A TASK-INDEPENDENT EXPERIENCE-GATHERING SCHEME FOR A PROBLEM-SOLVER

J. R. Quinlan
Computer Science Department

Carnegie-Mellon
Pennsylvania U.S.A.

Pittsburgh,

Abstract. A scheme for allowing a problem-solver
to improve its performance with experience is out-
lined. A more complete definition of the scheme
for a particular problem-solving program is given.
Some results showing the effectiveness of the
scheme are reported.

Key Words. Problem-solving, heuristic search,
depth-first, classification of operators, ordering

of operators.

Introduction

It is not at all clear how a problem-solver
should Improve its performance as it solves, or
fails to solve, the problems presented to it. It
is clear, however, that such improvement is neces-
sary if problem-solvers are ever to compete suc-
cessfully with human beings. Moreover, the im-
provement cannot be restricted to rote learning
of results; what is needed is some equivalent of a
human being's ability to detect analogies between
problems. This paper outlines one scheme that has
been implemented and tested fairly extensively.
Although details are given for a particular
problem-solving system, the general philosophy is
applicable to most depth-first problem-solvers.

A problem, in this context, is a triple con-
sisting of a state, a goal and a set of operators,
A state is some object: a well-formed formula, a
pattern or somesuch. A goal describes some hypo-
thetical state or set of states. Each operator
maps some set of states into another set. A
solution to a problem is a sequence of operators
that maps the given state into another state that
matches the goal. For example, a state could be
an algebraic expression, a goal another algebraic
expression, and the operators rules for changing
expressions into equivalent expressions. A solu-
tion would then be a schoolboy-type demonstration
that the state and goal expressions are equiv-
alent. This definition of problems and solutions
clearly includes heuristic search problems.1

Figure 1 shows a partial outline of a depth-
first method for finding solutions to such prob-
lems. For any (sub)problem (sgR) a set A of
operators is selected, one or more of which may
hopefully lead to a solution. Each of the oper-
ators is tried until one leads to a solution or
the set is exhausted. Many essential mechanisms
have been omitted from this skeleton, principally
how the set of operators is selected, what new
problem is tried when an operator is chosen, and
what happens when a subproblem is solved. These
vary from system to system, and, while they are
critical to the performance of any system, the
experience-gathering scheme is independent of
their form.

University

Given a problem (state a,goal goperators R)
proceed as follows:

1. If 8 matches the description g, report suc-
cess on this problem. Otherwise, select
a subset A of R; these are the operators
to be tried.

2. If A is empty, report failure on this
problem. Otherwise, choose an operator
x in A and delete x from A.

3. Attempt a new problem based on the current
problem and operator x. If failure is
reported on this new problem return to
step 2.

Figure 1. Skeleton of depth-first problem-solver.

Such a problem-solving schema could make use
of 'experience* in a number of ways. The two ob-
vious ones are to guide the selection of the set
A of operators to try, and to choose which oper-
ator x In A to try next. The selection of the set
A, however, is typically performed by some algo-
rithm which is not sufficiently flexible to allow
modification by experience.13 The scheme given
here is based on the second alternative. Each
operator x in A will be assigned a weight, deter-
mined from past experience, which represents an
estimate of how likely it is that trying x will
lead to a solution of the problem (8,9,R). When
choosing an operator from A, the one with the
highest weight will be tried first.

The first question is, where is this weight
to come from? We would like to have weights asso-
ciated with operators in the context of problems.
In any interesting task environment, the operator
and problem spaces are large, if not infinite; it
is clearly impractical to associate a weight with
every possible operator-problem pair. The way out
adopted here is to categorize operator-problem
pairs, and associate a weight with each class.
The weight assigned above to x will then be the
weight associated with the class into which the
pair (x, (SgR)) falls. Whenever a problem is
solved, the table of weights associated with the
classes will be adjusted in an attempt to correct
any mistakes in the order operators were tried.

