
A Sparse Sampling A lgor i thm for Near-Opt imal
Planning in Large Markov Decision Processes

Michael Kearns Yishay Mansour
AT&T Labs AT&T Labs and Tel-Aviv University

Andrew Y , Ng
UC Berkeley

Abstract
An issue that is critical for the application of
Markov decision processes (MDPs) to realis­
tic problems is how the complexity of planning
scales wi th the size of the MDP. In stochas­
tic environments w i th very large or even infi­
nite state spaces, tradit ional planning and re­
inforcement learning algorithms are often in­
applicable, since their running time typically
scales linearly w i th the state space size In this
paper we present a new algorithm that, given
only a generative model (simulator) for an ar­
bitrary MDP, performs near-optimal planning
with a running t ime that has no dependence on
the number of states. Although the running
time is exponential in the horizon time (which
depends only on the discount factor 7 and the
desired degree of approximation to the opt i ­
mal policy), our results establish for the first
time that there are no theoretical barriers to
computing near-optimal policies in arbitrari ly
large, unstructured MDPs.
Our algorithm is based on the idea of sparse
sampling. We prove that a randomly sampled
look-ahead tree that covers only a vanishing
fraction of the fu l l look-ahead tree neverthe­
less suffices to compute near-optimal actions
from any state of an MDP. Practical imple-
mentations of the algorithm are discussed, and
we draw ties to our related recent results on
finding a near-best strategy from a given class
of strategies in very large partially observable
MDPs [KMN99].

1 In t roduct ion
In the past decade, Markov decision processes (MDPs)
and reinforcement learning have become a standard
framework for planning and learning under uncertainty
wi thin the artificial intelligence literature. The desire
to attack problems of increasing complexity wi th this
formalism has recently led researchers to focus particu­
lar attention on the case of (exponentially or even in-
finitely) large state spaces. A number of interesting

algorithmic and representational suggestions have been
made for coping wi th such large MDPs. Function ap-
proximation is a well-studied approach to learn­
ing value functions in large state spaces, and many au­
thors have recently begun to study the properties of
large MDPs that enjoy compact representations, such as
MDPs in which the state transition probabilities factor
into a small number of components [MHK+98].

In this paper, we are interested in the problem of com­
puting a near-optimal policy in a large or infinite MDP
that is given - that is, we are interested in planning.
It should be clear that as an MDP becomes very large,
the classical planning assumption that the MDP is given
explicitly by tables of rewards and transition probabili­
ties becomes infeasible. One approach to this difficulty
is to assume that the MDP has some special structure
that permits compact representation (such as the fac­
tored transition probabilities mentioned above), and to
design special-purpose planning algorithms that exploit
this structure.

Here we take a rather different approach. We consider
a setting in which our planning algorithm is given access
to a generative model, or simulator, of the MDP. Infor­
mally, this is a "black box" to which we can give any
state-action pair and receive in return a randomly
sampled next state and reward from the distributions
associated wi th Generative models are a natu­
ral way in which a large MDP might be specified, and
are more general than most structured representations,
in the sense that many structured representations (such
as factored models usually provide an effi­
cient way of implementing a generative model. Note also
that since a generative model provides less information
than explicit tables of probabilities, but more informa­
tion than a single continuous trajectory of experience
generated according to some exploration policy, results
obtained via a generative model blur the distinction be­
tween what is typically called "planning" and "learning"
in MDPs.

Our main result is a new algorithm that accesses the
given generative model to perform near-optimal plan-
Sing in an "on-line" fashion From any given state s,
the algorithm samples the generative model for many
different state-action pairs, and uses these samples to

1324 UNCERTAINTY AND PROBABILISTIC REASONING

compute a near-optimal action from s: The amount of
t ime required to compute a near-optimal action from
any particular state s has no dependence on the num-
ber of states in the MDP, even though the next-state
distributions from s may be very diffuse (that is, have
large support). The key to our analysis is in showing
that appropriate sparse sampling suffices to construct
enough information about the environment near s to
compute a near-optimal action. The analysis relies on
a combination of Bellman equation calculations, which
are standard in reinforcement learning, and uniform con­
vergence arguments, which are standard in supervised
learning; this combination of techniques was first applied
in [KS99]. As mentioned, the running time required at
each state does have an exponential dependence on the
horizon time, which we show to be unavoidable without
further assumptions. However, our results leave open the
possibility of an algorithm that runs in time polynomial
in the accuracy parameter, which remains an important
open problem.

