
REPORTS ON MATHEMATICAL LOGIC

46 (2011), 29–57

Norihiro KAMIDE

THE LOGIC OF SEQUENCES

A b s t r a c t. The notion of “sequences” is fundamental to prac-

tical reasoning in computer science, because it can appropriately

represent “data (information) sequences”, “program (execution)

sequences”, “action sequences”, “time sequences”, “trees”, “or-

ders” etc. The aim of this paper is thus to provide a basic logic

for reasoning with sequences. A propositional modal logic LS of

sequences is introduced as a Gentzen-type sequent calculus by ex-

tending Gentzen’s LK for classical propositional logic. The com-

pleteness theorem with respect to a sequence-indexed semantics

for LS is proved, and the cut-elimination theorem for LS is shown.

Moreover, a first-order modal logic FLS of sequences, which is a

first-order extension of LS, is introduced. The completeness the-

orem with respect to a first-order sequence-indexed semantics for

FLS is proved, and the cut-elimination theorem for FLS is shown.

LS and the monadic fragment of FLS are shown to be decidable.

Received 20 March 2009

30 NORIHIRO KAMIDE

.1 Introduction

The aim of this paper is to provide a basic logic for reasoning with se-

quences. The notion of “sequences” is fundamental to practical reasoning

in computer science, because it can appropriately represent “data (infor-

mation) sequences”, “program (execution) sequences”, “action sequences”,

“time sequences”, “word (character or alphabet) sequences”, “DNA se-

quences” etc. The notion of sequences is thus useful to represent the no-

tions of “information”, “computation”, “trees”, “orders”, “preferences”,

“strings”, “vectors” and “ontologies”. In a view of reasoning with se-

quences, dynamic logics [6] are logics dealing with program (or action)

sequences, temporal logics [5] are logics dealing with time sequences, and

Lambek calculus [11] is a logic dealing with word sequences. Representing

“information” by sequences is particularly suitable and important, since a

sequence structure gives a monoid 〈M, ;, ∅〉 with an informational interpre-

tation [16]:

1. M is a set of pieces of (ordered or prioritized) information (i.e., a set

of sequences),

2. ; is a binary operator (on M) which combines two pieces of informa-

tion (i.e., the concatenation operator on sequences),

3. ∅ is the empty piece of information (i.e., the empty sequence).

The informational interpretation for a monoid based semantics for sub-

structural logics including Lambek calculus was proposed by Wansing [16]

extending and generalizing Urquhart’s interpretation [14] for semilattice

(i.e., idempotent commutative monoid) semantics for relevant logics.

Handling the notion of sequences in a logic has recently been studied

by several researchers. Sequence logic (SL), which is a parameterized logic

where the formulas are sequences of formulas, was proposed and studied

by Walicki et al. [15, 1]. In [1], the completeness and decidability theorems

w.r.t. the class of dense linear orderings and the class of linear orderings

are proved for SL. A predicate logic with sequence variables and sequence

function symbols was introduced by Kutsita and Buchberger [10]. In [10],

a Gentzen-type sequent calculus G≈ for this logic was introduced, and the

completeness theorem for G≈ was proved. The three approaches based on

THE LOGIC OF SEQUENCES 31

SL, G≈ and our logic are completely different from each other. For exam-

ple, the differences between SL and our logic are shown as follows. SL uses

sequences of formulas, but our logic uses a sequence modal operator. As

mentioned in [1], SL can be viewed as a subsystem of linear-time temporal

logic where the temporal aspects are completely separated from other log-

ical aspects. Our logic may be viewed as a modified and combined subsys-

tem of both propositional dynamic logic [6] and Prior’s next-time temporal

logic [12]. Our logic is considerably simple and natural, and it has some

theoretically beneficial properties: strong completeness, cut-elimination,

decidability and embeddability.

The contents of this paper are then summarized as follows.

In Section 2, the propositional case is discussed. Firstly, a propositional

modal logic LS of sequences is introduced as a Gentzen-type sequent cal-

culus by extending Gentzen’s LK for classical propositional logic. In order

to represent reasoning with information sequences, a sequence modal op-

erator [b] where b is a sequence is subsumed in LS. Then, a formula of the

form [b1 ; b2 ; · · · ; bn]α intuitively means “α is true based on the sequence

b1 ; b2 ; · · · ; bn of (ordered or prioritized) information pieces”, and a for-

mula of the form [∅]α intuitively means “α is true without any information

(i.e., it is an eternal truth in the sense of classical logic)”. The embedding

theorem of LS into LK is proved, and the cut-elimination and decidability

theorems for LS are obtained from the embedding theorem. Secondly, a

simple and intuitive semantics, called a sequence-indexed semantics, is in-

troduced for LS. This semantics is regarded as a natural extension of the

standard two-valued semantics of classical logic. In this semantics, the val-

uations, denoted as v
d̂
, are indexed by a sequence d̂, and a valuation v∅,

which is indexed by the empty sequence ∅, just corresponds to a classical

two-valued valuation. Then, v
d̂
(α) = tmeans “α is true based on a sequence

d̂ of information pieces” and v∅(α) = t means “α is eternally true without

any information”. The completeness theorem w.r.t. the sequence-indexed

semantics for LS is proved based on an extension of Maehara’s decompo-

sition method for (propositional) LK. An alternative semantical proof of

the cut-elimination theorem for LS is also obtained from this completeness

proof.

In Section 3, the first-order case is discussed similarly. A first-order

modal logic FLS of sequences, which is a first-order extension of LS, is

introduced, and the completeness theorem w.r.t. a first-order sequence-

32 NORIHIRO KAMIDE

indexed semantics for FLS is proved based on an extension of Schütte’s

method for (first-order) LK. The cut-elimination theorem for FLS is ob-

tained in both the semantical way via the completeness theorem and the

syntactical way via the embedding theorem of FLS into (first-order) LK.

By a consequence of the cut-elimination theorem, FLS can be viewed as a

conservative extension of LS. The monadic fragment of FLS is shown to be

decidable. In Section 4, some remarks are presented. Firstly, some possible

applications are presented. Secondly, it is remarked that extending and

modifying the completeness results for LS and FLS by adding the standard

non-deterministic choice operator ∪ used in dynamic logics are technically

difficult in the present setting. Finally, a relationship between LS and a

semilattice relevant logic is explained.

.2 Propositional case

.2.1 Sequent calculus

Formulas are constructed from countably many propositional variables, →

(implication), ∧ (conjunction), ∨ (disjunction), ¬ (negation) and [b] (se-

quence modal operator) where b is a sequence of characters. Sequences

are constructed from countably many atomic sequences (i.e., characters), ∅

(empty sequence), ; (sequence composition or concatenation) and ·− (con-

verse). Lower-case letters b, c, ... are used for sequences, Greek lower-case

letters α, β, ... are used for formulas, and Greek capital letters Γ,∆, ... are

used for finite (possibly empty) sets of formulas. The symbol SE is used

to denote the set of sequences. We write A ≡ B to indicate the syn-

tactical identity between A and B. The symbol ω is used to represent

the set of natural numbers. An expression [∅]α means α, and expressions

[∅ ; b]α and [b ; ∅]α mean [b]α. An expression of the form Γ ⇒ ∆ is called

a sequent. The terminological conventions regarding sequent calculus (e.g.,

antecedent, succedent etc.) are used. If a sequent S is provable in a sequent

calculus L, then such a fact is denoted as L ⊢ S or ⊢ S.

Definition 2.1. Formulas and sequences are defined by the following

grammar, assuming p and e represent propositional variables and atomic

sequences, respectively:

THE LOGIC OF SEQUENCES 33

α ::= p | α→α | α ∧ α | α ∨ α | ¬α | [b]α

b ::= e | ∅ | b ; b | b−

A sequence of the form e or e− where e is an atomic sequence is called a

literal sequence.

An expression ˆ[d] is used to represent [d0][d1] · · · [di] with i ∈ ω and

d0 ≡ ∅, and an expression d̂ is used to represent d0 ; d1 ; · · · ; di with i ∈ ω

and d0 ≡ ∅. Expressions ∅ ; b and b ; ∅ mean b. Remark that ˆ[d] and d̂ can

be empty and ∅, respectively.

Definition 2.2 (LS). The initial sequents of LS are of the form: for

any propositional variable p,

ˆ[d]p ⇒ ˆ[d]p.

The structural inference rules of LS are of the form:

Γ ⇒ ∆, α α,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π
(cut)

Γ ⇒ ∆
α,Γ ⇒ ∆

(we-left) Γ ⇒ ∆
Γ ⇒ ∆, α

(we-right).

