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A B S T R A C T 

One fundamental problem of natural language pro­
cessing is word sense disambiguation. Solving this prob­
lem involves the integration of multiple knowledge 
sources: syntactic, semantic, and pragmatic. Recent work 
has shown how this problem can be modelled as a con­
straint satisfaction process between competing syntactic 
and semantic structures. We have defined and imple­
mented a "locally-distr ibuted" microfeature based model 
called MIBS, that uses a distributed short-term memory 
(STM) composed of microfeatures to represent the under­
lying sentence semantics. This work represents an 
improvement over previous work, as it provides a natural 
language understanding system a means to dynamically 
determine the current context and adjust its relationship 
w i th the sentences that follow. Here, the meaning of a 
word is represented not as a symbol in some semantic net, 
but as a collection of smaller features. The values of the 
microfeatures in STM vary dynamically as the sentence is 
processed, reflecting the system's "set t l ing" in on the 
sentence's meaning. In addition they represent an 
automatic context mechanism that helps the system to 
disambiguate the sentences that follow. 

I . I N T R O D U C T I O N 

One fundamental problem of natural language pro­
cessing is word sense disambiguation. Solving this prob­
lem involves the integration of multiple knowledge 
sources: syntactic, semantic, and pragmatic. Recent work 
(Cottrell & Small, 1983; Cottrel l , 1985; Waltz & Pollack, 
1985) has shown how this problem can be modelled as a 
constraint satisfaction process between competing syntac­
tic and semantic structures. The above models rely pr i ­
marily on local representations (one concept per node), as 
opposed to distributed representations, although Waltz 
and Pollack (1985) suggest ways that a static 
microfeature-based representation could be used to 
represent global contextual influences for competing word 
senses. Cottrell (1987) states that one of the major 
weaknesses of most NLP programs is their representation 
of meaning. Each meaning of a word is usually 
represented by a node wi th an "awkward lexeme" as a 
label, whereas its meaning is best represented not as a 
symbol, but as collection of variable valued microfeatures. 

For a machine to "understand" language, it must 
have a means of "knowing" the context of a sentence and 
its relationship w i th the sentences that follow. Building 
upon the work of Waltz & Pollack (1985), we have 
defined and implemented a "locally-distr ibuted" micro-
feature based model called MIBS (Microfeature Based 
Semantics), that uses a distributed short-term (STM) 
memory composed of microfeatures, to represent wi th 
more gradations of meaning, a sentence's underlying 
semantics. Our system provides a means to dynamically 
determine the current context and adjust its relationship 
w i th the sentences that follow. The model developed 
here, provides a basis for understanding this dynamic 
relationship and thus, this work presents a starting point 
from which one can build a more dynamic natural 
language understanding system. Note, Waltz & Pollack 
(1985) used a static microfeature-based representation, 
that had to be ini t ial ly primed by a user. In addition, 
their system could not process multiple sentences in a 
continuous fashion, as their microfeatures were not 
dynamically updated. 

Our microfeatures act as intermediate-level units 
(Minsky 1986) that are intended to capture underlying 
structural fragments, that is, pieces of semantic structure. 
These intermediate-level units represent intermediate con­
cepts which may be indispensable for understanding 
language, because the comprehension of a complex sen­
tence often hinges on composing a meaningful variation 
on a familiar theme. Although the microfeatures do not 
represent the relationships between the pieces of the 
semantic structure, they might provide a means for 
representing the underlying themes of the sentence and 
maybe an enriched notion of what the sentence "means". 
Thus, the microfeatures may be useful pieces for a cogni­
tive model of language understanding. (See Bookman 
1987 for details). 

Our use of microfeatures is similar to Wilks' (1975) 
use of semantic primitives, in the sense that they are only 
partial ly definitional. In addition, we are using the 
microfeatures as a short-term memory, where currently 
active microfeatures influence the sentences to follow. 
This is similar to Hlnton's (1984) notion where each active 
unit in the network represents a "microfeature". 
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H . D E S C R I P T I O N O F T H E M O D E L 

The system is composed of two layers. The top layer 
is a " local" connectionist model, the bottom layer, a dis­
tributed layer of "microfeatures" (fig. 1). The " local" 
connectionist layer encodes the syntactic and lexical struc­
ture of the sentence (see section 4). While the micro-
features are used as a basis for defining the nodes (i.e. 
concepts, hypotheses) in the top layer, at least partially, 
and for associating each node with others that share its 
microfeatures. In addition they form the basis for our 
memory system. Each microfeature is potentially con­
nected to every node in the top layer. Each node in the 
top layer is connected via bi-directional links to only 
those microfeatures that describe i t . Collections of closely 
related nodes in the top layer wi l l have many common 
microfeatures. 

