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Abstract 
We present a semantics for interpreting prob­
abilistic statements expressed in a first-order 
quantifier-free language. We show how this se­
mantics places constraints on the probabilities 
which can be associated with such statements. 
We then consider its use in the area of story un­
derstanding. We show that for at least simple 
models of stories (equivalent to the script/plan 
models) there arc ways to specify reasonably 
good probabilities. Lastly, we show that while 
the semantics dictates seemingly implausibly 
low prior probabilities for equality statements, 
once they are conditioned by an assumption 
of spatio-temporal locality of observation the 
probabilities become "reasonable." 

1 Int roduct ion 
In this paper we present a semantics for quantifier-free 
first-order formulas as used in probabilistic statements. 
Quite often when using probabilities one wants to talk 
about the probability of a proposition being true. In 
texts, such as Pearl's [1988], the propositions are taken 
to be random variables, i.e. functions whose values are 
either 1 or 0, taken to mean true and false. It is assumed 
no further interpretation is needed. Nilsson's "proba­
bilistic logic" [1986] gives more interpretation, but it is 
restricted to propositional logic, and as we will see, does 
not solve the problems which motivated this paper. The 
rest of this introduction wil l lay out what these problems 
are. 

We arc interested in the use of probability theory to 
help with problems in natural language understanding 
(NLU) [Charniak and Goldman, 1988, Goldman and 
Charniak, 1988]. For the purposes of this paper, we sim­
plify the problem by considering only written, exposi­
tory text describing events and objects in the real world. 
Modal verbs, such as "want" or "w i l l " are not allowed.1 

This allows us to view the language user as a transducer. 

*This work has been supported in part by the Na­
tional Science Foundation under grants 1ST 8416034 and 1ST 
8515005 and Office of Naval Research under grant N00014-
79-C-0529. 

Because of the limitations of our semantics, we also ex­
clude statements about groups of objects. 

(tree-cover b2) 

Figure 1: Ambiguity of "bark" 

The language user observes some thing (event or object), 
and translates this thing into language. Our task is to 
reason from the language to the intentions of the lan­
guage user and thence to the thing described. 

This paper will not attempt to justify the use of proba­
bility theory for this task other than to say that language 
comprehension is naturally viewed as an "abduction" 
problem [Hobbs et a/., 1988], and probabilities seem a 
good way to represent the uncertainty which arises in 
abduction. 

To take a particular NLU problem, consider word-
sense disambiguation, but now in a probabilistic light. 
Figure 1 shows a Bayesian network designed to capture 
(part of) the situation when an author uses an ambigu­
ous word like "bark." We have chosen to display our 
probability distributions using Bayesian networks be­
cause of the convenient way they summarize dependen­
cies. However, nothing in our semantics depends on this 
choice. The nodes in a Bayesian network correspond to 
random variables, and the arcs indicate direct probabilis­
tic influences. We have adopted here a convention, to be 
used throughout the paper, of using bold face for enti­
ties in the world, and predicates on them, and italics for 
words and predicates on them. So (dog-noise b2) says 
that the entity b2 is the noise that a dog makes, while 
(bark wl) says that wl is a token of the English word 
"bark." Also, we consistently use a "lisp-like" syntax for 
logical expressions. 

In this diagram, wl is an instance of the word "bark," 
and b2 is a token representing the denotation of wl. 
Looking at, the top-leftmost node, its connection to the 
bottom node is designed to capture an influence on the 
decision to use wl, a token of the word "bark." In this 
case the influence is that an author is likely to use the 
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word "bark" if the object she wishes to refer to is of the 
type d o g - n o i s e . If the ent i ty she wanted to talk about 
were a radish, she obviously would not have used the 
word "bark . " 

Ideally we would have here a probabil ist ic description 
of word-choice in English, but the nice th ing about prob­
abil istic models is that even very incomplete models can 
do some good, and here we have reduced the problem of 
word choice to that of matching the kind of object to the 
words. At any rate, given this formal ism we calculate the 
probabi l i ty that the word means, say, dog -no i se using 
Bayes' Theorem. 

(a) The set of al l words, W. 
(b) The set of al l ind iv idual things, T. ' T h i n g ' is 

defined as per the isa hierarchy: events, objects, 
persons, concepts, etc. 