The logical inference rules of LS are of the form:

Γ ⇒ ∆, ˆ[d]α ˆ[d]β,Σ ⇒ Π

ˆ[d](α→β),Γ,Σ ⇒ ∆,Π
(→left)

ˆ[d]α,Γ ⇒ ∆, ˆ[d]β

Γ ⇒ ∆, ˆ[d](α→β)
(→right)

ˆ[d]α,Γ ⇒ ∆

ˆ[d](α ∧ β),Γ ⇒ ∆
(∧left1)

ˆ[d]β,Γ ⇒ ∆

ˆ[d](α ∧ β),Γ ⇒ ∆
(∧left2)

Γ ⇒ ∆, ˆ[d]α Γ ⇒ ∆, ˆ[d]β

Γ ⇒ ∆, ˆ[d](α ∧ β)
(∧right)

ˆ[d]α,Γ ⇒ ∆ ˆ[d]β,Γ ⇒ ∆

ˆ[d](α ∨ β),Γ ⇒ ∆
(∨left)

Γ ⇒ ∆, ˆ[d]α

Γ ⇒ ∆, ˆ[d](α ∨ β)
(∨right1)

Γ ⇒ ∆, ˆ[d]β

Γ ⇒ ∆, ˆ[d](α ∨ β)
(∨right2)

Γ ⇒ ∆, ˆ[d]α

ˆ[d](¬α),Γ ⇒ ∆
(¬left)

ˆ[d]α,Γ ⇒ ∆

Γ ⇒ ∆, ˆ[d](¬α)
(¬right).

34 NORIHIRO KAMIDE

The sequence inference rules of LS are of the form:

ˆ[d][b][c]α,Γ ⇒ ∆

ˆ[d][b ; c]α,Γ ⇒ ∆
(;left)

Γ ⇒ ∆, ˆ[d][b][c]α

Γ ⇒ ∆, ˆ[d][b ; c]α
(;right)

ˆ[d][b]α,Γ ⇒ ∆

ˆ[d][b−−]α,Γ ⇒ ∆
(−left)

Γ ⇒ ∆, ˆ[d][b]α

Γ ⇒ ∆, ˆ[d][b−−]α
(−right)

ˆ[d][c− ; b−]α,Γ ⇒ ∆

ˆ[d][(b ; c)−]α,Γ ⇒ ∆
(−;left)

Γ ⇒ ∆, ˆ[d][c− ; b−]α

Γ ⇒ ∆, ˆ[d][(b ; c)−]α
(−;right).

Note that LS includes Gentzen’s LK as a special case. Remark that a

sequent calculus for Prior’s next-time temporal logic [12] can be obtained

from LS by deleting the sequence inference rules and replacing ˆ[d] by

i
︷ ︸︸ ︷

X · · ·X

with i ∈ ω where X is the next-time operator.

Definition 2.3 (LK). LK for propositional classical logic is obtained

from LS by deleting the sequence inference rules and ˆ[d] appearing in the

initial sequents and the logical inference rules. The names of the logical

inference rules of LK are denoted by labeling “LK” in superscript position,

e.g., (→leftLK).

Proposition 2.4. The rule of the form: for any non-empty sequence b,

Γ ⇒ ∆
[b]Γ ⇒ [b]∆

(regu)

is admissible in cut-free LS.

Proof. By induction on the cut-free proof P of Γ ⇒ ∆ in LS. We

distinguish the cases according to the last inference of P . We show only

the following case.

Case (;left): The last inference of P is of the form:

ˆ[d][c1][c2]α,Σ ⇒ ∆

ˆ[d][c1 ; c2]α,Σ ⇒ ∆
(;left).

By induction hypothesis, we have LS − (cut) ⊢ [b] ˆ[d][c1][c2]α, [b]Σ ⇒ [b]∆.

Then, we obtain the required fact:
....

[b] ˆ[d][c1][c2]α, [b]Σ ⇒ [b]∆

[b] ˆ[d][c1 ; c2]α, [b]Σ ⇒ [b]∆
(;left).

�

THE LOGIC OF SEQUENCES 35

Proposition 2.5. For any formula α, and any non-empty sequence b,

LS − (cut) ⊢ [b]α ⇒ [b]α.

Proof. By induction on α. We show only the following case.

Case (α ≡ [c]β where c is a non-empty sequence): By induction hy-

pothesis, we have LS − (cut) ⊢ [c]β ⇒ [c]β. Then, we obtain the required

fact LS − (cut) ⊢ [b][c]β ⇒ [b][c]β by applying the rule (regu), which is

admissible in cut-free LS by Proposition 2.4. �

Proposition 2.6. For any formula α, LS − (cut) ⊢ α ⇒ α.

Proof. By induction on α. We use Proposition 2.5 for the case α ≡ [b]β.

�

An expression α ⇔ β is an abbreviation for the pair of sequents α ⇒ β

and β ⇒ α.

Proposition 2.7. The following sequents are provable in cut-free LS:

for any formulas α, β, and any sequences b, c,

1. [b](α ♯ β) ⇔ [b]α ♯ [b]β where ♯ ∈ {→,∧,∨},

2. [b](¬α) ⇔ ¬([b]α),

3. [b ; c]α ⇔ [b][c]α,

4. [b−−]α ⇔ [b]α,

5. [(b ; c)−] ⇔ [c− ; b−]α.

Note that by Propositions 2.4 and 2.7, LS is stronger than the basic nor-

mal modal logic K. Remark also that LS is not a fragment of propositional

dynamic logic (PDL), since PDL has no axiom: ([b]α→[b]β)→[b](α→β).

.2.2 Embedding, cut-elimination and decidability

Definition 2.8. Let Ψ := {p, q, r, ...} be a fixed countable non-empty

set of propositional variables. Then, we define the sets Ψ
d̂
:= {p

d̂
| p ∈ Ψ}

(d̂ ∈ SE) of propositional variables where p∅ := p, i.e., Ψ∅ := Ψ. The

36 NORIHIRO KAMIDE

language (or the set of formulas) LLS of LS is obtained from Ψ, →,∧,∨,¬

and [b]. The language (or the set of formulas) LLK of LK is obtained from
⋃

d̂∈SE

Ψ
d̂
, →,∧,∨ and ¬.

A mapping f from LLS to LLK is defined by:

1. f(ˆ[d]p) := p
d̂
∈ Ψ

d̂
for every p ∈ Ψ,

2. f(ˆ[d](α ♯ β)) := f(ˆ[d]α) ♯ f(ˆ[d]β) where ♯ ∈ {→,∧,∨},

3. f(ˆ[d]¬α) := ¬f(ˆ[d]α),

4. f(ˆ[d][b ; c]α) := f(ˆ[d][b][c]α),

5. f(ˆ[d][b−−]α) := f(ˆ[d][b]α),

6. f(ˆ[d][(b ; c)−]α)) := f(ˆ[d][c− ; b−]α).

Let Γ be a set of formulas in LLS. Then, an expression f(Γ) means the

result of replacing every occurrence of a formula α in Γ by an occurrence

of f(α).

Theorem 2.9 (Embedding). Let Γ and ∆ be sets of formulas in LLS,

and f be the mapping defined in Definition 2.8. Then:

1. LS ⊢ Γ ⇒ ∆ iff LK ⊢ f(Γ) ⇒ f(∆).

2. LS − (cut) ⊢ Γ ⇒ ∆ iff LK − (cut) ⊢ f(Γ) ⇒ f(∆).

Proof. We show only (1), since (2) can be obtained as the subproof of

(1).

• (=⇒): By induction on the proof P of Γ ⇒ ∆ in LS. We distinguish

the cases according to the last inference of P . We show some cases.

Case (ˆ[d]p ⇒ ˆ[d]p): The last inference of P is of the form: ˆ[d]p ⇒ ˆ[d]p.

Since f(ˆ[d]p) coincides with the propositional variable p
d̂
by the definition

of f , we obtain the required fact: LK ⊢ f(ˆ[d]p) ⇒ f(ˆ[d]p).

Case (∨right1): The last inference of P is of the form:

Γ ⇒ ∆, ˆ[d]α

Γ ⇒ ∆, ˆ[d](α ∨ β)
(∨right1).

THE LOGIC OF SEQUENCES 37

By induction hypothesis, we have LK ⊢ f(Γ) ⇒ f(∆), f(ˆ[d]α). Then, we

obtain the required fact:

....
f(Γ) ⇒ f(∆), f(ˆ[d]α)

f(Γ) ⇒ f(∆), f(ˆ[d]α) ∨ f(ˆ[d]β)
(∨right1LK)

where f(ˆ[d]α) ∨ f(ˆ[d]β) coincides with f(ˆ[d](α ∨ β)) by the definition of f .

Case (;left): The last inference of P is of the form:

ˆ[d][b][c]α,Γ ⇒ ∆

ˆ[d][b ; c]α,Γ ⇒ ∆
(;left).

By induction hypothesis, we have LK ⊢ f(ˆ[d][b][c]α), f(Γ) ⇒ f(∆). Then,

we obtain the required fact, since f(ˆ[d][b][c]α) coincides with f(ˆ[d][b ; c]α)

by the definition of f .

