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ABSTRACT 

Most AI systems model and represent natural concepts 
and categories using uniform taxonomies, in which no 
level in the taxonomy is distinguished. We present a 
representation of natural taxonomies based on the 
theory that human category systems are non-uniform. 
There is a basic level which forms the core of a tax­
onomy; both higher and lower levels of abstraction 
are less important and less useful. Empirical evidence 
for this theory is discussed, as are the linguistic and 
processing implications of this theory for an artificial 
intelligence/natural language processing system. 
Among these implications are: ( l ) when there is no 
context effect, basic level names should be used; (2) 
systems should identify objects as members of their 
basic level categories more rapidly than as members of 
their superordinate or subordinate categories. We 
present our implementation of this theory in SNePS, a 
semantic network processing system which includes 
an ATN parser-generator, demonstrating how this 
design allows our system to model human perfor­
mance in the natural language generation of the most 
appropriate category name for an object. The ability 
of our system to acquire classificational information 
from natural language sentences is also demonstrated. 

1. INTRODUCTION. 
Knowledge-base systems typically model and 

represent natural concepts and categories using uni­
form inheritance networks [Quillian 1967, 1968, 
1969; Collins & Quillian 1970; Fahlman 1979] or 
frame systems [Brachman 1983; Brachman & 
Schmolze 1984]. We wil l present a representation of 
natural taxonomies based on the theory that human 
category systems are non-uniform, i.e.f not all levels 
of abstraction are equally important or useful. This 
theory is supported by a substantial body of empirical 
evidence from the fields of psychology, anthropology, 
and linguistics [Rosen et al. 1976, 1978; Mervis & 
Rosen 1981; Berlin 1978; C H. Brown et al. 1976; 
Tversky 1978; Hunn 1976; Cantor et al. 1979; Smith 

& Medin 19811 We wi l l discuss some of the evidence 
for this theory, as well as some of the linguistic and 
processing implications of this theory for an AI sys­
tem modeling human cognitive behavior. 

This work is part of a larger, ongoing research 
effort concerned with problems in the understanding 
of natural language sentences containing generic 
terms. We wi l l demonstrate some of the current abil­
ities of our system to acquire generic concepts from 
natural language sentences, and to use these generic 
concepts in answering questions and making categori­
zation judgements. This implementation uses the 
SNePS semantic network processing system which 
includes an ATN parser-generator [Shapiro, 1978, 
1979, 1982, 19861 

2. THEORY - THE VERTICAL DIMENSION OF 
CATEGORY SYSTEMS - A BASIC LEVEL. 

Our representation is based on the following 
principles of human categorization set forth by 
Eleanor Rosen. Categories within taxonomies are 
structured such that there is one level of abstraction 
at which the most basic category cuts can be made. 
This level of abstraction forms the "core" [Berlin 
1978, p. 24] of a taxonomy, and is called the basic 
level. Basic categories are: ( l ) those which carry the 
most information; (2) those whose members have the 
most attributes in common; and (3) the categories most 
differentiated from one another. Basic level categories 
are, in fact, disjoint. Chair, caT, and dog are examples 
of basic level objects. 

Levels of a taxonomy above the basic level are 
called superordinate categories (e.g., furniture, vehicle, 
mammal). Fewer attributes are shared among 
members of superordinate categories, i.e., there is less 
category resemblance. Categories below the basic level 
are called subordinate categories (e.g., kitchen chair, 
station wagon, collie). Subordinate categories contain 
many attributes which overlap with those of other 
subordinate categories, i.e., there is less contrast 
between categories across a subordinate level. 
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2.1. Empirical Evidence. 
The following summarizes some of Rosen's 

empirical evidence supporting the existence of a basic 
level which forms the core of a taxonomy. [Rosen et 
al. 1976, 1978; Mervis & Rosen 198U 

2.1.1. Attributes of Objects. 
When subjects were asked to list attributes of 

basic, superordinate, and subordinate level objects, 
very few attributes were listed for superordinate 
categories, a great number of attributes were listed for 
basic categories, and an insignificant number of addi­
tional attributes were listed for subordinate level 
categories. This result supports the theory that the 
basic level is the most inclusive or general level at 
which the objects of a category possess a large number 
of attributes in common. Attributes appear to be 
clustered at the basic level. 

