
A SHELL FOR INTELLIGENT HELP S Y S T E M S

Joost Breuker, Radboud Winkels, Jacobijn Sand berg
University of Amsterdam

Herengracht 196
Department of Social Science Informatics 1016 BS Amsterdam

ABSTRACT

The research reported here is part of a project aimed
at the construction of an environment for building intelligent
help systems. A help system supports the user in handling
and mastering an information processing system. Core of
this environment is a shell that contains all domain
independent procedures and knowledge. A comprehensive
help system not only answers questions of users, but also
'looks over their shoulders* and interrupts when appropriate.
This means that a help system is equipped with a
PERFORMANCE INTERPRETER, consisting of a PLAN
RECOGNISER, a DIAGNOSER, and a QUESTION
INTERPRETER. Part of this shell and focus of this paper
is a generic COACH. In a help system a COACH has two
functions: to assist the user with a current problem and
to teach the user about the IPS. The proposed COACH
consists of three layers: 1) A DIDACTIC GOAL
GENERATOR which generates an overlay of domain
concepts that may be taught, 2) STRATEGY PLANNER
which constructs coaching strategies, and 3) TACTICS which
are the terminal elements of strategies. They are the speech
acts finally "uttered" by the COACH. In this paper these
three layers are discussed in greater detail and are related
to empirical research.

I INTRODUCTION

The research reported here is part of the EUROHELP
project. *) This project is aimed at the construction of an
environment for building intelligent help systems. A
comprehensive help system supports the user both in an
active and in passive way in handling and mastering a
particular 'information processing system' (IPS, i.e. an
interactive computer program). Core of this environment is
a shell that contains all domain independent procedures and
knowledge. The major task of a developer of a help system
for some specific IPS will be to load the shell with a
representation of the domain concepts (commands, syntax,
methods of object reference, etc). This shell is under
construction now; specifications have been written and a
prototype help system (EUROHELP.P0) for Unix-Mail has
been developed and tested (Breuker, in press).
Implementation is in LOOPS on a Xerox 1186. In this paper
we will focus on the construction of a generic COACH that
is part of this shell, after a short description of what a
full help system consists of.

•) The research is partially funded by the ESPRIT Program of the
European community under contract P280. The project encompasses an
effort of about 100 man-years over a 6 year period, of which 2 years
have been spent now. Partners in the project are: CRI, DDC (Denmark),
ICL, University of Leeds (U.K.), University of Amsterdam, Courseware
Europe (The Netherlands).

II FUNCTIONS AND STRUCTURE OF HELP SYSTEMS

The function of a help system is to provide
information about the use of some IPS when needed by
any type of user. The need can be expressed by the user
or be inferred by the help system. This means that a help
system should have the role of a human coach, who looks
over the shoulder of the user to interpret her performance,
interrupts when things go wrong or when there is an
opportunity to extend the repertoire of the user, and who
is able to answer questions in the context of current use
of the IPS. The latter is crucial, because many users -in
particular novice users- are not aware of a problem, and
if they are, they do not know how to describe it (Fischer
et al., 1985). This is one important reason why
question-answering help systems, which do not interpret user
performance, have a very limited functionality (e.g. UC
(Wilensky et al., 1984; AQUA (Quillici et al., 1986)). On
line monitoring the performance of the user entails many
conceptual and computational problems, but these are not
qualitatively different from those in intelligent coaching in
general (e.g. Sleeman & Brown, 1981; Anderson et al. 1985;
Self, in press).

A. Architecture of the EUROHELP shell

Because user needs may either be identified by the
system or by the user, EUROHELP consists of a QUESTION
INTERPRETER and a PERFORMANCE INTERPRETER.
To circumvent the problem of interpreting questions in
natural language (Lehnert, 1978; Wilensky, et al., 1984)
question frames are used. For each type of question
(Lehnert, 1978; Hartley & Smith, in press) a text frame
is presented for which the user supplies the objects.