Note that one can view our planning algorithm as sim­
ply implementing a (stochastic) policy — a policy that
happens to use a generative model as a subroutine. In
this sense, if we view the generative model as providing
a "compact" representation of the MDP, our algorithm
provides a correspondingly "compact" representation of
a near-optimal policy. We view our result as comple­
mentary to work that proposes and exploits particular
compact representations of MDPs with both
lines of work beginning to demonstrate the potential fea­
sibil ity of planning and learning in very large environ­
ments.

The remainder of this paper is structured as follows:
In Section 2, we give the formal definitions needed in this
paper. Section 3 then gives our main result, an algorithm
for planning in large or infinite MDPs, whose per-state
running time does not depend on the size of the state
space. Finally, Section 4 describes related results and
open problems.

2 Pre l iminar ies
We begin with the definition of a Markov decision pro­
cess on a set of states, explicitly allowing the
possibility of the number of states being (countably or
uncountably) infinite.

D e f i n i t i o n 1 A M a r k o v decis ion process M on a
set of s tates and with act ions consists
of:

• T r a n s i t i o n P robab i l i t i es . For each state-action
pair a next-state distribution that
specifies the probability of transition to each state
$' upon execution of action a from state

♦ R e w a r d D i s t r i b u t i o n s ; For each state-actton pair
a distribution on real-valued rewards for

executing action a from state s. We assume rewards
are bounded in absolute value by

For simplicity, we shall assume in this paper that al l
rewards are in fact deterministic — that is, the reward
distributions have zero variance, and thus the reward
received for executing a f rom s is always exactly
However, all of our results have easy generalizations for
the case of stochastic rewards, wi th an appropriate and
necessary dependence on the variance of the reward dis-
tributions.

Throughout the paper, we wil l primarily be interested
in MDPs with a very large (or even infinite) number of
states, thus precluding approaches that compute directly
on the full next-state distributions. Instead, we wi l l as­
sume that our planning algorithms are given M in the
form of the ability to sample the behavior of M. Thus,
the model given is simulative rather than explicit. We
call this ability to sample the behavior of M a generative
model.

Def i n i t i on 2 A generat ive m o d e l for a Markov deci­
sion process M is a randomized algorithm that, on input
of a state-action pair outputs and a state
where is randomly drawn according to the transition
probabilities

We think of a generative model as falling somewhere
in between being given explicit next-state distributions,
and being given only "irreversible" experience in the
MDP (in which the agent follows a single, continuous
trajectory, with no ability to reset to any desired state).
On the one hand, a generative model may often be avail­
able when explicit next-state distributions are not; on
the other, a generative model obviates the important
issue of exploration that arises in a setting where we
only have irreversible experience. In this sense, planning
results using generative models blur the distinction be­
tween what is typically called "planning" and what is
typically called "learning".

Following standard terminology, we define a (stochas­
tic) po l icy to be any mapping
Thus may be a random variable, but depends only
on the current state s. We wi l l be primarily concerned
with discounted reinforcement learning l, so we assume
we are given a number called the d iscount
factor , with which we then define the value f u n c t i o n

for any policy

where is the reward received on the step of exe­
cuting the policy from state s, and the expectation is
over the transition probabilities and any randomization
in Note that for any s and any
where we define

We also define the Q- func t ion for a given policy as

(2)

however, our results can be generalized to the undis-
counted finite-horizon case for any fixed horizon H [MS99a].

