
Chafia Bouanaka, Esma Maatougui
LIRE Laboratory,

University of Constantine 2-Abdelhamid Mehri
Constantine, algeria

{chafia.bouanaka, esma.maatougui}@univ-
constantine2.dz

Faiza Belala, Nadia Zeghib
LIRE Laboratory,

University of Constantine 2-Abdelhamid Mehri,
Constantine, Algeria

{faiza.belala, nadia.zeghib}@univ-constantine2.dz

Abstract
Cloud computing has emerged as a new
computing paradigm that aims to provide on
demand IT services with a rational and
efficient use of resources but still maintaining
the required Quality of Service(QoS) via
elasticity key feature. However, resource
usage patterns in elastic cloud are inherently
probabilistic and provoke non-determinism
while selecting the elasticity policy to be
applied. The main objective of the present
work is to supply solutions for the challenging
task of managing elastic Cloud architecture by
fully quantifying the non-determinism on the
basis of QoS parameters. Hence, we define a
formal approach that offers a model for
specifying cloud architecture and its dynamics
in terms of quality driven elasticity policies
according to a continuous analysis of QoS
parameters changes.

Keywords : Cloud Computing; Elasticity Policies;
Formal Methods; PSMaude; Quantitative
Verification.

1 Introduction

Cloud Computing is actually a major evolution of IT
technology since it rationalizes computing resources
assets at a worldwide scale, allowing companies to be
more efficient while managing both the development
and deployment costs of software systems. The most
attractive feature of cloud systems is their ability to
dynamically scale resources up or down over fine-
grained time intervals [Joh 11], according to resource
request variations over time. It also allows multiple
users to be served simultaneously [Li 16].

Although the required resources of a cloud service

are limited and statically determined, the workload can
vary over time, and sometimes in an unpredictable way.
This generally leads to an overloaded or unloaded
cloud infrastructure causing fatal consequences on the
quality of service level and the cloud service delivery
cost. In this context, the elasticity management
mechanism is faced with multiple obstacles for the
growth and adoption of an efficient model for cloud
systems. One major issue is the non-deterministic
choice of the adequate elasticity strategy to be applied
since a quick and dynamic resizing with respect to
quality of service (QoS) parameters of the cloud
architecture is not always evident. Additionally,
resource usage patterns in elastic cloud systems are
inherently probabilistic in nature and involve
potentially unknown or non-deterministic factors [Joh
11]. Non-determinism is due to the various forms of
elasticity (replication, consolidation and VM-
migration) in the cloud model as well as the availability
of several resources of the same nature whereas a
dynamic reconfiguration is necessary to assure the
elasticity property. Consequently, the elasticity
property is quite complex and difficult to model, test
and verify. Adopting a quantitative analysis approach
to resolve the non-determinism; encountered while
selecting both the elasticity mechanism to be adopted
and the resource to be considered, is well suited.

The main objective of the present work is to supply
solutions for the challenging task of managing elastic
cloud systems with respect to QoS properties using
formal methods and quantitative analysis. We propose
a design methodology together with a formal model
enabling the specification of the cloud architecture and
its dynamics in terms of quality driven elasticity
strategies by scaling up/down according to a continuous
analysis of QoS parameters changes.

The paper is organized as follows: Section 2
presents the Ticket Booking system to be used to
illustrate the various concepts introduced in the present
work. Section 3 defines the PSMaude semantics to the
proposed approach. In section 4, the model is validated
through the verification of some cloud QoS properties.
Section 5 rounds up the paper.

Copyright © by the paper’s authors. Copying permitted only for private
and academic purposes.

In: Proceedings of the 3rd Edition of the International Conference on
Advanced Aspects of Software Engineering (ICAASE18), Constantine,
Algeria, 1,2-December-2018, published at http://ceur-ws.org.

84
84

A quality-driven approach for analyzing elastic cloud computing

Page 84

2 Motivating Example
The various concepts introduced in the present work
are illustrated via a ticket booking system (Ticket
Booking), inspired and adapted from [Ron 09]. The
system is deployed in a cloud infrastructure and is
composed of two services: Air Ticket Booking service
(S1) for booking air tickets, and Boat Ticket Booking

service (S2) for Boat Tickets Booking. Supposing that
actually there are four users (A1, A2, A3 and B)
exploiting the Ticket Booking system, two of them (A1
and B) are booking an Air ticket by requesting service
(S1), and user A2 is actually booking a boat ticket via
service (S2). The two services are deployed on the
same physical server (Server1) but running on two

Table 1 Correspondence between cloud architecture concepts and Maude

Cloud concept Maude concept

Cloud architecture

User class User | connected : Bool .

