
A Near-Optimal Poly-Time Algorithm for Learning in a Class of Stochastic Games

Ronen I. Brafman
Dept. of Math and Computer Science

Ben-Gurion University
Beer-Sheva, Israel

braftnan@cs.bgu.ac.il

Abstract
We present a new algorithm for polynomial time
learning of near optimal behavior in stochastic
games. This algorithm incorporates and integrates
important recent results of Kearns and Singh [1998]
in reinforcement learning and of Monderer and
Tennenholtz [1997] in repeated games. In stochas
tic games we face an exploration vs. exploitation
dilemma more complex than in Markov decision
processes. Namely, given information about partic
ular parts of a game matrix, how much effort should
the agent invest in learning its unknown parts. We
explain and address these issues within the class of
single controller stochastic games. This solution
can be extended to stochastic games in general.

1 Introduction
Stochastic games (SGs) extend Markov decision processes
(MDPs) to a multi-agent environment. In classical stochas
tic games [Shapley, 1953], two players, the agent and the ad
versary, engage in a series of competitive interactions. Thus,
each state in an SG is associated with a game between the
agent and the adversary. Following each game, each of the
players obtains some reward and both end up in a new state
(i.e., game). The reward obtained by the players is a func
tion of the current state and their actions; the new state is a
stochastic function of the current game and the players* ac
tions.

Much like in MDPs, the agent's goal is to find an opti
mal (or near-optimal) policy, i.e., a mapping from states (i.e.,
games) to actions. However, unlike in MDPs, such optimal
policies are typically mixed, i.e., each game is mapped to
a probability distribution over actions rather than to a par
ticular action. The optimization criteria for SGs are similar
to those used in MDPs, and include cumulative discounted
reward, cumulative undiscounted reward (where the number
of steps is finite but unbounded), average discounted reward,
and average undiscounted reward; we concentrate on this last
criterion. Unfortunately, it is not known whether station
ary optimal policies for infinite horizon stochastic games ex
ist when the average undiscounted reward criterion is used.
Moreover, there are no known polynomial time algorithms
for computing solutions for such games. However, there

734 MACHINE LEARNING

Moshe Tennenholtz
Faculty of Industrial Eng. and Management

Technion
Haifa, 32000 Israel

moshet@ie.technion.ac.il

is an important class of stochastic games in which station
ary optimal policies in the infinite horizon average undis
counted reward case exist, and they can be computed in poly
nomial time. This type of games is called single-controller
stochastic games (SCSGs) [Horijk and Kallenberg, 1981;
Parthasarathy and Raghavan, 1981; Vrieze, 1981], a name
which derives from the fact that the state (or game) transi
tions depend on the action of the agent alone. Hence, the
adversary's action influences the rewards only. In this paper,
we concentrate on learning in SCSGs containing zero-sum
games. The extension of these results into zero-sum stochas
tic games is discussed in the ful l version of this paper [Braf
man and Tennenholtz, 1998].

The learning algorithm we present is based on the E3 al
gorithm [Kearns and Singh, 1998], a model-based learning
algorithm (i.e, one in which a partial model of the MDP is
formed) that has introduced a number of new concepts and
ideas in the area of reinforcement learning. The extension of
these ideas into SGs raises a number of issues that stem from
the existence of an adversary whose behavior is unknown. In
particular, this adversary can, at wi l l , hide information from
the agent by refraining from taking particular actions or by
rarely playing such actions. Therefore, certain aspects of the
model may never be known to the agent or may take an un
bounded time to learn, unlike in MDPs. Therefore, we cannot
emulate the two phase approach of the E3 algorithm. There,
die agent first attempts to learn enough about the model to
obtain near-optimal return, after which it enters an exploita
tion phase. Instead, we wi l l have to allow for the possibility
of continuous learning.