• (⇐=): By induction on the proof Q of f(Γ) ⇒ f(∆) in LK. We dis-

tinguish the cases according to the last inference of Q. We show only the

following case.

Case (→leftLK): The last inference of Q is of the form:

f(Γ) ⇒ f(Π), f(ˆ[d]α) f(ˆ[d]β), f(Σ) ⇒ f(∆)

f(ˆ[d]α)→f(ˆ[d]β), f(Γ), f(Σ) ⇒ f(Π), f(∆)
(→leftLK).

where f(ˆ[d]α)→f(ˆ[d]β) coincides with f(ˆ[d](α→β)) by the definition of f .

By induction hypothesis, we have LS ⊢ Γ ⇒ Π, ˆ[d]α and LS ⊢ ˆ[d]β,Σ ⇒ ∆.

Then, we obtain the required fact:

....
Γ ⇒ Π, ˆ[d]α

....
ˆ[d]β,Σ ⇒ ∆

ˆ[d](α→β),Γ,Σ ⇒ Π,∆
(→left).

�

Theorem 2.10 (Cut-elimination). The rule (cut) is admissible in cut-

free LS.

Proof. Suppose LS ⊢ Γ ⇒ ∆. Then, we have LK ⊢ f(Γ) ⇒ f(∆) by

Theorem 2.9 (1). We obtain LK − (cut) ⊢ f(Γ) ⇒ f(∆) by the well-known

38 NORIHIRO KAMIDE

cut-elimination theorem for LK. By Theorem 2.9 (2), we obtain the re-

quired fact LS − (cut) ⊢ Γ ⇒ ∆. �

Theorem 2.11 (Decidability). LS is decidable.

Proof. By the decidability of LK, for each α, it is possible to decide if

f(α) is LK-provable. Then, by Theorem 2.9, LS is decidable. �

.2.3 Sequence-indexed semantics

We have the following fact: for any formulas α1, ..., αm, β1, ..., βn, the se-

quent α1, ..., αm ⇒ β1, ..., βn is provable in LS if and only if so is α1∧· · ·∧αm

⇒ β1 ∨ · · · ∨ βn. Let Γ be a set {α1, ..., αm} (m ≥ 0). Then, Γ∗ means

α1 ∨ · · · ∨ αm if m ≥ 1, and otherwise ¬(p→p) where p is a fixed proposi-

tional variable. Also Γ∗ means α1 ∧ · · · ∧ αm if m ≥ 1, and otherwise p→p

where p is a fixed propositional variable.

Definition 2.12. Valuations v
d̂
(d̂ ∈ SE), also called sequence-indexed

valuations, are mappings from the set of all propositional variables to the

set {t, f} of truth values, such that for each d̂, the truth value of any

propositional letter at the sequence d̂ is assigned. Each valuation v
d̂
is

extended to a mapping from the set of all formulas to {t, f} by the following

prescriptions:

1. v
d̂
(α ∧ β) = t iff v

d̂
(α) = v

d̂
(β) = t,

2. v
d̂
(α ∨ β) = t iff v

d̂
(α) = t or v

d̂
(β) = t,

3. v
d̂
(α→β) = t iff v

d̂
(α) = f or v

d̂
(β) = t,

4. v
d̂
(¬α) = t iff v

d̂
(α) = f ,

5. for each literal sequence e, v
d̂
([e]α) = t iff v

d̂ ; e
(α) = t,

6. v
d̂
([b ; c]α) = t iff v

d̂
([b][c]α) = t,

7. v
d̂
([b−−]α) = t iff v

d̂
([b]α) = t,

8. v
d̂ ; b−−

(α) = t iff v
d̂ ; b

(α) = t,

THE LOGIC OF SEQUENCES 39

9. v
d̂
([(b ; c)−]α) = t iff v

d̂
([c− ; b−]α) = t,

10. v
d̂ ; (b ; c)−(α) = t iff v

d̂ ; c− ; b−
(α) = t.

A formula α is called a tautology if v∅(α) = t holds for any valuations

v
d̂
(d̂ ∈ SE). A sequent of the form Γ ⇒ ∆ is called a tautology if so is the

formula Γ∗→∆∗.

Proposition 2.13. The following hold: for any valuations v
d̂
, any for-

mula α, any non-empty sequence c, and any sequences b1, b2,

1. v
d̂
([c]α) = t iff v

d̂ ; c
(α) = t,

2. v∅(
ˆ[d]α) = t iff v

d̂
(α) = t,

3. v
d̂
([(b1 ; b2)

−]α) = t iff v
d̂
([b−2][b−1]α) = t.

Proof. Since (3) is obvious and (2) is derived using (1), we only show

(1) by induction on c.

Case (c ≡ e where e is a literal sequence): By the definition of the

valuations.

Case (c ≡ b1 ; b2): vd̂([b1 ; b2]α) = t iff v
d̂
([b1][b2]α)= t iff v

d̂ ; b1
([b2]α) =

t (by induction hypothesis) iff v
d̂ ; b1 ; b2

(α) = t (by induction hypothesis).

Case (c ≡ b−−): v
d̂
([b−−]α) = t iff v

d̂
([b]α) = t iff v

d̂ ; b
(α) = t (by

induction hypothesis) iff v
d̂ ; b−−

(α) = t.

Case (c ≡ (b1 ; b2)
−): v

d̂
([(b1 ; b2)

−]α) = t iff v
d̂
([b−2 ; b−1]α) = t

iff v
d̂ ; b

−

2

([b−1]α) = t (by induction hypothesis) iff v
d̂ ; b

−

2
; b

−

1

(α) = t (by

induction hypothesis) iff v
d̂ ; (b1 ; b2)−

(α) = t. �

Theorem 2.14 (Soundness). For any sequent S, if LS ⊢ S, then S is

a tautology.

Proof. By induction on the proof P of S in LS. We distinguish the

cases according to the last inference of P . Since the proof is similar to

Lemma 2.17, we show only the case (∧right).

Case (∧right): The last inference of P is of the form:

Γ ⇒ ∆, ˆ[d]α Γ ⇒ ∆, ˆ[d]β

Γ ⇒ ∆, ˆ[d](α ∧ β)
(∧right).

40 NORIHIRO KAMIDE

We show that Γ∗→∆∗∨ ˆ[d](α∧β) is a tautology. Suppose that (1) v∅(Γ∗) =

t. Then, we show that v∅(∆
∗ ∨ ˆ[d](α ∧ β)) = t. If v∅(

ˆ[d](α ∧ β)) = t, then

v∅(∆
∗ ∨ ˆ[d](α ∧ β)) = t. Thus, suppose that v∅(

ˆ[d](α ∧ β)) = v
d̂
(α ∧ β) =

v
d̂
(α) = v

d̂
(β) = f . Then, we have (2) v∅(

ˆ[d]α) = v
d̂
(α) = f and (3)

v∅(
ˆ[d]β) = v

d̂
(β) = f . On the other hand, by induction hypothesis, we

have that Γ∗→∆∗ ∨ ˆ[d]α and Γ∗→∆∗ ∨ ˆ[d]β are tautologies. Then, we have

(4) v∅(Γ∗→∆∗ ∨ ˆ[d]α) = t and (5) v∅(Γ∗→∆∗ ∨ ˆ[d]β) = t. By (1–5), we

obtain v∅(∆
∗) = t. Therefore we have v∅(∆

∗ ∨ ˆ[d](α ∧ β)) = t. �

.2.4 Completeness

Definition 2.15. A decomposition of a sequent S is defined as of the

form S0 or S0;S1 by

1a. Γ ⇒ ∆, ˆ[d]α ; Γ ⇒ ∆, ˆ[d]β is a decomposition of Γ ⇒ ∆, ˆ[d](α ∧ β),

1b. ˆ[d]α, ˆ[d]β,Γ ⇒ ∆ is a decomposition of ˆ[d](α ∧ β),Γ ⇒ ∆,

2a. Γ ⇒ ∆, ˆ[d]α, ˆ[d]β is a decomposition of Γ ⇒ ∆, ˆ[d](α ∨ β),

2b. ˆ[d]α,Γ ⇒ ∆ ; ˆ[d]β,Γ ⇒ ∆ is a decomposition of ˆ[d](α ∨ β),Γ ⇒ ∆,

3a. ˆ[d]α,Γ ⇒ ∆, ˆ[d]β is a decomposition of Γ ⇒ ∆, ˆ[d](α→β),

3b. Γ ⇒ ∆, ˆ[d]α ; ˆ[d]β,Γ ⇒ ∆ is a decomposition of ˆ[d](α→β),Γ ⇒ ∆,

4a. ˆ[d]α,Γ ⇒ ∆ is a decomposition of Γ ⇒ ∆, ˆ[d]¬α,

4b. Γ ⇒ ∆, ˆ[d]α is a decomposition of ˆ[d]¬α,Γ ⇒ ∆,

5a. Γ ⇒ ∆, ˆ[d][b][c]α is a decomposition of Γ ⇒ ∆, ˆ[d][b ; c]α,

5b. ˆ[d][b][c]α,Γ ⇒ ∆ is a decomposition of ˆ[d][b ; c]α,Γ ⇒ ∆,

6a. Γ ⇒ ∆, ˆ[d][b]α is a decomposition of Γ ⇒ ∆, ˆ[d][b−−]α,

6b. ˆ[d][b]α,Γ ⇒ ∆ is a decomposition of ˆ[d][b−−]α,Γ ⇒ ∆,

7a. Γ ⇒ ∆, ˆ[d][c− ; b−]α is a decomposition of Γ ⇒ ∆, ˆ[d][(b ; c)−]α,

7b. ˆ[d][c− ; b−]α,Γ ⇒ ∆ is a decomposition of ˆ[d][(b ; c)−]α,Γ ⇒ ∆.