2. We define the overall sample space, 

3. Constants represent the outcomes of tr ials. For ex­
ample, in Figure 1, wl and b2 are random variables 
w i th values f rom W and T, respectively. 

4. Functions of ar i ty n are functions For 
example, r o p e - o f is a funct ion which maps hanging 
events to the ropes used in them ( i f there is one) 
and is arbi t rary otherwise. ( "A rb i t ra ry " here simply 
means that there is no correlation between the type 
of the argument of the funct ion and the type of its 
value. If c4 is a potato, its rope might be anything 
f rom a graduation ceremony to a l ight bulb.) 

5. A predicate Pn is a funct ion The 
predication ( d o g - n o i s e b2 ) in Figure 1 (where b2 
is the referent of w1) denotes the proposit ion that 
the word "bark" denotes a dog-noise. 

6. The Boolean operators, o r , and , and no t allow us 
to compose predicates, in the customary way. For­
mal ly boolean operators are functions f rom predi­
cates, or pairs of predicates, to predicates. 

2.3 W h e r e d o t h e n u m b e r s c o m e f r o m ? 

For our simple axiomat izat ion of the domain of story 
comprehension, we need a specific set of probabil i t ies. 
Our axiomatizat ion uses a conventional frame-based 
knowledge representation language wi th an isa-hierarchy. 
Slots, sub-acts, and roles in frames are represented by 
functions (e.g., the patient of a get act ion, g l , is repre­
sented as ( p a t i e n t g l ) ) . The relations of interest be­
tween entities are represented by equality statements. 
For example, in order to represent that a going action 
(g2) is part of a plan to go shopping at a supermarket 
( p l a n l ) , we wri te ( go - s t ep p l a n l ) = g2 . The only 
predications we require specify the types of objects (e.g., 
( r o p e r l ) ) , or syntactic relations between words (e.g., 
(object wl w2)). Entit ies in T are described by using 
words in W which denote an object of the correct type. 
We assume that each open class word in W describes an 
entity in T as in Figure 1, where wl describes b 2 . 

2.3.1 P r i o r s 
We require prior probabil i t ies for propositions that an 

entity is of a given type. In this section we give a pr in­
cipled way of gett ing these priors f rom our isa-hierarchy 
and show that this method wi l l provide consistent prob­
abilit ies. 

Our isa-hierarchy can be taken as a Bayesian network. 
Pearl [1988] shows that it is possible to assign a consis­
tent probabi l i ty d is t r ibut ion to any Bayesian network. 
We can direct the edges either from the leaves of the isa-
hierarchy, or f rom the root. Given such a network, we 
can efficiently compute a prior for any type. 

Note that each enti ty does not have to be equiproba-
ble. Tha t would imply that raw frequency in the world 
is the only factor in deciding whether something w i l l be 
discussed. This is obviously not true. For example, one 
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A number like the probabi l i ty of using the word "bark" 
given that the ent i ty is the corresponding noise is easy 
to estimate. It is certainly h igh, say .9. But the other 
probabil i t ies required here are harder. What , for exam­
ple, is the prior of ( d o g - n o i s e b2 )? Typical ly we think 
of terms in our language as adhering to entities in the 
wor ld, like a sound emanat ing f rom my backyard last 
night. If so, then since I thought that it was most likely 
a dog bark ing, I might say that the probabi l i ty is .7. On 
the other hand, b2 is an arb i t rary symbol, created by 
my language-comprehension system to denote whatever 
the wri ter was referring to. Wha t is the probabi l i ty that 
an "arb i t rary symbol " denotes a bark? This must be as­
tronomical ly smal l , assuming we can understand the no­
t ion at a l l . Or again, given that b2 is arbi trary, perhaps 
we should interpret the formula ( d o g - n o i s e b 2 ) as the 
skolemized version of the formula e x i s t s ( x ) ( d o g - n o i s e 
x ) . Interpreted in this l ight the probabi l i ty is 1, since, 
of course, barking sounds do exist. 