Indeed, in stochastic games, a more complicated form of
the exploration vs. exploitation problem arises. Recall that
the exploration vs. exploitation dilemma refers to the ques
tion of whether to play optimally given the current knowl
edge, or to attempt to increase knowledge at the risk of un
known losses. Kearns and Singh (KS) [Kearns and Singh,
1998] solve this problem in the context of MDPs by using
the fact that, if we know the value of the optimal policy of
the MDP, we can, at each stage, examine whether we have
learned enough to guarantee ourselves this value. Once this
is the case, the agent needs no longer explore. Unfortunately,
in SGs, this is not die case. Because of the ability of the ad
versary to hide parts of the game matrix, in many cases, we
lack the information to calculate the value of a given policy.

mailto:braftnan@cs.bgu.ac.il
mailto:moshet@ie.technion.ac.il

To overcome this, we employ techniques introduced by Mon*
derer and Tennenholtz [1997] in the context of learning in
repeated games. Namely, we explore at two levels. First, as
in E3, we perform global exploration. That is, we attempt
to learn some facts about different games. In addition, we
perform local exploration in order to extend our knowledge
about particular games. Because it depends on the behavior
of the adversary, this local exploration part cannot be a-priori
bounded. This is to be contrasted with the initial exploration
phase of 2?3, which takes polynomial time.

The algorithm presented in this paper addresses these and
other issues and yields near optimal performance for the agent
in time polynomial in the basic problem parameters. It is, to
the best of our knowledge, the first such result in the context
of stochastic games. Previous algorithms for learning in SGs
[Littman, 1994; Hu and Wellman, 1998] were not concerned
with analytic treatment and proof of efficiency, nor dealt ex
plicitly with the exploration vs. exploitation issue in an ef
ficient manner. However, Littman does provide asymptotic
convergence results.

In the following section we discuss single-controller
stochastic games. In Section 3 we present our measure of
complexity. In Section 4 we present our main Theorem,
which makes use of two basic ideas. A discussion of the first
idea, based on a recent algorithm by Kearns and Singh [1998]
appears in Section 5. A discussion of the second idea, which
is in the spirit of work on learning in repeated games, and in
particular follows recent work by Monderer and Tennenholtz
[1997], is presented in Section 6. The synthesis of these ideas
into a complete algorithm is presented in Section 7. We con
clude in Section 8. The ful l version of this papa:, [Brafman
and Tennenholtz, 1998], contains all proofs, explains the is
sues that general stochastic games pose, and explains how the
results presented here can be extended to the general case.

2 Preliminaries
First, we define Single-Controller-Stochastic-Games
(SCSG):

Definition 1 A single-controller-stochastic-game M
on states and actions
consists of:

• Stage Games: each state is associated with a
zero-sum game in strategic form, where the action set of
each player is A. The first player is termed agent and
the second player is termed adversary.

• Probabilistic Transition Function: is the
probability of a tmnsitionfivm stot given that the first
player (termed agent) plays a.

For ease of exposition we normalize the payoffs of each
state game to be non-negative real numbers between 0 and a
constant. (i.e. the sum of the players' payoffs for any
joint action is always We wi l l also take the number of
actions to be constant. The set of possible histories of length t
is , and the set of possible histories, / f , is the union
of the sets of possible histories for all t 0, where the set of
possible histories of length 0 is S. Given an SCSG, a policy

for the agent is a mapping fromH to the set of possible prob-
ability distributions over A. Hence, a policy determines the
probability of choosing each particular action for each possi
ble history. A stationary policy depends only on S instead of
on H. Such a policy associates with each state a probability
distribution on the actions.

Given an SCSG M and a natural number T, we de
note the expected T-step undiscounted average reward of
a policy when the adversary follows a policy p, and

In the sequel we wi l l assume that the SCSG is ergodic in
the sense that given any stationary policy of the agent, the
probability of transition between each pair of states is greater
than 0 regardless of the adversary behavior. This makes the
value of each stationary policy well-defined (i.e., it is inde
pendent of the initial state). In particular, the value of M
is the value I of an optimal policy (and we know
that for SCSGs, there is no loss of generality in assuming this
policy is stationary).

