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Abstract. Model Transformation (MT) is an important operation in
the domain of Model-Driven Engineering (MDE). While MDE contin-
ues to be further adopted in the design and development of systems,
MT programs are applied to more and more complex configurations of
models and relationships between them and grow in complexity. Struc-
tured techniques have proven to be helpful in design and development of
programming languages. In this paper, using an example, we explain an
approach in which MT specifications are defined in a structured man-
ner, by distinguishing queries as their main building blocks. We call the
approach Query Structured Transformation (QueST). We demonstrate
that the contents of individual queries used in QueST to define a trans-
formation are dispersed all over the entire corresponding MT definition
in ETL or QVT-R. Our claim is that the latter two languages are less
supportive of a structured approach than QueST. Finally we discuss the
promising advantage of QueST in MT definition, and possible obstacles
towards using it.

Keywords: Model Transformation, Query Structured Model Transfor-
mation, Formal Methods, Model Driven Engineering.

1 Introduction

As the adaption of Model-Driven Engineering (MDE) in the design and devel-
opment of systems increases in industry, the complexity of Model Transforma-
tion (MT) programs —basic MDE operations which transform models to other
models— also increases. Structured approaches already have proven to be suc-
cessful in managing the complexity of systems; for example, the shift from pro-
gramming with goto statements to the structured programming paradigm has
proven to be a good design decision, which undoubtedly improved the quality of
the software produced. Following this principle, we propose a Query Structured
Transformation (QueST!) approach for defining model transformations which
are translating source models to target models. QueST approach is originated
from [2,1], and its mathematical foundation has been developing for the past
few years [3,4]. In this paper, we explain QueST by introducing its structural

! The acronym is suggested by Sahar Kokaly, our colleague in the MDE group.



components using a well-known class-to-table example. The structural compo-
nents of QueST are declarative queries that are used to define target element
generation. For each individual target metamodel element, there exists one dis-
tinct query in QueST used to define the part of the source metamodel used to
generate it. We exhibit the definition of a number of these queries in relation to
an example, and explain their execution in QueST. Then, we demonstrate how
these queries are dispersed in the body of the corresponding MT programs writ-
ten in the Epsilon Transformation Language (ETL) [7], and in QVT-Relational
[9]. We discuss the reasons for this phenomenon, and finally discuss the benefits
of QueST for MT definitions.

The paper is organized as follows: in the next section we introduce the meta-
models for the class-to-table example, and informally describe the transformation
rules. In Section 3, we explain the structural components of the class-to-table
example in QueST, and provide a mathematical definition for a number of these
components. Then, we explain how the QueST engine would execute the MT def-
inition. In Section 4, we briefly discuss program building blocks in QVT-R and
ETL, and demonstrate the dispersal of the contents of the QueST components
(i.e., queries) in the MT definitions corresponding to the same class-to-tables
example in these languages. In Section 5, we briefly discuss the reasons for the
query dispersals, and also promising advantages of using QueST. Section 6 con-
cludes the paper and mentions potential future research.

2 Class diagram to database schema MT

Metamodels specify valid instances of domains, and are the focal point of MT
definitions in QueST. We first briefly describe the source and target metamodels
of the class-to-table example and then define the MT in QueST based on them.

2.1 Metamodels

Metamodels of the class diagram (CD) and database schema (DBS) specify the
valid model spaces of the CDs and DBSs, respectively. Fig. 1(a) exhibits the
CD metamodel. Each class contains some attributes associated to it by atts;
each attribute has a type and a multiplicity (Lbound and Ubound). Each class
might inherit at most one class (parent arrow). Associations have multiplicity
like Attributes and connect src classes to trg classes.

Fig. 1(b) shows the metamodel of the DBS. Each Table has at least one
Column (see cols in the figure). Some columns are primary keys for the table
(pKeys). A table might also have some foreign keys (Fkey). fKeys associate these
foreign keys to tables. Each FKey refers to one table (refs) and some columns
(fCols).

The constraints associated with the metamodels are exhibited using red la-
bels with enclosing brackets. The multiplicities on the arrows are also constraints
and therefore they are in red and are included inside brackets. Constraints can
be written in any suitable language by interpreting squares as sets and ar-
rows as binary relations. [isAbstract] specifies that NamedElement is abstract.



[noLoop] specifies that there is no loop in the inheritance hierarchy of classes.
[pKeysInCols] states that the primary keys are columns of the same tables.
[FKeyColIsValid] states that the columns to which each foreign key refers are
subset of table columns of which they are a part (i.e., fKeys;fCols C cols).

