
A Tweet Text Binary Artificial Neural Network Classifier

Theodore Nikoletopoulos1, Claudia Wolff2
1Unaffiliated, Athens, Greece

2Kiel University, Kiel, Germany

theo_nikoletopoulos@yahoo.co.uk, wolff@geographie.uni-kiel.de

ABSTRACT

We present an Artificial Neural Network (ANN) text classifier to

deal with the task of automatically detecting a tweet as being flood-

related or not. The framework for classifying flood-related tweets

consists of three basic ANN models. Each model is a different ANN

type and the final output is determined by a majority rule on the

individual model outputs. The overall F1 score on the test set was

0.5405, significantly lower than on the training/validation set,

suggesting that we overfitted the training set.

1 INTRODUCTION

This research was conducted as part of the ‘Flood-Related

Multimedia Task’ challenge provided by the Multimedia

Evaluation Benchmark (MediaEval) 2020 [1]. The goal of the task

is to automatically identify and classify tweets which are relevant

to flooding in Northeastern Italy. For this binary classification

problem, we used different types of ANNs to automatically classify

the tweet’s text [2]. As different types of ANNs might capture

different characteristics of the ANN input, we chose to implement

three different types and determine the final decision by using a

majority rule on the individual ANN outputs.

2 APPROACH

2.1 Text Vectorization

To convert the tweet’s text to a numeric format as required by the

ANNs input layers we make use of word embeddings [3]. Word

embeddings are a way to map words onto low dimensional

(compared to other text numerical representation formats) vectors

with the important property that words with similar meaning are

mapped to vectors which are close to each other (in e.g. Euclidean

distance) in the associated vector space [3].

Word embeddings are calculated by ANNs trained on large

corpora, and many sets of such embeddings for a lot of different

languages exist. However, rather than using pre-calculated word

embeddings, we found that including an Embedding layer in our

models and calculate/learn from scratch the embeddings jointly

with the classification task produced better F1-scores on the dev.

set.

In order to calculate the desired word embeddings, we first tokenize

text, i.e. decompose it to individual words, symbols, punctuation

marks etc. Each token is assigned an index and we consider a

vocabulary of the most frequent tokens. Further, we set the length

of the text’s representation as a sequence of tokens to a fixed length.

Both the vocabulary’s size and the text’s length are

hyperparameters with which one can experiment.

2.2 Undersampling

As mentioned in [1] the dataset is skewed/imbalanced; there are

fewer samples of the positive class (i.e. flood-related) than the

negative (approximately 20% - 80%). This makes training the

model hard because during training it is presented with more

negative samples and consequently ‘learns’ better the negative

class and misclassifies a lot of positive samples, thus leading to a

poor F1-score.

To tackle this issue, we use under sampling as follows: We keep all

positive samples of the training set and select randomly some (not

all) of the negative samples in order to have a set with a negative-

positive class ratio closer to one and therefore a more balanced set.

The value of this ratio is a hyperparameter which can be fine-tuned

2.3 ANN Models

Many ANN types for different tasks exist [2]. In this study, we are

dealing with a binary classification problem whose solution may be

viewed as a partition of the embeddings space into two sets, one for

each class. This can be achieved by Multi-Layer Perceptron (MLP)

added after the Embedding layer of the model. We chose a simple

architecture of one hidden layer with 32 units having a ReLU

activation function followed by a single output unit with a sigmoid

activation function.

We then build on the previous model by considering a layer of the

so-called Recurrent Neural Networks (RNN) consisting of 32

bidirectional LSTM units. RNNs are models where units have

internal state acting as memory, thus they are capable of processing

and learning sequence characteristics since they can ‘remember’

inputs seen in the past. A typical application of RNNs is time series

prediction, but since text is a sequence of (correlated) words they

are also used a lot in Natural Language Processing (NLP). The Copyright 2020 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

MediaEval’20, December 14-15 2020, Online

MediaEval’20, December 14-15 2020, Online T. Nikoletopoulos et al.