THE LOGIC OF SEQUENCES 41

Definition 2.16. A decomposition tree of S is a tree produced by a

decomposition procedure starting from S. A complete decomposition tree

of S is such that the formulas occurring in the leaves have the form: p or

[e1][e2] · · · [en]p, with p: propositional variable and ei: literal sequence.

Note that, by construction, the decomposition procedure terminates.

Remark that a decomposition tree corresponds to a bottom-up proof search

tree of LS.

Lemma 2.17. Let S0 or S0;S1 be a decomposition of S. If S is a

tautology, then so are S0 and S1.

Proof. We prove that if v∅(S) = t, then v∅(S0) = t and v∅(S1) = t.

We show some cases.

(3b): Suppose that ˆ[d](α→β) ∧ Γ∗→∆∗ is a tautology. First, we show

that Γ∗→∆∗ ∨ ˆ[d]α is a tautology. Suppose that (1) v∅(Γ∗) = t. We

show v∅(∆
∗ ∨ ˆ[d]α) = t. If v∅(

ˆ[d]α) = t, then v∅(∆
∗ ∨ ˆ[d]α) = t. Thus,

suppose that v∅(
ˆ[d]α) = v

d̂
(α) = f . Then, v

d̂
(α→β) = t, and hence

(2) v∅(
ˆ[d](α→β)) = v

d̂
(α→β) = t. On the other hand, we have (3)

v∅(
ˆ[d](α→β)∧Γ∗→∆∗) = t by the hypothesis. Thus, we obtain v∅(∆

∗) = t

by (1), (2) and (3). Therefore v∅(∆
∗ ∨ ˆ[d]α) = t. Second, we show that

ˆ[d]β ∧ Γ∗→∆∗ is a tautology. Suppose that (4) v∅(
ˆ[d]β ∧ Γ∗) = t. Then,

(5) v∅(
ˆ[d]β) = v

d̂
(β) = t and (6) v∅(Γ∗) = t. By (5), we have v

d̂
(α→β) = t,

and hence (7) v∅(
ˆ[d](α→β)) = v

d̂
(α→β) = t. By (3), (6) and (7), we obtain

v∅(∆
∗) = t.

(5b): We show that if ˆ[d][b ; c]α,Γ ⇒ ∆ is a tautology, then so is
ˆ[d][b][c]α,Γ ⇒ ∆, i.e., v∅(

ˆ[d][b ; c]α ∧ Γ∗→∆∗) = t implies v∅(
ˆ[d][b][c]α ∧

Γ∗→∆∗) = t. It is sufficient to show that v∅(
ˆ[d][b ; c]α) = t implies

v∅(
ˆ[d][b][c]α) = t. This is shown by: v∅(

ˆ[d][b ; c]α) = t iff v
d̂
([b ; c]α) = t iff

v∅(
ˆ[d][b][c]α) = t. �

Lemma 2.18. The following hold:

1. Suppose that each αj or βk in {α1, ..., αm, β1, ..., βn} is a formula of

the form p or [e1][e2] · · · [en]p where p is a propositional variable and

ei is a literal sequence. Then, the sequent α1, ..., αm ⇒ β1, ..., βn is a

tautology if and only if there are αj (j ≤ m) and βk (k ≤ n) such

that αj ≡ βk.

42 NORIHIRO KAMIDE

2. LS − (cut) ⊢ ˆ[d]α,Γ ⇒ ∆, ˆ[d]α.

Lemma 2.19. Let S0 or S0;S1 be a decomposition of S. If S0 (S0 and

S1) is (are) provable in cut-free LS, then so is S.

Theorem 2.20 (Strong completeness). For any sequent S, if S is a

tautology, then LS − (cut) ⊢ S.

Proof. Suppose that a sequent S is a tautology. Then, all the leaves

of a complete decomposition tree of S are tautologies by using Lemma 2.17

repeatedly. Then, these leaves are provable in cut-free LS by Lemma 2.18.

By using Lemma 2.19 repeatedly for the complete decomposition tree of

S, all the sequents in the tree are provable in cut-free LS. Therefore, in

particular, S is provable in cut-free LS. �

An alternative semantical proof of Theorem 2.10 (Cut-elimination) is

obtained as follows. Suppose that LS ⊢ S for any sequent S. Then, S is a

tautology by Theorem 2.14. We then obtain LS − (cut) ⊢ S by Theorem

2.20.

.3 First-order case

.3.1 Sequent calculus, embedding and cut-elimination

The notations used in the previous section are also adopted in this section.

For the sake of simplicity, a first-order language L without individual con-

stants and function symbols is adopted. Formulas of FLS are constructed

from countably many predicate symbols p, q, ..., countably many individual

variables x, y, ..., and the logical connectives →, ∧, ∨, ¬, [b], ∀ (universal

quantifier) and ∃ (existencial quantifier). Sequences of FLS are the same as

that of LS. The term “propositional variable” used in the previous section

is replaced by “atomic formula” in the following discussion. Lower-case let-

ters p, q, ... are also used to denote atomic formulas. We adopt the notation

α[y/x] as the formula which is obtained from a formula α by replacing all

free occurrences of an individual variable x in α by an arbitrary individual

variable y, but avoiding the clash of variables.

THE LOGIC OF SEQUENCES 43

Definition 3.1 (FLS). FLS is obtained from LS by adding the inference

rules of the form:

ˆ[d]α[y/x],Γ ⇒ ∆

ˆ[d]∀xα,Γ ⇒ ∆
(∀left)

Γ ⇒ ∆, ˆ[d]α[z/x]

Γ ⇒ ∆, ˆ[d]∀xα
(∀right)

ˆ[d]α[z/x],Γ ⇒ ∆

ˆ[d]∃xα,Γ ⇒ ∆
(∃left)

Γ ⇒ ∆, ˆ[d]α[y/x]

Γ ⇒ ∆, ˆ[d]∃xα
(∃right)

where y in (∀left) and (∃right) is an arbitrary individual variable, and z

in (∀right) and (∃left) is an individual variable which has the eigenvariable

condition, i.e., z does not occur as a free individual variable in the lower

sequent of the rule.

Definition 3.2 (FLK). FLK for first-order (predicate) classical logic

is obtained from LK by adding the [d̂]-free versions of the quantifier rules

(∀left), (∀right), (∃left) and (∃right).

Proposition 3.3. The rule (regu) is admissible in cut-free FLS.

Proposition 3.4. For any formula α, and any non-empty sequence b,

FLS − (cut) ⊢ [b]α ⇒ [b]α.

Proof. By using Proposition 3.3. �

Proposition 3.5. For any formula α, FLS − (cut) ⊢ α ⇒ α.

Proof. By using Proposition 3.4. �

Proposition 3.6. For any formula α, any sequence b, and any Q ∈

{∀x,∃x}, FLS − (cut) ⊢ [b](Qα) ⇔ Q([b]α).

Definition 3.7. Let Φ := {p, q, r, ...} be a fixed countable non-empty

set of atomic formulas. Then, we define the sets Φ
d̂
:= {p

d̂
| p ∈ Φ} (d̂ ∈ SE)

of atomic formulas where p∅ := p, i.e., Φ∅ := Φ. The language (or the set

of formulas) LFLS of FLS is obtained from Φ, →,∧,∨,¬,∀,∃ and [b]. The

language (or the set of formulas) LFLK of FLK is obtained from
⋃

d̂∈SE

Φ
d̂
,

→,∧,∨,¬,∀ and ∃.

A mapping f from LFLS to LFLK is defined by the conditions presented

in Definition 2.8 and the following conditions: f(ˆ[d](Qα)) := Qf(ˆ[d]α)

where Q ∈ {∀x,∃x}.

44 NORIHIRO KAMIDE

Theorem 3.8 (Embedding). Let Γ and ∆ be sets of formulas in LFLS,

and f be the mapping defined in Definition 3.7. Then:

1. FLS ⊢ Γ ⇒ ∆ iff FLK ⊢ f(Γ) ⇒ f(∆).

2. FLS − (cut) ⊢ Γ ⇒ ∆ iff FLK − (cut) ⊢ f(Γ) ⇒ f(∆).

Using Theorem 3.8 and the cut-elimination theorem for FLK, we can

obtain the following theorem.