The ergodicity assumption is consistent with the treatment
of [Kearns and Singh, 1998], and is quite natural for the fol
lowing reasons. Any Markov chain defined by a policy has
one or more absorbing subsets of states. That is, subsets of
the state space such that once the agent enters them, he wi l l
remain in them. In the initial stages of learning, the agent
cannot be expected to know which policies wil l lead to which
sets of absorbing states, and so we cannot really influence the
choice of an absorbing state set. However, once we are within
such a set, we would like to quickly learn how to behave. This
is basically what we (and KS) offer.

3 Our Measure of Complexity
One of KS's contributions is the identification of the central
parameter upon which the analysis of algorithms for learning
in MDPs must be based, namely, the mixing time. KS argue
that it is unreasonable to refer to the efficiency of learning
algorithms without referring to the efficiency of convergence
to a desired value. They defined the e-neturn mixing time of a
stationary policy π to be the smallest value of T after which
guarantees an expected payoff of at least More for
mally, in the context of SCSGs we say that a policy n belongs
to the set of stationary policies whose e-ieturn mix
ing time is at most T, if after time T, returns an expected
(average, undiscounted) payoff of at least for every
possible adversary behavior. That is, on the average, we have
to employ T steps of policy until our average accumulated
reward is sufficiently close to the value of Notice an agent
that already knows an optimal policy whose c-return mix
ing time is T, wi l l need this much time, on the average, to
obtain a value of (almost) v. Clearly, one cannot expect an
agent lacking this information to perform better.

BRAFMAN AND TENNENHOLTZ 735

that (1) the probability of failure of learning all columns in at
least one set (from among o f a d v e r s a r y
deviations (i.e. selections of unknown columns) is smaller
than times the probability offai l ing to learn in one such
set of deviations, and that (2) there are at most N entries to
learn.

We run the the algorithm for Y stages, such that

is polynomial in the problem pa
rameters. This wi l l guarantee that the proportion of stages
in which we do not follow is smaller than Hence,

i

these inequalities, we can indeed choose (polynomial) X and
Y that satisfy these conditions.

To complete the proof we need to show that we obtain the
desired expected value. This follows from the fact that after Y
stages (with the corresponding probability) only at most of
the stages correspond to adversary deviations, while in
ofthe stages an expected pay off of
is obtained. |

Hence, once we have reached a situation where we have a
policy that can obtain the desired value if the adversary be
haves "nicely", we can modify this policy to a policy which
obtains almost the desired value or learns a new fact about
the stales (with overwhelming probability). Thus, we trade
off some exploitation for exploration in a manner that guaran
tees that if the adversary plays an unknown column polynomi
aly many tunes, we wi l l learn this column after a polynomial
number of steps. If the adversary rarely plays that column, we
wi l l rarely encounter i t , and so the possible losses stemming
from the randomization effect are almost surely insignificant
given a sufficiently long (but polynomial) number of steps.

7 The Algorithm

The LSG algorithm can be executed for any desired number
of steps . For sufficiently large values of t (polynomial
in the problem parameters) a near optimal average return is
guaranteed, as staled in Theorem 1.

1. Initialize the set L o f known states to be empty.

2. If the current state is not in L:

(a) Randomly sample an action and execute it.
(b) If foil owing this sampling the current state has been

visited enough times (see Definition 2, Lemma 1,
and the discussion after Lemma 1), and at least one
column of the game associated with it is known,
add it to the set of known states L.

3. If the current state is in L (i.e., a known state), per
form an off-line computation on ML in order to check
whether a value of at least can be
guaranteed, assuming the adversary uses only actions
that correspond to fully known columns.

4. If such a value can be guaranteed by a policy π, then
the policy πm is executed.3 The run of πm is halted
whenever a deviation of the adversary from the actions
associated with fully known columns is observed, when
the agent deviates from π when we have readied an un
known state, or when a new column in a state in L be-
comes fully known.