Service class Service | NbrClient : Nat, Type : Qid ,clients :
OidListe, Cout : Nat .

Virtual Machine class Vm | NbrService : Nat , NbrReq : Nat , services :
OidListe, state : State , Cout : Nat .

Server class Server | NbrVm : Nat , NbrReq : Nat , vms :
OidListe, state : State , Cout : Nat .

Load balancer class LoadBalancer | connected : Bool .

Data center class DataCenter | loadbalancer : Oid , servers :
OidListe .

Elastic Cloud
Dynamics

Elasticity Strategy Probabilistic Rewrite rule

Elasticity Strategy
selector

PSMaude strategy

different virtual machines, VM1 and VM2 respectively.
The second (Server2) and third (Server3) servers
actually contain VM3 and VM4 virtual machines
respectively. User requests are dispatched by the load
balancer element of a cloud system.

Throughout our motivating example, we attempt to
identify major issues to be encountered while designing
efficient elastic cloud systems that are constrained to
adapt to workload variations in order to ensure certain
QoS properties.

The principle of the elasticity property is to ensure
the provisioning of necessary and sufficient resources
such that a cloud service continues running smoothly
even as the workload scales up or down, thereby
avoiding under-utilization and overutilization of
resources [Geel 09]. The elasticity property can be
provided using three fundamental mechanisms: Service
Replication, Service Consolidation and Service
Migration. Accordingly, to face a workload variation,
two or more elasticity strategies may be candidate at

the same time. As an example, we suppose that the
VM1virtual machine is overloaded and is no more able
to treat requests for Air Ticket service S1, is it
preferable to replicate it and thus create a new instance
to treat user requests or redeploy (migrate) the
requested service on a less loaded virtual machine?
Consequently, the non-determinism arises while
selecting the elasticity strategy to be applied. Besides,
in certain situations, a given elasticity strategy is more
reliable than others with respect to service delivery
QoS parameters. Hence, we notice that elastic cloud
systems exhibit both probabilistic and nondeterministic
behaviors.

To address the above challenges, we attempt to
quantify the non-determinism to obtain a fully
probabilistic model by associating a cumulated cost
attribute to each cloud resource. Then, a dynamic
weighting, which is inversely proportional to the
resource cost, of the elasticity strategies is performed to
select the more adequate one. The proposed approach
enables specifying and analyzing elastic cloud systems

A quality-driven approach for analyzing elastic cloud computing

Page 85International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

with respect to QoS requirements that quantify the non-
determinism.

3 Elastic Cloud Semantics

We associate a formal operational semantics to elastic
cloud system. In particular, the aim of providing
semantics is to specify the behavior of an elastic cloud
system in terms of changes on its structure via the
elasticity strategies and obtain an executable
specification that can be then analyzed with respect to
QoS parameters. We choose Maude [Cla 08] and its
extension PSMaude[Ben 13] as the basis for the
definition of elastic cloud semantics.
Maude is a high-performance language and system
supporting both equational and rewriting logic [Mes
93] specification and programming for a wide range of
systems and applications. Equational theories describe
the static parts of a system and are represented as
functional modules. Rewrite theories describe the
dynamic parts of the system and are represented in
Maude as system modules.

PSMaude [Ben 13] extends Maude by adding the
necessary support for specifying both probabilistic
rewrite rules and probabilistic strategies. It also
provides a set of probabilistic rewrite commands
together with a statistical PCTL model checker to
analyze a given probabilistic rewrite theory being
controlled by probabilistic strategies. In particular,
PSMaude allows simulating and comparing the
evolution of a “base” unquantified model under
different probabilistic strategies, from a given initial
state.

The proposed formalization approach is based on a
set of formal mapping rules (see Table 1) defining the
correspondences between elastic cloud system concepts
and PSMaude ones. Structural aspects of a cloud
system are mapped to a judiciously defined set of
classes, elasticity strategies to probabilistic rewrite
rules and the elasticity selector mechanism to a set of
PSMaude strategies.