2.1.2. Object Recognition. 
Experiments using averaged shapes, obtained by 

superimposing outlines of objects to form normalized 
shapes, showed that the basic level is the most 
inclusive level at which the averaged shape of an 
object can be recognized. That is, basic objects (e.g., 
chairs, dogs) were the most general objects that could 
be identified from these shapes; superordinate objects 
(e.g., furniture, animals) could not be identified from 
averaged shapes. This suggests that basic level objects, 
are the most inclusive categories for which a concrete 
mental image of the category as a whole can be 
formed. We can form an image of a cat or dog which 
reflects the average members of the class, however, we 
cannot form an image of a mammal that reflects the 
appearance of the class as a whole. 

2.1.3. Object Names - Categorization. 
Studies of picture verification have demonstrated 

that objects are first recognized as members of theiT 
basic level category. When subjects were shown pic­
tures of objects, the basic level name was the name 
chosen for an object. With additional processing time, 
subjects were able to categorize objects at their subor­
dinate and superordinate levels. Thus, subjects knew 

the subordinate and superordinate names of objects, 
but categorized objects first at the basic level. Rosen 
further states that basic level objects are the first 
categorizations made during perception of the 
environment, as well as the categories most named, 
and most necessary in language. 

2.1.4. Development of Categories. 
Basic level objects are not only the first categories 

learned by children, they also appear to be formed 

differently from categories at other levels. That is, 
basic categories are not learned explicitly by acquiring 
a definition or deductive rule, but rather are learned 
implicitly by exposure to multiple instances of the 
category, i.e., they are formed inductively. This is 
often called the acquisition of types through ostensive 
definitions [Jackendoff 1983]. Categories subordinate 
and superordinate to this level are often formed by 
the acquisition of a deductive rule [Berlin 1978]. For 
example, the concept mammal might be learned in 
terms of a rule which lists attributes such as: warm­
blooded; body usually covered with hair; female gives 
milk to young. 

2.1.5. Summary of Empirical Evidence. 
Thus, recent categorization research provides a 

great deal of empirical evidence supporting the impor­
tance of basic level categories in a taxonomy, and the 
non-uniformity of human category systems. Basic 
level categories are the first categories developed, they 
are formed differently than non-basic categories, they 
are the most used and useful categories, and therefore, 
they must be distinguished from non-basic categories 
in some way. 

3. REPRESENTATION AND USE OF 
CATEGORIES IN AN AI/NLP SYSTEM. 

If an artificial intelligence/natural language pro­
cessing (Al/NLP) system modeling human category 
systems must be able to distinguish basic level 
categories from n on-basic categories, an important 
issue to be considered is how and where to make the 
distinction. Basic level objects are used in two kinds 
of categorization: "ordinary" categorization, i.e., the 
classification of an individual in a class, and generic 
categorization, i.e., categorization involving two classes 
or types. It seems clear that since basic level 
categories are formed early in life, they are formed 
via ordinary categorization. The teaching of these 
names is limited to the presentation of examples and 
counter-examples. Thus, a child may learn the basic 
level name 'dog*, as someone points to Rover and says 
'dog\ Therefore, our system makes the distinction 
between basic and non-basic levels in the representa­
tions for ordinary categorization, i.e., in the 
individual/class relations. The case frame used for 
this form of categorization of a basic level object is: 
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Here ml represents the proposition that the individual 
represented by i is a member of the basic level 
category represented by j. "Rover is a dog" is 
represented as follows: 

[See Shapiro & Rapaport 1986 for the syntax and 
semantics of other constructs.] 

Since non-basic categories are formed later than 
basic categories, and are formed in the course of the 
investigation of underlying principles rather than 
ostensive features, we use a slightly more complex 
case frame to represent membership in a non-basic 
level category. 

Here ml represents the proposition that the individual 
represented by i is a member of the non-basic category 
represented by j. "Rover is a mammal" is represented 
as follows: 

These case frames in SNePS are the built-in syn­
tactic structures of our modeled minds. The use of 
the member/class case frame reflects the basic or 
primitive nature of categorization in basic categories, 
whereas the use of the argl/rel/arg2 case frame 
treats membership in non-basic categories as an ordi­
nary binary relation. Thus, our system distinguishes 
two cases of ordinary categorization: one representa­
tion is used when the class membership involves a 
basic level category, another representation when the 
class membership involves a non-basic category. 

In addition to this ordinary categorization, a sys­
tem must, of course, be able to represent generic 
categorization, i.e., class/class relations, such as "Dogs 
are mammals". These relations are represented using a 
subclass/superclass case frame. 