KEARNS, MANSOUR, AND NG 1325

(where the notation means that is drawn
according to the distribution We wil l later de­
scribe an algorithm A that takes as input any state s and
(stochastically) outputs an action a, and which there-
fore implements a policy. When we have such an al­
gorithm, we will also write and to denote the
value function and function of the policy implemented
by Finally, we define the optimal value function
and the optimal function as and

and the o p t i m a l pol icy
for all

3 Planning in Large or Inf in i te M D P s
Usually one considers the planning problem in MDPs
to be that of computing a near-optimal policy, given as
input the transition probabilities and the rewards

(for instance, by solving the MDP for the optimal
policy). Thus, the input is a complete and exact model,
and the output is a total mapping from states to actions.
Without additional assumptions about the structure of
the MDP, such an approach is clearly infeasible in very
large state spaces, where even reading all of the input
can take N2 time, and even specifying a general policy
requires space on the order of N. In such MDPs, a more
fruitful way of thinking about planning might be an on-
line view, in which we examine the per-state complexity
of planning. Thus, the input to a planning algorithm
would be a single state, and the output would be which
single action to take from that state. In this on-line view,
a planning algorithm is itself simply a policy (but one
that may need to perform some nontrivial computation
at each state).

Our main result is the description and analysis of an
algorithm A that, given access to a generative model for
an arbitrary MDP M, takes any state of M as input and
produces an action as output, and meets the following
performance criteria:

• The policy implemented by A is near-optimal in M;
• The running time of A (that is, the time required to

compute an action at any state) has no dependence
on the number of states of M.

This result is obtained under the assumption that the
input state to A requires only space, a standard
assumption known as the uniform cost model
that is typically adopted to allow analysis of algorithms
that operate on real numbers (such as we require to al­
low infinite state spaces). The uniform cost model es­
sentially posits the availability of infinite-precision regis­
ters (and constant-size circuitry for performing the basic
arithmetic operations on these registers). If one is un­
happy with this model, then algorithm A will suffer a
dependence on the number of states only equal to the
space required to name the states for
N states).

3 .1 A Sparse S a m p l i n g P l a n n e r
Here is our main result:

1326 UNCERTAINTY AND PROBABILISTIC REASONING

T h e o r e m 1 There is a randomized algorithm A that,
given access to a generative model for any MDP M, takes
as input any state and any value outputs
an action, and satisfies the following two conditions:

.(Efficiency) The running time of A is
where

(3)

(4)

(5)
In particular, the running time depends only on

and does not depend on If
we view as a constant, the running time bound
can also be written

(6)

• (Near-Optimality) The value function of the
stochastic policy implemented by A satisfies

(7)

simultaneously for all states

As we have already suggested, it wi l l be helpful to
think of algorithm A in two different ways. On the one
hand, A is an algorithm that takes a state as input and
has access to a generative model, and as such we shall
be interested in its resource complexity — its running
time, and the number of calls it needs to make to the
generative model (both per state input). On the other
hand, A produces an action as output in response to each
state given as input, and thus implements a (possibly
stochastic) policy.

The proof of Theorem 1 is given in Appendix A, and
detailed pseudo-code for the algorithm is provided in
Figure 1. We now give some high-level intui t ion for the
algorithm and its analysis.

Given as input a state s,the algorithm must use the
generative model to find a near-optimal action to per­
form from state s. The basic idea of the algorithm is to
sample the generative model from states in the "neigh-
borhood'* of $. This allows us to construct a small "sub-

of M such that the optimal action in from
s is a near-optimal action from s in There wil l be
no guarantee that wi l l contain enough information
to compute a good action from any state other than s.
However, in exchange for this l imited applicability, the
MDP wil l have a number of states that does not
depend on the number of states in

The graphical structure of wi l l be given by a di­
rected tree in which each node is labeled by a state, and
each directed edge to a child is labeled by an action and

will not literally be a sub-MDP of M in the sense of
being strictly embedded in M, due to the variations of ran­
dom sampling. But it will be very "near" such an embedded
MDP.

Function:
Input: depth h, width C, discount A generative model G, state
Output: A list of estimates of the

1- If return

2. For each use to generate samples from the next-state d i s t r i b u t i o n L e t
Sa be a set containing these next-states.

