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Abstract 
An issue that is critical for the application of 
Markov decision processes (MDPs) to realis­
tic problems is how the complexity of planning 
scales wi th the size of the MDP. In stochas­
tic environments w i th very large or even infi­
nite state spaces, tradit ional planning and re­
inforcement learning algorithms are often in­
applicable, since their running time typically 
scales linearly w i th the state space size In this 
paper we present a new algorithm that, given 
only a generative model (simulator) for an ar­
bitrary MDP, performs near-optimal planning 
with a running t ime that has no dependence on 
the number of states. Although the running 
time is exponential in the horizon time (which 
depends only on the discount factor 7 and the 
desired degree of approximation to the opt i ­
mal policy), our results establish for the first 
time that there are no theoretical barriers to 
computing near-optimal policies in arbitrari ly 
large, unstructured MDPs. 
Our algorithm is based on the idea of sparse 
sampling. We prove that a randomly sampled 
look-ahead tree that covers only a vanishing 
fraction of the fu l l look-ahead tree neverthe­
less suffices to compute near-optimal actions 
from any state of an MDP. Practical imple-
mentations of the algorithm are discussed, and 
we draw ties to our related recent results on 
finding a near-best strategy from a given class 
of strategies in very large partially observable 
MDPs [KMN99]. 

1 In t roduct ion 
In the past decade, Markov decision processes (MDPs) 
and reinforcement learning have become a standard 
framework for planning and learning under uncertainty 
wi thin the artificial intelligence literature. The desire 
to attack problems of increasing complexity wi th this 
formalism has recently led researchers to focus particu­
lar attention on the case of (exponentially or even in-
finitely) large state spaces. A number of interesting 

algorithmic and representational suggestions have been 
made for coping wi th such large MDPs. Function ap-
proximation is a well-studied approach to learn­
ing value functions in large state spaces, and many au­
thors have recently begun to study the properties of 
large MDPs that enjoy compact representations, such as 
MDPs in which the state transition probabilities factor 
into a small number of components [MHK+98]. 

In this paper, we are interested in the problem of com­
puting a near-optimal policy in a large or infinite MDP 
that is given - that is, we are interested in planning. 
It should be clear that as an MDP becomes very large, 
the classical planning assumption that the MDP is given 
explicitly by tables of rewards and transition probabili­
ties becomes infeasible. One approach to this difficulty 
is to assume that the MDP has some special structure 
that permits compact representation (such as the fac­
tored transition probabilities mentioned above), and to 
design special-purpose planning algorithms that exploit 
this structure. 

Here we take a rather different approach. We consider 
a setting in which our planning algorithm is given access 
to a generative model, or simulator, of the MDP. Infor­
mally, this is a "black box" to which we can give any 
state-action pair and receive in return a randomly 
sampled next state and reward from the distributions 
associated wi th Generative models are a natu­
ral way in which a large MDP might be specified, and 
are more general than most structured representations, 
in the sense that many structured representations (such 
as factored models usually provide an effi­
cient way of implementing a generative model. Note also 
that since a generative model provides less information 
than explicit tables of probabilities, but more informa­
tion than a single continuous trajectory of experience 
generated according to some exploration policy, results 
obtained via a generative model blur the distinction be­
tween what is typically called "planning" and "learning" 
in MDPs. 

Our main result is a new algorithm that accesses the 
given generative model to perform near-optimal plan-
Sing in an "on-line" fashion From any given state s, 
the algorithm samples the generative model for many 
different state-action pairs, and uses these samples to 
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compute a near-optimal action from s: The amount of 
t ime required to compute a near-optimal action from 
any particular state s has no dependence on the num-
ber of states in the MDP, even though the next-state 
distributions from s may be very diffuse (that is, have 
large support). The key to our analysis is in showing 
that appropriate sparse sampling suffices to construct 
enough information about the environment near s to 
compute a near-optimal action. The analysis relies on 
a combination of Bellman equation calculations, which 
are standard in reinforcement learning, and uniform con­
vergence arguments, which are standard in supervised 
learning; this combination of techniques was first applied 
in [KS99]. As mentioned, the running time required at 
each state does have an exponential dependence on the 
horizon time, which we show to be unavoidable without 
further assumptions. However, our results leave open the 
possibility of an algorithm that runs in time polynomial 
in the accuracy parameter, which remains an important 
open problem. 