The question interpretation problem may be reduced
by relying on the linguistic competence of the user, the
performance interpretation problem presents itself in its full
glory. In normal coaching (training) the system presents a
problem to the student. However, in IPS performance the
user poses the problems (tasks) to herself. Finding out
whether something goes wrong is highly dependent on
identifying the intentions of the user. Therefore, the
PERFORMANCE INTERPRETER contains a PLAN
RECOGNISER and a PLANNER, which cooperate in such
a way that the former works bottom-up and provides
constraints to the latter in generating currently feasible plans.
Plans may not only be wrong or impossible, they may be
highly inefficient. In almost any editor, for example, a line
can be deleted by a simple command rather than character
by character.

Breuker, Winkels, and Sandberg 167

The tracing of errors is simplified to some extent by
the fact that many erroneous actions of the user are not
executable by the IPS. However, the variety of executable
errors is as complicated as in any 'natural' domain, because
users may acquire all kinds of misconceptions, ranging from
wrong models of the underlying Virtual machine' to not
knowing about a side effect of some command. Although
generative diagnosis of misconceptions by systematic
perturbations of correct domain knowledge is certainly
beyond the current state of the art for domains of any
complexity (cf Clancey, in press), the identification of errors
and underlying misconceptions by the DIAGNOSER is
reasonably constrained on one hand by the current goal of
the user and a detailed USER MODEL. *) Because IPS task
performance consists of many fine grained steps very
detailed (interpreted) information on the current state of
knowledge of the user can easily be obtained. Figure 1
presents a global overview of the architecture of
EUROHELP. In the next section we will discuss the COACH
into more detail.

fig 2-1: Architecture of EUROHELP.
III A GENERIC CQACHINO SYSTEM

In a help system a COACH has two functions: to assist
the user with a current problem and to teach the user about
the IPS. These two functions support one another: correct
performance facilitates learning; knowledge about the IPS
enables (better) performance. However, the scope of these
functions is different. Learning goals are long term goals,
while the 'HELP' function is a very local one. Therefore

we distinguish 'global needs', i.e. the knowledge to be
acquired about a particular IPS (see 3.1.), and local needs,
which state the current problem of the user (for more details
see 3.2). Whenever a local need can be related to a global
need, i.e. the user is supposed to be able to learn from
the information presented, the COACH should teach;
otherwise it simply presents the required information
(HELP).

Presenting information consists of a sequence of
'speech acts' or tactics. This sequence is the result of a
planning process that takes into account what to say when
and how, given the identified problem of the user (i.e. the
local need). This is what a 'teaching strategy' is about
Current intelligent teaching systems (ITS) contain more or
less fixed, prewired teaching strategies (e.g. Sleeman &
Brown, 1982; Self, in press). In the EUROHELP.PO -a help
system for Unix-Mail- coaching strategies were also
prewired in the form of fixed frames in which topics (what
to say) could be inserted. However, the large variety of
potential local needs requires a more generative approach.
As literature (e.g. Ohlsson, in press) and empirical data (see
section 4) show: there are no fixed coaching strategies. They
are flexibly generated as a function of the current problem
and state of knowledge of the user.

The structure of the COACH consists of the following
three layers, which are similar to those proposed by Woolf
& McDonald (1984), but with much more functional
differentiation.

DIDACTIC GOAL GENERATOR. Didactic goals are overlays
of domain concepts that provide a didactic view of the
domain; they form the hidden curriculum of a help
system and are similar to 'genetic graphs* (Goldstein
1982) (see section 3.1)

STRATEGY PLANNER. The second layer contains a planner
that constructs the coaching strategies, and will be
discussed in section 3.2.