3.1 Cloud Architecture Formalization

To reflect the hierarchical structure (see table 1) of
cloud systems and avoid structure flatting through
algebraic terms, we adopt an object oriented approach

in Maude. Thus, the cloud architecture is considered as
a collection of objects that conform to a well defined
structural hierarchy. Identifying cloud system elements
as objects; each one with its own context, properties
and actions, facilitates considerably the design and
understandability of the model.

3.2 Elasticity Strategies Formalization

The dynamic aspect of the cloud architecture is
specified via a set of rewrite rules expressing local
changes on the cloud architecture in terms of resource
elasticity while preserving the initial architectural
constraints. Since we are interested with the provision
of resources and the elasticity of the cloud architecture,
the proposed rewrite rules allow allocating and
releasing services or resources in general.

Three forms of elasticity can appear in Cloud
architectures.
− Service Replication: Whenever the workload

scales up while the deployed services are unable to
treat all requests, the replication or duplication of
services/VMs is necessary.

− Service Consolidation: Resource consolidation is
the dual operation of the replication one. It is
performed whenever the workload scales down and
consists of deleting useless copies of
services/VMs.

− Service/VM Migration: This situation appears
when a server becomes saturated but contains a
VM which is not saturated. Consequently, this VM
can be migrated to another server that is not
overload.

These three mechanisms of cloud architecture
elasticity are formalized by the following rewrite rules.

3.2.1 Rewrite rules for Service/VM replication

Service replication is applied if the VM is not saturated
and contains the requested service. However, the later
has reached the authorized threshold of simultaneous
requests.

crl [Replication-of-service] :

Replicate-service(S, SR)

< V : Vm | NbrService : SN , NbrReq : M ,
services : SS , Cout : C >

A quality-driven approach for analyzing elastic cloud computing

Page 86International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

< S : Service | NbrClient : CN , Type : type>

=> < S : Service | >

< SR : Service | NbrClient : 0 , clients :
empty , Type : type , Cout :Cout('Service) >

< V : Vm | NbrService : (size(SS) + 1) ,
services : (add(SR, SS)) , Cout : C +
Cout('Service) >

if CN == MAXREQ /\ SN <= MaxService /\ S in
SS = true /\ SR in SS = false .

The effect of the rewrite rule is to accumulate the
cost of adding a service instance to the cost of the VM
and to increment the number of services actually
deployed in this VM. The newly created service is
added to the list of services of the VM.

A VM replication is conditioned with the fact that
the server is not saturated.

crl [Replcation-of-VM] :

Dup-VM(V, VV)

< V : Vm | state : loaded >

< E : Server | NbrVm : VN , vms : CL , state
: non-loaded , Cout : C >

=> < V : Vm | >

< VV : Vm | NbrService : 0, services : empty
, NbrReq : 80 , state : non-loaded , Cout :
Cout('VM) >

< E : Server | NbrVm : (size(CL) + 1) , vms :
(add(VV, CL)) , state : non-loaded , Cout : C
+ Cout('VM) >

if VN < MaxVM /\ V in CL = true /\ VV in CL
= false .

The effect of the rewrite rule is to accumulate the
cost of adding a new VM to the actual cost of the
server. The number of VMs is also incremented and a
new VM is created and added to the list of VMs of the
server.

3.2.2 Rewrite rule for Service/VM consolidation

The Consolidation-of-service rewrite rule destroys
useless (empty) copies of services/VMs when the
workload scales down. The rule applicability
conditions are the list of clients is empty and there
exists another service of the same type that has not yet
reached its maximal threshold of simultaneous requests.

crl [Consolidation-of-service] :

< V : Vm | NbrService : SN , services : SS ,
Cout : C >

< S : Service | Type : type , clients : CL >

< S' : Service | Type : type , NbrClient : 0
>

=>< S : Service | >

< V : Vm | NbrService : (size(SS) - 1) ,
services : (del(S' , SS)) , Cout : C >

if size(CL) > 0 /\ size(CL) <= MAXREQ /\ S in
SS = true /\ S' in SS = true .

The effect of the rewrite rule is to decrement the
number of services actually deployed on the VM and
destroy the useless service.

The Consolidation-of-VM rewrite rule is similar to
the Consolidation-of-service one expects that it
operates on useless VMs instead of services.

