A PARALLEL BLACKBOARD SYSTEM FOR ROBOT CONTROL

Hugo Velthuijsen

Ben J.

Lippolt

Jeanette C. Vonk

Netherlands PTT, Dr.

Neher Laboratories

P.O. Box 421, 2260 AK Leidschendam, The Netherlands

ABSTRACT

The blackboard architecture is a powerful ex-
pert systems architecture. Its main advantages
are flexibility of control and integration of dif-
ferent kinds of knowledge representations and in-
ferencing techniques. At our Laboratories we
built a blackboard shell, based on the principles
as developed in the system Hearsay-Il and the
blackboard shells Hearsay-Ill and BB1. This paper
describes how we modify this blackboard shell, in
order to use it for the control of a robot cell.
This cell consists of a number of independent dev-

ices, which will have to execute their tasks con-
currently. This means a modification of the
blackboard shell towards parallelism. Ve see

great possibilities for using our system not only
for simulating robot cell configurations and pro-
totyping flexible control of robot cells, but also
for other systems with multiple processors.

| INTRODUCTION

This paper treats an engineering topic which
involves two different subfields of Artificial In-
telligence (expert systems and robotics). Ve
chose to use an expert system with a blackboard
architecture for the control of a robot cell.

Before we describe this application we will
give an introduction to robot cells and the black-
board architecture.

A. Robot Cells

A robot seldom executes its tasks independent-
ly of its environment. Usually the environment of
a robot consists of a number of different devices
which cooperate to perform a given task. These
devices could include, among others, visual and
tactile sensors, separate processors for executing
computational tasks, operators which import ob-

jects into or export them out of the environment,
and the actual robot arm and gripper. The en-
vironment of a robot even could include other
robots. The robot together with all the devices
which cooperate in the environment to perform the
given task are called a robot cell. It is obvious
that a robot cell like this requires a supervisor

to control the correct interaction of all the com-
ponents of the robot cell. For a description of a
robot cell see e.g. (Kak, Boyer, Chen, Safranek

and Yang 1986).

At this moment research in the area of robot-
ics forms a major topic at our Laboratories of the
Netherlands PTT. Part of the research is done by
developing a robot cell to test the theoretical
findings in a practical setting. This cell needs
a supervisor with the following features:

1. The supervisor has to be able to deal with
multiple components with different
functionalities and different representations
of these functionalities.

2. The supervisor has to be able to determine
which component should perform which task at a
certain moment, according to the current
situation of the robot cell and the task at
hand. This also includes the detection and
handling of errors.

3. The way the supervisor reacts to certain
situations in the robot cell must be easily
modifiable in order to experiment with
different methods of executing certain tasks.

4. It must be possible to add, remove, and
exchange components without changing the
supervisor.

5. It is necessary that multiple
be executing concurrently.

components can

B. Blackboard architecture

Of the five features, which were mentioned
above and which are needed for the supervisor of
our robot cell, the first four are provided by the
blackboard architecture. We built a blackboard
shell (Lippolt, Velthuijsen and Vonk 1986) with
these features, using articles about the system
BB1 as our main guideline. The matter of paral-
lelism remained to be examined. An attempt to in-
troduce parallelism to the Hearsay-Il system s
described in (Fennell and Lesser 1977). (Ensor
and Gabbe 1985) also describes how the blackboard
can be modified to support parallelism. As these
articles limit themselves to discussing modifica-
tions of the blackboard, we intend to focus on the
requirements for the control unit, although the
modifications of the blackboard will also be in-
cluded.

For information about the blackboard architec-
ture we can recommend the following articles: (Er-
man, Hayes-Roth, Lesser and Reddy 1980) on
Hearsay-Il, (Erman, London and Fickas 1981) on
Hearsay-1ll, and (Hayes-Roth 1985) on BB1.

Velthuijsen, Lippolt, and Vonk 1157

I PROPOSED MODIFICATIONS

When implementing a blackboard system with
sequential execution of knowledge sources (KSs),
the following implementation of a succession of
actions can be used, as we did in our initial
blackboard shell.