Figure 5 
Here ml represents the proposition that the class of i's 
are a subclass of the class of j's. "Dogs are mammals" 
is represented as follows: 
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Thus, we build a traditional uniform type hierar­
chy of class/class relations. We see no reason to dis­
tinguish any relations in the hierarchy, since we find 
no evidence that generic categorization sentences such 
as "collies are dogs", "dogs aTe mammals", "mammals 
are vertebrates", require different underlying 
representations. (It is noteworthy that there are no 
class/class relations between two basic level 
categories.) 

Since an ability to form abstract concepts is 
required for generic categorization, this categorization 
occurs at a later stage of development than does ordi­
nary categorization of basic level objects. Therefore, 
the type hierarchy, which is formed after basic level 
concepts are formed, is not the appropriate place to 
make the distinction between basic and non-basic 
categories. In summary, a single representation is used 

for class/class relations, but two distinct representa­
tions are used for individual/class relations. 

KRL-0 [Bobrow & Winograd 1977a, 1977b, 1979] 
is, to our knowledge, the only other Al system to dis­
tinguish basic and non-basic levels in the representa­
tion of taxonomies. KRL-0 used units to represent both 
classes and individuals. Three distinct levels of 
abstraction were used in the representation of classes 
or types in units: a basic level, an abstract level, and a 
specialization level. Bobrow and Winograd stated 
that they did not, however, find an appropriate way 
to use these unit categorization levels for classes, and 
removed unit categorization from KRL-1 [Bobrow & 
Winograd 1979, p. 41]. Although not precisely 
specified in their papers, Bobrow and Winograd appear 
to have made distinctions among the levels of abstrac­
tion in the type hierarchy of frames only, not in the 
individual/class relationships. We could not find any 
evidence that distinctions were made in the units 
representing individuals [Bobrow & Winograd 1977a 
p. 23]. 

4. INHERITANCE AND LINGUISTIC IMPLICA­
TIONS. 

4.1. Inheritance. 
One of the organizational principles to which 

most semantic networks and frame systems adhere is 
that of storing properties in the hierarchy at the place 
covering the maximal subset of nodes sharing them. 
This is an efficient organizational scheme in which 
properties do not have to be replicated at different 
places in the network, for they are inherited by nodes 
below the ones in which they are stored. This princi­
ple fits in well with the theory of cognitive economy, 
for one can gain a great deal of information from a 

category system organized in this way, while conserv­
ing resources. 

Categorization research studies, however, do not 
support this principle of organization. As stated 
above, properties appear to be clustered at the basic 
level, not at the level covering the maximal subset of 
nodes. This means that there is not a great deal of 
inheritance of properties taking place in the type 
hierarchy. Instead most inheritance occurs at the 
individual level, i.e., from the basic level category to 
the individual. Thus, Rover inherits attributes from 
the basic level category dog. 

4.2. Linguistic Implications. 
Perhaps the most dramatic enhancement to our 

system resulting from our distinguishing basic and 
non-basic level categories is our ability to model 
human performance by choosing the most appropriate 
category name for an object. Systems using uniform 
taxonomies have to make arbitrary word choice deci­
sions. For example, the NIGEL generator [Sondheimer 
et al. 1986] generates as specific a term as possible. 
However, we know from human categorization 
research that in the absence of a specific context that 
would lead one to use a non-basic level name for an 
object, the basic level name should be used. 

Figure 8 shows a dialog with our system illus­
trating our ability to model human performance in 
this respect: 

atn parser initialization 

: Lucy petted a yellow animal 
I understand that Lucy petted a yellow animal 

: The animal was a dog 
I understand that the yellow animal is a dog 

: The dog was a collie 
I understand that the yellow dog is a collie 

: What did Lucy pet 
Lucy petted a yellow dog 

: "end 
(end atn parser) 

Figure 8 
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Since the basic level name is the most useful and 
most used name, the most appropriate answer to the 
question "What did Lucy pet?" is not the specializa­
tion "collie" or the superordinate level name "mam­
mal", but the basic level name "dog". 