3.2.3 Rewrite rule for VM migration

VM migration rule allows moving a VM from one
server to another. The destination server might be not
saturated. The rule execution effect consists of updating
the destination server cost by accumulating the cost of a
VM migration and incrementing the number of VMs.
The user is added to the list of clients of both the
service and the VM.

crl [Migrate-VM] :

allocate(U, S)

< U : User | connected : false>

< S : Service | NbrClient : CN , clients : LS
>

< E : Server | vms : V VS , state : loaded >

< EE : Server | NbrVm : VN , vms : CL , Cout
: C , NbrReq : Y , state : non-loaded >

< V : Vm | services : S SS , NbrReq : M ,
state : non-loaded >

=>< U : User | connected : true>

< S : Service | NbrClient : (size(LS) + 1) ,
clients : (add(U, LS)) >

< V : Vm | NbrReq : M + 1 , state : non-
loaded >

A quality-driven approach for analyzing elastic cloud computing

Page 87International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

< E : Server | NbrVm : (size(VS) - 1) , vms :
(del(V, VS)) , state : non-loaded >

< EE : Server | NbrVm : (size(CL) + 1) , vms
: (add(V, CL)) , NbrReq : Y + 1 , Cout : C +
Cout('MigrateVm) >

if VN <= MaxVM /\ V in CL = false /\ CN <=
MAXREQ /\ U in CL = false .

3.3 Elasticity Strategy Selector Formalization

In our probabilistic model, we associate to each rewrite
rule; representing an elasticity strategy and already
presented in the above sub-section, an applicability
probability which is inversely proportional to the cost
of the corresponding elasticity strategy. So, plus the
cost is high, the rewrite rule is less probable to be
applied. The probability of applying an elasticity
strategy is also inversely proportional to the workload
of the resources (the actual context), i.e., a resource is
likely to be selected if it has less workload.

Before defining the strategies to control the various
forms of elasticity, we start with quantifying the
nondeterministic choice that exists in the cloud system
environment. We initially define the strategy RuleStrat
affecting a weight to each rewrite rule. For our Ticket
Booking system, we have weighed the various elasticity
rewrite rules with the corresponding elasticity strategy
cost.

psdrule RuleStrat := given state:
CF:Configuration

is: (allocate-service) -> 100 ;

(Consolidation-of-service) -> 1 ;

(Replication-of-service) -> 10 ;

(Replication-of-service2) -> 10 ;

(Replcation-of-VM) -> 1 ;

(Consolidation-of-VM) -> 1 ;

(Migrate-VM) -> 1 ;

[none] .

Generally, the frequently solicited rewrite rule is the
allocate-service one considering that the cloud system
is dotted with a large capacity of resources and is able
to treat a multitude of user requests simultaneously. So,
we affect the highest weight, of value 100, to the
allocate-service rewrite rule. A weight of 10 is affected

to the Replication-of-service rewrite rule to treat
requests for deploying new services or creating new
instances of existing ones. The rest of the rewrite rules
are rarely solicited and thus they are affected a weight
of 1.

Given that CF is a variable defining the current
configuration of the cloud system, the strategy of
weighting the various elasticity rewrite rules is applied
at each possible state. Thus, the RuleStrat strategy
quantifies the nondeterministic choice of the rule to be
applied at each stage of the execution.

In what follows, we define the strategies of context
and substitution that are common to all rewrites rules.
We only present elasticity rules that are subject to non-
determinism as the replication and migration rules
while selecting the resource to be used. We assign a
weight to the context strategy CtxStrat which represents
the probability of selecting and applying Replication-
of-service rule. The weight is inversely proportional to
the cost of creating a new instance of a service.

The substitution strategy SubStrat is uniform since
there is a unique correspondence substitution.

------Ctx et Sub : Replication of Service ---

 psdcontext CtxStrat := given state:
CF:Configuration < V : Vm | Cout : C >

rule: Replication ice -of-serv

is: ([] < V : Vm | Cout : C + Cout('Service)
>) -> (1 / (C + Cout('Service)))

[none] .

psdsubst SubstStrat := given state:
CF:Configuration

 rule:
Replication-of-service

context: CTX:Configuration
is: uniform
[none] .

The context and substitution strategies for
replicating a VM are defined in a similar way.

The context in which the Migrate-VM rewrite rule
can be applied depends on the probability associated to
the cost of migrating a VM. The selection of the
destination server is non-deterministic. Thus, the

A quality-driven approach for analyzing elastic cloud computing

Page 88International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

substitution strategy intervenes and selects the server
actually having the less workload.

