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Abstract 
In spite of the importance of well-understood seman­

tics for knowledge representation systems, proponents of 
default logic have tended to ignore the lack of a general 
model-theoretic semantics for the formalism. This 
shortcoming is addressed by the presentation of such a 
model-theory. This characterization differs in some ways 
from traditional semantics. These differences are explained 
and motivated, and some applications of the semantics are 
discussed. 

1 . In t roduct ion 
In his development of default logic, Reiter [1980] pro­

vides a fixed-point characterization of the extensions of a 
default theory, but no model-theoretic semantics. Default 
logic has attracted attention as a formal system for non­
monotonic reasoning. This is due, in part, to the intuitive 
clarity with which default information can be expressed. 
This clarity has ameliorated the delayed development of a 
semantics for the formalism; people have tended to be 
satisfied with intuitive characterizations of the extensions of 
default theories, together with the Tarskian semantics of 
the individual extensions. 

While this transition to model-theory may be relatively 
painless, there is still a need for a semantic characterization 
of default logic as a whole. Etherington [1982, 1983] loosely 
characterized the semantics of default logic, observing that 
defaults "can be viewed as extending the first-order 
knowledge about an incompletely-specified world. [They] 
select restricted subsets of the models of the underlying 
first-order theory". Lukaszewicz [1985] recently formalized 
this idea for a restricted class of default theories. In this 
paper, we generalize this work to cover the entire class of 
default theories. We also recast the semantics in a more 
intuitive and familiar form, making it more useful and 
accessible. Proofs of the results quoted here may be found 
in [Etherington 1986]. 

In what follows, we present a semantics for default 
logic. This is subsequently evaluated and shown to provide 
useful insight into the formalism. We begin by providing 
the briefest of introductions to default logic. More details 
can be found in [Reiter 1980]. 

1 Parts of this work were done at the University of British 
Columbia, and supported in part by an I.W. Killam Predoctoral 
Scholarship and by NSERC grant A7642. 

2 We omit the "M" preceding each 0,, since they are redun 
dant in the positional notation. 
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3. A Semantics for Default Theories 
As mentioned earlier, default logic's semantics can be 

viewed in terms of restrictions of the set of models of the 
underlying theory. The first-order theory partially specifies 
a world, which is further specified by the defaults. Each 
default can be viewed as extending the world-description by 
restricting the set of possible worlds assumed to contain the 
"rear" world, at the same time constraining how other 
defaults may further extend the world-description. 
Lukaszewicz [1985J formalizes this intuition for normal 
default theories. Because of the well-behaved nature of 
these theories, this is straightforward. The resulting seman­
tics amounts to considering the Tarskian semantics of each 
of the partial extensions constructed by proceeding mono-
tonically from W toward an extension by repeatedly satisfy­
ing the next (according to some arbitrary ordering of the 
defaults) applicable normal default by making its conse­
quent true. If ever no more defaults from D are applicable, 
the resulting set of models characterizes an extension. 
Since each step affirms a formula consistent with those 
affirmed previously, the set of models contracts monotoni-
cally. The intersection of the sets of models from each 
stage (or the last set, if there are only finitely many) is pre­
cisely the set of models of the extension. 

Furthermore — for whatever purpose they may serve — the 
scheme does not apply to defaults with multiple justifica­
tions. Thus, while Lukaszewicz' semantics covers many 
cases, there are reasons to want a semantics that covers 
more than normal defaults. To this we now turn. 

Because of the failure of semi-monotonicity for non-
normal theories, simply applying one default after another 
does not, in general, lead to extensions. It is necessary to 
ensure that the application of each default does not violate 
the justifications of already-applied defaults. In the seman-
tic domain, this means that Lukaszewicz' simple approach 
of sequentially restricting the set of models of the first-
order theory, to satisfy each default in turn, will not neces­
sarily lead to the set of models of an extension. Ethering-
ton [1986] develops extra machinery that, essentially, intro­
duces a backtracking (or pruning) mechanism to the 
semantics to deal with this problem. While this extension is 
not particularly difficult conceptually, the technical details 
are somewhat formidable and the result appears (superfi­
cially) cially ad hoc. This is partly because the resulting semantics 
looks radically different from familiar Tarskian or Krip-
kean (or even circumscriptive) model-theories. We present 
an equivalent semantics below, in a very different guise. 
This new presentation makes the salient features of the 
semantics more apparent, as well as easing comparisons 
with the semantic theories of other nonmonotonic systems. 
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identified a property of sets of models, which we call stabil-
ity, that provides such an account. 

In other words, a set of models is stable for a default 
theory, (D.VV). if it is a maximal specialization of the set of 
models of W. and does not refute the justifications of any of 
the defaults used in the specialization. This notion of stabil­
ity is related, but not directly analogous, to stability in 
autoepistemic theories [Moore 1985]. In particular, it incor­
porates elements of what Moore calls "groundedness". For 
a detailed discussion of the relationship between default 
logic and autoepistemic logic, see [Konolige 1987]. 

The stable sets of models for a default theory provide 
a semantic interpretation for the theory. The soundness 
and completeness results for this semantics are given by 
Theorems 1 and 2. respectively. 

