A Resolution Method for Temporal Logic

Michael Fisher”

Department of Computer Science

University of Manchester
Manchester, U.K.

(michael@cs.man.ac.uk)

Abstract

In this paper, a resolution method for propositional
temporal logic is presented. Temporal formulae,
incorporating both past-time and future-time tem-
poral operators, are converted to Separated Normal
Form (SNF), then both non-temporal and temporal
resolution rules are applied. The resolution method
Is based on classical resolution, but incorporates a
temporal resolution rule that can be implemented
efficiently using a graph-theoretic approach.

1 Introduction

This report describes a resolution procedure for discrete, lin-
ear, propositional temporal logic. This logic incorporates
both past-time and future-time temporal operators and its
models consist of sequences of states, each sequence having
finite past and infinite future.

A naive application of the classical resolution rule to tem-
poral logics fails as two complementary literals may not rep-
resent a contradictory formula, depending on their tempo-
ral context. Because of such problems with resolution, the
majority of the decision methods for temporal logics have
been based either on tableaux or automata-theoretic tech-
niques [Wolper, 1985; Vardi and Wolper, 1986]. Recently,
however, interest has been rekindled in the use of resolution
In such logics.

The resolution method described in this report relies on a
translation of temporal formulae into a normal form. This
normal form is derived from that developed for use In
METATEM [Barringer et al., 1989], an executable temporal
logic, and the rewrite rules used to produce the normal form
are derived from the work on the transformation and deter-
minisation of METATEM programs [Fisher and Noel, 1990].
Several of these transformations are similar to those devel-
oped in [Sakuragawa, 1986].

Before developing the resolution procedure in detail, an
outline of the temporal logic used, will be given.

2 A Linear Temporal Logic

In this section, a propositional temporal logic based on a lin-
ear and discrete model of time, with finite past and infinite

"This work was supported by ESPRIT under Basic Research Ac-
tion 3096 (SPEC).

future, 1s introduced. Temporal logic can be seen as classical
logic extended with various modalities. Commonly, these are
¢, O, and O. The intuitive meaning of these connectives
is as follows: A is true now if A is true sometime in the
future; 1s true now if A 1s true always in the future; and
(OA is true now if A is true at the next moment in time. Sim-
ilar connectives are introduced to cnable reasoning about the
past.

2.1 Syntax
Well-formed formulae (wff) are defined as follows.
¢ any element of PROP is a wff,
e iIf A and B are wif’s, then the following are all wif’s

—A AvB AAB A=B
OA A AUB AWB
& A BA ASB AZB

OA OA ®A (A)

Further sub-classifications of temporal formulae are defined
as follows. A literal is defined as either a proposiuon (i.e.,
an element of PROP), or the negation of a proposition. A
State-formula is either a literal or a boolean combination of
other state-formulae.

Future-time formulae (non-strict) are defined as follows

o if A is a state-formula, then A is a future-time formula,

o if A and B are future-time formulae, then —A, A A B,
AvB,A=B AUB,AWB, OA, QA, and [JB are all
future-time formulae.

Strict past-time formulae are defined as follows

e if A and B are cither state-formulae or strict past-time
formulae, then QA, @B, ASB,AZ B, & A, and 1B
are all strict past-time formulae,

e if A and B are strict past-time formulae, then —A, A A B,
A v B, and A = B are all strict past-time formulae.
2.2 Semantics

The temporal logic used is based on a discrete, linear model,
o, having finite past and infinite future, 1.¢.

0

sOt ‘gll 82’ Sa, T

Here, each s; is called a state and is a subset of PROP rep-
resenting the propositions that are true at the i h moment in

Fisher 99

mailto:michael@cs.man.ac.uk

time. An interpretation for this logic is defined as a pair (o, i),
where o is the model and / the index of the state at which the
temporal statement is to be interpreted.

A semantics for well-formed temporal formulae is defined
as a relation between interpretations and formulae, and is de-
fined inductively as follows, with the (infix) semantic relation
being represented by . The semantics of a proposition is de-
fined by the valuation given to it in the model:

(o.)Ep Mf pes; for p € PROP.
The semantics of the standard propositional connectives are
as in classical logic, for example
(c.DEAVB Mff (o,))FA or (o,1)EB.