Theorem 3.9 (Cut-elimination). The rule (cut) is admissible in cut-

free FLS.

The monadic fragment of FLK, i.e., all predicate symbols take only one

arity and there are no function symbols, is known as decidable. Since the

provability of the monadic fragment of FLS can be transformed into that of

the monadic fragment of FLK by (a slightly modified version of) Theorem

3.8, the following theorem can also be obtained.

Theorem 3.10 (Decidability). The monadic fragment of FLS is decid-

able.

.3.2 Sequence-indexed semantics

Definition 3.11. A := 〈U, {I d̂}
d̂∈SE〉 is called a model (or sequence-

indexed model) if the following conditions hold:

1. U is a non-empty set,

2. I d̂ (d̂ ∈ SE) are mappings such that pI
d̂

⊆ Un (i.e., pI
d̂

are n-ary

relations on U) for each n-ary predicate symbol p.

We introduce the notation u
¯
for the name of u ∈ U , and denotes L[A] for

the language obtained from L by adding the names of all the elements of U .

A formula α is called a closed formula if α has no free individual variable.

A formula of the form ∀x1 · · · ∀xmα is called the universal closure of α if the

free variables of α are x1, ..., xm. We write cl(α) for the universal closure

of α.

Definition 3.12. Let A := 〈U, {I d̂}
d̂∈SE〉 be a model. The consequence

relations A |=
d̂
α (d̂ ∈ SE) for any closed formula α of L[A] are defined by:

THE LOGIC OF SEQUENCES 45

1. A |=
d̂
p(x
¯1
, ..., x

¯n
) iff (x1, ..., xn) ∈ pI

d̂

for each n-ary atomic formula

p(x
¯1
, ..., x

¯n
),

2. A |=
d̂
α ∧ β iff A |=

d̂
α and A |=

d̂
β,

3. A |=
d̂
α ∨ β iff A |=

d̂
α or A |=

d̂
β,

4. A |=
d̂
α→β iff not-(A |=

d̂
α) or A |=

d̂
β,

5. A |=
d̂
¬α iff not-(A |=

d̂
α),

6. A |=
d̂
∀xα iff A |=

d̂
α[u
¯
/x] for all u ∈ U ,

7. A |=
d̂
∃xα iff A |=

d̂
α[u
¯
/x] for some u ∈ U ,

8. for each literal sequence e, A |=
d̂
[e]α iff A |=

d̂ ; e
α,

9. A |=
d̂
[b ; c]α iff A |=

d̂
[b][c]α,

10. A |=
d̂
[b−−]α iff A |=

d̂
[b]α,

11. A |=
d̂ ; b−−

α iff A |=
d̂ ; b

α,

12. A |=
d̂
[(b ; c)−]α iff A |=

d̂
[c− ; b−]α,

13. A |=
d̂ ; (b ; c)− α iff A |=

d̂ ; c− ; b−
α.

The consequence relations A |=
d̂
α (d̂ ∈ SE) for any formula α of L are

defined by (A |=
d̂
α iff A |=

d̂
cl(α)). A formula α of L is called valid if

A |=∅ α holds for each model A. A sequent Γ ⇒ ∆ of L is called valid if so

is the formula Γ∗→∆∗.

Proposition 3.13. The following hold: for any consequence relations

|=
d̂
, any formula α, any non-empty sequence c, and any sequences b1, b2,

1. A |=
d̂
[c]α iff A |=

d̂ ; c
α,

2. A |=∅
ˆ[d]α iff A |=

d̂
α,

3. A |=
d̂
[(b1 ; b2)

−]α iff A |=
d̂
[b−2][b−1]α.

Theorem 3.14 (Soundness). For any sequent S, if FLS ⊢ S, then S

is valid.

46 NORIHIRO KAMIDE

Proof. By induction on the proof P of S. We distinguish the cases

according to the last inference of P . We show only the following case.

Case (∀right): The last inference of P is of the form:

Γ ⇒ ∆, ˆ[d]α[z/x]

Γ ⇒ ∆, ˆ[d]∀xα
(∀right).

We show that “Γ ⇒ ∆, ˆ[d]α[z/x] is valid” implies “Γ ⇒ ∆, ˆ[d]∀xα is valid”.

By the hypothesis, (i): ∀z1 · · · ∀zn∀z(Γ∗→(∆∗∨(ˆ[d]α[z/x]))) (where z1, ...,zn
are the free individual variables occurring in Γ ⇒ ∆, ˆ[d]∀xα) is valid. We

show that A |=∅ ∀z1 · · · ∀zn(Γ∗→(∆∗ ∨ (ˆ[d]∀xα))) for any model A :=

〈U,ωl, {I
d̂}

d̂∈SE〉, i.e., we show that for any u1, ..., un ∈ U , A |=∅ Γ¯∗
→(∆

¯
∗∨

(ˆ[d]∀xα
¯
)), where Γ

¯∗
,∆
¯
∗ and α

¯
are respectively obtained from Γ∗,∆

∗ and

α by replacing z1, ..., zn by u
¯1
, ..., u

¯n
1. By (i), we have A |=∅ (Γ

¯∗
→(∆

¯
∗ ∨

(ˆ[d]α
¯
[z/x])))[w

¯
/z] for any w ∈ U . By the eigenvariable condition, z is not

occurring freely in Γ
¯∗

,∆
¯
∗ and α

¯
. Thus, Γ

¯∗
[w
¯
/z] and ∆

¯
∗[w
¯
/z] are equiva-

lent to Γ
¯∗
and ∆

¯
∗ respectively, and α

¯
[z/x][w

¯
/z] is equivalent to α

¯
[w
¯
/z][w

¯
/x],

i.e., α
¯
[w
¯
/x]. Therefore, for any w ∈ U , we have that (a): A |=∅ Γ

¯∗
→(∆

¯
∗ ∨

ˆ[d]α
¯
[w
¯
/x]). Suppose that (b): [A |=∅ Γ¯∗

and not-(A |=∅ ∆¯
∗)]. Then, by (a),

we have that for any w ∈ U , A |=∅
ˆ[d]α
¯
[w
¯
/x], i.e., A |=

d̂
α
¯
[w
¯
/x]. Therefore,

we obtain (c): A |=
d̂
∀xα

¯
, and hence A |=∅

ˆ[d]∀xα
¯
. This means that (b)

implies (c), i.e., A |=∅ Γ¯∗
implies (A |=∅ ∆¯

∗ or A |=∅
ˆ[d]∀xα

¯
). Therefore, we

have the required fact that A |=∅ Γ¯∗
→(∆

¯
∗∨(ˆ[d]∀xα

¯
)) for any u1, ...un ∈ U .

�

.3.3 Completeness

Definition 3.15. A sequent Γ ⇒ ∆ is called saturated if

s1. ˆ[d](α ∧ β) ∈ Γ implies (ˆ[d]α ∈ Γ and ˆ[d]β ∈ Γ),

s2. ˆ[d](α ∧ β) ∈ ∆ implies (ˆ[d]α ∈ ∆ or ˆ[d]β ∈ ∆),

s3. ˆ[d](α ∨ β) ∈ Γ implies (ˆ[d]α ∈ Γ or ˆ[d]β ∈ Γ),

s4. ˆ[d](α ∨ β) ∈ ∆ implies (ˆ[d]α ∈ ∆ and ˆ[d]β ∈ ∆),

1Remark that (ˆ[d]∀xα)[u
¯1

/z1, ..., u
¯n

/zn] (the simultaneous substitution) is equivalent

to ˆ[d]∀x(α[u
¯1

/z1, ..., u
¯n

/zn]), i.e., ˆ[d]∀xα
¯
.

THE LOGIC OF SEQUENCES 47

s5. ˆ[d](α→β) ∈ Γ implies (ˆ[d]α ∈ ∆ or ˆ[d]β ∈ Γ),

s6. ˆ[d](α→β) ∈ ∆ implies (ˆ[d]α ∈ Γ and ˆ[d]β ∈ ∆),

s7. ˆ[d]¬α ∈ Γ implies ˆ[d]α ∈ ∆,

s8. ˆ[d]¬α ∈ ∆ implies ˆ[d]α ∈ Γ,

s9. ˆ[d]∀xα ∈ Γ implies (ˆ[d]α[y/x] ∈ Γ for any individual variable y),

s10. ˆ[d]∀xα ∈ ∆ implies (ˆ[d]α[z/x] ∈ ∆ for some individual variable z),

s11. ˆ[d]∃xα ∈ Γ implies (ˆ[d]α[z/x] ∈ Γ for some individual variable z),

s12. ˆ[d]∃xα ∈ ∆ implies (ˆ[d]α[y/x] ∈ ∆ for any individual variable y),

s13. ˆ[d][b ; c]α ∈ Γ implies ˆ[d][b][c]α ∈ Γ,

s14. ˆ[d][b ; c]α ∈ ∆ implies ˆ[d][b][c]α ∈ ∆,

s15. ˆ[d][b−−]α ∈ Γ implies ˆ[d][b]α ∈ Γ,

s16. ˆ[d][b−−]α ∈ ∆ implies ˆ[d][b]α ∈ ∆,

s17. ˆ[d][(b ; c)−]α ∈ Γ implies ˆ[d][c− ; b−]α ∈ Γ,

s18. ˆ[d][(b ; c)−]α ∈ ∆ implies ˆ[d][c− ; b−]α ∈ ∆.

