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Abstract 
We present a new algorithm for polynomial time 
learning of near optimal behavior in stochastic 
games. This algorithm incorporates and integrates 
important recent results of Kearns and Singh [ 1998] 
in reinforcement learning and of Monderer and 
Tennenholtz [1997] in repeated games. In stochas
tic games we face an exploration vs. exploitation 
dilemma more complex than in Markov decision 
processes. Namely, given information about partic
ular parts of a game matrix, how much effort should 
the agent invest in learning its unknown parts. We 
explain and address these issues within the class of 
single controller stochastic games. This solution 
can be extended to stochastic games in general. 

1 Introduction 
Stochastic games (SGs) extend Markov decision processes 
(MDPs) to a multi-agent environment. In classical stochas
tic games [Shapley, 1953], two players, the agent and the ad
versary, engage in a series of competitive interactions. Thus, 
each state in an SG is associated with a game between the 
agent and the adversary. Following each game, each of the 
players obtains some reward and both end up in a new state 
(i.e., game). The reward obtained by the players is a func
tion of the current state and their actions; the new state is a 
stochastic function of the current game and the players* ac
tions. 

Much like in MDPs, the agent's goal is to find an opti
mal (or near-optimal) policy, i.e., a mapping from states (i.e., 
games) to actions. However, unlike in MDPs, such optimal 
policies are typically mixed, i.e., each game is mapped to 
a probability distribution over actions rather than to a par
ticular action. The optimization criteria for SGs are similar 
to those used in MDPs, and include cumulative discounted 
reward, cumulative undiscounted reward (where the number 
of steps is finite but unbounded), average discounted reward, 
and average undiscounted reward; we concentrate on this last 
criterion. Unfortunately, it is not known whether station
ary optimal policies for infinite horizon stochastic games ex
ist when the average undiscounted reward criterion is used. 
Moreover, there are no known polynomial time algorithms 
for computing solutions for such games. However, there 
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is an important class of stochastic games in which station
ary optimal policies in the infinite horizon average undis
counted reward case exist, and they can be computed in poly
nomial time. This type of games is called single-controller 
stochastic games (SCSGs) [Horijk and Kallenberg, 1981; 
Parthasarathy and Raghavan, 1981; Vrieze, 1981], a name 
which derives from the fact that the state (or game) transi
tions depend on the action of the agent alone. Hence, the 
adversary's action influences the rewards only. In this paper, 
we concentrate on learning in SCSGs containing zero-sum 
games. The extension of these results into zero-sum stochas
tic games is discussed in the ful l version of this paper [Braf
man and Tennenholtz, 1998]. 

The learning algorithm we present is based on the E3 al
gorithm [Kearns and Singh, 1998], a model-based learning 
algorithm (i.e, one in which a partial model of the MDP is 
formed) that has introduced a number of new concepts and 
ideas in the area of reinforcement learning. The extension of 
these ideas into SGs raises a number of issues that stem from 
the existence of an adversary whose behavior is unknown. In 
particular, this adversary can, at wi l l , hide information from 
the agent by refraining from taking particular actions or by 
rarely playing such actions. Therefore, certain aspects of the 
model may never be known to the agent or may take an un
bounded time to learn, unlike in MDPs. Therefore, we cannot 
emulate the two phase approach of the E3 algorithm. There, 
die agent first attempts to learn enough about the model to 
obtain near-optimal return, after which it enters an exploita
tion phase. Instead, we wi l l have to allow for the possibility 
of continuous learning. 

Indeed, in stochastic games, a more complicated form of 
the exploration vs. exploitation problem arises. Recall that 
the exploration vs. exploitation dilemma refers to the ques
tion of whether to play optimally given the current knowl
edge, or to attempt to increase knowledge at the risk of un
known losses. Kearns and Singh (KS) [Kearns and Singh, 
1998] solve this problem in the context of MDPs by using 
the fact that, if we know the value of the optimal policy of 
the MDP, we can, at each stage, examine whether we have 
learned enough to guarantee ourselves this value. Once this 
is the case, the agent needs no longer explore. Unfortunately, 
in SGs, this is not die case. Because of the ability of the ad
versary to hide parts of the game matrix, in many cases, we 
lack the information to calculate the value of a given policy. 
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To overcome this, we employ techniques introduced by Mon* 
derer and Tennenholtz [1997] in the context of learning in 
repeated games. Namely, we explore at two levels. First, as 
in E3, we perform global exploration. That is, we attempt 
to learn some facts about different games. In addition, we 
perform local exploration in order to extend our knowledge 
about particular games. Because it depends on the behavior 
of the adversary, this local exploration part cannot be a-priori 
bounded. This is to be contrasted with the initial exploration 
phase of 2?3, which takes polynomial time. 