The semantics of the unary future-time temporal operators 1s
defined as follows

(o,)k OA iff
(o,) QA iff thereexistsaj>ist (0,))EA
(o, [JA iff forallj2ithen(o, HEA.
The two binary future-time temporal operators arc interpreted
as follows
(o,))E AUB iff

(0, i+1)EA

thereexistsak2is.t. (0, k) B
andforalli<j<kthen (o, j)EA
(o,.))E AUB or
forallj2ithen (o,) EA

If past-ime temporal formulae are interpreted at a particular
state, §;, then states with indices less than i are in the past of
the state s;. The semantics of unary past-time operators are
given as follows:

(0. DF @A Iff i=0 or (0,i—-DEA
(o, D QA iff i>0 and (o, i—-1EA

(0.) ® A iff
thereexistsajstl.0O<sj<iand (o,))EA
(o, F WA iff foralljst. 0<j<ithen(o,))EA.

Note that, in contrast to the future-time operators, the &
(‘sometime in the past’) and I8 (‘always in the past’) op-
erators are interpreted as being strict, 1.€., the current index is
not included in the definiton. Also, as there is a unique start
state, termed the beginning of time, two different last-time
operators arc used. The difference between © and @ is that
for any formula A, © A is false, while @ A is true, when inter-
preted at the beginning of time. In particular, @ false is only
true when interpreted at the beginning of time; otherwise it is
false.

Apart from their strictness, the binary past-time operators
are similar 1o their future-time counterparts; their semantics
is defined as follows.

(0,.i))F ASB iff thereexistsaks.t. 0<k<iand
(o, k) EB and
forall jst. k<j<ithen(o,j)EA
(0, i))FE AZB iff foralljsuchthat0<j<ithen
(c.)EA o (0,))FEASB
The ¢ and [(and their past-time counterparts) can be de-

rived from the & and W operators (S and Z) respectively
as follows:
QA =

A =

(o.))E AWB iff

truel{ A
A W false

100 Automated Reasoning

As an interpretation consists of a model/state-index pair, we
say that a wff is satisfied in a particular model, at a particular
state. The terminology is often extended to include a wif
being satisfied in a model. A formula is satisfied in a model
if it is satisfied in that model, at the beginning of time.

3 A New Approach to Temporal Resolution

When developing proof methods for non-classical logics,
such as modal and temporal logics, it 1s natural to investi-
gate extending classical methods into these domains. As the
classical resolution rule is of the form

HFAwvp
I_BV""‘Ip
HFAvB

onc might ask whether such an inference rule can be used
directly in temporal logics. Unfortunately, the use of such a
rule in temporal logics has two main problems:

1. Can [J(A v p) and O(B v —p) be resolved? If so, what
1s the resolvent?

This problem 1s characteristic of those found when res-
olution is required between complementary literals oc-
curring in different temporal contexts.

b9

. An obvious temporal resolution rule, extended directly
from the classical rule, would be

- Av [
th<>—1p
- AvB

However, someumes the ‘[]’ is hidden, e.g.

pAUax=0@A) ArxaA Joy=O@ A Xx)

This formula actually imphies |]p, but it is difficult to
apply the resolution rule directly. Also, the resolution
rule given above can not be applied to &4 and W for-
mulae.

In (2), the {_lp must be recognised if temporal resolution is to
be applied between this formula and $—p. One solution to
this 1s 10 provide a vanety of resolution rules that ‘recognise’
various formulations of [J. However, as there are a large
number of formulae in which * [J-like’ formulae can occur,
this approach is impractical.

The difficulties in recognising [] is one of the problems
caused by the interaction between the O and [] operators.
This intcraction involves induction and accounts for many of
the problems relating to the production of proof techniques
for temporal logics.

The approach outlined in this report is to rewrite arbitrary
temporal formulae into Separated Normal Form (SNF). The
method relies on the fact that, in SNF, the only future-time
temporal operator that occurs is the sometime operator, ‘{°.
For those literals that appear outside the scope of a { oper-
ator, non-temporal resolution 1s applied; for those inside the
scope of a { operator, temporal resolution is applied.

The non-temporal resolution rule is only applied between
non-temporal formulae that refer to the same state. Thus, the
problem of applying classical resolution rules across temporal
contexts 1s avoided. By the definition and derivation of SNF,

any two (non-temporal) literals appearing in a formula refer
to the same state.