A sequent Γ ⇒ ∆ is called an infinite sequent if Γ or ∆ are infinite

(countable) sets of formulas. An infinite sequent Γ ⇒ ∆ is called provable

if two finite subsets Γ′ ⊆ Γ and ∆′ ⊆ ∆ exist, such that LS ⊢ Γ′ ⇒ ∆′.

Definition 3.16. A decomposition of a sequent (or infinite sequent) S

is defined as of the form S0 or S0;S1 by

1a. Γ ⇒ ∆, ˆ[d](α ∧ β), ˆ[d]α ; Γ ⇒ ∆, ˆ[d](α ∧ β), ˆ[d]β is a decomposition of

Γ ⇒ ∆, ˆ[d](α ∧ β),

1b. ˆ[d]α, ˆ[d]β, ˆ[d](α ∧ β),Γ ⇒ ∆ is a decomposition of ˆ[d](α ∧ β),Γ ⇒ ∆,

2a. Γ ⇒ ∆, ˆ[d](α ∨ β), ˆ[d]α, ˆ[d]β is a decomposition of Γ ⇒ ∆, ˆ[d](α ∨ β),

2b. ˆ[d]α, ˆ[d](α ∨ β),Γ ⇒ ∆ ; ˆ[d]β, ˆ[d](α ∨ β),Γ ⇒ ∆ is a decomposition of
ˆ[d](α ∨ β),Γ ⇒ ∆,

48 NORIHIRO KAMIDE

3a. ˆ[d]α,Γ ⇒ ∆, ˆ[d](α→β), ˆ[d]β is a decomposition of Γ ⇒ ∆, ˆ[d](α→β),

3b. ˆ[d](α→β),Γ ⇒ ∆, ˆ[d]α ; ˆ[d]β, ˆ[d](α→β),Γ ⇒ ∆ is a decomposition of
ˆ[d](α→β),Γ ⇒ ∆,

4a. ˆ[d]α,Γ ⇒ ∆, ˆ[d]¬α is a decomposition of Γ ⇒ ∆, ˆ[d]¬α,

4b. ˆ[d]¬α,Γ ⇒ ∆, ˆ[d]α is a decomposition of ˆ[d]¬α,Γ ⇒ ∆,

5a. Γ ⇒ ∆, ˆ[d]∀xα, ˆ[d]α[z/x] is a decomposition of Γ ⇒ ∆, ˆ[d]∀xα where

z is a fresh free individual variable, i.e., z is not occurring in

Γ ⇒ ∆, ˆ[d]∀xα,

5b. ˆ[d]α[y1/x], ..., ˆ[d]α[ym/x], ˆ[d]∀xα,Γ ⇒ ∆ is a decomposition of
ˆ[d]∀xα,Γ ⇒ ∆ where y1, ..., ym are the free individual variables

occurring in ˆ[d]∀xα,Γ ⇒ ∆, 2

6a. Γ ⇒ ∆, ˆ[d]∃xα, ˆ[d]α[y1/x], ..., ˆ[d]α[ym/x] is a decomposition of

Γ ⇒ ∆, ˆ[d]∃xα where y1, ..., ym are the free individual variables

occurring in Γ ⇒ ∆, ˆ[d]∃xα,

6b. ˆ[d]α[z/x], ˆ[d]∃xα,Γ ⇒ ∆ is a decomposition of ˆ[d]∃xα,Γ ⇒ ∆ where

z is a fresh free individual variable,

7a. Γ ⇒ ∆, ˆ[d][b ; c]α, ˆ[d][b][c]α is a decomposition of Γ ⇒ ∆, ˆ[d][b ; c]α,

7b. ˆ[d][b ; c]α, ˆ[d][b][c]α,Γ ⇒ ∆ is a decomposition of ˆ[d][b ; c]α,Γ ⇒ ∆,

8a. Γ ⇒ ∆, ˆ[d][b−−]α, ˆ[d][b]α is a decomposition of Γ ⇒ ∆, ˆ[d][b−−]α,

8b. ˆ[d][b−−]α, ˆ[d][b]α,Γ ⇒ ∆ is a decomposition of ˆ[d][b−−]α,Γ ⇒ ∆,

9a. Γ ⇒ ∆, ˆ[d][(b ; c)−]α, ˆ[d][c− ; b−]α is a decomposition of

Γ ⇒ ∆, ˆ[d][(b ; c)−]α,

9b. ˆ[d][(b ; c)−]α, ˆ[d][c− ; b−]α,Γ ⇒ ∆ is a decomposition of
ˆ[d][(b ; c)−]α,Γ ⇒ ∆.

A decomposition tree of S is a tree obtained through repeated decom-

positions of S.

2Strictly speaking, if ˆ[d]∀xα,Γ ⇒ ∆ has no free individual variable, then we adopt

any free variable in L. Such a condition is also adopted in (6a).

THE LOGIC OF SEQUENCES 49

Remark that in every decomposition of S, i.e., S0 or S0;S1, if S is

unprovable in FLS − (cut), then so is S0 or S1. Observe moreover that

the steps of the procedure where new fresh variables are introduced play a

central role for constructing the domain U of a canonical model.

Lemma 3.17. Suppose that Γ ⇒ ∆ is an unprovable sequent in FLS

− (cut). Then, there exists an unprovable, saturated and possibly infinite

sequent Γω ⇒ ∆ω such that Γ ⊆ Γω and ∆ ⊆ ∆ω.

Proof. Suppose that Γ ⇒ ∆ is an unprovable sequent in FLS − (cut).

We construct Γω ⇒ ∆ω from Γ ⇒ ∆ as follows.

(1) We apply the decomposition procedure in Definition 3.16 to Γ ⇒ ∆,

in the following order:

(1a) −→ (1b) −→ (2a) −→ · · · −→ (9b)

where the application of any step may be empty if the corresponding for-

mula lacks in Γ ⇒ ∆. In such a decomposition process, one of the decom-

posed elements of S is an unprovable sequent.

(2) We repeat the same procedure (1) without halting. Then, we obtain

a finitely branching decomposition tree with infinitely many nodes.

(3) By K
..
onig’s lemma, we have an infinite path of this decomposition

tree as follows.

Γ0 ⇒ ∆0 | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 | · · · ∞

where Γ0 ⇒ ∆0 is Γ ⇒ ∆. In this sequence of the sequents on the infinite

path, we have that Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · · and ∆0 ⊆ ∆1 ⊆ ∆2 ⊆ · · · .

(4) We put Γω :=
⋃∞

i=0 Γi and ∆ω :=
⋃∞

i=0∆i. Note that Γω ∩∆ω = ∅.

Then, we have that Γ ⊆ Γω and ∆ ⊆ ∆ω, and can verify that Γω ⇒ ∆ω

is an unprovable, saturated (infinite) sequent. �

Lemma 3.18. Let Γ ⇒ ∆ be an unprovable sequent in FLS − (cut), and

Γω ⇒ ∆ω be an unprovable saturated (infinite) sequent constructed from

Γ ⇒ ∆ by Lemma 3.17. We define the canonical model A := 〈U, {I d̂}
d̂∈SE〉

by

1. U := {z | z is a free individual variable occurring in Γω ⇒ ∆ω},

2. pI
d̂

:= {(z1, ..., zm) | ˆ[d]p(z1, ..., zm) ∈ Γω}.

50 NORIHIRO KAMIDE

Then, for any formula α, and any d̂ ∈ SE,

[(ˆ[d]α ∈ Γω implies A |=
d̂
α
¯
) and (ˆ[d]α ∈ ∆ω implies not-(A |=

d̂
α
¯
))]

where α
¯

is obtained from α by replacing every individual variable x occur-

ring in α by the name x
¯
.

Proof. By induction on the complexity of α.

• Base step:

Case (α ≡ p(z1, z2, ..., zm): atomic formula): By the definition of the

canonical model.

• Induction step: We show some cases.

Case (α ≡ ∀xβ): We show only that ˆ[d]∀xβ ∈ Γω implies A |=
d̂
∀xβ

¯
,

since the other case (concerning ∆ω) can be shown in the dual. Suppose
ˆ[d]∀xβ ∈ Γω. Then we obtain that ˆ[d]β[yi/x] ∈ Γω for all yi ∈ U , by

Definition 3.15 (s9). By induction hypothesis, we obtain that A |=
d̂
β
¯
[yi
¯
/x]

for all yi ∈ U . This means A |=
d̂
∀xβ

¯
.