[isAbstract]
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Fig. 1. Class Diagram and DB schema metamodels

2.2 Transformation rules

There are different ways to translate a CD to a corresponding DBS [5]. We pro-
pose the following rules as the transformation specification of the example in
this paper. For each class we generate a table. Single-valued attributes (svAtts)
—those with multiplicity of one or zero— of a class are translated to columns
of the corresponding table. A table is generated for each multi-valued attribute
—those with the multiplicity greater than one. These tables have two columns:
one for keeping the attribute values and another for a foreign key referring to
the table corresponding to the attribute containment class. Single-valued asso-
ciations (svAssoci) are handled by foreign keys; for each svAssoci we create a
column in the table corresponding to the source of the association. For each
multi-valued association, we create a table with two foreign keys which refer to
the source and target of the association, respectively. Inheritance is handled in
a way similar to the single-valued associations.

Fig.2(a) shows a class diagram and Fig.2(b) shows its corresponding DB
schema, following the rules specified above. In Fig.2(b), FK in parenthesis in
front of a column indicates that the column is a foreign key and its outgoing arrow
is referring to the table that this foreign key is referring to. As exhibited in the
figure, the two tables takes and teaches are created due to the corresponding
two multi-valued associations and the table telephone is created due to the
corresponding multi-valued attribute.

3 QueST: Query Structured Transformation approach

In a typical MT language, like ETL or even QVT-R, the MT designer thinks in
the following way: how does each pattern in the source model produce a collection
of elements in the target model? But QueST assumes a different manner of
thinking. The question that the MT designer is required to think about when
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Fig. 2. A class diagram and its corresponding DB schema

name: String[1]

starting to specify an MT in QueST is the following: from which elements of
the source model is each element of the target model generated? This arises from
the observation that the target model information is somehow hidden inside the
source model and the model transformation program functionality’s purpose is to
reveal this information by manipulating the information inside the source model
and creating the target elements out of the resulting information; for example,
according to the MT rules specified in Sec. 2.2, tables in DBS are generated
in three different cases: 1) for each class 2) for each multi-valued attribute and
3) for each multi-valued association. This can be specified by defining a query
on the CD metamodel. The blue square with a diagonal corner named QTable
in the right hand side of Fig.4 represents this query and Fig.3(a) exhibits this
query definition in mathematical notation. The plus notation in the query means
disjoint union. After this query definition, we associate the Table element in the
target to this query (the green arrow from Table to QTable in Fig. 4).

QTable Qco|5‘
Class+ mvAtt + mvAssoci, QTable QColumn
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Fig. 3. Query definitions

From the transformation specification, we need to figure out how the columns
are generated, and continue to answer similar questions for all the other entities
(including squares and arrows) in the target metamodel. This method of thinking
is the cornerstone in writing an MT in QueST. Therefore, based on the MT
specification, we write a query like the one shown in Fig. 3(b) for the Column
entity and name it QColumn. This query is simply specifying all the possible ways
leading to the generation of a column based on the MT specification rules. Then
we associate the Column in the target metamodel to this query (see Fig. 4).

We apply the same method for the associations between the squares in the
target metamodel. Hence we draw an arrow between the QTable and QColumn



(see purple arrow called Qcols in Fig.4) and associate a query to this arrow.
The query definition for this arrow is defining the relation between the elements
of the QTable and QColumn. That is the disjoint union of all the arrows which
are indexed from one to eight in Fig.3(c); restr(atts) is restriction of the atts
relation over the svAtt co-domain; inv(src) is the inverse of the src relation,
and id arrows are the identity relations over their domains. The l , ¢ and %
signs on the Qtable, Qcol and QColumn in this figure will be used for comparison
purposes in Section 4.
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Fig. 4. CD to DBS MT definition in QueST

If we continue the above process of query definition and linking, for the other
elements of the DBS metamodel, we will arrive at the structure shown in Fig.4.
The entire figure shows the definition of the class-to-table MT in QueST. The
new green elements called QFKey, QpKeys, Qrefs, QfKeys, and Qfcols are all new
queries. Their definitions are not shown in the figure due to space limitations,
but they are defined in a similar way to the queries defined in Fig. 3. We call the
source metamodel with query annotations an augmented source metamodel. The
augmented CD metamodel is shown in the left hand side of the Fig. 4. As it is
shown by the dotted enclosing polygon in the figure, the structure of the target
metamodel is somehow replicated in the source metamodel. The association links
from the DBS to the CD metamodel show how the DBS metamodel is associated
to the augmented CD metamodel. Not all the individual links are shown in the
figure; instead a large blank green arrow is used to represent all the links. This
linking from the target to the source is total.