As we have seen here, the problem is not really assign­
ing the probabi l i ty , per se, but rather deciding what the 
formula ( d o g - n o i s e b 2 ) means. Nor is ( dog -no i se b 2 ) 
the only k ind of formula we wi l l have problems w i th . In 
a sentence like "Janet ki l led the boy w i th some poison." 
there is case ambigui ty in that the word " w i t h " can indi ­
cate that the "poison" is in the instrumental case i n s t r , 
or the accompaniment case ace. Tha t is, did Janet use 
the poison, or just take it along for the ride (as in "Janet-
went to the movies w i t h B i l l . " )? Here we need the prior 
probabi l i ty o f a formula like ( i n s t r k l ) = p1. A l l the 
same problems arise, and more. 

2 The Model 
2.1 T h e l a n g u a g e 

The syntax of our language is a restr ict ion of the lan­
guage of f irst-order predicate calculus. We have the cus­
tomary constants, functions, predicates and connectives. 
However, we do not allow quantifiers or variables. 

Having said this, i t is impor tant to emphasize that 
we are not provid ing a logical calculus. Our calculus is 
probabi l i ty theory. 

2.2 S e m a n t i c s 
1. We define two disjoint sets of p r imi t ive events, and 

probabi l i ty d ist r ibut ions over them: 



could imagine a universe of discourse, U, containing a 
large number of inanimate objects, but only 2 people, 
Jack and J i l l . Certainly the probabi l i ty of a person be­
ing discussed wi l l be higher than Furthermore, if 

we wish to discuss domains w i th inf ini te subclasses (e.g., 
the integers), as well as finite ones (U.S. Presidents), to 
assume a flat d is t r ibut ion over the sample space would 
entail that the probabi l i ty of ta lk ing about George Bush 
would be zero. A l though weighting the isa-hierarchy for 
'interestingness' or other qualit ies, poses no theoretical 
dif f iculty, it does make computat ion of the probabi l i ty of 
equality statements more dif f icult . 

2.3.2 C o n d i t i o n a l p r o b a b i l i t i e s 
For story understanding in our formal izat ion, we need 

condit ional probabi l i t ies of three sorts. We need the 
probabi l i ty of an equality relation between two objects 
of a given type. We need the probabi l i ty of a part icu­
lar word choice, given that th ing it denotes is of a given 
type. Final ly, we need the probabi l i ty of a syntactic rela­
t ion existing between two words, given that a part icular 
relation exists between the things denoted by the two 
words. 

• Probabil i t ies of equality statements: We require the 
probabi l i ty of equality statements, x — y, condi­
t ional upon x and y being objects of the same type, 
t. Given that we know the size of T, and a prior for 
t(x), and assuming T is f inite and all of its elements 
equiprobable, P(x = y / t . ( x ) , t(y)) is seen to be 

• Syntactic relations: We have to provide the proba­
b i l i ty of syntactic relations, given some relationship 
between the entities denoted by two words. For ex­
ample, in Figure 2, we need V((object-of w2 w3) | 
(patient g3) = r2), where g3 is the action referred to 
by w3, an instance of the verb 'went ' ; and r2 is the 
ent i ty referred to by , w2, an instance of the noun 
'rope.' I.e., we need the probabi l i ty of an author 
expressing a patient relat ion between two entities 
by means of the direct-object relation between the 
words which denote these entit ies.2 

3 Get t ing the model to produce 
reasonable results 

We have defined our model and shown that it gives us 
some guidance in assigning probabi l i t ies we need. In this 
section we show that the guidance is not sufficient. We 
give an example which shows that the model we have 
out l ined so far does not see stories as coherent wholes. 
We show that this is because the model does not take 
into account enough condi t ioning in fo rmat ion , and show 
how to fix i t . 

Let us consider the example "Jack got a rope. He 
ki l led himself." In tu i t ive ly we would say that the proba­
bi l i ty that he did it by hanging was quite h igh. Certainly 
greater than . 1 . 

P(word|denotat ion): In pr inciple, these probabi l i ­
ties could be computed f rom the lexicon, and could 
absorb in format ion about relative frequency of dif­
ferent words. 

Actually there is a complication in these last two proba­
bilities. Really the conditional probability is the product of 
the probabilities we have outlined above times the probability 
that a particular object (or relation) would be realized in the 
sentence at all. When this is factored in we get a very low 
number, but it will be large relative to the probability that 
the author would use the word (or syntactic relation) given 
that the proper facts in the world did not exist. This is all 
we need. 
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Figure 2 depicts a fragment of a Bayesian network for 
understanding this sentence. The nodes at the bo t tom of 
the d iagram correspond to the words in the sentence and 
the relations between them. The nodes above represent 
in format ion about the referents of these words, and their 
interrelat ions. 