TACTICS. The third layer contains the tactics, and is a
data structure. Tactics are the terminal elements of
strategies. They are 'speech acts', consisting of a
communication act, which embeds a proposition about
the 'topic of discourse'. In other words: the 'how'
embeds the 'what', e.g. "To give you an example (2dd
deletes 2 lines from the current cursor position)". In
actual discourse, the communication act is often deleted.
A major distinction can be made for tactics which have
propositions that contain domain knowledge, and those
that refer to the process of communication itself (e.g.
questions like: Did you understand what I just
explained). Because the 'what' and the 'how1 are strongly
related tactics can be typed both by their communication
act, and by their goal, i.e. the kind of change of state
of knowledge they try to induce in the user's mind.
This goal is dependent on the state of knowledge of
the user (e.g. known, unknown), the type of knowledge
(operational or support domain knowledge (see Clancey,
1983), communication context), and the type of object
within this knowledge (concept, relation, history, state,
etc.). Currently, we have distinguished 23 goals for
tactics (Winkels et a!., 1986; see also section 4).

*) If the PLAN RECOGNISER is not able to eatablith the currant
goal, multiple hypothetet about mitconceptiont can often be ruled out
by atking the uter about what the intendt to accomplith

A. Didactic Goal Generation

A didactic goal refers to a domain concept, or to parts

168 COGNITIVE MODELING

of a concept, if it is a complex one -e.g. a model of how
the buffers of an editor function-. Like a genetic graph,
didactic goals are related. However, they are not, as in a
genetic graph (Goldstein, 1982) some substitute for the
domain representation, but only indicate the didactic
principle that underlies learning a new concept, given the
fact that another concept is already mastered. These relations
are based on principles of (machine) learning, and specify
'least effort* knowledge and skill acquisition trajectories
through the domain representation. The Didactic Goals do
not have to be specified by the developer of a help system
for a particular domain, but are derived from the Domain
Representation (and the User Model (see below)) by the
DIDACTIC GOAL GENERATOR. In principle, the
DIDACTIC GOAL GENERATOR matches pairs of concepts
and derives from their differences whether it fits one of
the didactic relations. This is an exhaustive costly process,
but for all relations except one (abstraction-concretion) the
various networks can be generated completely once the
domain representation is specified. The following relations
are identified:

Generalisation-specification The more general a concept the
larger its applicability and the less attributes it has.
Therefore, ordering concepts (e.g. commands) according
to whether one is a further specification of the other
provides an optimisation of learning and of scope of
applicability, these relations are generated on the basis
of variabilisation, is_a and part_of hierarchies,
disjunction/conjunction of attributes, etc.

Inversion Many actions in an IPS have an inverse, which
can be derived from the highest layer of the Domain
Representation, which contains all generic actions for
a specific domain. Most inversion relations are very
local, i.e. only between pairs of concepts.

Divergence-Convergence Because objects in an IPS may have
different sizes of 'grain' (e.g. character vs file in an
editor) from the point of view of efficient performance
(and not of learning) it is more profitable to acquire
first skills that handle 'large size' and 'small size'
objects, than starting at some medium size. This relation
can conflict with the generalisation-specification
relation, but initially this relation has priority (ceteris
paribus; see below).

Analogy Because EUROHELP has means to map an
'Information System Metaphor' (ISM) onto the domain
representation, the mapping relations (analogies) can be
used for didactic purposes. The discussion of the ISM
is beyond the scope of this paper.

Abstraction-concretion When certain commands are
reasonably well practiced by the user explaining
underlying objects and models helps to induce a
coherent model of the IPS. On the other hand, new
abstract concepts are well explained by pointing to their
concrete manifestations, the inverse of this relation
represents an important didactic principle as well. It
is beyond the scope of this paper to describe in detail
how this relation is dependent on distinguishing
operational from support knowledge (Clancey, 1983).
Because commands may share objects, and because the
transition from concrete to abstract is also dependent
on the *shared* skill with respect to an object, this
relation can only be generated dynamically for each user
per session.