Note that one can view our planning algorithm as sim­
ply implementing a (stochastic) policy — a policy that 
happens to use a generative model as a subroutine. In 
this sense, if we view the generative model as providing 
a "compact" representation of the MDP, our algorithm 
provides a correspondingly "compact" representation of 
a near-optimal policy. We view our result as comple­
mentary to work that proposes and exploits particular 
compact representations of MDPs with both 
lines of work beginning to demonstrate the potential fea­
sibil ity of planning and learning in very large environ­
ments. 

The remainder of this paper is structured as follows: 
In Section 2, we give the formal definitions needed in this 
paper. Section 3 then gives our main result, an algorithm 
for planning in large or infinite MDPs, whose per-state 
running time does not depend on the size of the state 
space. Finally, Section 4 describes related results and 
open problems. 

2 Pre l iminar ies 
We begin with the definition of a Markov decision pro­
cess on a set of states, explicitly allowing the 
possibility of the number of states being (countably or 
uncountably) infinite. 

D e f i n i t i o n 1 A M a r k o v decis ion process M on a 
set of s tates and with act ions consists 
of: 

• T r a n s i t i o n P robab i l i t i es . For each state-action 
pair a next-state distribution that 
specifies the probability of transition to each state 
$' upon execution of action a from state  

♦ R e w a r d D i s t r i b u t i o n s ; For each state-actton pair 
a distribution on real-valued rewards for 

executing action a from state s. We assume rewards 
are bounded in absolute value by  

For simplicity, we shall assume in this paper that al l 
rewards are in fact deterministic — that is, the reward 
distributions have zero variance, and thus the reward 
received for executing a f rom s is always exactly 
However, all of our results have easy generalizations for 
the case of stochastic rewards, wi th an appropriate and 
necessary dependence on the variance of the reward dis-
tributions. 

Throughout the paper, we wil l primarily be interested 
in MDPs with a very large (or even infinite) number of 
states, thus precluding approaches that compute directly 
on the full next-state distributions. Instead, we wi l l as­
sume that our planning algorithms are given M in the 
form of the ability to sample the behavior of M. Thus, 
the model given is simulative rather than explicit. We 
call this ability to sample the behavior of M a generative 
model. 

Def i n i t i on 2 A generat ive m o d e l for a Markov deci­
sion process M is a randomized algorithm that, on input 
of a state-action pair outputs and a state  
where is randomly drawn according to the transition 
probabilities  

We think of a generative model as falling somewhere 
in between being given explicit next-state distributions, 
and being given only "irreversible" experience in the 
MDP (in which the agent follows a single, continuous 
trajectory, with no ability to reset to any desired state). 
On the one hand, a generative model may often be avail­
able when explicit next-state distributions are not; on 
the other, a generative model obviates the important 
issue of exploration that arises in a setting where we 
only have irreversible experience. In this sense, planning 
results using generative models blur the distinction be­
tween what is typically called "planning" and what is 
typically called "learning". 

Following standard terminology, we define a (stochas­
tic) po l icy to be any mapping  
Thus may be a random variable, but depends only 
on the current state s. We wi l l be primarily concerned 
with discounted reinforcement learning l, so we assume 
we are given a number called the d iscount 
factor , with which we then define the value f u n c t i o n 

for any policy  

where is the reward received on the step of exe­
cuting the policy from state s, and the expectation is 
over the transition probabilities and any randomization 
in Note that for any s and any 
where we define 