5. Otherwise, a payoff of can not be
obtained, and a (global) exploration policy is executed
(see Section 5) for T steps or until an unknown state is
reached. This policy is guaranteed by Lemma 2 to reach
a state outside L with probability of at l e a s t w i t h i n

steps.

6. In all cases, whenever an entry in a state game is learned,
the value of it is kept in memory.

It is clear (from Lemma 3) that the above algorithm is poly
nomial (i.e. leads to near optimal average return after poly
nomial time) in the appropriate parameters. It remains to be
shown that this algorithm wi l l yield the desired return with
probability of at least for a g i v e n T o show this,
we have to consider the four sources of failure of the algo
rithm. The first three appear in the context of the algo-
rithm, while the fourth stems from the need to perform local
exploration.

1. In some states the algorithm may have a poor estimate of
the true next-state distribution. Using standard Chernoff
bound analysis [Alon et al, 1992], as was applied by KS
in the case of MDPs, we can show that, if the number
of times an entry was explored is sufficiently large (k i t
still polynomial), the probability of an error larger than
we wish for is small. Notice that, for this analysis, our
definition of known states enables us to ignore the fact
the rewards in some columns are only partially known.

2. Repeated attempted explorations may fail to expose new
information. This can be either because of failure to
reach an unknown state and failure to sample a new entry
in an unknown state. We can view a global exploration
step, followed by random wandering, as a Bernoulli trial,
with a constant positive probability of success of at least

for reaching an unknown state and explor
ing a new entry in that state. The number of such tri
als which might be executed before all states become
known can therefore be taken (since all of the trials can
be treated as independent trials) to be polynomial, with
a failure probability of at most . Notice that in general,
not all states need to become known.

3. When we perform T-step exploitation with no lo
cal exploration we reach an expected return of

, but the actual return may be lower.
This point is handled by the fact that after polynomially
local exploitations are carried out,
can be obtained with a probability of failure of at most

This is obtained by standard Chernoff bounds, and

'Recall that performs the optimal policy with respect to
known states with some amount of local exploration.

738 MACHINE LEARNING

makes use of the fact that the standard deviation of the
expected reward in a T-step policy is bounded.

4. The agent may get a low payoff because it does not
know the entries in some column and does not learn
new entries in unknown columns. This is handled by
Lemma 3, where we can choose the failure probability,

as needed.

By making the failure probability less than at each of the
above stages, we are able to get the desired result

Finally, we remove the assumptions that both the value and
its e-return mixing time are known. This is straightforward
and almost identical to the treatment given by [Kearns and
Singh, 1998]. First, as to knowledge of the value, this is
needed when we have to decide whether to explore or ex
ploit. Lemma 2 states that we can either get enough re
turn or we have a sufficiently high probability of reaching
a new state quickly. One can calculate this probability with-
out knowledge of the value and perform exploration when
ever this probability exceeds the desired bound. Notice that
by employing this technique, with overwhelming probability
we remain with known states only after polynomial time. At
this point, we can compute an optimal policy. Hence, we can
safely apply this exploration bias.

Next, we must deal with the lack of knowledge of T. The
idea is as follows: from the proofs of the algorithm's prop
erties, one can deduce some polynomial P in the problem
parameters such that if T is the mixing-time, then after P(T)
steps we are guaranteed, with probability 1 — the desirable
return. Hence, we can simply attempt to run this algorithm
for T = 1,2,3,. . . . For each value of T, we run the algo
rithm P(T) time. Suppose that is the mixing time, then
a f t e r s t e p s , we wi l l obtain the desirable return.

One thing to notice is that this algorithm does not have a
final halting time and wi l l be applied continuously as long as
the agent is functioning in its environment. The only caveat is
that at some point our current mixing time candidate T wi l l be
exponential in the actual mixing time To, at which point each
step of the algorithm wi l l require an exponential calculation.
However, this wi l l occur only after an exponential number of
steps. This is true for the algorithm too.