Because the Didactic Goals are interrelated in multiple
ways, conflicts may arise regarding which expansions, i.e.
instructing a new concept, should be presented. Therefore,
a 'strategic* layer is specified which contains rules for
establishing priorities. Currently, an experimental prototype
of the DGG is under construction: functional specifications
have been written.

B. The Planning of Coaching Strategy's.

Once the current problem of the user, the local need
has been identified it will be sent to the COACH. Three
types of local needs, corresponding to the three functions
of coaching are distinguished:

error: when a user issues a non-executable command
or performs in a way diagnosed as not intended or
non optimal,

occasion for expansion: when the performance of the
user provides an occasion to introduce a new concept
(a DIDACTIC GOAL, see previous section),

lack of feedback: when the feedback of the IPS is
assumed to be insufficient for a user.

Type of local need coaching function

error remediate
occasion for expansion expand
lack of feedback provide feedback

Besides the performance, a question can, in
combination with performance, lead to one of the three local
nseds.

The local need also contains the immediate cause (i.e.
the thing that triggered it, see above) and a diagnosis of
the specific lack of knowledge or misconception that
explains the local need. This diagnosis thereby provides
the topic(s) of the local need and gives already some
information about the state of knowledge the user has
concerning this topic (from the USER MODEL).

An example of a local need for the Vi domain,
representing the fact that a user does not know she used
a certain command, is:
local_need(error(executable, seHousness(moderate), -> TYPE

tperformance_history(tp])])f -> IMMEDIATE CAUSE
tdiagno8ls(lack_ofJcnowledge, •> DIAGNOSIS
topic(concept(p),
support(unknown), operational(unknown),
[attribute(main_effect(p)]))J,
certainty(certain)).

In case the local need is for example of type error,
the immediate cause will refer to what the error is, and
the diagnosis will denote the knowledge that is needed to
avoid the error in the future. In the example above, the
user accidently executes an unknown command (p), which
results in putting back in the text the last piece of text
that has been deleted. The topic provided by the diagnosis

Breuker, Winkels, and Sandberg 169

is the concept of p. The user should be made aware of
the main effect of p.

The first decision the Coach has to make, is whether
to provide pure help or to coach. If the topic of the local
need is expandable from the (assumed) current knowledge
of the user, in fact, if it is part of the current DIDACTIC
GOALS, real coaching is in order. If not, one can assume
that the user will not be able to retain the new information
and the Coach will decide to provide help, which in this
view is a stripped version of coaching.

Next the STRATEGY PLANNER will choose a
top-level strategy to tackle this local need. Top-level
strategies are: Remedial, Expansion and State Feedback.
There is no fundamental difference between top-level
strategies and substrategies: The strategy first picked is the
top-level one. In fact, the same strategy can be a substrategy
later on. For instance, many remedials imply an expansion
of the knowledge of a user.

At this point a potentially recursive cycle of strategy
selection and strategy refinement starts. The top-level
strategies point to sets of prestored skeletal strategies (cf.
Friedland and Iwasaki's notion of "skeletal plans" - Friedlnnd
e.a., 1985) These skeletal strategies consist of sequences of
substrategies and depending on whether the Help version
is wanted or not, they are shallow or not.

Such a set of strategies consists of very general and
very specific ones. The general ones are not immediately
applicable. They need further refinement to accommodate
the current situation. Specific strategies are applicable as
they are but require a matching current situation. If the
current situation does not match one of the available,
specific strategies, a general one will be chosen.

After a plan has been selected, the refinement process
starts. Every substrategy will be refined until it maps
directly to a tactic, the terminal element that 'can be
executed right away*. It may sometimes turn out to be
necessary to consult other modules of the IHS, like e.g. the
PERFORMANCE PLANNER to construct a plan to achieve
some goal (e.g. a repair to undo a current state) or the
USER MODEL to find out if a topic is known or not.