Temporal resolution is applied to formulae containing the
‘$>* operator, such as {¢. In this case, the formula can be re-
solved with a set of formulae, S, which, when satisfied, imply
that ¢ will never be satisfied (i.e. [J—q). As ¢ guarantees
that g must be satisfied at some stage in the future, the res-
olution rule derives the constraint that the formulae in S can
never satisfied while { ¢ is outstanding. Thus, the second
problem described above is partially solved in that once a
hidden []-formulae is found it can be resolved with a com-
plementary {-formula. The actual search for the formulae
that represent the [_]-formula now becomes a search for for-
mula¢ on which to apply the temporal resolution rule, and this
search can be implemented using graph-theoretic techniques
(see §8).

The process of applying temporal and non-temporal reso-
lution rules to a set of formulae in SNF eventually terminates.
On termination, either false has been derived, showing that
the formula is unsatisfiable, or the formula 1s satisfiable. As
in classical resolution, simplification and sabsumption proce-
dures are applied throughout the process.

4 Separated Normal Form

Gabbay has shown [Gabbay, 1989] that for a lincar temporal
logic of the form described above, arbitrary formulae can be
separated into their past-time, present and future-time com-
ponents. We use this result to develop our normal form, called
Separated Normal Form (SNF).

A temporal formula in SNF is of the form

O AP = F).
jm]
Here, each P; is a strict past-time temporal formula and cach

F; is a (non-strict) future-time formula. Each of the ‘P, = F;’
(called rules) is further restricted to be of one the following

@false = V’* (an initial |_}-rule)
=1

oA, = Vu (a global [(J-rulc)
j=1 =1

@false = <l

OAL = i

(an initial < -rule)
(a global ¢ -rule)

where each /], /k, or / is a literal.

Sets of rules in SNF incorporate the following restriction.
For each literal, /, there are at most two rules with a sin-
gle occurrence of / (i.e., not as part of a disjunction) as their
future-time component. If there are two such rules, one must
be initial, while the other must be global. This ensures that
there is, at most, one rule defining the initial value of / and,
at most, one rule constraining / after the beginning of time.

5 Rewriting Formulae into SNF

In this section, we show how any arbitrary formula of our
temporal logic can be rewritten as an equivalent formula in

SNF. Rather than give the full set of transformation rules used
to translate a temporal formula in this way, a few selected
transformations, together with an overview of the translation
process, will be presented. (A more complete description of
the transformation rules will be given in the full paper — sec
also [Fisher and Noel, 1990] for similar rules.)

The transformation rules are given as rewrite rules over sets
of formulae. In this section, we only consider the translation
of formulae such as

E_ A(P, — F;),

p=]

where P; is a (strict) past-time formula and F; is a future-
time formula, into SNF. The separation that was necessary to
reach this form will not be considered here as it is described
elsewhere [Gabbay, 1989; Barringer et al., 1989].

The translation of the above form into SNF initially in-
volves removing all past-time temporal operators (apart from
one level of last-time operators) from the Pi and all future-
time operators (apart from, at most, one ‘O operator) from
the F;. After these operators have been removed, the remain-
ing formulae must be rewritten to the correct conjunctive or
disjunctive form (as described in §4).

The transformations are carried out in the contextofa*
operator, I.e., a rewrite rule such as

C=>D}

’

{A= B} M{E = F

1S to be read as a translation from a formula such as
B) to LUJ((C= D) A (E = F)).

During the transformation process, characterised by the
rewrite rules, new propositions may be introduced. These are

propositions that have not previously appeared in the formula
and are represented by the symbols x, y, z, etc.

(A=

5.1 Pushing Negations

Initially, some basic (simplifying) rewrites are applied. The
first such set of rewrites removes [], @ , and I operators
and replaces them with their definitions in terms of W, S,
and Z , respectively. Next, rewrite rules that 'push' negation
operators to the propositions, are applied. This ensures that
all negations only appear when applied to propositions, and
this translation is analogous to the translation into Negation
Normal Form used in classical logics.

5.2 Removing Past-time Operators

Next, the removal of past-time operators such as S and Z,
and the removal of multiple last-time operators is considered.
Three (simplified) rewrite rules that are used for this purpose
are given as follows".

{ASB = F} — { OBvVv(Arx) & x }

@true = —~xVF
O@BV(Ary) & }
A2B = F] { @ true = —yVvF
LHA = 2
{L1P(L24) = F) — { LPE) o F}

1Here, A & B is used as a shorthand for the two rules, A = B

Fisher 101

In the first two rules, a new proposition is introduced to rep-
resent the formula being replaced and its value is linked to
the fixpoint representing the formula. This is, effectively, the
same process used in QPTL [Wolper, 1982] to represent fix-
point operations using quantifiers [Banieqbal and Barringer,
1989], but, because of the finite nature of the past, only one
type of fixpoint is used. In the last rule, Ly and L, represent
arbitrary last-time operators.

