Computer Science > Networking and Internet Architecture
[Submitted on 31 Mar 2022 (v1), last revised 24 Oct 2022 (this version, v2)]
Title:A Methodology for Abstracting the Physical Layer of Direct V2X Communications Technologies
View PDFAbstract:Recent advancements in V2X communications have greatly increased the flexibility of the physical and medium access control (MAC) layers. This increases the complexity when investigating the system from a network perspective to evaluate the performance of the supported applications. Such flexibility needs in fact to be taken into account through a cross-layer approach, which might lead to challenging evaluation processes. As an accurate simulation of the signals appears unfeasible, a typical solution is to rely on simple models for incorporating the physical layer of the supported technologies, based on off-line measurements or accurate link-level simulations. Such data is however limited to a subset of possible configurations and extending them to others is costly when not even impossible. The goal of this paper is to develop a new approach for modelling the physical layer of vehicle-to-everything (V2X) communications that can be extended to a wide range of configurations without leading to extensive measurement or simulation campaign at the link layer. In particular, given a scenario and starting from results in terms of packet error rate (PER) vs. signal-to-interference-plus-noise ratio (SINR) related to a subset of possible configurations, we derive one parameter, called implementation loss, that is then used to evaluate the network performance under any configuration in the same scenario. The proposed methodology, leading to a good trade-off among complexity, generality, and accuracy of the performance evaluation process, has been validated through extensive simulations with both IEEE 802.11p and LTE-V2X sidelink technologies in various scenarios.
Submission history
From: Stefania Bartoletti [view email][v1] Thu, 31 Mar 2022 15:34:03 UTC (1,167 KB)
[v2] Mon, 24 Oct 2022 09:11:15 UTC (2,977 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.