The algorithm presented in this paper addresses these and 
other issues and yields near optimal performance for the agent 
in time polynomial in the basic problem parameters. It is, to 
the best of our knowledge, the first such result in the context 
of stochastic games. Previous algorithms for learning in SGs 
[Littman, 1994; Hu and Wellman, 1998] were not concerned 
with analytic treatment and proof of efficiency, nor dealt ex
plicitly with the exploration vs. exploitation issue in an ef
ficient manner. However, Littman does provide asymptotic 
convergence results. 

In the following section we discuss single-controller 
stochastic games. In Section 3 we present our measure of 
complexity. In Section 4 we present our main Theorem, 
which makes use of two basic ideas. A discussion of the first 
idea, based on a recent algorithm by Kearns and Singh [1998] 
appears in Section 5. A discussion of the second idea, which 
is in the spirit of work on learning in repeated games, and in 
particular follows recent work by Monderer and Tennenholtz 
[1997], is presented in Section 6. The synthesis of these ideas 
into a complete algorithm is presented in Section 7. We con
clude in Section 8. The ful l version of this papa:, [Brafman 
and Tennenholtz, 1998], contains all proofs, explains the is
sues that general stochastic games pose, and explains how the 
results presented here can be extended to the general case. 

2 Preliminaries 
First, we define Single-Controller-Stochastic-Games 
(SCSG): 

Definition 1 A single-controller-stochastic-game M 
on states and actions 
consists of: 

• Stage Games: each state is associated with a 
zero-sum game in strategic form, where the action set of 
each player is A. The first player is termed agent and 
the second player is termed adversary. 

• Probabilistic Transition Function: is the 
probability of a tmnsitionfivm stot given that the first 
player (termed agent) plays a. 

For ease of exposition we normalize the payoffs of each 
state game to be non-negative real numbers between 0 and a 
constant. (i.e. the sum of the players' payoffs for any 
joint action is always We wi l l also take the number of 
actions to be constant. The set of possible histories of length t 
is , and the set of possible histories, / f , is the union 
of the sets of possible histories for all t 0, where the set of 
possible histories of length 0 is S. Given an SCSG, a policy 

for the agent is a mapping fromH to the set of possible prob-
ability distributions over A. Hence, a policy determines the 
probability of choosing each particular action for each possi
ble history. A stationary policy depends only on S instead of 
on H. Such a policy associates with each state a probability 
distribution on the actions. 

Given an SCSG M and a natural number T, we de
note the expected T-step undiscounted average reward of 
a policy when the adversary follows a policy p, and 

In the sequel we wi l l assume that the SCSG is ergodic in 
the sense that given any stationary policy of the agent, the 
probability of transition between each pair of states is greater 
than 0 regardless of the adversary behavior. This makes the 
value of each stationary policy well-defined (i.e., it is inde
pendent of the initial state). In particular, the value of M 
is the value I of an optimal policy (and we know 
that for SCSGs, there is no loss of generality in assuming this 
policy is stationary). 

The ergodicity assumption is consistent with the treatment 
of [Kearns and Singh, 1998], and is quite natural for the fol
lowing reasons. Any Markov chain defined by a policy has 
one or more absorbing subsets of states. That is, subsets of 
the state space such that once the agent enters them, he wi l l 
remain in them. In the initial stages of learning, the agent 
cannot be expected to know which policies wil l lead to which 
sets of absorbing states, and so we cannot really influence the 
choice of an absorbing state set. However, once we are within 
such a set, we would like to quickly learn how to behave. This 
is basically what we (and KS) offer. 