5.3 Removing Future-time Operators

To remove the future-time operators, U, W, and O, and to
simplify { -formulae so thateach < operator is only applied
to a literal, rather than a general temporal formula, the fol-
lowing rewrite rules are applied. Note that the T used here
represents a general future-time temporal context.

{ P = F(Bv(AAX)]
Ox & BvVv(AAx))
P = FBvVvAAY)))
Oy & Bv(AAy)

{P = F(AWB)} —

{P = F(AUB)} —

P = F(B))
O: & A
{P m— }-(OA)} —b { p — .7'-(2) }
.true = AV =z
(P = F(QA)) — Q@true = —-AvVv:
P = F({2)

Again, the technique of introducing a new proposition symbol
to represent a particular formula is used. As the operator
represents a maximal fixpoint, the W operator (which is also
a maximal fixpoint) can be translated directly into its fixpoint
definition. However, a combination of a fixpoint definition
and ‘¢’ operator must be used to represent the U operator,
which is a minimal fixpoint. The third rule removes all oc-
currences of O operators, and the final transformation rule is
used ifa < operator is not applied to a literal.

9.4 Rewriting Non-Temporal Formulae

Having removed all the operators that are not required in SNF,
further rewrite rules can be used to translate the remaining
rules into the appropriate form. This involves ensuring that all
past-time components are either ‘@false’ o ‘@’ ’pliedto
a conjunction of literals, and that all future-time components
are either a disjunction of literals, or ‘(}l’, where / is a literal.

As examples, we give some of the transformation rules
used to manipulate last-time formulae into the appropriate
form. Notice that weak last-time operators (‘@ ’) are re-
moved except when applied to false.

OA = F
(@4 = F} { @false = F }
{gg z £} — {O(AVvB) = F}

{OAA@B = F} — {O(AAB)= F}
{OAv @B = F} — {@(AVB) = F}

Similar rules are used to transform future-time components
into the appropriate disjunctive form.

This concludes our brief overview of the rewrite rules used
for translating formulae into SNF. There are, however, some

102 Automated Reasoning

obvious simplifications that can be carried out on the rules
constructed using the above rewrites. Discussion of such sim-
plifications will be deferred until §6.2.

Finally, note that any well-formed formula in our logic can
be translated to an equivalent set of rules in SNF. As an arbi-
trary formula in the logic can be separated into past, present,
and future components [Gabbay, 1989], the translations de-
scribed above can each be shown to preserve satisfiability.
Though the proof of this theorem is relatively straightforward,
it does require the use of quantified propositional temporal
logic [Wolper, 1982] as it must be shown that a formula in
which a new proposition has been introduced is unsatisfiable
if, and only if, the original formula is unsatisfiable.

©6 The Resolution Procedure

Given a set of rules in SNF, both non-temporal and temporal
resolution rules can be applied. Their application and effect
Is described in the following sections.

6.1 Non-Temporal Resolution

The non-temporal resolution rule is, essentially, the classi-
cal resolution rule and is only applied to [J-rules; Q -rules
are processed using the temporal resolution rule described in
§6.3.

The non-temporal resolution rule used here can again be

expressed as a rewrite rule:
— e

{’Q) I g:’,ia} — {PAQ = BvC)

As with classical resolution, various strategies for the appli-
cation of this rule can be employed, and simplification rules
can be used during, and after, its application.

6.2 Simplification
The basic simplification rules are

{ Ofalse = F} — {}
{P = true} — {}

The removal of such rules is obvious, since © false can never
be sausfied, and P = true is always satisfiable.

Similarly, subsumption rules may be applied. Along with
the standard (classical) subsumption, the following rule for
subsumption between SNF rules can be applied.

{ P = F }
Q0 = G
This rewrite rule can only be applied if the conditions, - P =

O and + G = F are satisfied.
If, after simplification, a formula of the form

OR = false

has been derived, then the following rewrite rule can be in-
voked.

{OR = false} — {@true = —R}

If this rule is used, the new constraint must be rewritten into
SNF and non-temporal resolution re-applied. The process is
repeated until either all []-rules containing complementary

literals have been processed, or one of the following rules
has been derived.

a) @false = false
b) @true = false
¢c) Otrue = false

If any of these formulae occur, then the original formula is
unsatisfiable and the resolution process terminates.