The dialog in Figure 9 demonstrates that the 
basic level name is chosen regardless of the order in 
which categories are mentioned. 

atn parser initialization 

: Mary petted a dog 
I understand that Mary petted a dog 

: The dog is a mammal 
I understand that the dog is a mammal 

: The dog was a labrador 
I understand that the dog is a labrador 

: What did Mary pet 
Mary petted a dog 

: Jane petted a manx 
I understand that Jane petted a manx 

: The manx is a cat 
I understand that the manx is a cat 

: A cat is a mammal 
I understand that cats are mammals 

: Mammals are animals 
I understand that mammals are animals 

: Who petted an animal 
Mary petted a dog 
and 
Jane petted a cat 

: ~end 
(end atn parser) 

Figure 9 

Thus, Figures 8 and 9 show that word choice 
decisions are not made arbitrarily. Our system does 
not simply choose the most or least specific name of 
an object, of the category name mentioned either first 
or most recently in the dialog. Rather, the most 
appropriate name for an object, its basic level name, is 
used. 

Figure 9 also shows the use of both ordinary 
categorization information and generic categorization 
information. The first three sentences show ordinary 
categorization, i.e., the multiple classifications of an 
individual as dog, mammal, and collie. Figure 10 
shows part of the network built following the input 
of these sentences. Node m9 represents the individual 

classified as a dog, mammal, and collie. The basic level 
name, dog, is chosen to answer the question "What 
did Mary pet". 

Figure 11 shows part of the network constructed 
from the input of the last five sentences in the dialog. 
Node m24 is the individual classified both as a car and 
manx. The last group of sentences in Figure 9 also 
includes two generic categorizations: "A cat is a mam­
mal" and "Mammals are animals". A type hierarchy 
is constructed from this input. Answering the ques­
tion "Who petted an animal" requires inferencing 
using the type hierarchy. Our system has inheritance 
rules which make this inferencing possible. [See 
Shapiro 1978, and Shapiro & Rapaport 1986 for exam­
ples of these rules.] 

5. PROCESSING IMPLICATIONS. 
The non-uniformity of human category systems 

also has implications for a processing model for 
categorization. We would like to use our system to 
model classification problem solving. This form of 
problem solving is the basis for many expert systems, 
e.g., PROSPECTOR [Gauschnig 1980], EMYCIN [van 
Melle 19791 and COCCI [Shapiro 1981] are 
knowlege-base systems that specialize in forms of 
classification problems. 
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Category research has established that objects can 
be identified as members of their basic level category 
more rapidly than as members of their superordinate 
or subordinate categories. A possible processing model 
for our implementation, compatible wi th Rosch's 
empirical evidence and the current general processing 
assumptions about categorization involving featural 
models [Smith & Medin 1981] such as ours is the fol­
lowing. An object is first identified or recognized as a 
member of its basic class, since properties or attributes 
are clustered at the basic level. Because of this bun-
dling of attributes at the basic level, this processing 
involving feature matching can be performed quickly. 
Categorization of an object as a member of its subordi­
nate classes requires additional processing time, 
because additional features must be matched, some of 
which are much less salient than the features for 
categorizing an object at the basic level. Categoriza­
tion of an object as a member of its superordinate 
classes requires inferencing using the type hierarchy. 
We use path-based inference to accomplish this 
[Shapiro & Rapaport 1986, Shapiro 1978]. Performing 
this inferencing, of course, requires additional process­
ing time. 

We are also interested in modeling the effect of 
expertise on the classification system, since Rosch 
[1976] found that expertise affects which level of 

abstraction is considered to be the basic level, as well 
as the amount of information stored at the basic and 
subordinate levels. For example, an airplane mechanic 
participating in her studies did not treat airplane as a 
basic level category, but further differentiated air­
planes to form basic level categories. His list of attri­
butes for types of airplanes was much more lengthy 
than those of other subjects, and he used attributes 
ignored by others. His visual view of airplanes also 
differed from those of other subjects, since his canoni­
cal view of airplanes was of the undersides and the 
engines, rather than of the top and side images. 
Although it seems clear that the effects of expertise 
w i l l be confined to small, specific parts of the taxon­
omy, the effects of expertise on the classification sys­
tem need to be studied further. We believe that our 

system is flexible enough to accomodate the effects of 
expertise on the organization of the system. 

6. CONCLUSIONS. 
We have incorporated principles of categorization 

derived from several years of research in our AI/NLP 
system. We distinguish one level, the basic level, as 
the core of our taxonomies, using a representation for 
membership in basic categories distinct from that used 
for membership in non-basic categories. This allows 
our system to model human performance in the gen­
eration of appropriate names for objects: when there 
is no context effect, the basic level name is used. The 
use of distinct representations and storing of attri­
butes at the basic level also wi l l allow us to model 
the additional processing time necessary to categorize 
an object at a non-basic level. 
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