The numbers above root nodes are the prior proba­
bi l i t ies of these nodes. For example, the 10-11 above 
( r o p e r 2 ) indicates the pr ior probabi l i ty of an arbi t rary 
ent i ty being a rope. The numbers on the arc connect­
ing a chi ld c w i th one parent p to that parent are the 
P(c | p) ,P(c | - p ) . Examin ing the l ink between ( r o p e 
r 2 ) and (rope w2), we see that the probabi l i ty of using 
the word ' rope' , given that the referent of that word is a 
rope, is 0.8. L inks connecting a chi ld to two parents are 
annotated w i t h the four condit ional probabil i t ies, start­
ing w i t h P(c |true, t rue). For example, the probabi l i ty 
o f r2 f i l l ing the r o p e - o f slot o f k1, given that both the 
( r o p e - o f k l ) and r2 are ropes, is 1 0 - 9 , i f one is a rope 
and one is not , the probabi l i ty is 0, and if neither is a 
rope, the probabi l i ty is For the sake of readabil ity, 

we have s imply given the probabi l i ty of ( p a t i e n t g3 ) = 
r2 for the cases when al l five of its parents are true, and 
when ( g e t g 3 ) and ( r o p e r 2 ) are true. 

Put in words, the network expresses the facts that a 
hanging is also a k i l l i ng , and that the slots in the hanging 
frame, r o p e - o f and g e t - s t e p , must be fi l led by ropes 
and gett ing events respectively, w i th the latter being the 
event in which ( r o p e - o f k l ) is obtained. The equality 
statements express the idea that the "get" and "rope" 
mentioned are, in fact, the ones which f i l l the appropriate 
slots. It follows f rom these facts that r2 must be the 
th ing fetched in g3 . This is captured in the connections 
to the node ( p a t i e n t g 3 ) = r 2 . Since the network as 
given does not contain the in format ion about Jack being 
both the person who does the k i l l ing , and who obtains 
the rope, the probabi l i ty on the equality of g e t - s t e p and 
g3 has been modif ied to reflect this in format ion. The 
numbers used are calculated as discussed earlier, w i th 
| T |= 1020 , 109 ropes, 109 people, 1015 get events, 103 

hangings, and about 106 k i l l ings. 
When one evaluates this network3 one gets a probabi l­

i ty of hang very close to 1 0 - 3 . Tha t is, the in format ion 
about get t ing a rope has made no difference, since the 
probabi l i ty of hang given k i l l is about 1 0 - 3 . The problem 
turns out to be the probabi l i t ies assigned to the equality 
statements. 

To see this, it is necessary to get some feel for the flow 
of probabi l i t ies in this network ( r o p e r 2 ) , (ge t g3 ) , 
and ( k i l l k l ) have probabi l i ty one, ( h a n g k l ) i s about 
10~3 , but the equali ty nodes for g e t - s t e p and r o p e - o f 
have very low probabi l i t ies because their posteriors given 
type equali ty are which are very small 

indeed. Changing our belief in ( p a t i e n t g3 ) = r2 to 1 
raises the probabi l i ty of hanging, but not by much. The 
reason is that the current belief in g e t - s t e p and r o p e - o f 
equalities are so low that it is more l ikely that the rope 
was the pat ient of get "s imply by accident," rather than 

3Actually we evaluated a singly-connected version using 
the algorithm of Pearl and Kim. [Pearl, 1988] 

seeing it as a consequence of the g e t - s t e p and r o p e - o f 
equalities. Thus the low probabil i t ies on these two equal­
i ty statements are the reason for this counter- intui t ive 
result. 

The solution is clear f rom an analysis of why the r o p e -
of and g e t - s t e p posterior probabil i t ies are so low. Look­
ing at the first one, it is asking the question, picking an 
arbi t rary hanging event, and an arb i t rary rope, what is 
the probabi l i ty that the rope so chosen w i l l be the one 
used for the hanging event? Obviously it is quite low, 
since we might be picking a rope which exists thousands 
of miles away f rom the hanging, or which existed a few 
hundred years ago ( i f we are including historical objects 
and events in Ω.) So given this meaning for the number, 
the number we gave is in the r ight bal lpark. But there is 
other informat ion which we did not br ing to bear. Obvi ­
ously in a story like "Jack got a rope. He ki l led himself." 
it is simply not l ikely that the rope and the k i l l ing are 
separated by thousands of miles, or hundreds of years. 
In other words, stories, and for that matter, observa­
tions in the wor ld, are typical ly constrained by temporal 
and spatial locality. Our semantics, w i t h random ex­
periments over Ω, has no such constraint. We need to 
include i t . 