The critical factor here is the classific-
ation of the pair (x, (8,9,R)). One reasonable
approach would be to look at how easy it would be
to apply a: to e (i.e., to get the state into the
domain of the operator), and how much the use of
x would advance s towards g. Suppose we had a
measure Q(y,z) of the 'similarity. of state y to
goal 2, and that this measure took on one of n
possible values. Then the approach would classify
(x,5,9,R)) by examining Q(s, 'x should be applio-

-193-

able’) and Q(x(s).g)* In fact, the simplest such
categorization is used; two operator-problem pairs
fall into the same class iff each of the above
similarities is the same for both pairs.

The next section is an amplification of the
above for the Fortran Deductive System (FDS).3,4,5
For this system it is possible to develop a task-
independent similarity measure, and thus a task-
independent classification scheme.

A More Detailed Look

At this point it becomes necessary to discuss
some details of FDS so that a more complete treat-
ment of the experience-gathering scheme for this
system can be given.

States are represented as trees with a symbol
at each node, where a symbol is a binary or unary
connective, free variable or constant. Each pos-
sible node position on such a tree is numbered as
follows: the root of the tree is numbered 0, and
the right and left successors of node n are num-
bered 2nc+l, 2n+2 respectively. Figure 2 shows two
states with the number of each node in parentheses
beside the symbol**.

Figure 2. Two states.

Goals are represented as strings of condit-
ions, each of which is of the form 'node n should
be the symbol g' or 'the subtree whose root is
node n should be identical to the subtree whose
root is node m'. Each of the above is called a
condition on node n.

*8 may not be in the domain of x. In this case an

estimate of x(s) is used.
**For the examples given in this section, the not-
ation of elementary algebra will be used.

Rewriting rules take the form yi=z, where y
and z are states. A rewriting rule informs the
system that any instance of y can be mapped into
the corresponding instance of z. Each rewriting
rule defines an infinite number of operators of
the form 'use rule number m to rewrite the subtree
whose root is node w' for any non-negative n. The
above operator will be written 0m>n] .

The domain of an operator O0fijj can be des-
cribed by a goal G[ijJ] as illustrated in figure
3. First, a rewriting rule (number t, say) is

Rewriting rule number %

/—‘Q = x(0}
//+< yi{1)
x{E) y(5)

Gosl G{1,2]

node 2 should be the aymbol '-

node & should be the symbol '+',

subtrae whose root 15 node 13 sahould be
identical to subtree whose root 1s node
5.

Operator O[1,2] rewrites the firat atate of
figure 2 to the state

+<
54 a71)

Figure 3. A rule, goal and mapping.

given, then the goal which is satisfied by a state
iff that state lies in the domain of 0fi,2]. The
first state 8 in figure 2 satisfies G[i,2\ the

state 0[i,2)(s) into which 0fi,2] maps 8 is shown.

Let 8 be a state, g a goal. A condition (on
a node rr) in g is satisfied by a if

i. 8 satisfies all conditions in g on nodes
from which node m is descended, and

ii. 8 has the property required by the
condition.

consider the second state of figure 2
and the goal G[i,2] of figure 3. The first con-
dition is satisfied, since there are no conditions
on antecedents of node 2 and the symbol at node 2
is f-'. The second condition is not satisfied,
for although /i above is true, node 6 is not the
symbol '+'. Finally, the third condition is not
satisfied, even though the subtree whose root is
node 13 is identical to the substate whose root is
node 5. Requirement i above is not met, since the
second condition is not satisfied and node 13 is a
descendant of node 6.

For example,

The definition of states, goals and operators
in this section is more restrictive than the cor-
responding concepts presented in the introduction;
within this limited framework we can define a

-194-

reasonable function Q(e;g) to measure the similar-
ity of state s to goal g. Actually, the word
'measure* is too strong; all that is needed for
the purpose of classification is to know whether
Q(ab)) and Q(o,d) are equal, i.e., whether the two
states are equally similar to their respective
goals. Such an indicator is much easier to devel-
op than a true measure.