Case (α ≡ ∃xβ): We show only that ˆ[d]∃xβ ∈ Γω implies A |=
d̂
∃xβ

¯
,

since the other case (concerning ∆ω) can be shown in the dual. Suppose
ˆ[d]∃xβ ∈ Γω. Then, we obtain that ˆ[d]β[z/x] ∈ Γω for some z ∈ U , by

Definition 3.15 (s11). By induction hypothesis, we obtain that A |=
d̂
β
¯
[z
¯
/x]

for some z ∈ U . This means A |=
d̂
∃xβ

¯
.

Case (α ≡ [b]β where b is an arbitrary sequence): We show only the

case ˆ[d][b]β ∈ Γω implies A |=
d̂
[b]β

¯
, since the other case (concerning ∆ω)

can be shown in the dual. Suppose ˆ[d][b]β ∈ Γω. By induction hypothesis,

we obtain A |=
d̂ ; b

β
¯
. This means A |=

d̂
[b]β

¯
. �

Theorem 3.19 (Strong completeness). For any sequent S, if S is valid,

then FLS − (cut) ⊢ S.

Proof. It is sufficient to show that if Γ ⇒ ∆ is not provable in FLS −

(cut), then there exists a model A such that Γ ⇒ ∆ is not valid in A. Sup-

pose that Γ ⇒ ∆ is not provable in FLS − (cut). Then, by Lemma 3.18, we

can construct a canonical model A with the condition in this lemma. Thus,

we have A |=
d̂
γ
¯
and not-(A |=

d̂
δ
¯
) for any γ ∈ Γ ⊆ Γω, any δ ∈ ∆ ⊆ ∆ω

and any d̂ ∈ SE. Hence, we obtain “not-(A |=
d̂
Γ
¯∗

→∆
¯
∗)” for any d̂ ∈ SE,

and hence “not-(A |=
d̂
cl(Γ∗→∆∗))” for any d̂ ∈ SE. In particular, we can

take ∅ as d̂. Therefore, Γ ⇒ ∆ is not valid in A. �

THE LOGIC OF SEQUENCES 51

An alternative proof of Theorem 2.10 (Cut-elimination) is obtained by

combining Theorem 3.19 with Theorem 3.14.

.4 Remarks

.4.1 Remarks on applications

Firstly, we explain that the sequence modal operator is useful for represent-

ing lists. Lists are known to be useful data structures in computer science.

Lists have thus widely been studied by many researchers from the point of

view of mathematical logic. For example, arithmetical first-order theories

allowing encoding and decoding of lists were studied in [3]. 3 Logical rep-

resentations of lists were proposed in [13] based on separation logic (SEL),

and a modified version of such a list expression was also reconsidered in

[7]. Lists are sometimes expressed as trees (i.e., sequences), and hence the

sequence modal operator may be appropriate for expressing lists.

It is known that SEL, which permits reasoning about low-level imper-

ative programs, is useful for specifying “shared mutable data structures”

[13]. SEL has a novel logical connective ∗s for separating conjunction: A

formula α ∗s β holds for a heap (or addressable storage) h if there is a

partition 〈h1, h2〉 of h such that α holds for h1 and β holds for h2. It was

shown in [13] that SEL is useful for representing list structures in which

the relevant abstract values are sequences. The simplest list structure for

representing sequences is the single-linked list. In order to represent such a

list, the separating conjunction is used effectively to prohibit cycles within

the list segment.

Let α be a sequence, and αi be the i-th component of α. Suppose

that an expression i 7→ α, which says “i point to α” , asserts that the

heap contains one cell, at address i with contents α. Let i 7→ α, j be the

abbreviation of (i 7→ α) ∗s (i + 1 7→ j). Then, by using SEL, we have the

following expression for the singly-linked list with a list segment from i0 to

in representing the sequence α:

3It is pointed out that a relationship between FSL and the first-order or algebraic

theories of sequences by Cégielski and Richard [3] may be worth studying, although the

present paper does not discuss more about this topic.

52 NORIHIRO KAMIDE

∃i1, ..., in−1. (i0 7→ α1, i1)∗s (i1 7→ α2, i2)∗s · · ·∗s (in−1 7→ αn, in)

where i0, ..., in−1 are distinct, but in is not constrained.

In the following, we consider to use LS instead of SEL. The “point-to”

relation i 7→ α in SEL is encoded in LS by the formula [i]α. A separating

conjunction formula α ∗s β in SEL is encoded in LS by [i]α′ ∧ [j]β′ (i 6= j).

This expression may be appropriate, since a sequence is adequately repre-

sentable based on the sequence modal operator. Then, the list structure

discussed above is naturally encoded in LS by

∃i1, ..., in−1. ([i0]α1∧ [i0+1]i1)∧ ([i1]α2∧ [i1+1]i2)∧· · ·∧ ([in−1]αn∧

[in−1 + 1]in)

where i0, ..., in−1 are distinct, but in is not constrained.

Secondly, we explain that the sequence modal operator can be used

as the next-time temporal operator X. As mentioned in Section 2, LS is

regarded as a modified extension of Prior’s next-time temporal logic [12].

Indeed, the following rule, which is similar to the rule (regu) of LS and

FLS, appears in some temporal logics:

Γ ⇒ ∆
XΓ ⇒ X∆

(Xregu).

Moreover, the following clause of the semantics of FLS:

for each literal sequence e, A |=
d̂
[e]α iff A |=

d̂ ; e
α

is similar to the following clause of the semantics of some temporal logics:

(A, i) |= Xα iff (A, i+ 1) |= α.

An instance of the sequence modal operator, expressed as [x], may thus be

interpreted as X. A formula of the form

n
︷ ︸︸ ︷

X · · ·Xα, which means “α holds

after n-time units”, is then interpreted as

n
︷ ︸︸ ︷

[x] · · · [x]α in LS and FLS.

Thirdly, we explain that LS and FLS can be used as an alternative

proof system for dynamic logics (DLs) [6]. It is known that a Gentzen-type

“cut-free” sequent calculus for DLs have not been obtained yet, although

a tree-style cut-free sequent calculus for a Kleene-star-free version of DLs

was proposed in [2]. Then, we can use LS and FLS as an alternative proof

THE LOGIC OF SEQUENCES 53

theory for DLs, since LS and FLS give a good proof theory for the program

composition and program converse operators in DLs. ¿From the point of

view of proof theory, LS and FLS have the following advantages: LS and

FLS enjoy cut-elimination, and LS and the monadic fragment of FLS are

decidable.

Finally in this subsection, it is mentioned that hierarchical tree struc-

tures can suitably be expressed using the sequence modal operator. Such an

example is proposed in [8]. In [8], an extended full computation tree logic,

CTLS∗, is introduced as a Kripke semantics with a sequence modal oper-

ator. CTLS∗ is regarded as a tempotal extension of the sequence-indexed

semantics of LS. It was shown in [8] that CTLS∗ can appropriately repre-

sent hierarchical tree structures for biological taxonomy where the sequence

modal operator is applied to tree structures.

.4.2 Remarks on some extensions

In the following, we explain that extending and modifying the completeness

results for LS and FLS have some technical difficulties. We consider the

sequence inference rules for ∪ (non-deterministic choice) and ·∗ (iteration)

of the form:

ˆ[d][b]α,Γ ⇒ ∆

ˆ[d][b ∪ c]α,Γ ⇒ ∆
(∪left1)

ˆ[d][c]α,Γ ⇒ ∆

ˆ[d][b ∪ c]α,Γ ⇒ ∆
(∪left2)

Γ ⇒ ∆, ˆ[d][b]α Γ ⇒ ∆, ˆ[d][c]α

Γ ⇒ ∆, ˆ[d][b ∪ c]α
(∪right)

ˆ[d][ck]α,Γ ⇒ ∆

ˆ[d][c∗]α,Γ ⇒ ∆
(∗left)

{ Γ ⇒ ∆, ˆ[d][cn]α }n∈ω

Γ ⇒ ∆, ˆ[d][c∗]α
(∗right).

Then, we consider an extension ELS of the ·−-less fragment of LS by adding

the sequence inference rules displayed above. The modified sequence-in-

dexed semantics may naturally be obtained from the semantics for the

·−-less fragment of LS by adding the following valuation conditions:

1. v
d̂
([b ∪ c]α) = t iff v

d̂
([b]α) = v

d̂
([c]α) = t,

2. v
d̂ ; (b∪c)(α) = t iff v

d̂ ; b
(α) = v

d̂ ; c
(α) = t,

54 NORIHIRO KAMIDE

3. v
d̂
([b∗]α) = t iff v

d̂
([bn]α) = t for all n ∈ ω,

4. v
d̂ ; b∗

(α) = t iff v
d̂ ; bn

(α) = t for all n ∈ ω.

