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Abstract
Cloud computing has emerged as a new 
computing paradigm that aims to provide on 
demand IT services with a rational and 
efficient use of resources but still maintaining 
the required Quality of Service(QoS) via 
elasticity key feature. However, resource 
usage patterns in elastic cloud are inherently 
probabilistic and provoke non-determinism 
while selecting the elasticity policy to be 
applied. The main objective of the present 
work is to supply solutions for the challenging 
task of managing elastic Cloud architecture by 
fully quantifying the non-determinism on the 
basis of QoS parameters. Hence, we define a 
formal approach that offers a model for 
specifying cloud architecture and its dynamics 
in terms of quality driven elasticity policies 
according to a continuous analysis of QoS 
parameters changes. 

Keywords : Cloud Computing; Elasticity Policies; 
Formal Methods; PSMaude; Quantitative 
Verification. 

1 Introduction 

Cloud Computing is actually a major evolution of IT 
technology since it rationalizes computing resources 
assets at a worldwide scale, allowing companies to be 
more efficient while managing both the development 
and deployment costs of software systems. The most 
attractive feature of cloud systems is their ability to 
dynamically scale resources up or down over fine-
grained time intervals [Joh 11], according to resource 
request variations over time. It also allows multiple 
users to be served simultaneously [Li 16]. 

Although the required resources of a cloud service 

are limited and statically determined, the workload can 
vary over time, and sometimes in an unpredictable way. 
This generally leads to an overloaded or unloaded 
cloud infrastructure causing fatal consequences on the 
quality of service level and the cloud service delivery 
cost. In this context, the elasticity management 
mechanism is faced with multiple obstacles for the 
growth and adoption of an efficient model for cloud 
systems. One major issue is the non-deterministic 
choice of the adequate elasticity strategy to be applied 
since a quick and dynamic resizing with respect to 
quality of service (QoS) parameters of the cloud 
architecture is not always evident. Additionally, 
resource usage patterns in elastic cloud systems are 
inherently probabilistic in nature and involve 
potentially unknown or non-deterministic factors [Joh 
11]. Non-determinism is due to the various forms of 
elasticity (replication, consolidation and VM-
migration) in the cloud model as well as the availability 
of several resources of the same nature whereas a 
dynamic reconfiguration is necessary to assure the 
elasticity property. Consequently, the elasticity 
property is quite complex and difficult to model, test 
and verify. Adopting a quantitative analysis approach 
to resolve the non-determinism; encountered while 
selecting both the elasticity mechanism to be adopted 
and the resource to be considered, is well suited. 

The main objective of the present work is to supply 
solutions for the challenging task of managing elastic 
cloud systems with respect to QoS properties using 
formal methods and quantitative analysis. We propose 
a design methodology together with a formal model 
enabling the specification of the cloud architecture and 
its dynamics in terms of quality driven elasticity 
strategies by scaling up/down according to a continuous 
analysis of QoS parameters changes.  

The paper is organized as follows: Section 2 
presents the Ticket Booking system to be used to 
illustrate the various concepts introduced in the present 
work. Section 3 defines the PSMaude semantics to the 
proposed approach. In section 4, the model is validated 
through the verification of some cloud QoS properties. 
Section 5 rounds up the paper.  
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2 Motivating Example 
The various concepts introduced in the present work 
are illustrated via a ticket booking system (Ticket 
Booking), inspired and adapted from [Ron 09]. The 
system is deployed in a cloud infrastructure and is 
composed of two services: Air Ticket Booking service 
(S1) for booking air tickets, and Boat Ticket Booking 

service (S2) for Boat Tickets Booking. Supposing that 
actually there are four users (A1, A2, A3 and B) 
exploiting the Ticket Booking system, two of them (A1 
and B) are booking an Air ticket by requesting service 
(S1), and user A2 is actually booking a boat ticket via 
service (S2). The two services are deployed on the 
same physical server (Server1) but running on two 

Table 1 Correspondence between cloud architecture concepts and Maude 

Cloud concept Maude concept 

Cloud architecture 

User class User | connected : Bool . 