6.3 Temporal Resolution

If the non-temporal resolution procedure described in §6.1
terminates, without false having been derived, temporal res-
olution can be applied.

Before applying temporal resolution, the following rewrite
rule is applied to all global [J-rules. (Note that this transfor-
mation is not strictly necessary, but simplifies the presentation
of the temporal resolution rule.)

{OP:»F

00 = G } — {O(PAQ) = (FAG} (1)

The temporal resolution rule applies to one < -rule, such as
P = {—landaset of global [J-rules. Here, if P is satisfied,
then the rule is satisfiable unless the set of [_]-rules force ! to
always be true. Thus, our approach is to, for every such set
of rules, ensure that these, and P, are never satisfied at the
same time.

The temporal resolution rule is characterised as follows.

OAp

=§Bo

OA, = B,
|

forall0<i<n + B, =1 and

"
I"B,‘=>VAj and
j

- Al = \/ B,
k=0
l

n
@true 1Pv/\—.A,-
i=0

P = (\-a)yw-l
1)

A set of rules that, together, imply that / is always true, is
termed a loop in [. The side conditions on the resolution rule
ensure that the the set of rules { ©A; = Bi |1 <i<n} form
a loop in /. Note that even this rule is a simplification — the
full rule is quite complex and does not require the application
of rewrite (1) beforchand.

If a loop in / can be found, and there 1s a rule such as
LP = {—l, then the following new rules are added:

l. @true = —P v /\:“uo""‘Ai
This rule expresses the constraint that none of the con-
ditions for entering a loop in / must be allowed to occur
at the same time as P occurs.

2. LP = (AN ,—AI W=
This rule expresses the constraint that once P has oc-
curred, none of the conditions for entering a loop must
be allowed to occur until the eventuality initiated by P
has been satisfied.

6.3.1 Example

As an example, consider the set of rules representing the
conjunction of the formulae described earlier, i.e.

pAOx=20pAy) AxA Oy=0@ A x)

and O —p. Once the formulae have been rewritten into SNF
and non-temporal resolution has been attempted (none oc-
curs), the set of rules is as follows.

1. @false = x

2. @false = »p

3. @false = O—p
4. Ox = pnay
5. Oy = pax

Temporal resolution can be applied to rules 3, 4, and 5, as

rules 4 and 5 form a loop in p. This generates the new con-
straint

@false = (—x A —y) W —p
which i1s rewritten in SNF as:

6. @false = —pv
7. @false = —p v -y
8 @false = —p v
9. Oz = —pv-—u
10. Oz = —pv-—y
11. Oz = —ypv:

Applying non-temporal resolution on rules 6, 1, and 2, gen-
erates a contradiction.

7/ Correctness of the Resolution Procedure

The soundness, completeness and termination of the resolu-
tion procedure have been established. Proofs will be given in
the full paper.

8 Implementation

Though the temporal resolution rule is complete, its use in-
troduces various practical problems. A naive search of all
the possible subsets of rules that match the preconditions of
the resolution rule would be prohibitively expensive, conse-
quently we have developed a procedure for rinding loops in a
particular literal within sets of rules. Lack of space prevents
us from giving a full exposition of the approach, but we will
give a brief outline below.

For every rule of the form P = <=, all rules that imply
| are collected together. This set of rules is then represented
directly as an AND/OR graph, with each rule representing
a set of edges, or as a standard state-graph. In either case,
loops in / correspond to terminal strongly connected com-
ponents (SCCs) of the graph structure. These can be found
through the use of a suitable version of Tarjan's algorithm.
Using either representation, the complexity of the operation
IS exponential in the number of rules in the original set.

Fisher 103

Once all the terminal SCCs of the graph have been found,
temporal resolution can be applied to all the rules in these
SCCs, with any new rules generated are added to the original
set of rules. If no terminal SCC is found, the procedure moves
on to processing the next O-rule.

9 Related Work

A great variety of resolution-based proof methods for modal
logics have been developed [del Cerro, 1984; Gabbay, 1987;
Ohlbach, 1988; Enjalbert and del Cerro, 1989], yet few of
these can be used for temporal logics that incorporate the
'next™ operator. Several resolution methods specific to tem-
poral logics hove been developed. Venkatesh, [Venkatesh,
1980], develops a resolution method for a future-time frag-
ment of propositional temporal logic using customised res-
olution and unwinding rules. Sakuragawa, [Sakuragawa,
1986] uses transformations similar to those described in this
report to generate a normal form for temporal formulae, but
does not develop specific proofrules. In [Abadi and Manna,
1990], a resolution method, based on non-clausal resolution,
Is developed and applied to both propositional and first-order
temporal logics.