The following hold: for any valuations v
d̂
, any formula α and any sequence

c,

v
d̂
([c]α) = t iff v

d̂ ; c
(α) = t.

The setting based on the modified valuation conditions looks natural and

plausible, but some problems of non-uniqueness of interpretations arise.

For this semantics, we now consider v∅([b∪ c](p→q)) = t where p and q are

distinct propositional variables, and b and c are distinct atomic sequences.

Then, we obtain two different interpretations:

1. v∅([b ∪ c](p→q)) = t iff v∅([b](p→q))) = v∅([c](p→q))) = t (by 1) iff

vb(p→q) = vc(p→q) = t iff [vb(p) = t implies vb(q) = t] and [vc(p) = t

implies vc(q) = t].

2. v∅([b∪c](p→q)) = t iff vb∪c(p→q) = t iff vb∪c(p) = t implies vb∪c(q) = t

iff vb(p) = vc(p) = t implies vb(q) = vc(q) = t (by 2).

This situation, i.e., “(1) implies (2)” holds, but the converse does not hold,

means that the valuations are not well defined, and hence the completeness

theorem w.r.t. this semantics cannot be shown for ELS in the present

setting. Since the inference rules for ·∗ are regarded as infinite versions of

the inference rules for ∪, the same problem arises.

.4.3 Relation to semilattice relevant logic

As mentioned in Section 1, the logics LS and FLS are regarded as a logic of

monoids. The idea of formalizing monoids in a logic is not new. Semilattice

relevant logics, which have semilattice-based semantics [14], were studied

by many researchers. For more information on semilattice relevant logics,

see e.g., [4, 9] and the references therein. In the following, we make a

comparison between a semilattice relevant logic and LS.

A label is a finite set of positive integers. If a is a label and α is a

formula, then the expression a : α is called a labeled formula. A label a is

regarded as an element of a semilattice 〈M,∪, ∅〉 with the identity ∅. Lower-

case letters a, b, ... are used for labels, Greek lower-case letters α, β, ... are

THE LOGIC OF SEQUENCES 55

used for labeled formulas, and Greek capital letters Γ,∆, ... are used for

finite (possibly empty) multisets of labeled formulas. An expression of the

form Γ ⇒ ∆ is called a labeled sequent.

A sequent calculus LR∪ for a semilattice relevant logic is then presented

below [4, 9].

The initial sequents of LR∪ are of the form:

a : α ⇒ a : α.

The structural inference rules of LR∪ are of the form:

Γ ⇒ ∆, a : α a : α,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π
(cutr)

Γ ⇒ ∆
a : α,Γ ⇒ ∆

(we-leftr) Γ ⇒ ∆
Γ ⇒ ∆, a : α

(we-rightr)

a : α, a : α,Γ ⇒ ∆

a : α,Γ ⇒ ∆
(co-leftr)

Γ ⇒ ∆, a : α, a : α

Γ ⇒ ∆, a : α
(co-rightr).

The logical inference rules of LR∪ are of the form:

Γ ⇒ ∆, b : α a ∪ b : β,Σ ⇒ Π

a : (α→β),Γ,Σ ⇒ ∆,Π
(→leftr)

{x} : α,Γ ⇒ ∆, a ∪ {x} : β

Γ ⇒ ∆, a : α→β
(→rightr)

with the proviso: the positive integer x does not appear in the lower se-

quent,

a : α,Γ ⇒ ∆

a : α ∧ β,Γ ⇒ ∆
(∧left1r)

a : β,Γ ⇒ ∆

a : α ∧ β,Γ ⇒ ∆
(∧left2r)

Γ ⇒ ∆, a : α Γ ⇒ ∆, a : β

Γ ⇒ ∆, a : α ∧ β
(∧rightr)

a : α,Γ ⇒ ∆ a : β,Γ ⇒ ∆

a : α ∨ β,Γ ⇒ ∆
(∨leftr)

Γ ⇒ ∆, a : α

Γ ⇒ ∆, a : α ∨ β
(∨right1r)

Γ ⇒ ∆, a : β

Γ ⇒ ∆, a : α ∨ β
(∨right2r).

A logic of monoids can be obtained from LR∪ by replacing the “integer

set labels” by “integer sequence labels” and replacing the union ∪ by the

concatenation ;. The resulting logic is then called here a monoid relevant

logic.

56 NORIHIRO KAMIDE

Remark that some characteristic “relevant” properties of LR∪ are de-

rived from the label conditions on the rules (→leftr) and (→leftr). We

moreover consider to simplify the label conditions on these rules by

Γ ⇒ ∆, a : α a : β,Σ ⇒ Π

a : (α→β),Γ,Σ ⇒ ∆,Π
(→lefts)

a : α,Γ ⇒ ∆, a : β

Γ ⇒ ∆, a : α→β
(→rights).

The resulting logic having (→lefts) and (→rights) is regarded as a monoid

(non-relevant) logic (ML). Now, we replace the expression a : α in ML by

the expression [a]α in LS. Then, we can obtain a subsystem of LS.

In conclusion, LS and FLS are also important as a logic of monoids,

since LS and FLS include a non-relevant and monoid version of the well-

known semilattice relevant logic.

Acknowledgments. I would like to thank an anonymous referee for

his/her valuable comments and suggestions. This research was supported

by the Alexander von Humboldt Foundation. I am grateful to the Foun-

dation for providing excellent working conditions and generous support of

this research. This work was partially supported by the Japanese Ministry

of Education, Culture, Sports, Science and Technology, Grant-in-Aid for

Young Scientists (B) 20700015.

.References

[1] M. Bezem, T. Langholm and M. Walicki, Completeness and decidability in sequence

logic, Proceedings of the 14-th International Conference on Logic for programming,

artificial intelligence, and reasoning (LPAR 2007), N. Dershowitz and A. Voronkov

(Eds.), Lecture Notes in Computer Science 4790 (2007), pp. 123–137.

[2] R.A. Bull, Cut elimination for propositional dynamic logic without *, Zeitscr. f. Math.

Logik und Grundlagen d. Math., 38 (1992), pp. 85–100.

[3] P. Cégielski and D. Richard, On arithmetical first-order theories allowing encoding

and decoding of lists, Theoretical Computer Science 22 (1-2) (1999), pp. 55–75.

[4] S. Giambrone and A. Urquhart, Proof theories for semilattice logics, Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik 33 (1987), pp. 433–439.

[5] E.A. Emerson, Temporal and modal logic, In: Handbook of Theoretical Computer

Science, Formal Models and Semantics (B), Jan van Leeuwen (Ed.), Elsevier and MIT

Press, 1990, pp. 995–1072.

[6] D. Harel, D. Kozen and J. Tiuryn, Dynamic logic (Foundations of Computing Series),

The MIT Press, 2000.

THE LOGIC OF SEQUENCES 57

[7] N. Kamide, Dynamic non-commutative logic, Journal of Logic, Language and Infor-

mation 19 (1) (2010), pp. 33–51.

[8] N. Kamide and K. Kaneiwa, Extended full computation-tree logic with sequence modal

operator: Representing hierarchical tree structures, Proceedings of the 22nd Aus-

tralasian Joint Conference on Artificial Intelligence (AI’09), Lecture Notes in Artificial

Intelligence 5866 (2009), pp. 485–494.

[9] R. Kashima, On semilattice relevant logics, Mathematical Logic Quarterly 49(4)

(2003), pp. 401–414.

[10] T. Kutsia and B. Buchberger, Predicate logic with sequence variables and sequence

function symbols, Proceedings of the 3rd International Conference on Mathematical

Knowledge Management (MKM 2004), A. Asperti, G. Bancerek and A. Trybulec

(Eds.), Lecture Notes in Computer Science 3119 (2004), pp. 205–219.

[11] J. Lambek, The mathematics of sentence structure, The American Mathematical

Monthly 65, pp. 154-170, 1958.

[12] A.N. Prior, Past, present and future, Oxford: Clarendon Press, 1967.

[13] J.C. Reynolds, Separation logic: A logic for shared mutable data structures, Pro-

ceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, 2002,

pp. 55–74.

[14] A. Urquhart, Semantics for relevant logics, Journal of Symbolic Logic 37(1) (1972),

pp. 159–169.

[15] M. Walicki, M. Bezem and W. Szajnkenig, A strongly complete logic of dense time

intervals, Proceedings of the Workshop on Logics for Resource-Bounded Agents, ESS-

LLI, Malaga, Spain, 2006.

[16] H. Wansing, The logic of information structures, Lecture Notes in Artificial Intelli-

gence 681 (1993), 163 pages.

Waseda Institute for Advanced Study, Waseda University,

1-6-1 Nishi Waseda, Shinjuku-ku,

Tokyo 169-8050, JAPAN.

logician-kamide@aoni.waseda.jp