We also define the Q- func t ion for a given policy as 

(2) 

however, our results can be generalized to the undis-
counted finite-horizon case for any fixed horizon H [MS99a]. 
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(where the notation means that is drawn 
according to the distribution We wil l later de­
scribe an algorithm A that takes as input any state s and 
(stochastically) outputs an action a, and which there-
fore implements a policy. When we have such an al­
gorithm, we will also write and to denote the 
value function and function of the policy implemented 
by Finally, we define the optimal value function 
and the optimal function as and 

and the o p t i m a l pol icy  
for all  

3 Planning in Large or Inf in i te M D P s 
Usually one considers the planning problem in MDPs 
to be that of computing a near-optimal policy, given as 
input the transition probabilities and the rewards 

(for instance, by solving the MDP for the optimal 
policy). Thus, the input is a complete and exact model, 
and the output is a total mapping from states to actions. 
Without additional assumptions about the structure of 
the MDP, such an approach is clearly infeasible in very 
large state spaces, where even reading all of the input 
can take N2 time, and even specifying a general policy 
requires space on the order of N. In such MDPs, a more 
fruitful way of thinking about planning might be an on-
line view, in which we examine the per-state complexity 
of planning. Thus, the input to a planning algorithm 
would be a single state, and the output would be which 
single action to take from that state. In this on-line view, 
a planning algorithm is itself simply a policy (but one 
that may need to perform some nontrivial computation 
at each state). 

Our main result is the description and analysis of an 
algorithm A that, given access to a generative model for 
an arbitrary MDP M, takes any state of M as input and 
produces an action as output, and meets the following 
performance criteria: 

• The policy implemented by A is near-optimal in M; 
• The running time of A (that is, the time required to 

compute an action at any state) has no dependence 
on the number of states of M. 

This result is obtained under the assumption that the 
input state to A requires only space, a standard 
assumption known as the uniform cost model 
that is typically adopted to allow analysis of algorithms 
that operate on real numbers (such as we require to al­
low infinite state spaces). The uniform cost model es­
sentially posits the availability of infinite-precision regis­
ters (and constant-size circuitry for performing the basic 
arithmetic operations on these registers). If one is un­
happy with this model, then algorithm A will suffer a 
dependence on the number of states only equal to the 
space required to name the states for 
N states). 

3 .1 A Sparse S a m p l i n g P l a n n e r 
Here is our main result: 
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T h e o r e m 1 There is a randomized algorithm A that, 
given access to a generative model for any MDP M, takes 
as input any state and any value outputs 
an action, and satisfies the following two conditions: 

.(Efficiency) The running time of A is 
where 

(3) 

(4) 

(5) 
In particular, the running time depends only on 

and does not depend on If 
we view as a constant, the running time bound 
can also be written 

(6) 

• (Near-Optimality) The value function of the 
stochastic policy implemented by A satisfies 

(7) 

simultaneously for all states  

As we have already suggested, it wi l l be helpful to 
think of algorithm A in two different ways. On the one 
hand, A is an algorithm that takes a state as input and 
has access to a generative model, and as such we shall 
be interested in its resource complexity — its running 
time, and the number of calls it needs to make to the 
generative model (both per state input). On the other 
hand, A produces an action as output in response to each 
state given as input, and thus implements a (possibly 
stochastic) policy. 

The proof of Theorem 1 is given in Appendix A, and 
detailed pseudo-code for the algorithm is provided in 
Figure 1. We now give some high-level intui t ion for the 
algorithm and its analysis. 

Given as input a state s,the algorithm must use the 
generative model to find a near-optimal action to per­
form from state s. The basic idea of the algorithm is to 
sample the generative model from states in the "neigh-
borhood'* of $. This allows us to construct a small "sub-

of M such that the optimal action in from 
s is a near-optimal action from s in There wil l be 
no guarantee that wi l l contain enough information 
to compute a good action from any state other than s. 
However, in exchange for this l imited applicability, the 
MDP wil l have a number of states that does not 
depend on the number of states in  

The graphical structure of wi l l be given by a di­
rected tree in which each node is labeled by a state, and 
each directed edge to a child is labeled by an action and 

will not literally be a sub-MDP of M in the sense of 
being strictly embedded in M, due to the variations of ran­
dom sampling. But it will be very "near" such an embedded 
MDP. 