3. For each let our estimate of

Estimate

4. Return

Function: Estimate
Input: depth h, width discount generative model G, state
Output: A number that is an estimate of

1. Let := Estimate
2. Return

Function: A lgo r i thm
Input: tolerance discount max reward generative model G, state $0.
Output: An action

1. Let the required horizon H and width parameters be calculated as given as functions of
and in Theorem 1.

2- Let := Estimate
3. Return

Figure 1: Algorithm A for planning in large or infinite state spaces. EstimateV finds the described in the text, and
EstimateQ finds analogously defined Algorithm A implements the policy.

a reward. For the sake of simplicity, let us consider only
the two-action case here, wi th actions and Each
node wil l have children in which the edge to the child
is labeled and children in which the edge to the
child is labeled

The root node of is labeled by the state of interest
5, and we generate the children of s in the obvious
way: we call the generative model times on the state-
action pair to get the -children, and o n t i m e s
on to get the -children. The edges to these
children are also labeled by the rewards returned by the
generative model, and the child nodes themselves are
labeled by the states returned. We wil l build this
ary tree to some depth to be determined. Note that
is essentially a sparse look-ahead tree.

We can also think of as an MDP in which the start
state is s, and in which taking an action from a node
in the tree causes a transition to a (uniformly) random
child of that node wi th the corresponding action label;
the childless leaf nodes are considered absorbing states.
Under this interpretation, we can compute the optimal
action to take from the root s in Figure 2 shows a
conceptual picture of this tree for a run of the algorithm
from an input state s0 , for (C will typically
be much larger.) From the root we try action

three times and action three times. From each of the
resulting states, we also try each action times, and so
on down to depth H in the tree. Zero values assigned
to the leaves then correspond to our estimates of
which are "backed-up" to find estimates of for their
parents, which are in turn backed-up to their parents,
and so on, up to the root to find an estimate of

The central claim we establish about is that its size
can be independent of the number of states in M, yet
still result in our choosing near-optimal actions at the
root. We do this by establishing bounds on the required
depth H of the tree and the required degree

Recall that the optimal policy at s is given by
arg maxa and therefore is completely deter­
mined by, and easily calculated from, Esti­
mating the is a common way of planning in
MDPs. From the standard duality between functions
and value functions, the task of estimating -functions
is very similar to that of estimating value functions. So
while the algorithm uses the -function, we wil l , purely
for expository purposes, actually describe here how we
estimate

There are two parts to the approximation we use.
First, rather than estimating we wil l actually es­
timate, for a value of H to be specified later, the /t-step

KEARNS, MANSOUR, AND NG 13Z7

where is the reward received on the i th time step upon
executing the optimal policy from Moreover, we
see that the for are recursively given by

(9)

where is the action taken by the optimal policy from
state and The quality of the approxima­
tion in Equation (9) becomes better for larger values of

and is controllably tight for the largest value
we eventually choose. One of the main efforts in the
proof is establishing that the error incurred by the re-
cursive application of this approximation can be made
controllably small by choosing H sufficiently large.

Thus, if we are able to obtain an estimate of
for any we can inductively define an algo-

rithm for finding an estimate by making
use of Equation (9). Our algorithm will approximate the
expectation in Equation (9) by a sample of C random
next states from the generative model, where C is a pa­
rameter to be determined (and which, for reasons that
will become clear later, we call the "width"). Recur­
sively, given a way of finding the estimator for
any we find our estimate as follows:

1. For each action a, use the generative model to get
and to sample a set of C independently sam­

pled states from the next-state distribution

2.Use our procedure for finding to estimate
for each state in any of the sets

3. Following Equation (9), our estimate of is
then given by

(10)

To complete the description of the algorithm, all that
remains is to choose the depth H, depth, and C, which
controls the width of the tree. Bounding the required
depth H is the easy and standard part. It is not hard
to see that if we choose depth
(the so-called c-horizon time), then the discounted sum
of the rewards that is obtained by considering rewards
beyond this horizon is bounded by

The central claim we establish about C is that it can
be chosen independent of the number of states in M,
yet still result in choosing near-optimal actions at the
root. The key to the argument is that even though
small samples may give very poor approximations to the
next-state distribution at each state in the tree, they
wil l , nevertheless, give good estimates of the expectation

Figure 2: Sparse look-ahead tree of states constructed by the
algorithm. (Shown with C = 3, actions a1, a2.)

terms of Equation (9), and that is really all we need.
For this we apply a careful combination of uniform con­
vergence methods and inductive arguments on the tree
depth. Again, the technical details of the proof are in
Appendix A.