Refinement of substrategies is in principle guided by
heuristics. Sometimes, however, refinement may be done by
another cycle of plan selection, after which of course further
refinement has to be done. This can be the case when
strategies are inserted, of which also sets of plans exist.
For example, a repair substrategy may be inserted in a
general remedial plan, and a refinement of that repair may
consist of selecting some special repair plan.

An example of a heuristic refinement rule is:

IF error(executeble) & error(seriou8nes8(high))
THEN insert_next_to(strategy(repair), strategy(context))

which means that after the context-strategy, which for
instance explains the immediate cause of an error, a repair
strategy is inserted. A repair strategy consists of a plan to
undo the effects of an executable error. In case the error
is a serious one, the user may worry about this undoing,
so this information is provided rather early; in case the error
is not a very serious one, such a repair strategy is better
delayed until the user has a full understanding of the
(immediate) cause of the error.

170 COGNITIVE MODELING

Ultimately we will thus have a complex structure with
tactics as terminal elements. There may be a lot of
redundancy or inefficient use of tactics (or their
propositions), so some pruning will have to take place. The
resulting TACTIC STRUCTURE will then be fed through
the UTTERANCE GENERATOR. The tactic structure
represents the major pragmatic issues; the Utterance
Generator supplies additional pragmatic, text-semantic,
syntactic and lexical processing.

For now the process of output generation consists of
filling slots in textframes which are associated with the
tactics. Figure 2 gives a general overview of the Strategy
Planner as discussed. A summary of the processing of the
COACH is presented in Figure 1.

input process output

layer 1: Domain Representation--> DGG > DIDACTIC GOALS

User Model |
layer 2: (Planner, etc) |

v v
Local Need--> STRATEGY PLANNER > User Model update

/
/

layer 3: TACTICS |-> STRUCTURE OF TACTICS

v
Utterance Generator

Figure 2: Input, output and processing of the COACH
(components of the COACH are in CAPITALS)

1. An example

For a simple example we will take the local need as
presented above. Given the fact that the topic of the local
need is unknown, HELP is in order and because the local
need type is 'error', the REMEDIAL strategy is chosen. We
will assume there is no specific plan for this situation, so
the most general one will be selected.

The top-level strategy then, looks like this:

[rtmedial,[announc«m«nt,cont«xt,n«w_inform»tion,coniolidation,evaluation)]

Of these substrategies, the "context" and the "new
information" are the most important ones. The first is for
establishing a context for the second, the new information.
This context can be found in the immediate cause of the
local need, the new information can be found in the
diagnosis and besides that in the Domain Representation and
the Didactic Goals. Figure 3 shows the refinement of this
remedial strategy. The protocol describing the refinement
presents information on the local need, and how this
information is used in the refinement process. The protocol
ends by specifying the tactic structure. The text generated
is what the COACH would say in the present situation.

Fig. 3 Protocol of planning a remedial

Protocol EUROHELP Strategy Planner - Version 1.0

Where does the local need come from:
1) diagnoser
2) file
Enter your choice:2.
Please enter the filename: ln6.
OK. The local need is:
local_need(error(executable, seriousness(moderate)),

[performance_history([p])],
[diafnosis(lack_of_knowledge, topic(concept(p),
support (unknown), operational(unknown),
[main_effect(p)]))],
certainty (certain)).

»> picking the top-level strategy...
>» checking the Didactic Goals
«< assuming concept(p) is not part of didactic goals (operational/support)
>» consulting the Performance Planner for a plan to undo [p]
<« plan([crsr_up, dd])
>» consulting the User Model for crsr_up (operational/support).
<<< known(weak)/known(weak)
>» consulting the User Model for dd (operational/support).
<« known(weak)/unknown

rented i al (local__need6)
clarify

announcement
drawing__attention

(interruption(proposition22)]
context

clarification(perf_hist6)
[instantiation(proposition2S)j

new_information
describe(topicll)

describe_support(topicl 1)
informationl(topicll)

[description(proposition24)]
describe__operation al (topic 11)

concretion(topic 11)
(operationalisation(proposition25)]

state__feedback
describe_state__change(topic 11)

check__assumption
[elicitation(proposition26)]

repair
describe(topicl2)

information2(topicl2)
(direction(topicl2)]

May I have your attention please.
You just did (p] , that is what went wrong.
"p" is put buffer in text.
Practically "p" means what you deleted last will be inserted in the text
Is this you intention?
|: no.
To undo do (crsr_up, dd].