From the MT definition in Fig. 4, it is seen that the building blocks of an MT
definition in QueST are the queries on the source metamodel, and the links which
associate the elements of the target metamodel to these queries (like QTable)
or the source metamodel elements (like NamedElement). This provides a well-
formed structure for the model transformation definition; the query definitions
are encapsulated inside the squares and arrows, and are independent of each
other, and tracing back (by the association links) from the target elements to the
augmented metamodel shows how the transformation definition for each entity
in the target metamodel is defined. In Section 4 we show how these queries are
represented in ETL and QVT-R.



3.1 MT execution in QueST

For a given class diagram, like the one in Fig.2(a), the QueST engine first starts
executing the queries of the augmented CD metamodel over the given class dia-
gram. The order in which the queries are executed does not matter semantically,
so the execution of the queries can be scheduled in any order by the QueST
execution engine. This enables the engine implementation with the possibility
of applying any appropriate optimization mechanism over the execution of the
queries at the implementation level.

The collected elements from the execution of each query are then typed over
that query. For example, Fig 5 shows the elements generated by execution of
the QTable query that are typed over it (see :QTable square in Fig 5). The
incoming dotted arrows to the :QTable square show from where each element of
the square is coming. After all queries are executed, the next step for the QueST
engine is to produce the taget elements. This is done by replicating the elements
collected by the queries and changing their types according to the association
links in the MT definition; for example, for the QTable query, the engine first
duplicates all the elements collected inside the :QTable square and changes their
types to Table, since the Table entity is associated to the QTable by a link in
the MT definition, as in the previous section. The outgoing dotted arrows from
:QTable connect the elements to their replicated versions which are all typed
over the Table element (or simply are tables in DBS).

The process described for the QTable query in the previous paragraph con-
tinues for all other queries and its completion leads to the generation of the
target model shown in Fig 2(b) .
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Fig. 5. QueST engine executing QTable query and generating Tables

4 Dispersal of queries in ETL and QVT-R

We have defined the very same MT transformation described in Section 2.2 with
ETL, and also with QVT-R. In this section, we briefly explain the structures of
the MT definitions is each language, and by marking each transformation code,
we demonstrate the wide dispersal of the contents of structural components (i.e.,
queries) of QueST in these definitions.

4.1 Query dispersal in ETL

An MT in ETL is specified by a set of rules. Each rule defines how an element of
a specific type is translated to one or more elements (not all necessarily having



the same type) in the target model. The rules might have guard expressions that
constrain their application.

Fig. 6 shows the code for defining the class-to-table example in ETL. Inten-
tionally, the code font size used is very small in the figure, since we will not discuss
in detail each part of the definition, and instead, we only take into account the
entire transformation definition to show the dispersal of the QueST queries all
over it. The parts in Fig. 6 that correspond to the queries in Fig.3 are marked: 1)
B marking the parts corresponding to the generation of tables (QTable query);
2) % marking the parts corresponding to the generation of columns (QColumn
query) and 3)4 marking the parts which associate the columns to the tables
(Qcols Query). The numbers above the markings correspond to the numbers
in Fig. 3(c) for each marking; for example, & refers to the mvAtt component of
the QTable, and & and & refer to the parent arrow of Qcols, and the coParent
component of QColumn, respectively.

) =8

p =

Fig. 6. ETL code for the CD to DBS transformation

As the figure shows, each marking sign is dispersed over the entire code. This
means that different components of the queries in Fig 3 are dispersed all over the
code in ETL; for example the eight component of the Qcols which are indexed
from one to eight are scattered throughout the entire definition and among the
different rules.

We avoided marking all the queries that are generating the target elements
in the definition of Fig. 6 to keep the figure simple. However, by repeating the
marking procedure for all of the other queries, we would get a similar dispersal of
their content over the entire code. One immediate consequence of these dispersals
is the difficulty that occurs during the debugging process in the development of
the model transformation; since the user needs to check different parts of the
code, if he gets some errors regarding generation of specific element in the target.

4.2 Query dispersal in QVT-R

An MT definition in QVT-R is composed of a set of top and non-top relations.
The difference is that the latter relations are invoked by the former ones. Each
relation definition specifies how some elements in the source model are related
to some elements in the target model. There are when and where clauses which
act as pre- and post-conditions for the execution of the corresponding relation
[8]. At the time QVT-R engine executes an MT definition, it enforces that all
the defined top relations hold true, by creating missing elements in the target.



We wrote a transformation in QVT-R for the same class-to-table example,
and perform the same analysis over the code as we did in the previous section for
the ETL definition. Fig. 7 shows the definition and the marking; the semantics
of the markings are identical to what we described before. It is seen from the
figure that, similar to the ETL code, the queries for the generation of the target
model elements are distributed all over the code.
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Fig. 7. QVT-R code for the CD to DBS transformation

5 Discussion

This section is divided into two parts: we first discuss the reasons that cause the
scattering of each individual query in QueST over the entire MT definitions by
ETL and by QVT-R; then, we discuss the promising advantages of QueST from
different perspectives.

