 1

15: end if
16: end while
17: Level 0← Anchor_Node ◁ Append Anchor Node

18: if Level 1 exist then
19: Anchor_Node(merkle_hash)← Rolling Hash of child chunk

20: Level 1← Anchor_Node

21: end if
22: end procedure

on the rightmost side, further elaborated upon in Section 2.1.3. The Nodes in the pink box are the

boundary/promoted nodes, they are forming a chunk of their own starting from the previously observed

boundary Node.

3.2.2. Other Levels Construction

For levels exceeding zero, as detailed in Algorithm 2, each Node, except the Anchor Node, situated at

these elevated levels is subjected to rehashing based on the value contained in its node_hash attribute.

The decision to promote a Node to the subsequent level again depends on whether its node_hash meets

a specified threshold value. This promotion process is repeated until the arrangement at a given level

is reduced to a single Node, in conjunction with an Anchor Node. At the final stage of this iterative

process, the Anchor Node is designated as the tree’s root, thereby establishing the ultimate hierarchical

structure of the Prolly tree.

3.3. Updating the Prolly Tree

Updating a Prolly tree is similar to updating a conventional Merkle or B tree [17], with the additional

intricacy of chunking. The update operations include inserting, deleting, or modifying a key-value pair

(Node at Level 0) within the tree. As delineated in Algorithm 3, the update process entails three main

steps: (1) locating the position of the key-value pair to be updated, (2) executing the update operation,

and (3) updating the Merkle hash values of the impacted chunks or boundary Nodes.

Search operations play a crucial role in identifying the position of the key-value pair that needs

updating. The search algorithm, denoted as SEARCH_POSITION(...), operates recursively, navigating

from the root node to the leaf node along the path of the key-value pair designated for updating. As

specified between lines 4-8, the search process, particularly during insertion, begins at the root and

proceeds downward to the leaf level to find the key that is immediately smaller than the target key.

This is the reason the algorithm evaluates at intermediate Nodes whether the left Node is higher. Upon



Algorithm 2 Prolly Tree Construction - Other Levels

1: procedure Other_Levels(Level N)

2: Anchor_Node← Initialized
3: while While Current Level N has Nodes do ◁ Iterate Over Each Node

4: New_Node(node_hash)← sha-256_hash(Node(node_hash))
5: if New_Node(node_hash) < threshold then
6: Promote to next level

7: if Level N+1 does not exist then
8: Level N+1← Φ ◁ New Level Initialized

9: end if
10: New_Node(merkle_hash)← Rolling Hash of child chunk

11: Level N+1← New_Node ◁ Node Promoted to Level N+1

12: end if
13: end while
14: if Level N+1 exist then
15: Anchor_Node(merkle_hash)← Level N [Anchor_Node](merkle_hash)

16: Level N+1← Anchor_Node ◁ Append Anchor Node

17: end if
18: if No new Level (N+1) Added then ◁ No Node Got Promoted

19: Level N+1← Φ ◁ Final Root Level

20: Anchor_Node(merkle_hash)← Rolling Hash of child chunk

21: Prolly Tree Root← Anchor_Node ◁ Anchor Node of N+1 is the Root

22: end if
23: end procedure

locating the target leaf Node, the algorithm inserts the Node, corrects the pointers, assesses the extent

to which the inserted Node will ascend, and then refreshes the Merkle hash values of the impacted

chunks. The Merkle hash update algorithm, UPDATE_HASH(...), also a recursive function, starts from

the leaf Node and moves up to the root Node, updating the Merkle hash values of the affected chunks

(maximum two in our case). Upon insertion or any other update, Merkle hash of the affected chunks

are updated first and then it moves towards the right side of the Prolly tree to update the chunks till

the root node. Line 17 Find next boundary Node is a procedure that finds the boundary Node of each

chunk on the right side of the updated site in the tree moving up in a reverse waterfall manner to

efficiently update the parts of the tree. During sequential updates within the tree, only the Anchor

Nodes, extending all the way up to the Root Node, are affected by the Merkle hash updates(if inserted

Node is non-boundary). Conversely, only the directly impacted chunk undergoes a structural update in

scenarios involving random updates.