2. The current state of affairs

At the moment a prototype of the Coach as described
above exists in Prolog, in the near future an Interlisp version
will be constructed with some extra features. One obvious
necessity is the possibility to postpone part of a strategy,
because EUROHELP will have to be concise. Experience

with the EUROHELP.P0 and our experiments has taught
us users of IPSs do not want to be told too much at one
time, otherwise they ignore the information and get on with
their work.

IV THE TUTOR EXPERIMENT

In order to evaluate the structure of the COACH as
specified before, an on-line help-experiment has been
conducted (Winkels, et al., 1986). The structure of the Coach
reflects a theory of how tutors will respond to user's needs
in handling and learning about an IPS. The experiment is
meant to find out whether the tactics proposed are indeed
present and sufficient. Besides the identification of tactics
per se the clustering of tactics into standard patterns is of
importance, for such patterns reflect underlying strategies.
Empirical information regarding the existence of such
clusters would provide support for the PLANNING OF
COACHING STRATEGIES as proposed before.

The domain chosen for this investigation is the domain
of text-editing, i.e. Unix Vi because of the concepts
involved are fairly complex and efficient performance calls
for more or less elaborate planning. Therefore, such a
domain provides a rich context for collecting information
on how a HELP-system could function as an aid in handling
and learning about an IPS.

A. Experimental procedure

In the experiment we tried to mimic the prospective
HELP-system as closely as possible. This implies that tutors
should not be able to interpret the text the user is working
on, because a HELP-system would neither be able to
interpret the meaning of a text. Text interpretation is
prevented by presenting the tutors with a scrambled version
of the text the user is processing.

The Vi-user, and the tutor are in separate rooms. Such
separation first forces them to communicate via a terminal
and secondly provides an opportunity to think aloud during
task performance. Both tutor and user are provided with
two terminals, one for communication and one for
Vi-processing. A record is kept of both the ongoing dialogue
(communication protocol) and the processing of Vi
(Vi-protocol), and stored for later usage. The users, seven
in all, were novices in varying degree. The different tutors
participating in the experiment were all very experienced
users of Vi.

The users who participated in the experiment were
presented with a set of tasks representative of editing tasks:
insert a piece of text, interchange two words, move a piece
of text, delete a piece of text, replace a word, etc. Before
the first session started, all users were provided with a short
instruction, explaining basic-commands. These commands
were selected in such a way that all tasks presented could
be performed, but not in a very efficient manner. This
provided the participating tutors with ample opportunity to
take the initiative and provide help or instruction
(expansions). The tutors were instructed to interrupt
whenever they thought appropriate. Both user and tutor
were asked to think aloud during experimental sessions. In
this way, three different types of data have been collected:

1) communication-protocol
2) record of the Vi-performance
3) thinking-aloud-protocols

Breuker, Winkels, and Sandberg 171

B. Results

The first part of the data analysis to be described
here was solely concerned with the identification of "tactics".
The main source of data for this analysis is provided by
the communication-protocol containing all tutorial actions.
To code the communication-protocols in terms of tactics,
all protocols were partitioned into episodes, and within each
episode into speech acts. Following this partitioning, each
and every speech act has been coded as a particular tactic.
The next figure presents an example of a part of a coded
communication protocol.

Tutor/User dialogue Type Object type Goal

"tutor" "2120" "18"

As a consequence of the i instantiat. p«rf. clarification
command you gave, history
you are back in insert mode, instantiat. actual state context ref.
that means all you type operationalisation concept concretion
in will actually be
inserted in the text.