5.1 Why query dispersal happens in ETL and QVT-R

It might be argued that what are presented in Section 4, as the definitions of the
class-to-table example in QVT-R, and in ETL are subjective, in the sense that
there might be different implementations for the example by these languages,
such that the demonstrated query dispersal are prevented. We believe that the
scattering of the QueST queries would happen in any implementation, because
of the three reasons briefly discussed below:

One to many and many to many associations. In ETL, each rule associates
one source metamodel element to many target metamodel elements. In QVT-
R, each relation associates many source metamodel elements to many target
metamodel elements. Therefore one target element can be referenced in many
rules/relations in a transformation definition in these languages; this means that
the queries generating the elements of a specific type are spread between differ-
ent rules/relations.

Arrows are secondary elements. References to arrows in MT definitions in
ETL and QVT-R happen by means of nodes; queries only define nodes, and ar-
row definitions are implicit inside these queries. More concretely, it is not possible
to define an arrow as a target of an ETL rule (i.e., as a rule header parameter),
or as a domain of a relation in QVT-R. This means that if the queries gener-
ating nodes are dispersed, then the queries for generating the arrows which are
referenced by these nodes will also be dispersed. The ¢ marking signs appearing



everywhere close to the % signs in Fig. 7 show this phenomenon.

Flattening the graphical structure. ETL and QVT-R are textual languages,
while as it may be seen from the Fig. 4, MT definitions contain graphical con-
structs. A representation of a graphical construct in a textual format causes
a scattering of references to the graphical elements, inside the representation;
for example a node with several incoming edges in a graph would be inevitably
referenced in different places in the graph’s textual representation.

5.2 Promising advantages of QueST

MT design and development. As is shown in Section 3, QueST provides well
structured definitions by encapsulating queries inside squares and arrows, i.e.,
the first class elements of the metamodeling language. All the target elements of
a specific type (type could be an arrow or a square) are generated by one, and
only one, query. We believe that this is helpful in development and debugging
of MT definitions, because it follows the well-known principle of separation of
concerns, where the concern is the production of elements of specific type. Fur-
ther, each query definition is fairly independent in QueST, i.e., square queries
are independent, and arrow queries are only dependent on their corresponding
source and target queries; Hence, QueST’s structural construct, the query, suit-
ably provides a pattern to decompose complex MT definition tasks into small
fairly independent definitions.

Semantic foundations. The mathematical foundation of the QueST approach
is already discussed in some other work [2-4,6]. This ensures that there is a
clear and formal understanding of QueST. This would prevent some ambiguity
and semantic issues like the ones investigated for the QVT-R specification [10].
Furthermore, its formal foundation provides a context to validate and formally
verify MT definitions.

Flexibility in query language. Theoretically, any query language can be used
for defining the queries in QueST. The expressive power of QueST depends on
the expressive power of the chosen query language. We insist that the chosen
query language should consider the arrows as equally as important as the nodes;
the experiments of using QueST for MT definitions have shown that defining the
square queries are easy in some query languages like OCL, but defining arrow
queries are fairly complicated, because they necessarily include many references
to the source and target of the arrow.

Declarative vs. imperative. QueST is declarative: the definitions of its struc-
tural building blocks (i.e., queries) provide specifications rather than implemen-
tations for the generation of the target elements. Further, the queries could
be executed in any order in QueST. The advantages of declarative approaches
in programming languages is less debatable now; even though the traditional
challenges of training MT programers to think declaratively might still be an
obstacle, considering the number of people who are trained to write queries
declaratively, in the database community, it might be plausible enough to follow
a similar pathway in the MT community as well.



6 Conclusion

From one perspective, the intent of MT programs is to collect information from
the source model by executing some queries, and, then, to build up the target
model elements. Formalizing this procedure suggests a structural pattern for
model transformation which we call QueST. In QueST, the MT definer should
think in a target-oriented manner, in the sense that he should define a query
for each individual element in the target metamodel, during the MT develop-
ment process. These queries define the generation of target model elements, and
are encapsulated inside the fairly independent components which make up the
structural building blocks of an MT definition in QueST. We used a well-known
class-to-table example to explain these structural components (i.e., queries) and
their definitions. We also demonstrated that the contents of these queries are
necessarily dispersed all over the entire MT definitions written with ETL and
QVT-R. Subsequently, we discussed how the dispersal of each query is not a
specific property of the implemented examples and could be generalized to any
programs written in QVT-R and ETL. Finally, we discussed the advantages
of QueST from different perspectives. A deeper examination and evaluation of
QueST, regarding the aspects discussed in the previous section, is the subject
for our future work.
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