Function:  
Input: depth h, width C, discount A generative model G, state  
Output: A list of estimates of the  

1- If return  

2. For each use to generate samples from the next-state d i s t r i b u t i o n L e t 
Sa be a set containing these next-states.  

3. For each let our estimate of  

Estimate  

4. Return  

Function: Estimate  
Input: depth h, width discount generative model G, state  
Output: A number that is an estimate of  

1. Let := Estimate  
2. Return  

Function: A lgo r i thm  
Input: tolerance discount max reward generative model G, state $0. 
Output: An action  

1. Let the required horizon H and width parameters be calculated as given as functions of 
and in Theorem 1. 

2- Let := Estimate  
3. Return  

Figure 1: Algorithm A for planning in large or infinite state spaces. EstimateV finds the described in the text, and 
EstimateQ finds analogously defined Algorithm A implements the policy. 

a reward. For the sake of simplicity, let us consider only 
the two-action case here, wi th actions and Each 
node wil l have children in which the edge to the child 
is labeled and children in which the edge to the 
child is labeled  

The root node of is labeled by the state of interest 
5, and we generate the children of s in the obvious 
way: we call the generative model times on the state-
action pair to get the -children, and o n t i m e s  
on to get the -children. The edges to these 
children are also labeled by the rewards returned by the 
generative model, and the child nodes themselves are 
labeled by the states returned. We wil l build this 
ary tree to some depth to be determined. Note that 
is essentially a sparse look-ahead tree. 

We can also think of as an MDP in which the start 
state is s, and in which taking an action from a node 
in the tree causes a transition to a (uniformly) random 
child of that node wi th the corresponding action label; 
the childless leaf nodes are considered absorbing states. 
Under this interpretation, we can compute the optimal 
action to take from the root s in Figure 2 shows a 
conceptual picture of this tree for a run of the algorithm 
from an input state s0 , for (C will typically 
be much larger.) From the root we try action  

three times and action three times. From each of the 
resulting states, we also try each action times, and so 
on down to depth H in the tree. Zero values assigned 
to the leaves then correspond to our estimates of  
which are "backed-up" to find estimates of for their 
parents, which are in turn backed-up to their parents, 
and so on, up to the root to find an estimate of  

The central claim we establish about is that its size 
can be independent of the number of states in M, yet 
still result in our choosing near-optimal actions at the 
root. We do this by establishing bounds on the required 
depth H of the tree and the required degree  

Recall that the optimal policy at s is given by 
arg maxa and therefore is completely deter­
mined by, and easily calculated from, Esti­
mating the is a common way of planning in 
MDPs. From the standard duality between functions 
and value functions, the task of estimating -functions 
is very similar to that of estimating value functions. So 
while the algorithm uses the -function, we wil l , purely 
for expository purposes, actually describe here how we 
estimate  

There are two parts to the approximation we use. 
First, rather than estimating we wil l actually es­
timate, for a value of H to be specified later, the /t-step 
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where is the reward received on the i th time step upon 
executing the optimal policy from Moreover, we 
see that the for are recursively given by 

(9) 

where is the action taken by the optimal policy from 
state and The quality of the approxima­
tion in Equation (9) becomes better for larger values of 

and is controllably tight for the largest value 
we eventually choose. One of the main efforts in the 
proof is establishing that the error incurred by the re-
cursive application of this approximation can be made 
controllably small by choosing H sufficiently large. 

