
A Resolution Method for Temporal Logic 

Michael Fisher* 

Department of Computer Science 
University of Manchester 

Manchester, U.K. 
(michael@cs.man.ac.uk) 

Abstract 

In this paper, a resolution method for propositional 
temporal logic is presented. Temporal formulae, 
incorporating both past-time and future-time tem­
poral operators, are converted to Separated Normal 
Form (SNF), then both non-temporal and temporal 
resolution rules are applied. The resolution method 
is based on classical resolution, but incorporates a 
temporal resolution rule that can be implemented 
efficiently using a graph-theoretic approach. 

1 Introduction 
This report describes a resolution procedure for discrete, lin­
ear, propositional temporal logic. This logic incorporates 
both past-time and future-time temporal operators and its 
models consist of sequences of states, each sequence having 
finite past and infinite future. 

A naive application of the classical resolution rule to tem­
poral logics fails as two complementary literals may not rep­
resent a contradictory formula, depending on their tempo­
ral context. Because of such problems with resolution, the 
majority of the decision methods for temporal logics have 
been based either on tableaux or automata-theoretic tech­
niques [Wolper, 1985; Vardi and Wolper, 1986]. Recently, 
however, interest has been rekindled in the use of resolution 
in such logics. 

The resolution method described in this report relies on a 
translation of temporal formulae into a normal form. This 
normal form is derived from that developed for use in 
METATEM [Barringer et al., 1989], an executable temporal 
logic, and the rewrite rules used to produce the normal form 
are derived from the work on the transformation and deter-
minisation of METATEM programs [Fisher and Noel, 1990]. 
Several of these transformations are similar to those devel­
oped in [Sakuragawa, 1986]. 

Before developing the resolution procedure in detail, an 
outline of the temporal logic used, wi l l be given. 

2 A Linear Temporal Logic 
In this section, a propositional temporal logic based on a lin­
ear and discrete model of time, with finite past and infinite 

"This work was supported by ESPRIT under Basic Research Ac­
tion 3096 (SPEC). 

Fisher 99 

mailto:michael@cs.man.ac.uk


100 Automated Reasoning 



SNF. Rather than give the full set of transformation rules used 
to translate a temporal formula in this way, a few selected 
transformations, together with an overview of the translation 
process, will be presented. (A more complete description of 
the transformation rules wil l be given in the full paper — sec 
also [Fisher and Noel, 1990] for similar rules.) 

The transformation rules are given as rewrite rules over sets 
of formulae. In this section, we only consider the translation 
of formulae such as 

where Pt is a (strict) past-time formula and Ft is a future-
time formula, into SNF. The separation that was necessary to 
reach this form wil l not be considered here as it is described 
elsewhere [Gabbay, 1989; Barringer et al., 1989]. 

The translation of the above form into SNF initially in­
volves removing all past-time temporal operators (apart from 
one level of last-time operators) from the Pi and all future-
time operators (apart from, at most, one operator) from 
the Ft. After these operators have been removed, the remain­
ing formulae must be rewritten to the correct conjunctive or 
disjunctive form (as described in §4). 

The transformations are carried out in the context of a 
operator, i.e., a rewrite rule such as 

During the transformation process, characterised by the 
rewrite rules, new propositions may be introduced. These are 
propositions that have not previously appeared in the formula 
and are represented by the symbols x, y, z, etc. 

5.1 Pushing Negations 
Initially, some basic (simplifying) rewrites are applied. The 
first such set of rewrites removes operators 
and replaces them with their definitions in terms of W, S, 
and respectively. Next, rewrite rules that 'push' negation 
operators to the propositions, are applied. This ensures that 
all negations only appear when applied to propositions, and 
this translation is analogous to the translation into Negation 
Normal Form used in classical logics. 

5.2 Removing Past-time Operators 
Next, the removal of past-time operators such as S and Z , 
and the removal of multiple last-time operators is considered. 
Three (simplified) rewrite rules that are used for this purpose 
are given as follows1. 

Fisher 101 

where each /j, /k, or / is a literal. 
Sets of rules in SNF incorporate the following restriction. 

For each literal, /, there are at most two rules with a sin­
gle occurrence of / (i.e., not as part of a disjunction) as their 
future-time component. If there are two such rules, one must 
be initial, while the other must be global. This ensures that 
there is, at most, one rule defining the initial value of / and, 
at most, one rule constraining / after the beginning of time. 