LSTM layer is placed after the Embeddings layer and on top of that,

we have the previous MLP structure.

Finally, we employed another type of ANN capable of handling

sequences - the Convolutional Neural Network (CNN). Here

learning a sequence is achieved via a different mechanism which

exploits the mathematical operation of convolution of the input

sequence with a small kernel. We thus placed after the Embeddings

layer two parallel layers with 32 kernels of length 5 each. The

outputs of those parallel Convolutional layers are then merged and

being fed into the previous MLP architecture.

To convert the continuous (between zero and one) ANN output to

binary (i.e. flood-related input text or not) we use a threshold. Texts

having output above the threshold are labelled as flood-related (i.e.

one) and texts having output below the threshold as labelled zero.

The threshold is chosen for each model separately by maximizing

the F1-score. Finally, the text’s class was assigned by a majority

rule on the three models’ output.

3 RESULTS AND DISCUSSION

3.1 Model setup and performance

After experimenting with various values, we ended up with a

vocabulary of size 3000, sequence length of 40, embedding vector

dimension of 300 and under-sampling ratio of 1.75. The vocabulary

size and sequence length are small compared to typical Natural

Language Processing (NLP) applications due to the short form of

the tweet's text. The architecture of the ANNs used is described

above.

ANNs were trained and evaluated individually on the same

train/validation sets which were created by splitting the devset to

an 80-20% ratio. The F1-scores on the validation set were 0.59 for

the MLP, 0.60 for the RNN and CNN. Those scores were obtained

by choosing thresholds 0.40, 0.65, 0.40 respectively. Finally, we

combined the three ANN outputs by assigning to each input the

majority class for the three ANN outputs. We chose this strategy,

hoping that each ANN would perhaps capture different

idiosyncrasies of the input. The overall F1 score improved slightly

to 0.61. Our score on the test set was 0.5405, significantly lower,

suggesting that we overfitted the training set.

3.2 Limitations of the study

The main challenge of the task was related to the labelling of the

training dataset. We noticed that many samples looked flood-

related from a visual inspection but were not labeled as such (some

example ids are:940319294084202496, 944240672294531073,

950753737466830940, 1059017654088790018,

1055172135587536896). Further, we noticed that many positive

samples are from meteorological alerts. This could maybe restrict

the training set and explain the difficulties of the model in

generalizing well and thus, influence the overall model

performance.

3.3 Outlook - Ways to improve the performance

Experimenting with simpler text representations such as Bag of

Words (BOW) and Term Frequency Inverse Document Frequency

(TF-IDF) vectors and a Logistic Regression classifier revealed that

taking into account tweet entities such as hashtags, in addition to

the plain text, improved predictive performance.

However, due to time limitations, this approach was not

implemented in our ANN framework. Further, it would require

more sophisticated tokenization schemes able to extract hashtags,

than those used for the ANNs input.

Geographical information of tweets, either in the form of metadata

(e.g. coordinates, place attribute) or location mentions in the

tweet’s text could be exploited to ‘geo locate’ the tweet and

possibly be used as additional inputs to the model. Especially since

the dev. set focuses on a particular study area [1].

Finally, let us mention that this study focused solely on the tweet’s

text without considering the associated image. A two-branch

model, where one branch would be the model presented here

excluding the output layer and the other branch an image classifier

both feeding the same output layer could be used to handle both

text and image input.

3.4 Code availability

The model was implemented as a Google Colab Ipython notebook

and code is available upon request

(theo_nikoletopoulos@yahoo.co.uk).

REFERENCES

[1] Stelios Andreadis, Ilias Gialampoukidis, Anastasios

Karakostas, Stefanos Vrochidis, Ioannis Kompatsiaris, Roberto

Fiorin, Daniele Norbiato, and Michele Ferri. 2020. The Flood-

related Multimedia Task at MediaEval 2020. In MediaEval

2020.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep

learning. www.deeplearningbook.org

[3] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J.

(2013). Distributed representations of words and phrases and

their compositionality. Advances in neural information

processing systems (p./pp. 3111--3119)