Thus, if we are able to obtain an estimate of 
for any we can inductively define an algo-

rithm for finding an estimate by making 
use of Equation (9). Our algorithm will approximate the 
expectation in Equation (9) by a sample of C random 
next states from the generative model, where C is a pa­
rameter to be determined (and which, for reasons that 
will become clear later, we call the "width"). Recur­
sively, given a way of finding the estimator for 
any we find our estimate as follows: 

1. For each action a, use the generative model to get 
and to sample a set of C independently sam­

pled states from the next-state distribution  

2.Use our procedure for finding to estimate 
for each state in any of the sets  

3. Following Equation (9), our estimate of is 
then given by 

(10) 

To complete the description of the algorithm, all that 
remains is to choose the depth H, depth, and C, which 
controls the width of the tree. Bounding the required 
depth H is the easy and standard part. It is not hard 
to see that if we choose depth  
(the so-called c-horizon time), then the discounted sum 
of the rewards that is obtained by considering rewards 
beyond this horizon is bounded by  

The central claim we establish about C is that it can 
be chosen independent of the number of states in M, 
yet still result in choosing near-optimal actions at the 
root. The key to the argument is that even though 
small samples may give very poor approximations to the 
next-state distribution at each state in the tree, they 
wil l , nevertheless, give good estimates of the expectation 

Figure 2: Sparse look-ahead tree of states constructed by the 
algorithm. (Shown with C = 3, actions a1, a2.) 

terms of Equation (9), and that is really all we need. 
For this we apply a careful combination of uniform con­
vergence methods and inductive arguments on the tree 
depth. Again, the technical details of the proof are in 
Appendix A. 

In general, the resulting tree may represent only a van­
ishing fraction of all of the H-step paths starting from 
so that have non-zero probability in the MDP — that 
is, the sparse look-ahead tree covers only a vanishing 
part of the full look-ahead tree. In this sense, our al-
gorithm is clearly related to and inspired by classical 
look-ahead search techniques [RN95]. Our main contri­
bution is in showing that in very large stochastic en-
vironments, clever random sampling suffices to recon­
struct nearly all of the information available in the (ex­
ponentially or infinitely) large full look-ahead tree. Note 
that in the case of deterministic environments, where 
from each state-action pair we can reach only a single 
next state, the sparse and full trees coincide (assuming a 
memoization trick described below), and our algorithm 
reduces to classical deterministic look-ahead search. 

3.2 P r a c t i c a l Issues a n d L o w e r B o u n d s 
Even though the running time of algorithm A does not 
depend on the size of the MDP, it stil l runs in time ex­
ponential in the e-horizon time H, and therefore expo-
nential in It would seem that the algorithm 
would be practical only if is not too close to 1. In a 
moment, we will give a lower bound showing it is not 
possible to do much better without further assumptions 
on the MDP. Nevertheless, there are a couple of sim­
ple tricks that may help to reduce the running time in 
certain cases, and we describe these tricks first 

The first idea is to allow different amounts of sampling 
at each level of the tree. The intuition is that the further 
we are from the root, the less influence our estimates will 
have on the Q-values at the root (due to the discounting). 
Thus, we can sample more sparsely at deeper levels of 
the tree without having too adverse an impact on our 
approximation. 

We have analyzed various schemes for letting the 
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amount of sampling at a node depend on its depth. None 
of the methods we results in a running time 
which is polynomial in However, one specific scheme 
that reduces the running time significantly is to let the 
number of samples per action at depth i be 
where the parameter C now controls the amount of sam­
pling done at the root. The error in the Q-values using 
such a scheme does not increase by much, and the run-
ning t ime is the square root of our original running time. 

Another way in which significant savings might be 
achieved is through the use of memoization in our sub-
routines for calculating the In Figure 2, this 
means that whenever there are two nodes at the same 
level of the tree that correspond to the same state, we 
collapse them into one node (keeping just one of their 
subtrees). While it is straightforward to show the cor-
rectness of such memoization procedures for determin­
istic procedures, one must be careful when addressing 
randomized procedures. We can show that the impor­
tant properties of our algorithm are maintained under 
this optimization. 