Service class Service | NbrClient : Nat, Type : Qid ,clients : 
OidListe, Cout : Nat . 

Virtual Machine class Vm | NbrService : Nat , NbrReq : Nat , services : 
OidListe, state : State , Cout : Nat . 

Server class Server | NbrVm : Nat , NbrReq : Nat , vms : 
OidListe, state : State , Cout : Nat . 

Load balancer class LoadBalancer | connected : Bool . 

Data center class DataCenter | loadbalancer : Oid , servers : 
OidListe . 

Elastic Cloud 
Dynamics 

Elasticity Strategy Probabilistic Rewrite rule 

Elasticity Strategy 
selector 

PSMaude strategy 

different virtual machines, VM1 and VM2 respectively. 
The second (Server2) and third (Server3) servers 
actually contain VM3 and VM4 virtual machines 
respectively. User requests are dispatched by the load 
balancer element of a cloud system. 

Throughout our motivating example, we attempt to 
identify major issues to be encountered while designing 
efficient elastic cloud systems that are constrained to 
adapt to workload variations in order to ensure certain 
QoS properties. 

The principle of the elasticity property is to ensure 
the provisioning of necessary and sufficient resources 
such that a cloud service continues running smoothly 
even as the workload scales up or down, thereby 
avoiding under-utilization and overutilization of 
resources [Geel 09]. The elasticity property can be 
provided using three fundamental mechanisms: Service 
Replication, Service Consolidation and Service 
Migration. Accordingly, to face a workload variation, 
two or more elasticity strategies may be candidate at 

the same time. As an example, we suppose that the 
VM1virtual machine is overloaded and is no more able  
to treat requests for Air Ticket service S1, is it 
preferable to replicate it and thus create a new instance 
to treat user requests or redeploy (migrate) the 
requested service on a less loaded virtual machine? 
Consequently, the non-determinism arises while 
selecting the elasticity strategy to be applied. Besides, 
in certain situations, a given elasticity strategy is more 
reliable than others with respect to service delivery 
QoS parameters. Hence, we notice that elastic cloud 
systems exhibit both probabilistic and nondeterministic 
behaviors. 

To address the above challenges, we attempt to 
quantify the non-determinism to obtain a fully 
probabilistic model by associating a cumulated cost 
attribute to each cloud resource. Then, a dynamic 
weighting, which is inversely proportional to the 
resource cost, of the elasticity strategies is performed to 
select the more adequate one. The proposed approach 
enables specifying and analyzing elastic cloud systems 
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with respect to QoS requirements that quantify the non-
determinism. 

3 Elastic Cloud Semantics 

We associate a formal operational semantics to elastic 
cloud system. In particular, the aim of providing 
semantics is to specify the behavior of an elastic cloud 
system in terms of changes on its structure via the 
elasticity strategies and obtain an executable 
specification that can be then analyzed with respect to 
QoS parameters. We choose Maude [Cla 08] and its 
extension PSMaude[Ben 13] as the basis for the 
definition of elastic cloud semantics. 
Maude is a high-performance language and system 
supporting both equational and rewriting logic [Mes 
93] specification and programming for a wide range of
systems and applications. Equational theories describe 
the static parts of a system and are represented as 
functional modules. Rewrite theories describe the 
dynamic parts of the system and are represented in 
Maude as system modules.  

PSMaude [Ben 13] extends Maude by adding the 
necessary support for specifying both probabilistic 
rewrite rules and probabilistic strategies. It also 
provides a set of probabilistic rewrite commands 
together with a statistical PCTL model checker to 
analyze a given probabilistic rewrite theory being 
controlled by probabilistic strategies. In particular, 
PSMaude allows simulating and comparing the 
evolution of a “base” unquantified model under 
different probabilistic strategies, from a given initial 
state.  