3 Our Measure of Complexity 
One of KS's contributions is the identification of the central 
parameter upon which the analysis of algorithms for learning 
in MDPs must be based, namely, the mixing time. KS argue 
that it is unreasonable to refer to the efficiency of learning 
algorithms without referring to the efficiency of convergence 
to a desired value. They defined the e-neturn mixing time of a 
stationary policy π to be the smallest value of T after which 
guarantees an expected payoff of at least More for
mally, in the context of SCSGs we say that a policy n belongs 
to the set of stationary policies whose e-ieturn mix
ing time is at most T, if after time T, returns an expected 
(average, undiscounted) payoff of at least for every 
possible adversary behavior. That is, on the average, we have 
to employ T steps of policy until our average accumulated 
reward is sufficiently close to the value of Notice an agent 
that already knows an optimal policy whose c-return mix
ing time is T, wi l l need this much time, on the average, to 
obtain a value of (almost) v. Clearly, one cannot expect an 
agent lacking this information to perform better. 
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that (1) the probability of failure of learning all columns in at 
least one set (from among o f a d v e r s a r y 
deviations (i.e. selections of unknown columns) is smaller 
than times the probability offai l ing to learn in one such 
set of deviations, and that (2) there are at most N entries to 
learn. 

We run the the algorithm for Y stages, such that 

is polynomial in the problem pa
rameters. This wi l l guarantee that the proportion of stages 
in which we do not follow is smaller than Hence, 

i 

these inequalities, we can indeed choose (polynomial) X and 
Y that satisfy these conditions. 

To complete the proof we need to show that we obtain the 
desired expected value. This follows from the fact that after Y 
stages (with the corresponding probability) only at most of 
the stages correspond to adversary deviations, while in 
ofthe stages an expected pay off of 
is obtained. | 

Hence, once we have reached a situation where we have a 
policy that can obtain the desired value if the adversary be
haves "nicely", we can modify this policy to a policy which 
obtains almost the desired value or learns a new fact about 
the stales (with overwhelming probability). Thus, we trade
off some exploitation for exploration in a manner that guaran
tees that if the adversary plays an unknown column polynomi
aly many tunes, we wi l l learn this column after a polynomial 
number of steps. If the adversary rarely plays that column, we 
wi l l rarely encounter i t , and so the possible losses stemming 
from the randomization effect are almost surely insignificant 
given a sufficiently long (but polynomial) number of steps. 

7 The Algorithm 

The LSG algorithm can be executed for any desired number 
of steps . For sufficiently large values of t (polynomial 
in the problem parameters) a near optimal average return is 
guaranteed, as staled in Theorem 1. 

1. Initialize the set L o f known states to be empty. 

2. If the current state is not in L: 

(a) Randomly sample an action and execute it. 
(b) If foil owing this sampling the current state has been 

visited enough times (see Definition 2, Lemma 1, 
and the discussion after Lemma 1), and at least one 
column of the game associated with it is known, 
add it to the set of known states L. 

3. If the current state is in L (i.e., a known state), per
form an off-line computation on ML in order to check 
whether a value of at least can be 
guaranteed, assuming the adversary uses only actions 
that correspond to fully known columns. 

4. If such a value can be guaranteed by a policy π, then 
the policy πm is executed.3 The run of πm is halted 
whenever a deviation of the adversary from the actions 
associated with fully known columns is observed, when 
the agent deviates from π when we have readied an un
known state, or when a new column in a state in L be-
comes fully known. 

5. Otherwise, a payoff of can not be 
obtained, and a (global) exploration policy is executed 
(see Section 5) for T steps or until an unknown state is 
reached. This policy is guaranteed by Lemma 2 to reach 
a state outside L with probability of at l e a s t w i t h i n 

steps. 

6. In all cases, whenever an entry in a state game is learned, 
the value of it is kept in memory. 

It is clear (from Lemma 3) that the above algorithm is poly
nomial (i.e. leads to near optimal average return after poly
nomial time) in the appropriate parameters. It remains to be 
shown that this algorithm wi l l yield the desired return with 
probability of at least for a g i v e n T o show this, 
we have to consider the four sources of failure of the algo
rithm. The first three appear in the context of the algo-
rithm, while the fourth stems from the need to perform local 
exploration. 

1. In some states the algorithm may have a poor estimate of 
the true next-state distribution. Using standard Chernoff 
bound analysis [Alon et al, 1992], as was applied by KS 
in the case of MDPs, we can show that, if the number 
of times an entry was explored is sufficiently large (k i t 
still polynomial), the probability of an error larger than 
we wish for is small. Notice that, for this analysis, our 
definition of known states enables us to ignore the fact 
the rewards in some columns are only partially known. 