When updating content, the previously described algorithm operates similarly, except for the insertion

step. In such instances, only the Merkle hash of the impacted chunk is updated. This update process is

notably efficient because it ensures no other chunk is affected. On the other hand, during a deletion,

the search mechanism functions in the same manner. However, with deletion, the Node is removed

from all Levels, and alongside the pointers to adjacent nodes, the Merkle hash of the affected chunk is

updated. In the case of deletion, there exists a probability of 𝑃
(︀
1
𝑏

)︀
(where b is the chunking factor) that

an existing chunk will be removed and merged with an adjacent chunk.

3.4. Features of The Optimized Prolly Tree

Highlighted below are the distinguishing features of the optimized Prolly tree, contributing to its

efficiency compared to other implementations:



Algorithm 3 Prolly Tree Update

1: procedure SearchPosition(Root, Node_to_find)

2: Node← Root

3: Get to the level 0 right boundary Node of the subjected Node

4: while Node.down ̸= None do
5: if Node.left ̸= None and Node.left > Node_to_find then
6: Node← Node.left

7: else
8: Node← Node.down

9: end if
10: end while
11: Move left until the element or lower

12: while Node.left ̸= None and Node.left > Node_to_find do
13: Node← Node.left

14: end while
15: return Node ◁ Target position is left to this Node

16: end procedure
17: procedure UpdateHashes(Node)

18: if Node has any Node above then
19: Update the Node’s hash

20: else
21: Find next boundary Node

22: if No Node found then
23: Update operation complete

24: end if
25: UpdateHashes(Next Boundary Node)

26: end if
27: end procedure

3.4.1. Right Side Anchor Node Design

Anchor Nodes within the Prolly tree serve as a foundational framework, effectively integrating node

data pending inclusion in a chunk. This architecture significantly enhances efficiency over other designs,

as illustrated in Figure 2. Here, each insertion or update influences the entire pre-formed tree through

updates to the merkle_hash. Additionally, Figure 3 demonstrates that sequential insertions leave the

tree’s existing structure unaffected; changes are confined to the upgrade path, where Merkle hashes

are updated following any node modification. It is a notable advantage over other designs where new

changes necessitate adjustments throughout the entire tree. In contrast, in our design, only the Anchor

Nodes across various levels are subject to modifications, thereby streamlining the update process and

maintaining the integrity of the tree’s structure.

3.4.2. Subtree Segmentation

The proposed Prolly tree design features an innovative approach for segregating pre-established tree

chunks, enabling these segments to operate independently as subtrees. This capability is crucial,

considering that a node’s height remains uniform across the network, thereby allowing these chunks

to autonomously function. As shown in Figure 1, bucket 4 exemplifies how a chunk or subtree can

serve as a standalone unit of comparison. Such functionality becomes particularly advantageous for

lightweight client applications unable to store large sized Prolly trees, exemplified by clients within

Internet of Things (IoT) blockchain ecosystems [18]. This segregation feature significantly enhances the

efficiency of synchronization activities across Prolly trees with varying heights. As detailed in Section

3.4.1 and Figure 3, in scenarios involving sequential updates, existing tree chunks can be segregated



Figure 2: Left side Anchor Node

Figure 3: Right side Anchor Node

from the primary tree structure. This allows for updates to be confined to Anchor Nodes or newly

developed subtrees.

3.4.3. Batch Insertion

A crucial innovation of the proposed Prolly tree is its support for batch insertion, a mechanism that

allows for the simultaneous insertion of multiple key-value pairs. This method is akin to embedding

a miniature subtree within the larger tree structure, markedly enhancing efficiency by diminishing

the requisite number of updates. The implementation of a sophisticated chunking algorithm alongside

a thoughtfully designed Anchor node system underpins this capability. This approach, favoring the

collective insertion of a subtree over individual additions, streamlines the entire process. Notably, this

feature proves invaluable for the synchronization of Prolly trees; insertions made between boundary

nodes obviate the need for the intricate restructuring typically necessary in other models, thereby



facilitating a more seamless integration process.

4. Implementation

In this section, we provide the implementation details of the proposed Prolly tree along with a few

metrics over which it outperforms the existing designs.