The proposed formalization approach is based on a 
set of formal mapping rules (see Table 1) defining the 
correspondences between elastic cloud system concepts 
and PSMaude ones. Structural aspects of a cloud 
system are mapped to a judiciously defined set of 
classes, elasticity strategies to probabilistic rewrite 
rules and the elasticity selector mechanism to a set of 
PSMaude strategies.  

3.1 Cloud Architecture Formalization 

To reflect the hierarchical structure (see table 1) of 
cloud systems and avoid structure flatting through 
algebraic terms, we adopt an object oriented approach 

in Maude. Thus, the cloud architecture is considered as 
a collection of objects that conform to a well defined 
structural hierarchy. Identifying cloud system elements 
as objects; each one with its own context, properties 
and actions, facilitates considerably the design and 
understandability of the model.   

3.2 Elasticity Strategies Formalization 

The dynamic aspect of the cloud architecture is 
specified via a set of rewrite rules expressing local 
changes on the cloud architecture in terms of resource 
elasticity while preserving the initial architectural 
constraints. Since we are interested with the provision 
of resources and the elasticity of the cloud architecture, 
the proposed rewrite rules allow allocating and 
releasing services or resources in general. 

Three forms of elasticity can appear in Cloud 
architectures. 
− Service Replication: Whenever the workload 

scales up while the deployed services are unable to 
treat all requests, the replication or duplication of 
services/VMs is necessary.  

− Service Consolidation: Resource consolidation is 
the dual operation of the replication one. It is 
performed whenever the workload scales down and 
consists of deleting useless copies of 
services/VMs.  

− Service/VM Migration: This situation appears 
when a server becomes saturated but contains a 
VM which is not saturated. Consequently, this VM 
can be migrated to another server that is not 
overload. 

These three mechanisms of cloud architecture 
elasticity are formalized by the following rewrite rules. 

3.2.1 Rewrite rules for Service/VM replication 

Service replication is applied if the VM is not saturated 
and contains the requested service. However, the later 
has reached the authorized threshold of simultaneous 
requests. 

crl [Replication-of-service] : 

Replicate-service( S, SR) 

< V : Vm | NbrService : SN , NbrReq : M , 
services : SS , Cout : C > 
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< S : Service | NbrClient : CN , Type : type> 

=> < S : Service | > 

< SR : Service | NbrClient : 0 , clients : 
empty , Type : type , Cout :Cout('Service ) > 

< V : Vm | NbrService : (size(SS) + 1) , 
services : (add(SR, SS)) , Cout : C + 
Cout('Service ) > 

if CN == MAXREQ /\ SN <=  MaxService  /\ S in 
SS = true /\  SR in SS = false . 

The effect of the rewrite rule is to accumulate the 
cost of adding a service instance to the cost of the VM 
and to increment the number of services actually 
deployed in this VM. The newly created service is 
added to the list of services of the VM.  

A VM replication is conditioned with the fact that 
the server is not saturated. 

crl [Replcation-of-VM] : 

Dup-VM( V, VV) 

< V : Vm | state : loaded > 

< E : Server | NbrVm : VN  , vms : CL , state 
: non-loaded , Cout : C > 

=> < V : Vm | > 

< VV : Vm | NbrService : 0, services : empty 
, NbrReq : 80 , state : non-loaded , Cout : 
Cout('VM ) > 

< E : Server | NbrVm : (size(CL) + 1) , vms : 
(add(VV, CL)) , state : non-loaded , Cout : C 
+ Cout('VM ) > 

if VN < MaxVM  /\ V in CL = true /\ VV in CL 
= false . 

The effect of the rewrite rule is to accumulate the 
cost of adding a new VM to the actual cost of the 
server. The number of VMs is also incremented and a 
new VM is created and added to the list of VMs of the 
server.  