In general, the resulting tree may represent only a van­
ishing fraction of all of the H-step paths starting from
so that have non-zero probability in the MDP — that
is, the sparse look-ahead tree covers only a vanishing
part of the full look-ahead tree. In this sense, our al-
gorithm is clearly related to and inspired by classical
look-ahead search techniques [RN95]. Our main contri­
bution is in showing that in very large stochastic en-
vironments, clever random sampling suffices to recon­
struct nearly all of the information available in the (ex­
ponentially or infinitely) large full look-ahead tree. Note
that in the case of deterministic environments, where
from each state-action pair we can reach only a single
next state, the sparse and full trees coincide (assuming a
memoization trick described below), and our algorithm
reduces to classical deterministic look-ahead search.

3.2 P r a c t i c a l Issues a n d L o w e r B o u n d s
Even though the running time of algorithm A does not
depend on the size of the MDP, it stil l runs in time ex­
ponential in the e-horizon time H, and therefore expo-
nential in It would seem that the algorithm
would be practical only if is not too close to 1. In a
moment, we will give a lower bound showing it is not
possible to do much better without further assumptions
on the MDP. Nevertheless, there are a couple of sim­
ple tricks that may help to reduce the running time in
certain cases, and we describe these tricks first

The first idea is to allow different amounts of sampling
at each level of the tree. The intuition is that the further
we are from the root, the less influence our estimates will
have on the Q-values at the root (due to the discounting).
Thus, we can sample more sparsely at deeper levels of
the tree without having too adverse an impact on our
approximation.

We have analyzed various schemes for letting the

1328 UNCERTAINTY AND PROBABILISTIC REASONING

expected discounted reward, for

(8)

amount of sampling at a node depend on its depth. None
of the methods we results in a running time
which is polynomial in However, one specific scheme
that reduces the running time significantly is to let the
number of samples per action at depth i be
where the parameter C now controls the amount of sam­
pling done at the root. The error in the Q-values using
such a scheme does not increase by much, and the run-
ning t ime is the square root of our original running time.

Another way in which significant savings might be
achieved is through the use of memoization in our sub-
routines for calculating the In Figure 2, this
means that whenever there are two nodes at the same
level of the tree that correspond to the same state, we
collapse them into one node (keeping just one of their
subtrees). While it is straightforward to show the cor-
rectness of such memoization procedures for determin­
istic procedures, one must be careful when addressing
randomized procedures. We can show that the impor­
tant properties of our algorithm are maintained under
this optimization.

In implementing the algorithm, one may wish not to
specify a targeted accuracy in advance, but rather to
try to do as well as is possible with the computational re­
sources available. In this case, an "iterative-deepening"
approach may be taken. This would entail simultane­
ously increasing C and H by decreasing the target e.
Also, as studied in Davies et. al. [DNM98], if we have
access to an init ial estimate of the value function, we
can replace our estimates at the leaves with
the estimated value function at those states. Though
we shall not do so here, it is again easy to make for­
mal performance guarantees depending on C, H and the
supremum error of the value function estimate we are
using.

Unfortunately, despite these tricks, it is not difficult
to prove a lower bound that shows that any planning
algorithm with access only to a generative model, and
which implements a policy that is to optimal in a
general MDP, must have running time at least exponen­
t ial in the e-horizon time. We now describe this lower
bound.

T h e o r e m 2 Let A be any algorithm that is given access
only to a generative model for an MDP M, and inputs

(a state in M) and Let the stochastic policy imple­
mented by A satisfy

(11)
simultaneously for all states Then there ex­
ists an MDP M on which A makes at least

calls to the generative model.

Proo f : Let _ Con­
sider a binary tree T of depth H. We use T to define
an M D P in the following way. The states of the MDP
are the nodes of the tree. The actions of the MDP are

When we are in state s and perform an action
we reach (deterministically) state where is the
child of s in T. If s is a leaf of T then we move to an

absorbing state. We choose a random leaf in the tree.
The reward function for and any action is . and
the reward at any other state and action is zero.