4.1. Python and Go Implementation

Our proposed Prolly tree design, as detailed in Section 3, is available through an open-source imple-

mentation. For this project, we selected Go due to its efficiency and speed, and Python for its simplicity,

readability, and ease of modification. We have structured our implementation into three fundamental

components of the Prolly tree, aiming to optimize both performance and accessibility in the development

process.

4.1.1. Node Class

This entity signifies a Node within the Prolly tree, characterized by attributes including key, value,

pointers to other Nodes within the tree, merkle_hash, node_hash, among others. Each Node serves

as a self-contained unit, enabling traversal throughout the entirety of the tree by leveraging these

interconnected components.

4.1.2. Level Class

This component embodies a specific level within the Prolly tree, distinguished by attributes like the

level number and the tail node of that level. The Level functions as a repository for Nodes situated at a

distinct tier within the tree, acting as a modular unit that can expand or contract according to the tree’s

structural needs.

4.1.3. ProllyTree Class

This constitutes the operational core of the Prolly tree, integrating both Node and Level components to

construct the tree structure. It is equipped with utility functions facilitating essential operations such as

traversal, insertion, deletion, and the updating of Merkle roots. Due to its component-based modularity,

this unit is highly programmable, allowing for swift adaptations in the tree’s behavior to meet various

requirements.

For testing and demonstration purposes, we have introduced a Message class designed to generate

message objects for insertion into the tree. This class is characterized by attributes such as key and

value, facilitating the creation of message objects. Additionally, we have implemented a sample diff

algorithm tasked with comparing two Prolly trees to identify discrepancies between them. This feature

not only serves to verify the tree’s integrity but also showcases its capacity to manage updates efficiently.

We are making our codebase for the proposed Prolly tree publicly available
1

for anyone to recreate and

verify benchmarks, and to further extend capabilities.

4.2. Performance Metrics

* Prolly tree initialization data used for Canvas in Table 1 is taken directly from the publicly available

figures
2

by Canvas, it is because the benchmarking code
3

by Canvas does not support the Tree initial-

ization benchmarks. While the Dolthub and proposed Prolly tree benchmarks were executed. In the

1

Available at: https://github.com/ABresting/Prolly-Tree-Waku-Message

2

https://joelgustafson.com/posts/2023-05-04/merklizing-the-key-value-store-for-fun-and-profitempirical-maintenance-

evaluation

3

https://github.com/canvasxyz/okra

https://github.com/ABresting/Prolly-Tree-Waku-Message


Table 1
Time to create different Prolly trees

Tree Type # Entries Min Time (ms) Max Time (ms) Avg Time (ms) Std Dev (ms)
Dolthub 1,000 3.66 11.53 5.47 1.44

100,000 247.25 325.52 285.07 22.31
1,000,000 2841.58 3614.93 3012.03 301.99
10,000,000 34943.06 49207.39 41398.00 5510.00
17,000,000 47232.56 73075.68 61987.00 11016.00

Canvas* 65,536 - - 478 -
16,777,216 - - 111494 -

Proposed 1,000 1.28 4.39 2.79 0.70
100,000 184.56 241.66 210.77 18.21

1,000,000 1964.63 2171.78 2049.41 67.67
10,000,000 19847.38 24040.66 21623.00 1528.00
17,000,000 30143.14 38940.05 34238.00 2985.00

case of Dolthub, data showcases a trend that the proposed Prolly tree implementation outperforms the

existing solutions by around 30-45% for creating the Prolly tree. While it is around 3 times faster than

the Canvas Prolly tree.

We tested the performance of the existing Prolly trees against our proposed implementation by

utilizing the publicly available metrics and open-source codebases of Canvas
4

and Dolthub
5
, evaluating

across various metrics. Operations such as creation/initialization of a tree and insertions were performed

on Prolly trees of varying capacities to assess their efficiency. The following benchmarks were conducted

on hardware equipped with a 13th Gen Intel i7-13700H processor with 20 cores, 64 GB of main memory,

and a 1 TB M2 SSD, all running on Ubuntu 22.04 LTS. Specifically, our approach accelerates the tree

bootstrapping process from 30% to multiple-folds during creation time and demonstrates significantly

faster performance in handling insertions, achieving these results on average with commodity hardware.