5 Rewriting Formulae into SNF 
In this section, we show how any arbitrary formula of our 
temporal logic can be rewritten as an equivalent formula in 



In the first two rules, a new proposition is introduced to rep­
resent the formula being replaced and its value is linked to 
the fixpoint representing the formula. This is, effectively, the 
same process used in QPTL [Wolper, 1982] to represent fix-
point operations using quantifiers [Banieqbal and Barringer, 
1989], but, because of the finite nature of the past, only one 
type of fixpoint is used. In the last rule, L1 and L2 represent 
arbitrary last-time operators. 

5.3 Removing Future-time Operators 
To remove the future-time operators, U , W, and O, and to 
simplify formulae so that each operator is only applied 
to a literal, rather than a general temporal formula, the fol­
lowing rewrite rules are applied. Note that the T used here 
represents a general future-time temporal context. 

Again, the technique of introducing a new proposition symbol 
to represent a particular formula is used. As the operator 
represents a maximal fixpoint, the W operator (which is also 
a maximal fixpoint) can be translated directly into its fixpoint 
definition. However, a combination of a fixpoint definition 
and operator must be used to represent the U operator, 
which is a minimal fixpoint. The third rule removes all oc­
currences of operators, and the final transformation rule is 
used if a operator is not applied to a literal. 

5.4 Rewriting Non-Temporal Formulae 
Having removed all the operators that are not required in SNF, 
further rewrite rules can be used to translate the remaining 
rules into the appropriate form. This involves ensuring that all 
past-time components are either o r a p p l i e d to 
a conjunction of literals, and that all future-time components 
are either a disjunction of literals, or where / is a literal. 

As examples, we give some of the transformation rules 
used to manipulate last-time formulae into the appropriate 
form. Notice that weak last-time operators are re­
moved except when applied to false. 

Similar rules are used to transform future-time components 
into the appropriate disjunctive form. 

This concludes our brief overview of the rewrite rules used 
for translating formulae into SNF. There are, however, some 

obvious simplifications that can be carried out on the rules 
constructed using the above rewrites. Discussion of such sim­
plifications wil l be deferred until §6.2. 

Finally, note that any well-formed formula in our logic can 
be translated to an equivalent set of rules in SNF. As an arbi­
trary formula in the logic can be separated into past, present, 
and future components [Gabbay, 1989], the translations de­
scribed above can each be shown to preserve satisfiability. 
Though the proof of this theorem is relatively straightforward, 
it does require the use of quantified propositional temporal 
logic [Wolper, 1982] as it must be shown that a formula in 
which a new proposition has been introduced is unsatisfiable 
if, and only if, the original formula is unsatisfiable. 

6 The Resolution Procedure 
Given a set of rules in SNF, both non-temporal and temporal 
resolution rules can be applied. Their application and effect 
is described in the following sections. 

6.1 Non-Temporal Resolution 
The non-temporal resolution rule is, essentially, the classi­
cal resolution rule and is only applied to -rules 
are processed using the temporal resolution rule described in 
§6.3. 

The non-temporal resolution rule used here can again be 
expressed as a rewrite rule: 

102 Automated Reasoning 



Applying non-temporal resolution on rules 6, 1, and 2, gen­
erates a contradiction. 

7 Correctness of the Resolution Procedure 
The soundness, completeness and termination of the resolu­
tion procedure have been established. Proofs wil l be given in 
the full paper. 

8 Implementation 
Though the temporal resolution rule is complete, its use in­
troduces various practical problems. A naive search of all 
the possible subsets of rules that match the preconditions of 
the resolution rule would be prohibitively expensive, conse­
quently we have developed a procedure for rinding loops in a 
particular literal within sets of rules. Lack of space prevents 
us from giving a full exposition of the approach, but we will 
give a brief outline below. 

For every rule of the form all rules that imply 
/ are collected together. This set of rules is then represented 
directly as an AND/OR graph, with each rule representing 
a set of edges, or as a standard state-graph. In either case, 
loops in / correspond to terminal strongly connected com­
ponents (SCCs) of the graph structure. These can be found 
through the use of a suitable version of Tarjan's algorithm. 
Using either representation, the complexity of the operation 
is exponential in the number of rules in the original set. 

Fisher 103 



Once all the terminal SCCs of the graph have been found, 
temporal resolution can be applied to all the rules in these 
SCCs, with any new rules generated are added to the original 
set of rules. If no terminal SCC is found, the procedure moves 
on to processing the next O-rule. 