3.2.2 Rewrite rule for Service/VM consolidation 

The Consolidation-of-service rewrite rule destroys 
useless (empty) copies of services/VMs when the 
workload scales down. The rule applicability 
conditions are the list of clients is empty and there 
exists another service of the same type that has not yet 
reached its maximal threshold of simultaneous requests. 

crl [Consolidation-of-service] : 

< V : Vm | NbrService : SN , services : SS , 
Cout : C > 

< S : Service | Type : type , clients : CL > 

< S' : Service | Type : type , NbrClient : 0 
> 

=>< S : Service | > 

< V : Vm | NbrService : (size(SS) - 1) , 
services : (del(S' , SS)) , Cout : C > 

if size(CL) > 0 /\ size(CL) <= MAXREQ /\ S in 
SS = true  /\ S' in SS = true . 

The effect of the rewrite rule is to decrement the 
number of services actually deployed on the VM and 
destroy the useless service. 

The Consolidation-of-VM rewrite rule is similar to 
the Consolidation-of-service one expects that it 
operates on useless VMs instead of services.  

3.2.3 Rewrite rule for VM migration 

VM migration rule allows moving a VM from one 
server to another. The destination server might be not 
saturated. The rule execution effect consists of updating 
the destination server cost by accumulating the cost of a 
VM migration and incrementing the number of VMs. 
The user is added to the list of clients of both the 
service and the VM. 

crl [Migrate-VM] : 

allocate( U, S)  

< U : User | connected : false> 

< S : Service | NbrClient : CN , clients : LS 
> 

< E : Server | vms : V VS , state : loaded > 

< EE : Server | NbrVm : VN , vms : CL , Cout 
: C , NbrReq : Y , state : non-loaded > 

< V : Vm | services : S SS , NbrReq : M , 
state : non-loaded > 

=>< U : User | connected : true> 

< S : Service | NbrClient : (size(LS) + 1) , 
clients : (add(U, LS)) > 

< V : Vm | NbrReq : M + 1 , state : non-
loaded > 
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< E : Server | NbrVm : (size(VS) - 1) , vms : 
(del(V, VS)) , state : non-loaded > 

< EE : Server | NbrVm : (size(CL) + 1) , vms 
: (add(V, CL)) , NbrReq : Y + 1 , Cout : C + 
Cout('MigrateVm ) > 

if VN <= MaxVM  /\ V in CL = false /\ CN <= 
MAXREQ /\ U in CL = false . 

3.3 Elasticity Strategy Selector Formalization 

In our probabilistic model, we associate to each rewrite 
rule; representing an elasticity strategy and already 
presented in the above sub-section, an applicability 
probability which is inversely proportional to the cost 
of the corresponding elasticity strategy. So, plus the 
cost is high, the rewrite rule is less probable to be 
applied. The probability of applying an elasticity 
strategy is also inversely proportional to the workload 
of the resources (the actual context), i.e., a resource is 
likely to be selected if it has less workload. 

Before defining the strategies to control the various 
forms of elasticity, we start with quantifying the 
nondeterministic choice that exists in the cloud system 
environment. We initially define the strategy RuleStrat 
affecting a weight to each rewrite rule. For our Ticket 
Booking system, we have weighed the various elasticity 
rewrite rules with the corresponding elasticity strategy 
cost.  

psdrule RuleStrat := given state: 
CF:Configuration  

is:  ( allocate-service ) -> 100 ; 

( Consolidation-of-service ) -> 1 ; 

( Replication-of-service ) -> 10 ;  

( Replication-of-service2 ) -> 10 ; 

( Replcation-of-VM ) -> 1 ;  

( Consolidation-of-VM ) -> 1 ; 

( Migrate-VM ) -> 1 ;  

[none] . 

Generally, the frequently solicited rewrite rule is the 
allocate-service one considering that the cloud system 
is dotted with a large capacity of resources and is able 
to treat a multitude of user requests simultaneously. So, 
we affect the highest weight, of value 100, to the 
allocate-service rewrite rule. A weight of 10 is affected 

to the Replication-of-service rewrite rule to treat 
requests for deploying new services or creating new 
instances of existing ones. The rest of the rewrite rules 
are rarely solicited and thus they are affected a weight 
of 1.  

Given that CF is a variable defining the current 
configuration of the cloud system, the strategy of 
weighting the various elasticity rewrite rules is applied 
at each possible state. Thus, the RuleStrat strategy 
quantifies the nondeterministic choice of the rule to be 
applied at each stage of the execution. 