Algorithm A is given the root of T. For algorithm
A to compute a near optimal policy, it has to "f ind" the
node and therefore has to perform at least calls
to the generative model.

4 Summary and Related Work

We have described an algorithm for near-optimal plan­
ning from a generative model, that has a per-state run­
ning time that does not depend on the size of the state
space, but which is stil l exponential in the e-horizon
time. An important open problem is to close the gap
between our lower and upper bound. Our lower bound
shows that the number of steps has to grow polyno-
mially in while in the upper bound the number
of steps grows sub-exponentially in more precisely

Closing this gap, either by giving an al­
gorithm that would be polynomial in or by proving
a better lower bound, is an interesting open problem.

Two interesting directions for improvement are to al­
low partially observable MDPs (POMDPs), and to find
more efficient algorithms that do not have exponential
dependence on the horizon time. As a first step to­
wards both of these goals, in a separate paper [KMN99]
we investigate a framework in which the goal is to use
a generative model to find a near-best strategy within
a restricted class of strategies for a POMDP. Typi­
cal examples of such restricted strategy classes include
limited-memory strategies in POMDPs, or policies in
large MDPs that implement a linear mapping from state
vectors to actions. Our main result in this framework
says that as long as the restricted class of strategies is
not too "complex" (where this is formalized using ap­
propriate generalizations of standard notions like VC di­
mension from supervised learning), then it is possible to
find a near-best strategy from within the class, in time
that again has no dependence on the size of the state
space. If the restricted class of strategies is smoothly
parameterized, then this further leads to a number of
fast, practical algorithms for doing gradient descent to
find the near-best strategy within the class, where the
running time of each gradient descent step now has only
linear rather than exponential dependence on the hori­
zon time.

Another approach to planning in POMDPs that is
based on the algorithm presented here is investigated
by McAUester and Singh who show how the
approximate belief-state tracking methods of Boyen and
Roller can be combined with our algorithm.

Acknowledgements

We thank David McAUester, Satinder Singh and Rich
Sutton for many enlightening discussions and numerous
insights on the ideas presented here.

KEARNS, MANSOUR, AND N-G 1329

References
A.V. Aho, J.E. Hopcroft, and J.D. Ullman.
The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, 1974.
X. Boyen and D. Koller. Tractable infer­
ence for complex stochastic processes. In
Proceedings of the 1998 Conference on Un-
certainty in Artificial Intelligence. Morgan
Kauffmann, 1998.

Scott Davies, Andrew Y. Ng, and Andrew
Moore. Applying online-search to reinforce-
ment learning. In Proceedings of AAAI-98,
pages 753-760. AAAI Press, 1998.
M. Kearns, Y. Mansour, and Andrew Y. Ng.
Approximate planning in large POMDPs via
reusable trajectories. 1999. Preprint.
Michael Kearns and Satinder Singh. Finite-
sample convergence rates for Q-learning and
indirect algorithms. In Neural Information
Processing Systems 12. MIT Press, 1999.
N. Meuleau, M. Hauskrecht, K-E. Kim,
L. Peshkin, L.P. Kaelbling, T. Dean, and
C. Boutilier. Solving very large weakly cou-
pled Markov decision processes. In Proceed-
ings of AAAIr pages 165-172, 1998.
D. McAllester and S. Singh. 1999. Personal
Communication.

D. McAllester and S. Singh. Approximate
planning for factored POMDPs using belief
state simplification. 1999. Preprint.
S. Russell and P. Norvig. Artificial Intelli­
gence — A Modern Approach. Prentice Hall,
1995.
Richard S. Sutton and Andrew G. Barto. Re­
inforcement Learning. M IT Press, 1998.

Satinder Singh and Richard Yee. An up­
per bound on the loss from approximate
optimal-value functions. Machine Learning,
16:227-233, 1994.

Append ix A: Proof of Theorem 1
In this appendix, we give the proof of Theorem 1.
Throughout the analysis we wil l rely on the pseudo-code
provided for algorithm A given in Figure 1.