We could say that gfa,b) and @{e,d} are equal
if
i. goals b and d have the same number of con-
ditions, and

ii, the number of conditions of b satisfied by a
is the same as the number of conditions of d

satisfied by c.

This does not fit the description of similarity
given in the introduction, since there is an in-
finite number of possible values of gfe,g/. Due
to the way FDS is set up, however, goals with more
than five conditions are rare. Taking account of
this, requirement /i is relaxed to allow goals with
similar numbers of conditions to be lumped to-
gether, and ii is changed to specify roughly equal
proportions of conditions satisfied. Let x be the
number of conditions in g, n the number of these
satisfied by s, and y the ratio »nfx. Values 1
through 20 are assigned to Q(s,g} as shown in
table 1. Note that these values are to be used

z ¥y &is,g} r y Qis,g)
¢ 0 1 4,5] 11
1 0 2 4,5 (D,1/41 12
1 1 3 4,5 (1/4,1/2] 13
2 0 4 4,5 (1/2,3/4] 14
2 1/2 s 4,5 1 15
pi 1 6 »5 0 16
3] 7 *’5 (0,1/4] 17
3 1/2 8 >S5S (1/4,1/2] 18
3 2/3 09 5 (1/2,3/4) 19
3 1 10 25 1 20

Table 1. Values of f{s,g5/)

only to establish equal similarity; if Q(ab) is
greater than Q(o,d) it does not follow that a is
more similar to b than ¢ is to d.

Suppose now that the 20X20 classes of
operator-problem pairs are numbered 1 through 400.
Two pairs are to fall in the same class iff their
states are equally similar to the goals of apply-
ing the operators, and the resulting states are
equally similar to the problem goals. Putting
this another way, the operator-problem pair
(O[ijJj (8,9,B)J falls in class

where, if e does not satisfy Gl<,51, OL%,7])(8) is
a synthetic state which looks like the result of
using of[t,j] to rewrite some state. If 0fi,J]
were selected to solve the problem (s,g,R), the
weight assigned to O0fij) would be the weight
associated with the above class. FDS goes one

step further; it uses this weight as a base for
determining a final weight, but the discussion of
this process lies beyond the scope of this paper.

The experience-gathering, then, consists of
adjusting the table T of weights associated with
the classes. When a problem is solved, each step
of the solution is examined to see whether any
operators were tried before the 'correct' one (the
one in the solution). If this is the case, the
weights associated with the classes of the incor-
rect operators are decreased, while the weight as-
sociated with the class of the correct operator is
increased. The adjustment formulae appear in 5.

Two comments ought to be made here. First,
the classification rule uses only the similarity
measure defined above. This, in turn, is defined
in terms of properties shared by all states and
goals in FDS. Thus the classification mechanism
is task-independent, in the sense that it is de-
fined for any problem which can be presented to
FDS. Since FDS is a general-purpose system, this
feature was a critical factor in the design of the
scheme.

The second comment is really a query: given
that the classification is defined for an arbit-
rary problem, is it appropriate? Saying that two
operators in the context of a problem fall in the
same class is asserting that, in this scheme, they
are equally likely to lead to a solution. This is
a strong statement. |If the classification has no
connection with reality, adjusting weights assoc-
iated with classes is unlikely to produce anything
except random behavior. On the other hand, if
significant improvement results then the classif-
ication scheme may represent a useful way to cat-
egorize operators in the context of problems. The
question of the appropriateness of the scheme is
best answered, then, by examining some results of
its use.

Results

The performance of FDS in four task environ-
ments will be summarized. Each of these consists
of an ordered set or block of problems to be sol-
ved in sequence. In about half the cases the
problems are theorems to be proved. A brief des-
cription of the blocks is given below; a complete
definition appears in 5,6, Some of the problems
have been presented to human beings, who find them
non-trivial.3

Block 5 contains fifteen problems in an alge-
bra pertaining to flowchart equivalence developed
by Sanderson.” (The problems are taken from this
thesis.) Initially there are twenty-six rules,
but, as each theorem is proved, it is retained as
a new rewriting rule. Figure 4 shows the given
rules, the theorems, and a sample proof of the
first theorem. For convenience, states are repre-
sented in conventional bracketed notation rather
than as trees.