In what follows, we define the strategies of context 
and substitution that are common to all rewrites rules. 
We only present elasticity rules that are subject to non-
determinism as the replication and migration rules 
while selecting the resource to be used. We assign a 
weight to the context strategy CtxStrat which represents 
the probability of selecting and applying Replication-
of-service rule. The weight is inversely proportional to 
the cost of creating a new instance of a service. 

The substitution strategy SubStrat is uniform since 
there is a unique correspondence substitution. 

------Ctx et Sub : Replication of Service ---
---- 

 psdcontext CtxStrat := given state: 
CF:Configuration < V : Vm | Cout : C > 

rule: Replication ice -of-serv 

is: ([] < V : Vm | Cout : C + Cout('Service ) 
>) -> ( 1 / ( C + Cout('Service ))) 

[none] . 

psdsubst SubstStrat := given state: 
CF:Configuration 

   rule: 
Replication-of-service 

context: CTX:Configuration 
is: uniform 
[none] . 

The context and substitution strategies for 
replicating a VM are defined in a similar way. 

The context in which the Migrate-VM rewrite rule 
can be applied depends on the probability associated to 
the cost of migrating a VM. The selection of the 
destination server is non-deterministic. Thus, the 
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substitution strategy intervenes and selects the server 
actually having the less workload.  

The less loaded server is identified by affecting a 
weight of (1/(XY + size (XCL))) to the substitution 
strategy. Such weight is inversely proportional to the 
sum of VMs actually deployed on the server and the 
number of requests. 

---------------Ctx et Sub : Migrate VM ---------- 

psdcontext CtxStrat := given state: 
CF:Configuration 

< XEE : Server | NbrVm : XVN , vms : XCL , 
Cout : XC > 

rule: Migrate-VM  

is: ( [ ] < XEE : Server | >) 

->(1 / XC + Cout('MigrateVm ))) 

[none] . 

psdsubst SubstStrat := given state: 
CF:Configuration  

< XEE : Server | NbrVm : XVN , vms : XCL , 
Cout : XC , NbrReq : XY > 

rule: Migrate-VM 

context: 

CTX:Configuration 

is: { EE <- XEE , VN <- XVN ,CL <- XCL ,C <-  
XC } ->  ( 1 / (XY + size(XCL))) 

[none] . 

For the rest of the rules, strategies for context and 
substitution are uniform and are randomly selected 
(random) at any state. 

Back to our Ticket Booking  system, we present two 
scenarios of dynamic resizing of the system.  

The first scenario consists of creating a new VM 
whenever the VM1 becomes saturated. The result is 
shown in Figure 1. 

The second scenario concerns the virtual machine 
migration strategy. We consider that client A2 is 
actually soliciting the Air Ticket Booking service S1 
which is deployed on VM1; not yet saturated. But 
Server1, containing VM1, is no more able to treat new 
requests since the NBReq has reached is maximal 
threshold of 100 simultaneous requests.  

Figure 1: VM Replication 

In this situation, the VM migration strategy is 
selected by the Elasticity Strategy  Selector and applied 
to move VM1 to a less loaded server. A set of steps is 
applied to allocate service S1 to user A2. As a first step, 
the state of Server1 is updated and becomes loaded. 
Then, the destination server is selected via the 
substitution strategy of the Migrate-VM rewrite rule 
and VM1 is moved. Finally, service S1 is allocated to 
user A2. The destination server selection mechanism is 
non-deterministic since two servers (Server2 and 
Server3) are actually potential candidates to receive 
VM1. The non-determinism is resolved by the 
substitution strategy SubstStrat (see Figure 2) which 
selects the less loaded server since server selection 
weight is inversely proportional to the sum of its VMs 
and requests. The substitution strategy selects Server3. 
The result of migrating VM1 from Server1 to Server3 is 
shown in Figure 2. 