Benchmarks from Canvas and Dolthub are also very interesting since they are running atop real-world

production environments with libp2p as a network layer in the case of Canvas. The performance metrics

are summarized in Table 1 and 2.

Table 2
Time to insert entries in Prolly trees

Tree Type # Insertions Min Time (ms) Max Time (ms) Avg Time (ms) Std Dev (ms)
Dolthub 1,000 2.26 6.56 3.00 1.00

100,000 436.79 582.03 483.00 51.00
1,000,000 4910.55 11217.01 8632.00 2090.00
10,000,000 61720.77 65942.95 63828.00 1723.00

Canvas 1,000 8.39 20.97 12.79 4.52
100,000 658.71 719.643 679.25 10.49

1,000,000 11658.26 13265.09 12268.73 552.03
10,000,000 153112.30 159895.32 154708.51 1608.02

Proposed 1,000 1.95 4.13 2.00 1.00
100,000 234.34 293.89 264.00 16.00

1,000,000 4178.30 5130.71 4661.00 373.00
10,000,000 47975.28 49631.20 48804.00 676.00

The benchmarks presented in Table 2 were generated through the execution of the publicly available

benchmark codebase of both Dolthub and Canvas. In the table, the same number of unique entries was

inserted into an existing tree that already contained an identical(unique also) number of entries. For

instance, inserting 1,000 entries into a tree already holding 1,000 Nodes, similar to other numbers of

4

https://github.com/canvasxyz/okra/blob/main/benchmarks/main.zig

5

https://github.com/dolthub/dolt/blob/main/go/performance/kvbench/prolly_store.go



insertions.

5. Related Work

In this section, we explore tree-based Conflict-free Replicated Data Types (CRDTs), including designs

akin to the Prolly tree that have been introduced in previous research.

CRDTs are pivotal for achieving eventual consistency within distributed systems, ensuring that

datasets synchronize with minimal communication and computation overhead. Auvolat et al. [19]

introduced the Merkle Search Tree (MST), an n-ary Merkle tree that shares similarities with the Prolly

tree design. Their approach utilizes a chunking algorithm that hashes data (key-value pairs); the number

of leading zeros in the resultant hash dictates the node’s height within the MST. Hashes without a

leading zero remain at the leaf node level, while those with one or more leading zeros are elevated

to higher levels. Their design is reminiscent of the B-tree’s node tracking methodology, albeit with a

distinct structural configuration. Importantly, this construction maintains the order of transactions,

facilitating efficient remote comparisons or differences with other MST instances.

The Prolly tree, as developed by Jose et al. at Canvas [11], adopts a nuanced method for determining

node promotion, specifically concerning boundary node selection. This method entails assessing

whether certain bytes from the data node’s resultant hash fall below a predefined threshold. If so, the

node is elevated to the next hierarchical level. For nodes situated above the initial level, the evaluation

involves the aggregated hashes of their child nodes, proceeding until a new boundary node is identified.

To enhance the stability of the Prolly tree, a unique anchor node is introduced at the beginning of every

level. This node, invariably the first child of its parent, ensures structural consistency and provides a

backbone to the tree, as defined in Section 2.1.3. Notably, random updates within the tree can potentially

alter its structure both horizontally and vertically, extending up to the root. Such modifications, which

may result in the splitting of node buckets, add a layer of complexity to the tree’s architecture. Unlike

traditional data structures, the Prolly tree utilizes a content-addressable order, thereby not maintaining

lexicographical sequence.

The Prolly tree implementation by Son et al. at Dolthub [13] exhibits considerable similarity to the

Prolly tree framework developed at Canvas. A primary distinction, however, lies in the utilization of

a rolling hash for the incoming data at the leaf level to determine the initiation point for boundary

node creation. Unlike the Canvas model, the Dolthub approach does not incorporate the concept of

an anchor node. Instead, it features a continuous bucket of nodes that receive incoming data nodes,

from which no boundary node is derived. Comparable to the Canvas Prolly tree, the Dolthub Prolly

tree encounters similar complexities in tree restructuring due to random updates or insertions. With

each insertion certain parts of the Prolly tree needs to update their hashes.