Block A consists of eighteen theorems of

-195-

Notation: 'S§' is a unary connective, 'I' and
'2' are constants, and all other alphabetic
characters represent free variables. The bin-
ary connectives '+' and /' have ne relatiomn
to the symbols used in arithmetic.

Initial rewriting rules given

1. (atb)+ci=a+{btc) 14, (a/bi+ci=(atc)/ (bte)
2, at{bitc):={atb}+c 15..{a/b)/c:im=a/c

3. I+a:i=a 16. a/c:=(a/b)fc

4, ai=I+a 17, ajf(bfec)=afe

5. at+l:i=a 18. a/c:=a/(b/c)

6. asma+tl 19. S(a):=(a+5(a))/1
7. Z+a:=Z 20, (a+5(a))/1:=S(a)
8. gt+Z:=Z 21, S(a/b):=5(a)

9, Z:iwatZ 22, S{a):=5({a/b)

10, Z:imZ+a 23. S({a)+b/c:=S{akc
11, T/1:=1 24. S(a)+cimS{a)+b/c
12. I:=I/1 25, S(I):=Z/1

13, (a+c)/(btc):=(a/b)+c 26. Z/I:=S(I)

Theor ems
1. afai=a 9. S¢a)/I:=5{a)
2. a:=agfa 10. S(a):=S(a)/1

3. ((a/b)+c)/d:m(atc)/d
4, af{({bfc)rd) :=a/(c+d)
5. (atb)/ci=({a/fd)4+b)/c 13. S{a)}/S(b):=S5{a)
6. a/{(bhc):ma/((d/b)4c) 14. S{a):=S(a)/S(b)
7. 8(2)=2/1 15. 5{(5(a)):=S({a)

B. Z/1:=5(2)

11. S{a)+5(b):=8(a)
12. S{a):=S(a)+5(b)

Proof of first thecrem

ala
r=af (I+a) by Ol4,1]
im(I+a)/{I+a) by O0[4,2]
= {I/I)+a by 0{13,0]
imI+a by 0[11,2}
HT Y by 0[3,0]
Figure 4. Block S5 and a sample solution

elementary algebra concerned with the manipulation
of binary addition and subtraction. There are six
rules given and, as before, each theorem proved is
added to the list of rules.

Block H is composed of twenty-five problems
in lexical pattern recognition in a generalized
form of that found in Ledley?. There are twenty
rules defined throughout.

Block P is a statement of a well-known puz-
zle. A philosopher is walking in a land peopled
exclusively by Goodies (who only tell the truth)
and Baddies (who always say the exact opposite of
the truth). Coming up to two of the residents of
this land, our philosopher asks the way to the
library. One mutters something unintelligible,
and the other says, "He says east. He's a Baddie."
Which way should the philosopher go? In the for-
mulation used there are eight rewriting rules.

For an individual problem, the performance of
FDS will be measured by efficiency, the ratio of

the number of states in the solution to the number
generated while searching for it. If a problem is
solved with 100% efficiency, then there is not
much wrong with the ordering of operators for
trial! For a block, the performance measure will
be the average efficiency on the problems in that
block.

The first set of experiments is designed to
demonstrate that the scheme allows FDS to improve
its performance on a given block of problems.
Successive passes are made through the block, as
follows. Each weight is initialized at 0.5 and
the problems of the block solved in sequence with
the adjustment of weights suppressed; this is cal-
led pass 0, (The average efficiency on pass 0 rep-
resents the performance of FDS with no re-ordering
of selected operators.) Any problems retained as
rules are then forgotten, and pass 71 is made per-
mitting the adjustment of weights. Any rules kept
are again discarded, but the adjusted table of
weights is retained, and pass 2 is made. The
above is repeated until pass 10 is finished.