Another point worth mentioning is that in SCSGs, the
agent may never know some of the columns. Consequently, if
π is the optimal policy given ful l information about the game,
the agent may actually converge to a policy that differs
from π, but which yields the best return given the adversary *s
actual behavior. This return wi l l be no smaller than the return
guaranteed by π. The mixing time of wi l l , in general, dif
fer from the mixing time of . However, we are guaranteed
that if To is the e-return mixing time of , and v is its value,
after time polynomial in , the agent's actual return wi l l be
at least v (subject to the deviations afforded by the theorem).

8 Conclusion
We described an algorithm for learning in a restricted class
of stochastic games. This algorithm extends earlier work of
Kearns mid Singh {1998] on learning in MDPs using the tech
niques of Monderer and Tennenholtz [1997] for learning in
repeated games. These results can be extended to stochastic

games in general, as explained in the full paper [Brafman and
Tennenholtz, 1998]. Unfortunately, die adversary's ability to
influence transitions can lead to very large mixing times and
slower, though still polynomial, convergence.

In describing the algorithm we aimed for clarity rather than
efficiency, with the sole constraint of providing a polynomial
time algorithm. A more careful analysis wi l l lead to reduced
running time. It is worth noting a simple, but interesting,
corollary of our results. If the algorithm is run concurrently
by the agent and the adversary, where we consider stochastic
games with stationary equilibrium, they are both guaranteed
to attain near optimal performance, i.e., the value of the game
(within the allowed error bounds). Finally, we remark that
our algorithm would seem a natural candidate for learning in
non-stochastic environment, although additional assumptions
about the nature of the environment could be used to improve
its efficiency.

Acknowledgement: We thank the anonymous reviewers for
their useful comments. The first author was partially funded
by the Paul Ivanier Center for Robotics Research and Produc
tion Management.

References
[Alon et al, 1992] N. Alon, J.H. Spencer, and P. Erdos. The

Probabilistic Method. John Wiley & Sons, 1992.
[Brafman and Tennenholtz, 1998] R.I. Brafman and M. Ten

nenholtz. A near-optimal polynomial time algorithm for
learning in stochastic games. Technical Report, Ben-
Gurion University, 1998.

[Horijkand Kallenberg, 1981] A. Horijkand L .CM. Kallen-
berg. Linear Programming and Markov Games. In
O. Moeschlin, editor, Game Theory and Mathematical
Economics, pages 307-319. North Holland, 1981.

[Hu and Wellman, 1998] J. Hu and M.P. Wellman. Multia-
gent Reinforcement Learning: Theoretical Framework and
an Algorithm. In Proc 15th ICML, 1998.

[Kearns and Singh, 1998] M. Kearns and S. Singh. Near-
optimal reinforcement learning in polynomial time. In In
ternational Conference on Machine Learning, 1998.

ttittman, 1994] M. L. Littman. Markov games as a frame
work for multi-agent reinforcement learning. In Proc. 11th
lntl Conf. on Machine Learning, pages 157-163,1994.

[Monderer and Tennenholtz, 1997] O. Monderer
and M. Tennenholtz. Dynamic Non-Bayesian Decision-
Making. JAJR, 7:231-248,1997.

[Parthasarathy and Raghavan, 1981] T. Parthasarathy and
T.E.S. Raghavan. An Order Field Property for Stochastic
Games when One Player Controls Transition Probabilities.
/. Optim. Thoery Appl, 33:375-392,1981.

[Shapley, 1953] L.S. Shapley. Stochastic Games. In Proc.
Nat. Acad Scie. USA, volume 39, pages 1095-1100,1953.

[Vrieze, 1981] O J. Vrieze. Linear Programming and Undis-
counted Stochastic Game in which One Player Controls
Transitions. ORSpektrum, 3:29-35,1981.

BRAFMAN AND TENNENHOLTZ 739