The Prolly tree implementation by IPLD [12] shares notable similarities with those developed by

Canvas and Dolthub. It too employs a rolling hash mechanism for determining the formation of node

chunks and the subsequent creation of boundary nodes. The process of splitting existing chunks aligns

with the methodologies observed in both Canvas and Dolthub implementations. A distinctive feature

of the IPLD implementation is its high programmability and adaptability to changes, facilitated by a

commitment to component modularization. This approach enables a flexible architecture, allowing for

easier modifications and updates in response to evolving requirements.

Our Prolly tree design is strategically oriented towards minimizing both the complexity inherent in

the tree’s structure and the necessity for its restructuring while seamlessly preserving the established

properties and standards outlined in Section 2.1.3. The design decisions employed facilitate simplified

updates to the tree, thereby reducing the impact on the tree’s overall structure and enhancing the

efficiency of parallel read and write operations. Although, the mechanisms by which two Prolly trees

are compared and the methodology for calculating differences between them fall beyond the scope

of this paper, but we have provided a sample execution code in the provided codebase and a brief

explanation in the Appendix A.1



6. Conclusions

In conclusion, our study presents an innovative approach to optimizing Prolly trees, a pivotal structure

in distributed database systems and version control applications. Building on our enhanced and

optimized design, which surpasses a variety of existing approaches, we introduce several key features

that significantly enhance performance and efficiency. Notably, avoiding horizontal chunk splitting, the

unique Anchor Nodes design reduces the complexity of updates and synchronizations, streamlining

operations while maintaining high levels of data integrity and system resilience, batch insertion, etc.

Our open-source implementation, crafted in Go for its performance and Python for its ease of use,

underscores the practicality and adaptability of our design.

Empirical evaluations, benchmarked against publicly available metrics and the codebases of Canvas

and Dolthub, validate the efficiency of our proposed Prolly tree implementation, which adheres to the

established standards and essential properties of a Prolly tree. Our approach demonstrates a 30% to 50%

improvement in tree initialization time for Dolthub and multiple-fold increases for Canvas, with similar

gains in insertion efficiency, all on commodity hardware. These findings underscore the robustness and

efficiency of our design and its potential as a foundational model for future enhancements in distributed

computing environments.

Our research contributes to the ongoing dialogue in distributed systems design, offering a practical

solution that balances efficiency, flexibility, and performance. In future, we sought to develop a multi-

threaded Prolly tree design towards faster operations and cutting down additional time.
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A. Appendix A

A.1. Synchronizing Prolly Trees

The synchronization process initiates with a diff protocol, involving two Prolly tree root nodes from

different peer-to-peer clients. For effective comparison, these roots—or trees—must be at the same

height. If one tree is taller than the other, the taller tree’s root node descends to match the height of the

shorter tree. Notably, in our design, Anchor Nodes serve as the roots of the Prolly tree. Utilizing this

design, each level’s Anchor Node can act as a root for the tree below, ensuring uniform tree heights.

Consequently, the taller tree selects an Anchor Node at the same level as the shorter tree’s root. As

illustrated in Figures 4 and 5, both trees are adjusted to the same height, facilitating the commencement

of the comparison. The key node missing in this scenario is the node with key 7.

Figure 4: Prolly Tree with More Data

The synchronization process involves comparing the Merkle Hash of each root nodes. If a match is

found, the algorithm concludes, as it indicates the trees are identical. If the Merkle hashes do not match,

the intermediate nodes beneath the root node are retrieved. Each node at this stage represents a subtree.

For example, at level 2, nodes 6 and 9, along with the Tail/Anchor Node, represent subtrees encapsulating
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Figure 5: Prolly Tree with Missing Data

the state of all underlying nodes. Subtrees where the Merkle hashes match are not explored further.

Ultimately, the algorithm isolates the specific segment of leaf nodes where the differences manifest.

These nodes can be retrieved using a method tailored to the bandwidth and resources of the clients.

As shown in Figure 4, node 7, located within chunk 4, exemplifies a missing node. This process may

identify multiple differing nodes across several chunks, which are then synchronized accordingly.
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