There are two ways to go. One would be to change 
the semantics to include some recognit ion of spatial and 
temporal locality of objects and events. The other is to 
keep the same semantics and simply include the assump­
t ion of spatio-temporal local i ty as a condit ioning event. 
We wi l l do the latter. Later we wi l l see why changing 
the semantics is probably a bad idea. 

Figure 3 shows the r o p e - o f equality statement f rom 
Figure 2, but now w i th it condit ioned on spatio-temporal 
locality.4 Such an s t l predication would also appear as 
a condit ion on the g e t - s t e p equality statement. Figure 
3 gives the probabi l i ty for r o p e - o f being a part icular 
rope, assuming locality. Note the difference in proba­
bil it ies. Before it was 1 0 - 9 , since only one of the 109 

ropes would be the r ight one. Now, however, w i th spatio-
temporal locality, we are asking a very different question. 
Given that a hanging, and a rope, are found in a small 
part of space-time, what is the probabi l i ty that the rope 
was used in the hanging? Obviously this depends on the 
size of the "part of space-time," and a more sophisti­
cated analysis should make s t l take this into account. 
However, for current purposes, suppose we envision it as 
a city block. Now, rather than 109 ropes we are ta lk ing 
about 10, or perhaps 100. Figure 3 adopts 100, so the 
probabi l i ty that any one of these is the rope in question 
is 10 2. Similarly, the g e t - s t e p equality changes f rom 
10 - 6 to " 0 - 2 . Natural ly, the probabi l i ty of h a n g now 
goes up precipitously, to .3. 

Now if s t l statements were always true our analysis 
would be quite simple. But they are not. In stories 
neighboring sentences, or even different clauses in the 
same sentence, can be about different parts of space and 
t ime. Normal perception, it is true, sticks to local things, 
but if we watch TV we can get widely dispersed images 
as well. Thus we need some theory of under what cir-

4The statement (s t l kl r2) indicates that kl and r2 are 
in the same locality. 
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cumstances s t l statements are true. Bu i ld ing s t l into the 
semantics would, presumably, mean bui ld ing this theory 
into it as well, and since this promises to be a substantive 
theory, it seems a bad idea to include it in the semantical 
definit ions. 

Interestingly enough, some parts of an s t l theory are 
already in place, albeit not under this name. W i t h i n the 
A I / N a t u r a l Language Understanding communi ty there 
is a sizable body of work on "discourse structure." 
[Grosz and Sidner, 1986, Webber, 1987] To take a typical 
example (this one f rom, [Al len, 1987] which provides a 
good overview) 

1 Jack and Sue went to a hardware store to buy 
a new lawnmower 
2 since their old one had been stolen. 
3 Sue had seen the men who took it 
4 and had chased them down the street, 
5 but they'd dr iven away in a truck. 
6 After looking in the store, they realilzed that 
they couldn' t afford a new one 

Note that lines 1 and 6 are about the same part of space-
t ime, as are lines 2-5, but there is no commonal i ty be­
tween the two. Discourse structure theorists would say 

v ' 

that there are two discourse segments in this example, a 
major segment consisting of 1 and 6, and a sub-segment 
consisting of 2-5. It is obvious in this example that 
this analysis, and the one necessary to determine spatio-
temporal local i ty, exactly overlap. Furthermore, when 
one looks at the clues that discourse theorists suggest 
for determining this structure, (change of t ime, no ref­
erents for pronouns, certain key phrases, such as "by 
the way") it is easy to see how they would be equally 
useful in determining the t ru th of a spat io-temporal lo­
cality hypothesis. We have done some prel iminary work 
on exploring more discourse-oriented condi t ioning events 
than simple spat io-temporal local i ty, see [Charniak and 
Goldman, 1989]. 