10 Further Work

A prototype system based on the approach described in this
report has been implemented and initial results are encourag-
ing. Investigations into heuristics for the application of both
temporal and non-temporal resolution rules are under way,
as are investigations into alternate graph-theoretic techniques
for implementing temporal resolution.

We can extend the method described in this report to first-
order temporal logics that have unvarying domains and that
satisfy the separation property. This is current work and wil
form part of a future report. One point to note is that not al
temporal logics allow separation, though most linear tempora
logics do [Gabbay, 1989].

Finally, the resolution method described in this paper can
be used as part of a backward-chaining execution mechanism
that complements the forward-chaining that is standard in
METATEM, a framework for executable temporal logics [Bar-
ringer er al., 1989].

References

[Abadi and Manna, 1990] M. Abadi and Z. Manna. Non-
clausal Deduction in First-Order Temporal Logic. ACM
Journal, 37(2):279-317, April 1990.

[Baniegbal and Barringer, 1989] B. Baniegbal and H. Bar-
ringer. Temporal Logic with Fixed Points. In Proceedings
of the Colloquium on Temporal Logic and Specification
(LNCS Vol. 398), pages 62-74, Altrincham, U.K., 1989.
Springer-Verlag.

[Barringer ex al., 1989] H. Barringer, M. Fisher, D. Gabbay,
G. Gough, and R. Owens. METATEM: A Framework for
Programming in Temporal Logic. In REX Workshop on

Stepwise Refinement of Distributed Systems: Models, For-

malisms, Correctness (LNCS Volume 430), pages 94-129,
Mook, Netherlands, June 1989. Springer Verlag.

104 Automated Reasoning

[del Cerro, 1984] Luis Fanftas del Cerro. Resolution Modal
Logics. In Proceedings of Advanced NATO Study Institute
on Logics and Models for Verification and Specification

of Concurrent Systems, pages 46-78, La Colle-sur-Loup,
France, October 1984.

[Enjalbert and del Cerro, 1989] P. Enjalbert and L. Farinas
del Cerro. Modal Resolution in Clausal Form. Theorefical
Computer Science, 65:1-33,1989.

[Fisher and Noel, 1990] Michael D. Fisher and Philippe A.
Noel. Transformation Rules for METATEM Programs.
METATEM project report, Department of Computer Sci-
ence, University of Manchester, May 1990. (Draft).

[Gabbay, 1987] D. Gabbay. Modal and Temporal Logic Pro-
gramming. In A. Galton, editor, Temporal Logics and their
Applications, pages 121-168. Academic Press, 1987.

[Gabbay, 1989] D. Gabbay. Declarative Past and Imperative
Future: Executable Temporal Logic for Interactive Sys-
tems. In B. Baniegbal, H. Barringer, and A. Pnueli, editors,
Proceedings of Colloquium on Temporal Logic in Specifi-
cation (LNCS Volume 398), pages 402-450, Altrincham,
U.K., 1989. Springer-Verlag.

[Ohlbach, 1988] Hans-Jurgen Ohlbach. A Resolution Calcu-
lus for Modal Logics. Lecture Notes in Computer Science,
310:500-516, May 1988.

[Sakuragawa, 1986] T. Sakuragawa. Temporal Prolog. Tech-
nical report, Research Institute for Mathematical Sciences,
Kyoto University, 1986. to appear in Computer Software.

[Vardi and Wolper, 1986] Moshe Y. Vardi and Pierre Wolper.
Automata-theoretic Techniques for Modal Logics of Pro-

grams. Journal of Computer and System Sciences,
32(2): 183-219, April 1986.

[Venkatesh, 1986] G. Venkatesh. A Decision Method for
Temporal Logic based on Resolution. Lecture Notes in
Computer Science, 206:272-289,1986.

[Wolper, 1982] P. Wolper. Synthesis of Communicating Pro-
cesses from Temporal Logic Specifications. PhD thesis,
Stanford University, 1982.

[Wolper, 1985] Pierre Wolper. The Tableau Method for Tem-
poral Logic: An overview. Logique et Analyse, 110—
111:119-136, June-Sept 1985.