2. Repeated attempted explorations may fail to expose new 
information. This can be either because of failure to 
reach an unknown state and failure to sample a new entry 
in an unknown state. We can view a global exploration 
step, followed by random wandering, as a Bernoulli trial, 
with a constant positive probability of success of at least 

for reaching an unknown state and explor
ing a new entry in that state. The number of such tri
als which might be executed before all states become 
known can therefore be taken (since all of the trials can 
be treated as independent trials) to be polynomial, with 
a failure probability of at most . Notice that in general, 
not all states need to become known. 

3. When we perform T-step exploitation with no lo
cal exploration we reach an expected return of 

, but the actual return may be lower. 
This point is handled by the fact that after polynomially 
local exploitations are carried out, 
can be obtained with a probability of failure of at most 

This is obtained by standard Chernoff bounds, and 

'Recall that performs the optimal policy with respect to 
known states with some amount of local exploration. 
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makes use of the fact that the standard deviation of the 
expected reward in a T-step policy is bounded. 

4. The agent may get a low payoff because it does not 
know the entries in some column and does not learn 
new entries in unknown columns. This is handled by 
Lemma 3, where we can choose the failure probability, 

as needed. 

By making the failure probability less than at each of the 
above stages, we are able to get the desired result 

Finally, we remove the assumptions that both the value and 
its e-return mixing time are known. This is straightforward 
and almost identical to the treatment given by [Kearns and 
Singh, 1998]. First, as to knowledge of the value, this is 
needed when we have to decide whether to explore or ex
ploit. Lemma 2 states that we can either get enough re
turn or we have a sufficiently high probability of reaching 
a new state quickly. One can calculate this probability with-
out knowledge of the value and perform exploration when
ever this probability exceeds the desired bound. Notice that 
by employing this technique, with overwhelming probability 
we remain with known states only after polynomial time. At 
this point, we can compute an optimal policy. Hence, we can 
safely apply this exploration bias. 

Next, we must deal with the lack of knowledge of T. The 
idea is as follows: from the proofs of the algorithm's prop
erties, one can deduce some polynomial P in the problem 
parameters such that if T is the mixing-time, then after P(T) 
steps we are guaranteed, with probability 1 — the desirable 
return. Hence, we can simply attempt to run this algorithm 
for T = 1,2,3,. . . . For each value of T, we run the algo
rithm P(T) time. Suppose that is the mixing time, then 
a f t e r s t e p s , we wi l l obtain the desirable return. 

One thing to notice is that this algorithm does not have a 
final halting time and wi l l be applied continuously as long as 
the agent is functioning in its environment. The only caveat is 
that at some point our current mixing time candidate T wi l l be 
exponential in the actual mixing time To, at which point each 
step of the algorithm wi l l require an exponential calculation. 
However, this wi l l occur only after an exponential number of 
steps. This is true for the algorithm too. 

Another point worth mentioning is that in SCSGs, the 
agent may never know some of the columns. Consequently, if 
π is the optimal policy given ful l information about the game, 
the agent may actually converge to a policy that differs 
from π, but which yields the best return given the adversary *s 
actual behavior. This return wi l l be no smaller than the return 
guaranteed by π. The mixing time of wi l l , in general, dif
fer from the mixing time of . However, we are guaranteed 
that if To is the e-return mixing time of , and v is its value, 
after time polynomial in , the agent's actual return wi l l be 
at least v (subject to the deviations afforded by the theorem). 

8 Conclusion 
We described an algorithm for learning in a restricted class 
of stochastic games. This algorithm extends earlier work of 
Kearns mid Singh {1998] on learning in MDPs using the tech
niques of Monderer and Tennenholtz [1997] for learning in 
repeated games. These results can be extended to stochastic 

games in general, as explained in the full paper [Brafman and 
Tennenholtz, 1998]. Unfortunately, die adversary's ability to 
influence transitions can lead to very large mixing times and 
slower, though still polynomial, convergence. 

In describing the algorithm we aimed for clarity rather than 
efficiency, with the sole constraint of providing a polynomial 
time algorithm. A more careful analysis wi l l lead to reduced 
running time. It is worth noting a simple, but interesting, 
corollary of our results. If the algorithm is run concurrently 
by the agent and the adversary, where we consider stochastic 
games with stationary equilibrium, they are both guaranteed 
to attain near optimal performance, i.e., the value of the game 
(within the allowed error bounds). Finally, we remark that 
our algorithm would seem a natural candidate for learning in 
non-stochastic environment, although additional assumptions 
about the nature of the environment could be used to improve 
its efficiency. 
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