The less loaded server is identified by affecting a
weight of (1/(XY + size (XCL))) to the substitution
strategy. Such weight is inversely proportional to the
sum of VMs actually deployed on the server and the
number of requests.

---------------Ctx et Sub : Migrate VM ----------

psdcontext CtxStrat := given state:
CF:Configuration

< XEE : Server | NbrVm : XVN , vms : XCL ,
Cout : XC >

rule: Migrate-VM

is: ([] < XEE : Server | >)

->(1 / XC + Cout('MigrateVm)))

[none] .

psdsubst SubstStrat := given state:
CF:Configuration

< XEE : Server | NbrVm : XVN , vms : XCL ,
Cout : XC , NbrReq : XY >

rule: Migrate-VM

context:

CTX:Configuration

is: { EE <- XEE , VN <- XVN ,CL <- XCL ,C <-
XC } -> (1 / (XY + size(XCL)))

[none] .

For the rest of the rules, strategies for context and
substitution are uniform and are randomly selected
(random) at any state.

Back to our Ticket Booking system, we present two
scenarios of dynamic resizing of the system.

The first scenario consists of creating a new VM
whenever the VM1 becomes saturated. The result is
shown in Figure 1.

The second scenario concerns the virtual machine
migration strategy. We consider that client A2 is
actually soliciting the Air Ticket Booking service S1
which is deployed on VM1; not yet saturated. But
Server1, containing VM1, is no more able to treat new
requests since the NBReq has reached is maximal
threshold of 100 simultaneous requests.

Figure 1: VM Replication

In this situation, the VM migration strategy is
selected by the Elasticity Strategy Selector and applied
to move VM1 to a less loaded server. A set of steps is
applied to allocate service S1 to user A2. As a first step,
the state of Server1 is updated and becomes loaded.
Then, the destination server is selected via the
substitution strategy of the Migrate-VM rewrite rule
and VM1 is moved. Finally, service S1 is allocated to
user A2. The destination server selection mechanism is
non-deterministic since two servers (Server2 and
Server3) are actually potential candidates to receive
VM1. The non-determinism is resolved by the
substitution strategy SubstStrat (see Figure 2) which
selects the less loaded server since server selection
weight is inversely proportional to the sum of its VMs
and requests. The substitution strategy selects Server3.
The result of migrating VM1 from Server1 to Server3 is
shown in Figure 2.

Figure 2: Migrating VM1 from Server1 to server2

A quality-driven approach for analyzing elastic cloud computing

Page 89International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

4 Elastic Cloud Analysis
To ensure the required quality of service of the
proposed model for elastic cloud systems, we are
interested with checking certain non-functional
properties i.e. quantitative. We have opted for
calculating the rate of resources implied in the
treatment of the customer’s requests or calculating the
effort supplied by the cloud system to allocate a service
to a given user. Such effort may require the deployment
of new services, the creation of new machines, and so
on. The effort is calculated on the basis of the workload
of the virtual machine VM; actually containing the
required service and running on a physical server S
according to the following formula:
Effort(S) = (Initial_Effort(S) + SUM_VMs(S) +
SUM_Service(S)) /
(SUM_Requests(VM)+SUM_Request(S))

For efficiency reasons, rather than calculating the
effort function for each intermediate state to be reached
by the rewriting engine, as defined above, we calculate
a cumulated effort and include the effort function eff(e)
as a term in system state. Back to our Ticket Booking
system to estimate the effort concerted to allocate the
Air Ticket Booking service S1 to user A2. Initially, the
effort is zero. It is then augmented according to the
Effort function defined above. We define a
parameterized predicate EffectiveCloud, in a predicate
module CLOUD-PRED. The semantics associated to
the EffectiveCloud predicate is the following: the
predicate is true in a given state S if the cumulative
effort is strictly lower than a threshold K. The CLOUD-
PRED module bellow defines the desired predicate:

(spmod CLOUD-PRED is
protecting Cloud-Specification .
--- sort for system states
smcstate Configuration .
var Effort : Rat .
var CF : Configuration .
var K : Rat .
--- declaring the parametric state predicate
psp EffectiveCloud : Rat .
--- defining its semantics
csat (CF eff(Effort)) |= EffectiveCloud(K)
if Effort < K .
endspm)

We can now check that the system verifies the
security property which is ensured if the cumulated
effort of the cloud system while allocating a service
never exceeds a threshold K with a probability of at
least 0.9. This property ensures the desired QoS of
cloud services, i.e., minimizing the effort
(SUM_resources/SUM_requests), the cost is also
reduced and even the workload. Indeed, while carrying
the following PTCL property, the simulation result is
illustrated in Figure 3. The TicketBooking system is
able to allocate services with an effort of K = 5 in 94%
of the cases.