Figure 2: Migrating VM1 from Server1 to server2 
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4 Elastic Cloud Analysis 
To ensure the required quality of service of the 
proposed model for elastic cloud systems, we are 
interested with checking certain non-functional 
properties i.e. quantitative. We have opted for 
calculating the rate of resources implied in the 
treatment of the customer’s requests or calculating the 
effort supplied by the cloud system to allocate a service 
to a given user. Such effort may require the deployment 
of new services, the creation of new machines, and so 
on. The effort is calculated on the basis of the workload 
of the virtual machine VM; actually containing the 
required service and running on a physical server S 
according to the following formula: 
Effort(S) = (Initial_Effort(S) + SUM_VMs(S) + 
SUM_Service(S))  / 
(SUM_Requests(VM)+SUM_Request(S))  

For efficiency reasons, rather than calculating the 
effort function for each intermediate state to be reached 
by the rewriting engine, as defined above, we calculate 
a cumulated effort and include the effort function eff(e) 
as a term in system state. Back to our Ticket Booking 
system to estimate the effort concerted to allocate the 
Air Ticket Booking service S1 to user A2. Initially, the 
effort is zero. It is then augmented according to the 
Effort function defined above. We define a 
parameterized predicate EffectiveCloud, in a predicate 
module CLOUD-PRED. The semantics associated to 
the EffectiveCloud predicate is the following: the 
predicate is true in a given state S if the cumulative 
effort is strictly lower than a threshold K. The CLOUD-
PRED module bellow defines the desired predicate: 

(spmod CLOUD-PRED is 
protecting Cloud-Specification . 
--- sort for system states 
smcstate Configuration .  
var Effort : Rat .  
var CF : Configuration .  
var K : Rat . 
--- declaring the parametric state predicate 
psp EffectiveCloud : Rat . 
--- defining its semantics  
csat (CF eff(Effort)) |= EffectiveCloud(K)  
if Effort < K .  
endspm)  

We can now check that the system verifies the 
security property which is ensured if the cumulated 
effort of the cloud system while allocating a service 
never exceeds a threshold K with a probability of at 
least 0.9. This property ensures the desired QoS of 
cloud services, i.e., minimizing the effort 
(SUM_resources/SUM_requests), the cost is also 
reduced and even the workload. Indeed, while carrying 
the following PTCL property, the simulation result is 
illustrated in Figure 3. The TicketBooking system is 
able to allocate services with an effort of K = 5 in 94% 
of the cases. 

(smc CloudConf |= P >= 0.9 [G 
EffectiveCloud(5)] using CloudStrat .) 

5 CONCLUSION 
The goal of managing cloud resources capacity is to 
ensure service availability in spite of the abundance of 
user requests but still with the desired quality of 
service. Guarantying service availability and at the 
same time optimizing resource utilization has inspired a 
multitude of research work on the cloud elasticity 
property using probabilistic models. However, a 
significant effort is necessary to manage, plan elastic 
cloud systems and automatically identify the number of 
resources to be added or removed. Thus adjusting 
system capacity to a model of workload variations 
requires a great expert testimony. 

Our contribution consists of proposing a formal 
approach for specifying cloud architecture, its 
dynamics and elasticity policies in terms of resource 
provision and release. Indeed, we treat and resolve the 
problem of non-determinism caused by the applicability 
of various elasticity actions and the availability of 
several resources of the same nature. We have 
quantified the non-determinism to obtain a fully 
probabilistic model by associating a cumulative cost 
attribute to each cloud resource. Then, a dynamic 
weighting of the elasticity strategies is performed to 
select the more adequate one. Interesting results have 
been obtained while performing the probabilistic 
analysis of the elastic cloud system to evaluate the 
effort furnished by the cloud system to ensure service 
availability. 
As future work, we intend to ensure an automatic code 
generation to directly obtain executable PSMaude 
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specifications from models instantiating the defined 
meta-model. We also envisage developing an integrated 

framework for specifying self-adaptive systems in 
general and elastic cloud systems in particular. 

Figure  3 : Simulation result of the effort function simulation 
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