During the execution of a KS, every change of
the blackboard results in the creation of a spe-
cial formatted data object, called an event, which
records the change. After the execution of a KS,
the control unit checks for all KSs whether they
are interested in the occurrence of one of these
events, or any combination of events. If there is
a match, another data object is created which
records the information significant to this KS and
this particular combination of events. In the
literature this is called a knowledge source ac-
tivation record (KSAR). At this stage this KSAR
is called triggered. Next for all triggered KSARs
the precondition is checked which is mentioned in
their respective KS descriptors. This is a pro-
cedure which can be used to test whether this KSAR
really is applicable in the current situation of
the problem solving process. This provides a more
sophisticated way of checking the applicability of
a KS then when one would be restricted to using
triggers. Also this precondition can be used to
actualise the values of the parameters which are
needed by the KS. If the test has a confirming
result, the KSAR becomes what we will call invoca-
ble. Then for all invocable KSARs their priority
is determined and the one with the highest priori-
ty is selected and executed. This ends the con-
trol cycle.

Our blackboard shell was built according to
this description. As its main features it further
supports the use of a blackboard for control pur-
poses and an unlimited number of blackboards for
domain knowledge (this is done to facilitate the
structuring of the domain knowledge) and the use
of multiple knowledge representation methods for
the action parts of the KSs (these include the
languages LISP, PROLOG, and POP-11 and it is also
possible to make use of rule based, frame based,
and object oriented inferencing techniques). A
blackboard is subdivided into blackboard levels
and the levels are subdivided into units which are
sets of attribute value pairs. In order to help
the knowledge engineer in the task of building a
system, our blackboard system is equipped with a
wide variety of (optional) trace facilities. At
one moment during the control cycle it is possible
to examine all relevant data, such as the contents
of the blackboard(s), the events which occurred
during the latest execution of a KS, the triggered
and invocable KSARs, and the chosen KSAR.

An architecture as described here works fine
if all KSs are to be executed sequentially. But
it is evident that it is not sufficient if multi-
ple processors are available for concurrent execu-
tion of KSs. we can distinguish three main as-
pects where this architecture has been modified to
accommodate parallel KS execution.

First, the control unit has to be able to
select a suitable KS for execution any time a pro-

1158 ROBOTICS

cessor gives a signal that it has finished its
last task. In the architecture as described ear-
lier, this is not possible because the <control
unit is not an available process when a KS is be-
ing executed. Second, the blackboard handler has
to be able to service requests for reading or
writing on the blackboard which arrive at the same
time. Moreover, the requests of one KS can inter-
fere with the requests of another KS and, if this
is not handled properly, the consistency of the
data on the blackboard can be violated when in-
dependent KSs work on the same information on the
blackboard. Third, an environment must be created
which makes it possible to execute multiple
processes concurrently. We will describe these
aspects in more detail.

A Monitoring Scheduling Mechanism

The main modification of the control unit,
necessary for parallel KS execution, is to
delegate the execution of the KSs from the control
unit to the processors.

If a processor has terminated a task, it sends
a message to the control unit that it is free to
accept another task. For all processors these
messages arrive in a single list. The control
unit updates the sets of triggered and invocable
KSARs, using the events, which occurred since the
last updating took place, and the current state of

the blackboard. Next the control wunit checks
which invocable KSARs can be executed by the free
processors. For these KSARs a priority is

computed, the most promising is selected for exe-
cution, and a command is sent to an applicable
processor to execute the chosen KSAR. After this
command, the control unit does not wait for the
termination of the KSAR execution, but immediately
continues with the selection of a task for the
next idle processor. If no invocable KSAR was
found for these processors, the original message
is put back in the list.

One can imagine a situation where KSs can be
executed on different processors, but that there
is, possibly, a preference for one processor
depending on the necessary processing capacity.
Our system is equipped for this.

B. The Blackboard Handler

Although the matter of modifying the black-
board handler in order to be able to cope with
concurrent access to data on the blackboard has
been treated extensively in (Fennell and Lesser
1977) and (Ensor and Gabbe 1985), we think it is
useful to summarise the various possible adjust-
ments.

We implemented the blackboard handler as a
process with a list (in order to handle different

priorities) of requests for reading, writing, or
modifying units on the blackboard. This way the
incoming requests can be sequentialised. For

maintaining the consistency of the data on the
blackboard a few suggestions are found in the
literature.

1. A KS could ask the blackboard handler to

forbid any other KS to read or write those
units which that KS is possibly going to use.
Such locks could be restricted to only one
unit, but could as well be extended over
entire levels and even blackboards.