Since nothing changes between passes except the
table of weights, any improvement must be due to
the ‘'experience' represented by this table.

The results of this set of experiments are
summarized in table 2. Notice that, even with no

pags block block black block

5 A H P
4] 23 28 50 18
1 26 51 71 18
2 50 68 9¢ 77
3 67 70 88 42
4 53 75 90 38
5 57 75 91 42
6 55 BB B8 42
7 36 BB 58 91
8 65 88 91 91
9 67 88 88 91
10 67 88 87 91
Table 2. Average efficiency (%) on passes.

experience, the average efficiency on each block
is quite high. FDS incorporates a powerful algo-
rithm for selecting operators and screening out
useless ones, and the order in which it discovers
operators gives some clue to the order in which
they ought to be tried. The ordering, and hence
the efficiency, still improves significantly on
the series of passes; on pass 10, sixteen of the
eighteen problems of block A are solved with 100%
efficiency. Although only four tasks have been
explored to this length, comparable improvements
have been noted in all the dozen or so tasks pre-
sented to the system.

But the concept of experience is stronger
than this. Solving problems in some area should
allow the system to solve new problems better. In
other words, experience should be transferable
from one set of problems to another set in the

-196-

same task environment. Generally, this turns out
to be the case with this scheme. Consider, for
example, the last five problems of each of the
blocks S, A and H; call them blocks 5', A' and H.
We will compare the average efficiency with which
FDS solves each of these subblocks using two dif-
ferent tables of weights: E, the table of pass O,
and E', that obtained during pass 1 through the
block after all but these problems have been
solved. Note that these tables of weights contain
no experience from any of the problems in the sub-
blocks. Table 3 shows that, for blocks A and #,

experience block 5' block 4’ block H'

E 0.7% 27.0% 50.1%
Ef 0.8% 64.BX 79.5%

Table 3. Within-task transferability

solving all but the last five problems of each
significantly helps the solution of these last
five. For block S the improvement is very slight.
The last five problems of block Sy however, are
different from the preceeding ones (they all have
two S's). In this case, then, a notable improve-
ment was not to be expected. As a further test, a
relatively difficult algebra problem was presented
to FDS. With no experience, the system (on an IBM
7040-7094 DCS) was unable to solve it in an hour.
On the other hand, when the experience from block
A was given to FDS, it found a solution in five
and one half minutes.

Some incomplete experiments have been made to
test whether this form of experience is transfer-
able, not from one set of problems to another
within the same task, but from task to task. It
has been found that this is sometimes useful, but
that in most cases the improvement is insignific-
ant. One interesting point which has emerged from
these experiments is that it is possible to com-
bine tables obtained from several tasks; the re-
sulting synthetic table leads to better per-
formance averaged across all the tasks than any of
the individual tables from which it was formed.

Conclusion

On the basis of the experiments performed
with the scheme, it seems fair to say that it
works. This is encouraging when one considers the
simple-mindedness of the approach. While it could
only benefit from a more powerful measure of simi-
larity, the basic idea of classifying operators in
the context of problems seems to be appropriate.

References

1. Ernst, G. and Newell, A. Generality and GPS.
Technical report, Carnegie Institute of Tech-
nology, January 1967.

-197-

Ledley, R. Programming and Utilizing Digital
Computers. McGraw-Hill, New York, 1962.

Quinlan, J. R. and Hunt, E. B. A formal
deductive problem-solving system. J. ACM 15,
4 (October 1968), pp. 625-646.

and . The Fortran Deductive System.

Behavioral Science, January 1969.

Quinlan, J. R. An experience-gathering
problem-solving system. Technical report
(Ph.D. thesis), Computer Science Group, Univ.
of Washington, May 1968.

Fortran Deductive System: experiments
with two implementations. Technical report,
Computer Science Group, Univ. of Washington,
May 1968.

Sanderson, J. Theory of programming languages.
Ph.D. thesis, Univ. of Adelaide, Australia,
1966.