4 Probabil ist ic logics 
A reasonable question to ask is why we don' t use a prob­
abil istic logic like that of Nilsson [l98f>] or Bundy [1988]. 
There are two reasons. 

First , Nilsson's logic (Bundy's approach is s imi lar) al­
lows the user to specify the probabil i t ies of statements 
and uses this in format ion to bound a sample space of 
'possible worlds' or truth-assignments. It is not possible 
to use condi t ional probabi l i t ies in this framework, since 
they specify ratios of probabil i t ies of statements, rather 

than probabi l i t ies of statements in isolat ion. This is ap­
propriate for Nilsson's problem which is to explain prob­
abil ist ic entai lment, but we are more concerned wi th con­
ventional probabi l ist ic inference, than w i th probabil ist ic 
analogs to mater ia l imp l ica t ion . 

Second, Nilsson's Probabil ist ic Logic is only a propo-
sit ional language. However, as the formulas of our lan­
guage contain neither quantifiers nor variables, we could 
t ry to deal w i th them as proposit ional constants. If we 
do this, however, we sacrifice in format ion about the re­
lat ion between proposit ions. For example, suppose that 
we have a probabi l i ty d is t r ibut ion such that ( r o p e r l ) 
is .5, and in the probabil ist ic logic we assign probabi l­
ities to the possible worlds to make the probabi l i ty of 
( r o p e r l ) .5 as well. Now let us ask, what is the prob­
abi l i ty of, say, ( r o p e r l 9 ) . In the absence of any other 
in format ion, for us this must be .5 as wel l . Probabil ist ic 
logic makes no such commi tment . It is a proposit ional 
logic, so the probabi l i ty of the two proposit ions ( r o p e 
r l ) and ( r o p e r l 9 ) can be varied independently. Thus, 
our semantics is more restrictive. Furthermore, this ex­
t ra restr ict ion has the effect of placing t ight bounds on 
the probabi l i t ies we can assign to basic type predications 
like ( r o p e r l ) . Since i t w i l l specify that any outcome of 
a basic experiment is a rope 1/2 the t ime, a probabi l i ty 
of .5 commits us to the belief that half the entities we 
deal w i th w i l l be ropes; not a very plausible assumption. 
Bundy's Incidence Calculus is a ful l f irst-order language, 
but he does not provide any guidance in interpret ing the 
constants of the language, so the Incidence Calculus is 
no more restrictive than Probabil ist ic Logic. 

After complet ing the work described in this paper, we 
discovered the work of Bacchus [1988], which is in many 
ways simi lar. His logic, L p , is similar to our language 
in that the distr ibut ions he uses are over the domain 
of discourse, rather than over interpretat ions. Like our 
language, Lp makes it possible to refer to random vari­
ables. His language differs f rom ours in two ways. First 
of a l l , it is intended to support theorem-proving, whereas 
ours is designed to give a clear semantics to statements 
about random variables. Second, Bacchus' language is 
designed to support reasoning about probabil ist ic judg­
ments. Statements about the probabi l i ty of given events 
can be expressed in L p , whereas in our language they 
are metalogical. 

5 Future work 
We are current ly engaged in further explorat ion of this 
probabi l ist ic approach to N L U . We are in the process of 
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writing a program which will take English language in­
put and produce Bayesian networks like those presented 
in this paper. We are examining a number of possible 
approaches to evaluating such diagrams. At the same 
time, we are trying to determine which conditions, like 
s t l , to apply to our networks to get the proper distribu­
tions. 

6 Conclusion 
We have presented a semantics for interpreting proba­
bilistic statements expressed in a first-order quantifier-
free language. We have shown how this semantics con­
strains the probabilities which can be associated with 
the propositions. Finally, we saw that while the seman­
tics dictates very low prior probabilities for many of the 
statements we needed, once they are adequately condi­
tioned, in particular with spatio-temporal locality, the 
probabilities become more "reasonable." We suggested 
that our notion of spatio-temporal locality, and the no­
tion of discourse segment found in current AI NLU work 
are a', least very close, and may be identifiable. In our 
estimation this possibility sheds some interesting light 
on the notion of discourse segments, since it allows for 
their computation in a probabilistic way. Those familiar 
with the work in the area will be aware of how hard it 
has proven to give deterministic, non-circular rules about 
when such segments are to be created, and what can be 
determined from their creation. 
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