"tutor" "2204" "26"

You cannot wipe out a new limitation concept distinction
line (return), by delete or x.
But you can join two direction implication information
lines again into one
line by moving the cursor
to the upper line and
then giving the J command.
Thus try an arrow up direction implication information
and J.

It should be capital J. direction implication remind.

"tutor" "245r "2"

Excellent. evaluation perf. hist. motivation

Fig A: An example of a coded protocol

Apart from coding the communication-protocols in
terms of different tactics, clusters of tactics, reflecting a
particular strategy have been identified. Indeed, there appear
to exist frequent clusters, reflecting underlying strategies,
such as typical REMEDIALS and EXPANSIONS. As has
been suggested earlier tactics belonging to a cluster are
frequently left out by the tutors for reasons of conciseness
and efficiency. The output generated by the human tutors
has been compared with the output generated by the
implemented COACH, fed with local needs derived from
the log-files. It turned out that in general, the
tactic-structure generated by the COACH matched the
structure generated by the human tutors quite well.
Although, the human tutors are much more fluent in their
expression, the COACH is more explicit in announcing
interruptions and in referring to the performance history,
stating for instance: "You iust did x. that is what went
wrong". Sometimes this kind of reference is called for, but
in other cases the user is quite aware of what she did,
and there is no need to remind her.

The thinking-aloud-protocols of the tutors contain
additional information on the importance and the nature of
planning in tutoring. The protocols provide evidence for a
two-stage model; first interpretation of the user's local need,
and secondly planning how to transfer the needed
information, exactly as has been proposed in a top-down
fashion for the planning of the coaching strategies.
Especially the last stage poses a problem to the tutors. They
do know what they would like to transfer, but need to
consider how the information has to be transferred. They
construct a sequence of tactics by explicitly planning: "I want
to explain this, but first I need to get this across". Even
when tutors eventually generate a sequence of tactics that
occurs more often, the thinking-aloud protocols indicate that
such a sequence is not prestored in memory but has to be
constructed anew.

The data obtained within the experiment, both the
communication-protocols and the thinking-aloud-protocols
support the model for the planning of coaching strategies;
basic frames do exist as identified clusters, tactics may and
will be deleted. Tutoring does not just mean executing a
prewired plan, but means adjusting skeletal plans to current
circumstances on the basis of planning. Such planning is
evidenced by the difficulties tutors expressed: "I should not
have told this now, I just forgot to tell him", "I just tell
her what to do, but she will not understand it", "well I
hope this is clear, I am afraid I am telling too much". The
tactical clusters identified are themes with variations, the
latter reflecting the flexibility induced by the planning
process, phrased by tutors on how to convey particular
information, and by the recurring clusters of tactics. In other
words tactical clusters are themes with variations, the latter
reflecting the flexibility in the planning.

V CONCLUDING REMARKS

The research described in this paper reflects a
methodology which combines and integrates a top-down and
a bottom-up approach for the construction of Intelligent
Help Systems. Existing ideas on the functionality of the
COACH provided a framework for a top-down analysis of
COACHING strategies which resulted in the construction
of a PROTOTYPICAL STRATEGY PLANNER. The
complementing bottom-up approach consisted of gathering
empirical data, identifying tactics and clusters of tactics.

Both approaches combined, present a detailed picture
of the nature of COACHING strategies. The methodology
represents a powerful research tool. First, it provides means
to gather and analyse data from different sources. Secondly,
it allows for interaction between different levels of analysis.
For example, tactics identified in the bottom-up analysis
were used by the PROTOTYPICAL STRATEGY PLANNER
in the top-down construction of strategies.

Apart from the above methodological considerations,
the major research result concerns the nature of coaching
strategies. One might easily assume there exist a number
of prewired strategies that only need to be retrieved from
long term memory when appropriate. But this does not seem
to be the case. Human tutors tend to build strategies when
confronted with a particular situation. They may be guided
by a general strategy, like: "I need to correct this
misconception". But how this misconception is corrected is
planned on the spot.