4. Discussion 
We are now faced with the question of how well 

motivated this semantics is. It is clearly different from 
traditional semantic theories. For example, in Tarskian 
semantics the truth values of the atomic formulae deter­
mine those of every other formula. Similarly, in Kripke 
semantics, a set of worlds, an accessibility relation, and an 
assignment of truth values to the atomic formulae deter­
mine what is true in the structure. It is common to have 
some notion of a structure, and of what it means for any 
primitive construct of the language to be satisfied by a 

structure. Logical operators and connectives are also given 
interpretations, allowing the truth of any construct of the 
language to be determined vis-a-vis any structure. Finally, 
validity and satisfiability are defined in terms of these other 
notions. 

Because of the indexical nature of defaults, it does not 
seem possible to provide them with such static interpreta­
tions. The proof-theory of default logic places upper-, as 
well as lower-, bounds on the states of knowledge that can 
be taken as satisfying the theory. These bounds, however, 
are determined by the nay knowledge is extended. This 
requires information that is not inherent in typical semantic 
structures. 

For example, imagine the defaults: 

Another justification for a model-theory such as this 
comes from viewing defaults as operators that transform 
theories. On this view, the sets of models that make up 
each world-description correspond to particular theories (in 
the usual Tarskian sense). The partial-orders associated 
with the defaults encode the transformations that the 
defaults induce on these theories. This view helps explain 
both why individual world-descriptions alone are insuffi­
cient to determine the satisfaction of defaults and why the 
semantics deals with satisfaction of default theories as a 
whole, rather than of individual defaults in isolation. 

There are related semantic characterizations in the 
literature. For example, there are the minimal-model 
semantics of circumscription [McCarthy 1980] and of vari­
ous other forms of closed-world reasoning [Etherington 
1986]. These characterize the semantics of certain non­
monotonic formalisms in terms of the minimal elements of 
an ordered set of structures. The presentation above goes 
beyond this in the complexity of the structures concerned 
and in the "post-filtering" of the set of minimal models, but 
is closely related in spirit. This topic is taken up in detail in 
[Etherington 1986, 1987], but some of the flavour can be 
given in the space available here. 

The semantics of a theory under the various forms of 
"closed-world" assumption can be defined in terms of a res­
triction of the set of models of the underlying theory. 
according to some principle of minimization (typically 
according to the subset inclusion partial-order over the 
extensions of some predicates). The above model-theory for 
default logic similarly provides a principle for determining 
which models of a first-order theory characterize acceptable 
belief-sets, in this case based on maximal satisfaction of the 
set of defaults. There are several significant differences, 
however. First, rather than an ordering on individual 
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models, an ordering is imposed on sets of models. Second, 
the ordering is defined in terms of accessibility via a 
default, rather than strictly in terms of general criteria and 
intrinsic features of the models themselves. Finally, each 
extension is determined by a single extremum of the order­
ing, rather than by the set of all extrema. 

The first of these differences, as mentioned previously, 
is necessary to encode the constraints of the theory. It 
allows a distinction between what is believed and what is 
merely consistent with what is believed. It also allows a 
natural representation of the incompleteness of default 
theories, which — unlike the models of a first-order theory 
— do not decide every formula. 

The second deviation arises because defaults are gen­
eral, non-homogeneous, inference rules. Consequently, the 
partial-order relation is potentially more complex for 
default logic. Lifschitz" [1984. 1986] recent work allowing 
more general orderings may void this difference, but the 
question remains open. 

Individual extrema determine extensions as a result of 
the "brave" (in McDermott's [1982] terminology) character 
of default logic Default logic treats each extension as an 
acceptable set of beliefs, with the intention that a reasoner 
will somehow "choose" a single extension within which to 
reason about the world. Other nonmonotonic formalisms 
(such as circumscription [McCarthy 1980. 1986]) are based 
on "cautious** approaches that accept a default conclusion 
only if it occurs in all acceptable sets of beliefs. One can 
easily construct a variant of default logic that pursues a 
"cautious" course. (The converse is not obviously true for 
all "cautious" systems: see [Etherington 1987].) Such a sys­
tem would define the theorems of a default theory to be 
those formulae true in all extensions, with the obvious 
change to the semantics: the theorems would then be 
defined as those formulae true in all models of all stable 
world-descriptions. 

5. Conclusions 
Default logic has occasionally been criticized for its 

lack of a general model-theoretic semantics. To answer this 
criticism we have presented such a semantics. We have also 
tried to show the appropriateness and utility of this seman­
tics. We showed that it has merits that justify its use, and 
suggested it is a useful tool for comparing default logic with 
other nonmonotonic formalisms. 

Our semantics differs from traditional, Tarskian, 
model-theoretic semantics in two respects: it is global, and 
it is not structure-oriented. By "global" we mean that there 
is no notion of satisfaction of individual defaults indepen­
dently of the theory in which they occur (and hence no 
notion of satisfaction of a theory as incremental satisfaction 
of its components). The "non-structure-oriented" nature 
corresponds to the observation that defaults serve less as 
components of theories than as operators taking theories 
into other, more complete, theories. We argue that these 
facets of the semantics are not only justifiable, but serve to 
highlight important features of the operation of the syntac­
tic mechanisms of default logic. 
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