In implementing the algorithm, one may wish not to 
specify a targeted accuracy in advance, but rather to 
try to do as well as is possible with the computational re­
sources available. In this case, an "iterative-deepening" 
approach may be taken. This would entail simultane­
ously increasing C and H by decreasing the target e. 
Also, as studied in Davies et. al. [DNM98], if we have 
access to an init ial estimate of the value function, we 
can replace our estimates at the leaves with 
the estimated value function at those states. Though 
we shall not do so here, it is again easy to make for­
mal performance guarantees depending on C, H and the 
supremum error of the value function estimate we are 
using. 

Unfortunately, despite these tricks, it is not difficult 
to prove a lower bound that shows that any planning 
algorithm with access only to a generative model, and 
which implements a policy that is to optimal in a 
general MDP, must have running time at least exponen­
t ial in the e-horizon time. We now describe this lower 
bound. 

T h e o r e m 2 Let A be any algorithm that is given access 
only to a generative model for an MDP M, and inputs 

(a state in M) and Let the stochastic policy imple­
mented by A satisfy 

(11) 
simultaneously for all states Then there ex­
ists an MDP M on which A makes at least  

calls to the generative model. 

Proo f : Let _ Con­
sider a binary tree T of depth H. We use T to define 
an M D P in the following way. The states of the MDP 
are the nodes of the tree. The actions of the MDP are 

When we are in state s and perform an action 
we reach (deterministically) state where is the 
child of s in T. If s is a leaf of T then we move to an 

absorbing state. We choose a random leaf in the tree. 
The reward function for and any action is . and 
the reward at any other state and action is zero. 

Algorithm A is given the root of T. For algorithm 
A to compute a near optimal policy, it has to "f ind" the 
node and therefore has to perform at least calls 
to the generative model. 

4 Summary and Related Work 

We have described an algorithm for near-optimal plan­
ning from a generative model, that has a per-state run­
ning time that does not depend on the size of the state 
space, but which is stil l exponential in the e-horizon 
time. An important open problem is to close the gap 
between our lower and upper bound. Our lower bound 
shows that the number of steps has to grow polyno-
mially in while in the upper bound the number 
of steps grows sub-exponentially in more precisely 

Closing this gap, either by giving an al­
gorithm that would be polynomial in or by proving 
a better lower bound, is an interesting open problem. 

Two interesting directions for improvement are to al­
low partially observable MDPs (POMDPs), and to find 
more efficient algorithms that do not have exponential 
dependence on the horizon time. As a first step to­
wards both of these goals, in a separate paper [KMN99] 
we investigate a framework in which the goal is to use 
a generative model to find a near-best strategy within 
a restricted class of strategies for a POMDP. Typi­
cal examples of such restricted strategy classes include 
limited-memory strategies in POMDPs, or policies in 
large MDPs that implement a linear mapping from state 
vectors to actions. Our main result in this framework 
says that as long as the restricted class of strategies is 
not too "complex" (where this is formalized using ap­
propriate generalizations of standard notions like VC di­
mension from supervised learning), then it is possible to 
find a near-best strategy from within the class, in time 
that again has no dependence on the size of the state 
space. If the restricted class of strategies is smoothly 
parameterized, then this further leads to a number of 
fast, practical algorithms for doing gradient descent to 
find the near-best strategy within the class, where the 
running time of each gradient descent step now has only 
linear rather than exponential dependence on the hori­
zon time. 

Another approach to planning in POMDPs that is 
based on the algorithm presented here is investigated 
by McAUester and Singh who show how the 
approximate belief-state tracking methods of Boyen and 
Roller can be combined with our algorithm. 
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Append ix A: Proof of Theorem 1 
In this appendix, we give the proof of Theorem 1. 
Throughout the analysis we wil l rely on the pseudo-code 
provided for algorithm A given in Figure 1. 