172 COGNITIVE MODELING

If we want our coaching system to be as flexible in 16
the use of strategies as human tutors turn out to be, we
need a STRATEGY PLANNER instead of prewired, fixed
strategies. The STRATEGY PLANNER as presented here,
seems to satisfy the goal of flexibility in that it is capable
of generating the same sort of tactic structures as our human 17
tutors.

REFERENCES

1 Anderson, J. R., Boyle, C.F. A Yost, G. (1985). The
geometry tutor. Proceedings of the. 2lh International
Conference OJI Artificial Intelligence, Los Altos,
Kaufmann, (pp. 1-7).

2 Brachman, R.J. (1978) A structural paradigm for
representing knowledge. Boston, BBN-Report 3605.

3 Breuker, J.A., (in press). Coaching in Help Systems. To
be published in: J. Self (ed).

4 Baaren, J. van der, (1986). Diagnostic modelling in
intelligent HELP systems. COE/EUROHELP/020.
Courseware Europe BV, Purmerend (the Netherlands).

5 Clancey, W.J. (1983). The epistemology of a rule based
system -a framework for explanation. Artificial
Intelligence. 20, pp 215-251.

6 Clancey, W.J. (in press). Qualitative User Models.

7 Duursma, C, Maas, S. & Romeyn, T. (1986). A next
step towards an epistemological description of an IPS.
Report COE/EUROHELP/016. Courseware Europe BV,
Purmerend (the Netherlands).

8 Fischer, G., Lemke, G. & Schwab, T. (1985).
Knowledge-based help systems. CHF85 Proceedings, pp
161-167.

9 Friedland, P.E., & Iwasaki, Y., (1985). The concept and
implementation of skeletal plans. Journal of Automated
Reasoning. I, 161-208.

10 Goldstein, LP. (1982). The genetic graph: a
representation for the evolution of procedural
knowledge. In: Sleeman, D. & Brown, J.S. (eds), (1982).

11 Hartley, R. A Smith, M.J. (in press). Experiences in
explanation giving in the EUROHELP Project. In: Self
(in press).

12 Lehnert, w (1978). IM pjsfifisi ol question answering.;
a computer simulation ol cognition. Hillsdale, N J :
Erlbaum.

13 Moran, T.P. (1981). The command language grammar:
a representation for the user interface of interactive
computer systems. International Journal of
Man-Machine Studies, 15, 3-50.

14 Norman. D., (1983). Some observations on mental
models. In: D. Gentner & A. Stevens (eds): Mental
Models. Hillsdale NJ: Erlbaum Associates.

15 Ohlsson, S., (in press). Some principles of intelligent
tutoring. University of Pittsburgh. To appear in
Instructional Science-

Quillici, A.E., Dyer, M.G. & Flowers, M. (1986).
AQUA, an intelligent UNIX advisor. Proceedings of THE
llh European Conference on Artificial Intelligence, Vol
I I , pp 33-38.

Self, J. (ed) (in press). Intelligent Computer-Aided
Instruction. London: Chapman & Hall.

18 Sleeman, D. & Brown, J.S. (eds) (1982). Intelligent
TutorinR SYStema. New York: Academic Press.

19 Wilensky, R., Arens, Y. & Chin, D. (1984). Talking
to UNIX in English: an overview of UC,
Communications of the ACM, 27

20 Winkels, R.G.F., Sandberg, J.A.C. A Breuker, J.A.
(1986). Coaching strategies and tactics of IHSs.
Deliverable 2.2.2, UAM/EUROHELP/06. University of
Amsterdam.

21 Woolf, B. & McDonald, D.D., (1984) Context dependent
transitions in tutoring discourse. Proceedings oj* AAAI
1984. Los Altos, Kaufmann.

Breuker, Winkels, and Sandberg 173