The claim on the running time is immediate from the
definition of algorithm A. Each call to Est imateQ gen­
erates kC calls to Es t imateV, C calls for each action.
Each recursive call also reduces the depth parameter h by
one, so the depth of the recursion is at most H. There-
fore the running time is

The main effort is in showing that the values of Es t i ­
ma teQ are indeed good estimates of for the chosen
values of C and H. There are two sources of inaccuracy
in these estimates. The first is that we use only a finite

sample to approximate an expectation we draw only
C states from the next-state distributions. The second
source of inaccuracy is that in computing Est imateQ,
we are not actually using the values of but rather
values returned by Es t imateV, which are themselves
only estimates. The crucial step in the proof is to show
that as increases, the overall inaccuracy decreases.

Let us first define an intermediate random variable
that wil l capture the inaccuracy due to the limited sam­
pling. Define as follows:

(12)

where the s, are drawn according to Note that
is averaging values of the unknown value

function. Since is used only for the proof and
not in the algorithm, there is no problem in defining it
this way. The next lemma shows that with high proba-
bility, the difference between and is at
most

Lemma 3 For any state s and action a, with probability
at least we have

where the probability is taken over the draw of the from

Proof:Note that
The proof is immediate from the Chernoff bound.

Now that we have quantified the error due to finite
sampling, we can bound the error from our using values
returned by Es t ima teV rather than We bound
this error as the difference between and Es t i ­
ma teV . In order to make our notation simpler, let
be the value returned by
and let be the component in the output of
Es t imate that corresponds to action a.
Using this notation, our algorithm computes

(14)

where = and
for every state s and action a.

We now define a parameter that will eventually
bound the difference between and We
define an recursively:

where = Solving for we obtain

(15)

(16)

1330 UNCERTAINTY AND PROBABILISTIC REASONING

The next lemma bounds the error in the estimation,
at level by Intuitively, the error due to finite
sampling contributes while the errors in estimation
contribute The combined error is but since
we are discounting, the effective error is only
which by definition is
L e m m a 4 With probability at least

(17)
we have that

(18)
Proo f iThe proof is by induction on n. It clearly holds
for Now

(19)

(21)
We require that all of the C child estimates be good,

for each of the actions. This means that the probability
of a bad estimate increases by a factor of for each

By Lemma 3 the probability of a single bad estimate
is bounded by Therefore the probability of
some bad estimate is bounded by

From we also see
that for with probability

all the final estimates are
within from the true Q-values. The
next step is to choose C such that

wi l l bound the probability of a bad
estimate during the entire computation. Specifically,

(22)

is sufficient to ensure that wi th probability all the
estimates are accurate.

At this point we have shown that with high probabil­
ity, algorithm A computes a good estimate of
for all a, where so is the input state. To complete the
proof, we need to relate this to the expected value of a
stochastic policy. We give a fairly general result about
MDPs, which does not depend on our specific algorithm.
(A similar result appears in
L e m m a 5 Assume that Tj is a stochastic policy, so that

is a random variable. If for each state s, the proba­
bility that is at least
then the discounted infinite horizon return of is at most

from the optimal return, i.e., for
any state

Proo f : Since we assume that the rewards are bounded
by it implies that the expected return of at each
state s is at least

Now we show that if has the property that at
each state the difference between and

is at most then
(A similar result was proved by Singh and Yee
for the case that each action chosen has

It is easy to extend their proof to handle
the case here, and we sketch a proof only for complete-
ness.)

The assumption on the values immediately implies
Consider a policy

that executes for the first steps and then
executes We can show by induction on that for
every state s, This implies
that

By setting the lemma follows.
Now we can combine all the lemmas to prove our main

theorem.
P r o o f of Theo rem 1: As discussed before, the run­
ning time is immediate from the algorithm, and the main
work is showing that we compute a near-optimal policy.
By Lemma 4 we have that the error in the estimation of

is at most with probability
Using the values we chose for C and H we have that
with probability the error is at most
By Lemma 5 this implies that such a policy has the
property that from every state

(25)

Substituting back the values of and
that we had chosen, it follows that

(26)

D

KEARNS, MANSOUR, AND NG 1331

(20)

(23)
(24)