The claim on the running time is immediate from the 
definition of algorithm A. Each call to Est imateQ gen­
erates kC calls to Es t imateV, C calls for each action. 
Each recursive call also reduces the depth parameter h by 
one, so the depth of the recursion is at most H. There-
fore the running time is  

The main effort is in showing that the values of Es t i ­
ma teQ are indeed good estimates of for the chosen 
values of C and H. There are two sources of inaccuracy 
in these estimates. The first is that we use only a finite 

sample to approximate an expectation we draw only 
C states from the next-state distributions. The second 
source of inaccuracy is that in computing Est imateQ, 
we are not actually using the values of but rather 
values returned by Es t imateV, which are themselves 
only estimates. The crucial step in the proof is to show 
that as increases, the overall inaccuracy decreases. 

Let us first define an intermediate random variable 
that wil l capture the inaccuracy due to the limited sam­
pling. Define as follows: 

(12) 

where the s, are drawn according to Note that 
is averaging values of the unknown value 

function. Since is used only for the proof and 
not in the algorithm, there is no problem in defining it 
this way. The next lemma shows that with high proba-
bility, the difference between and is at 
most  

Lemma 3 For any state s and action a, with probability 
at least we have 

where the probability is taken over the draw of the from 

Proof:Note that  
The proof is immediate from the Chernoff bound.  

Now that we have quantified the error due to finite 
sampling, we can bound the error from our using values 
returned by Es t ima teV rather than We bound 
this error as the difference between and Es t i ­
ma teV . In order to make our notation simpler, let 
be the value returned by  
and let be the component in the output of 
Es t imate that corresponds to action a. 
Using this notation, our algorithm computes 

(14) 

where = and  
for every state s and action a. 

We now define a parameter that will eventually 
bound the difference between and We 
define an recursively: 

where = Solving for we obtain 

(15) 

(16) 
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The next lemma bounds the error in the estimation, 
at level by Intuitively, the error due to finite 
sampling contributes while the errors in estimation 
contribute The combined error is but since 
we are discounting, the effective error is only 
which by definition is   
L e m m a 4 With probability at least 

(17) 
we have that 

(18) 
Proo f iThe proof is by induction on n. It clearly holds 
for Now 

(19) 

(21) 
We require that all of the C child estimates be good, 

for each of the actions. This means that the probability 
of a bad estimate increases by a factor of for each 

By Lemma 3 the probability of a single bad estimate 
is bounded by Therefore the probability of 
some bad estimate is bounded by  

From we also see 
that for with probability  

all the final estimates are 
within from the true Q-values. The 
next step is to choose C such that  

wi l l bound the probability of a bad 
estimate during the entire computation. Specifically, 

(22) 

is sufficient to ensure that wi th probability all the 
estimates are accurate. 

At this point we have shown that with high probabil­
ity, algorithm A computes a good estimate of 
for all a, where so is the input state. To complete the 
proof, we need to relate this to the expected value of a 
stochastic policy. We give a fairly general result about 
MDPs, which does not depend on our specific algorithm. 
(A similar result appears in  
L e m m a 5 Assume that Tj is a stochastic policy, so that 

is a random variable. If for each state s, the proba­
bility that is at least 
then the discounted infinite horizon return of is at most 

from the optimal return, i.e., for 
any state  

Proo f : Since we assume that the rewards are bounded 
by it implies that the expected return of at each 
state s is at least 

Now we show that if has the property that at 
each state the difference between and 

is at most then 
(A similar result was proved by Singh and Yee 
for the case that each action chosen has  

It is easy to extend their proof to handle 
the case here, and we sketch a proof only for complete-
ness.) 

The assumption on the values immediately implies 
Consider a policy 

that executes for the first steps and then 
executes We can show by induction on that for 
every state s, This implies 
that  

By setting the lemma follows.  
Now we can combine all the lemmas to prove our main 

theorem. 
P r o o f of Theo rem 1: As discussed before, the run­
ning time is immediate from the algorithm, and the main 
work is showing that we compute a near-optimal policy. 
By Lemma 4 we have that the error in the estimation of 

is at most with probability 
Using the values we chose for C and H we have that 
with probability the error is at most  
By Lemma 5 this implies that such a policy has the 
property that from every state  

(25) 

Substituting back the values of and  
that we had chosen, it follows that 

(26) 

D 
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(23) 
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