9 Related Work 

A great variety of resolution-based proof methods for modal 
logics have been developed [del Cerro, 1984; Gabbay, 1987; 
Ohlbach, 1988; Enjalbert and del Cerro, 1989], yet few of 
these can be used for temporal logics that incorporate the 
'next* operator. Several resolution methods specific to tem­
poral logics hove been developed. Venkatesh, [Venkatesh, 
1986], develops a resolution method for a future-time frag­
ment of propositional temporal logic using customised res­
olution and unwinding rules. Sakuragawa, [Sakuragawa, 
1986] uses transformations similar to those described in this 
report to generate a normal form for temporal formulae, but 
does not develop specific proof rules. In [Abadi and Manna, 
1990], a resolution method, based on non-clausal resolution, 
is developed and applied to both propositional and first-order 
temporal logics. 

10 Further Work 

A prototype system based on the approach described in this 
report has been implemented and initial results are encourag­
ing. Investigations into heuristics for the application of both 
temporal and non-temporal resolution rules are under way, 
as are investigations into alternate graph-theoretic techniques 
for implementing temporal resolution. 

We can extend the method described in this report to first-
order temporal logics that have unvarying domains and that 
satisfy the separation property. This is current work and will 
form part of a future report. One point to note is that not all 
temporal logics allow separation, though most linear temporal 
logics do [Gabbay, 1989]. 

Finally, the resolution method described in this paper can 
be used as part of a backward-chaining execution mechanism 
that complements the forward-chaining that is standard in 
METATEM, a framework for executable temporal logics [Bar-
ringer er al., 1989]. 

References 

[Abadi and Manna, 1990] M. Abadi and Z. Manna. Non-
clausal Deduction in First-Order Temporal Logic. ACM 
Journal, 37(2):279-317, April 1990. 

[Banieqbal and Barringer, 1989] B. Banieqbal and H. Bar-
ringer. Temporal Logic with Fixed Points. In Proceedings 
of the Colloquium on Temporal Logic and Specification 
(LNCS Vol. 398), pages 62-74, Altrincham, U.K., 1989. 
Springer-Verlag. 

[Barringer ex al., 1989] H. Barringer, M. Fisher, D. Gabbay, 
G. Gough, and R. Owens. METATEM: A Framework for 
Programming in Temporal Logic. In REX Workshop on 
Stepwise Refinement of Distributed Systems: Models, For-
malisms, Correctness (LNCS Volume 430), pages 94-129, 
Mook, Netherlands, June 1989. Springer Verlag. 

104 Automated Reasoning 

[del Cerro, 1984] Luis Fanftas del Cerro. Resolution Modal 
Logics. In Proceedings of Advanced NATO Study Institute 
on Logics and Models for Verification and Specification 
of Concurrent Systems, pages 46-78, La Colle-sur-Loup, 
France, October 1984. 

[Enjalbert and del Cerro, 1989] P. Enjalbert and L. Farinas 
del Cerro. Modal Resolution in Clausal Form. Theoretical 
Computer Science, 65:1-33,1989. 

[Fisher and Noel, 1990] Michael D. Fisher and Philippe A. 
Noel. Transformation Rules for METATEM Programs. 
METATEM project report, Department of Computer Sci­
ence, University of Manchester, May 1990. (Draft). 

[Gabbay, 1987] D. Gabbay. Modal and Temporal Logic Pro­
gramming. In A. Galton, editor, Temporal Logics and their 
Applications, pages 121-168. Academic Press, 1987. 

[Gabbay, 1989] D. Gabbay. Declarative Past and Imperative 
Future: Executable Temporal Logic for Interactive Sys­
tems. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, 
Proceedings of Colloquium on Temporal Logic in Specifi-
cation (LNCS Volume 398), pages 402-450, Altrincham, 
U.K., 1989. Springer-Verlag. 

[Ohlbach, 1988] Hans-Jurgen Ohlbach. A Resolution Calcu­
lus for Modal Logics. Lecture Notes in Computer Science, 
310:500-516, May 1988. 

[Sakuragawa, 1986] T. Sakuragawa. Temporal Prolog. Tech­
nical report, Research Institute for Mathematical Sciences, 
Kyoto University, 1986. to appear in Computer Software. 

[Vardi and Wolper, 1986] Moshe Y. Vardi and Pierre Wolper. 
Automata-theoretic Techniques for Modal Logics of Pro­
grams. Journal of Computer and System Sciences, 
32(2): 183-219, April 1986. 

[Venkatesh, 1986] G. Venkatesh. A Decision Method for 
Temporal Logic based on Resolution. Lecture Notes in 
Computer Science, 206:272-289,1986. 

[Wolper, 1982] P. Wolper. Synthesis of Communicating Pro­
cesses from Temporal Logic Specifications. PhD thesis, 
Stanford University, 1982. 

[Wolper, 1985] Pierre Wolper. The Tableau Method for Tem­
poral Logic: An overview. Logique et Analyse, 110— 
111:119-136, June-Sept 1985. 