2. A KS could add a tag to wunits which it is
going to use. Whenever other KSs make changes
to a tagged unit a message is sent to the KS
which placed the tag.

3. Vhen a KS wants to make changes to the black-
board the KS could check (after the relevant
sections are locked for reading) whether the
information on the blackboard coincides with
the assumptions about the contents of the
blackboard, made by this KS. If the assump-
tions are still valid, a request for a write
lock is made for those sections of the
blackboard which are to be changed and then
the blackboard can be changed. If the assump-
tions are no longer valid, the attempt to
change the blackboard is cancelled.

The first solution has one main disadvantage.
Often it is not possible to foretell exactly which
blackboard units are going to be operated on. This
means that in some cases the locks could become
very extensive, thus blocking the execution of
other KSs. A disadvantage of the second option is
the high cost in overhead. It seems that the
third option is most promising. Option 3 needs the
facilities as mentioned under 1, but in this case
the locks are installed for a shorter period.
Also, in this case, the locks often don't need to
be as extensive as under option 1.

It should be mentioned that in a lot of appli-
cations, as in ours, the interference between dif-
ferent KSs can be kept low by only selecting KSs
for concurrent execution which operate on disjoint
sections of the blackboard. In order to be able
to use option 3 we implemented the first option.
The knowledge engineer is recommended only to use
option 3.

C. Concurrent Process Execution

To enable the blackboard system to execute KSs
concurrently, we divided the system over various
processes. This means one process for the control
unit, one process for the blackboard handler, and
one process for each of the processors which are
to be represented. For simulation we used a VAX
under the operating system UNIX* and execute the
processes in timesharing. During the simulation
stage the action parts of the KSs often only con-
sist of a procedure which modifies the blackboard
in a fixed way after a certain amount of time.
This means that using timesharing doesn't create a
real limitation. Vhen the system is being used
for the actual control of a robot cell a similar
set up will be chosen. Then on the controlling
processor, the processes for executing the KSs
will consist of gateways to the processors where
the action parts of the KSs are actually executed.

*URIX is a trademark of AT&T Bell Laboratories.

Il CONCLUSIONS

We described how we modified a blackboard
shell (built along the descriptions of Hearsay-lll
and BB1, as found in the literature) in order to
support parallel execution of KSs. We showed why
we think that a parallel blackboard shell is a
useful tool for prototyping and simulation of
robot cell control systems. We implemented this
shell in a UNIX environment in order to simulate
the execution of concurrent processes. A next
step would be to implement a control system for
actual robot cell control. Although the black-
board architecture might not be efficient enough
for real time robot cell control, we are convinced
of its merits during the development stage of
robot environments.

REFERENCES

1. Ensor, J.R. and J.D. Gabbe, "Transactional
blackboards." In Proc. IJCAI-85. Los Angeles,
USA, August, 1985, pp. 340-344.

2. Ermman, L.D., F. Hayes-Roth, V.R. Lesser, and
D.R. Reddy, "The Hearsay-II speech-under-
standing system: Integrating knowledge to
resolve uncertainty." Computing Surveys 12:2
(1980) 213-253.

3. Erman, L.D., P.E. London, and S.F. Fickas,
"The design and an example use of Hearsay-
I11." In Proc. IJCAI-81. Vancouver, Canada,
August, 1980, pp. 409-415.

4. Fennell, R.D. and V.R. Lesser, "Parallelism in
Artificial |Intelligence problem solving: a
case study of Hearsay-Il." IEEE Transactions
on Computers C-26:2 (1977) 98-111.

5. Hayes-Roth, B., "A blackboard architecture for
control." Artificial Intelligence 26:3 (1985)
251-321.

6. Kak, A.C., K.L. Boyer, C.H. Chen, R.J.
Safranek, and H.S. Yang, "A knowledge-based
robotic assembly cell." |[EEE Expert 1:1 (1986)
63-83.

7. Lippolt, B.J., H. Velthuijsen, and J.C. Vonk,
"BLONDIE: a blackboard shell." Memorandum
1404 DNL/86, Netherlands PTT, Dr. Neher Labo-
ratories, Leidschendam, The Netherlands,
November 1986.

Velthuijsen, Lippolt, and Vonk 1159