(smc CloudConf |= P >= 0.9 [G
EffectiveCloud(5)] using CloudStrat .)

5 CONCLUSION
The goal of managing cloud resources capacity is to
ensure service availability in spite of the abundance of
user requests but still with the desired quality of
service. Guarantying service availability and at the
same time optimizing resource utilization has inspired a
multitude of research work on the cloud elasticity
property using probabilistic models. However, a
significant effort is necessary to manage, plan elastic
cloud systems and automatically identify the number of
resources to be added or removed. Thus adjusting
system capacity to a model of workload variations
requires a great expert testimony.

Our contribution consists of proposing a formal
approach for specifying cloud architecture, its
dynamics and elasticity policies in terms of resource
provision and release. Indeed, we treat and resolve the
problem of non-determinism caused by the applicability
of various elasticity actions and the availability of
several resources of the same nature. We have
quantified the non-determinism to obtain a fully
probabilistic model by associating a cumulative cost
attribute to each cloud resource. Then, a dynamic
weighting of the elasticity strategies is performed to
select the more adequate one. Interesting results have
been obtained while performing the probabilistic
analysis of the elastic cloud system to evaluate the
effort furnished by the cloud system to ensure service
availability.
As future work, we intend to ensure an automatic code
generation to directly obtain executable PSMaude

A quality-driven approach for analyzing elastic cloud computing

Page 90International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

specifications from models instantiating the defined
meta-model. We also envisage developing an integrated

framework for specifying self-adaptive systems in
general and elastic cloud systems in particular.

Figure 3 : Simulation result of the effort function simulation

References
 [Ben 13] L. Bentea, P.C., Olveczky. A probabilistic

strategy language for probabilistic rewrite
theories and its application to cloud
computing. In WADT'12, LNCS, vol. 7841,
pp. 77-94. Springer, 2013.

[Cla 08] M. Clavel, F. Duran, S., Eker, P., Lincoln,
N., MartiOliet, J., Meseguer, and C., Talcott.
Maude Manual (version 2.4)’, SRI
International, 2008.

[Gee 09] J., Geelan, M., Klems, R., Cohen, J., Kaplan,
D., Gourlay, P., Gaw, D., Edwards, B. de
Haaff, B., Kepes, K., Sheynkman, O., Sultan,
K., Hartig, J., Pritzker, T., Doerksen, T. von
Eicken, P. Wallis, M., Sheehan, D., Dodge, A.
Ricadela, B., Martin, B. Kepes, B., and I. W.,
Berger. Twenty-One Experts Define Cloud
Computing. ICSE Workshop on Software
Engineering Challenges of Cloud, 2009.

[Joh 11] K., Johnson, S., Reed, and R., Calinescu,
Specification and Quantitative Analysis of
Probabilistic Cloud Deployment Patterns.
Hardware and Software: Verification and

Testing - 7th International Haifa Verification
Conference, {HVC} 2011, Haifa, Israel,
Revised Selected Papers, pp. 145-159, 2011.

[Li 16] Ai, W., Li, K., Lan, S., Zhang, F., Mei, J., Li,
K., and R. Buyya. On Elasticity Measurement
in Cloud Computing’, Scientific Programming,
Vol. 2016, Article ID 7519507, 13 pages,
2016.

[Mes 93] J., Meseguer. A Logical Theory of
Concurrent Objects and its Realization in the
Maude Language. Research Directions in
Object-Based Concurrency, MIT Press, pp.
314-390, 1993.

[Ron 14] M. Rong. Modeling and analysis BPEL-based
web services composition using XYZ. The 9th
International Conference on Computer Science
& Education (ICCSE 2014). Vancouver
Canada, pp.1083–1088, 2014.

A quality-driven approach for analyzing elastic cloud computing

Page 91International Conference on Advanced Aspects of Software Engineering
ICAASE, December, 01-02, 2018

ICAASE'2018