Figure 1. System Architecture 

Given some initial setting it is the memory system 
(i.e., the distributed layer of microfeatures) that drives 
the system to eventually settle on the intended interpreta­
tion of the given sentence. Here memory is used in follow­
ing limited sense: a short-term microfeature memory that 
stores the currently active and inactive microfeatures; and 
a long-term semantic memory that stores "semantic" 
knowledge in the form of connections between the micro-
features and concepts. This "semantic" knowledge is 
pre-wired into the network, and in the current implemen­
tation does not change. (Note, there is no "episodic" 
memory, as the model currently has no way of storing 
events). For example, in figure 1 the local node speech 
has a mild association with the microfeatures threatening 
and safe, and a strong association with social and enter-
tainment 

Here STM is represented by a microfeature vector, 
where each position of the vector corresponds to an 
independent microfeature, and the numerical value at 
that position corresponds to the level of activation of that 
feature. The initial activation of the microfeature vector 
primes local node concepts, and then the primed concepts 
change the activation of the microfeature values in STM, 
in turn activating new concepts (in this case the different 
word senses) in the top layer of the network. This is 
similar to Quillian (1968), except here successively 
activated (i.e. related) "concepts" are joined by 
(sub)bundles of microfeatures, rather than by single 

marker-passing links. The initial priming of memory can 
be set up by the experimenter, or can be automatically 
setup by the processing of a previous sentence. A major 
difference between this system and that of Waltz & Pol­
lack (1985) is that this system performs relaxation on the 
microfeature set. As a by-product we get constellations of 
microfeatures that persist over time, that can be used to 
dynamically constrain the processing of the sentences that 
follow. 

The basic computational units at each node are p-
units wi th decay and p-units with conjunctive connections 
(for encoding semantic constraints). These units compute 
the potential (activation) of a node and are similar to the 
ones described in Feldman & Ballard (1982). In addition 
we are using meta-network structures called network 
regions for representing groups of competing word senses 
(Chun, Bookman & Afshartous 1987). One such example 
is the CN-REGION in figure 2. These structures provide 
more stable competition, are more tolerant to initial 
noise, and eliminate the premature " lock- in" effect of 
traditional W T A (winner-take-all) structures (Feldman & 
Ballard 1982). It is important to note that most of the 
computation here is local to each node and thus the relax­
ation algorithm can be performed by massively parallel 
hardware. Currently, the computation is performed on a 
Symbolics 3670, using a general purpose massively paral­
lel simulator called AINET-2 (Chun 1986). 

The heart of the algorithm consists of two steps: 
node relaxation followed by microfeature relaxation. Node 
relaxation computes the amount of activation a node is to 
receive from all its connecting neighbors, plus any activity 
from the currently active nodes of STM memory. The 
activity contributed by STM is computed by taking the 
product of a node's microfeature set (its "long-term 
semantic" knowledge) with the node's activation level, 
and, then taking the dot product of this result wi th the 
microfeature vector in STM memory. This result is then 
normalized, so that the relative contribution of the 
microfeature set is appropriately scaled. This computa­
tion allows the reactivation of previously active sets of 
nodes, and is similar in this regard to Minsky's "K-l ines" 
(1980), where some agent (in our case the node) is associ­
ated with specific activated nodes (in our case the micro-
features), and this agent is used to recover the whole from 
any sufficiently large part. 

The microfeature relaxation cycle computes the 
amount of activation each node contributes to the micro-
features currently active in STM memory. This is accom­
plished by taking the product of a node's microfeature set 
times the node's activation level (computed by the node 
relaxation computation above) and updating memory by 
adding the sum of all such computations to the old values 
in memory. The net effect is that evidence is accumu­
lated, wi th memory being modified by recent experience. 

By div id ing the sum of the re iu l t by the turn of the absolute values of the mi­
crofeature values in S T M . 
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Both of the above computations are performed at each 
simulation step for all nodes in the network. 

Interestingly, the model proposed seems to correlate 
wi th some psychological processes, as evidenced by 
psycholinguistic data where subjects maintain the initial 
activation of all word senses and where a "post-access" 
decision takes place, following lexical access, that utilizes 
context to determine the appropriate meaning of the 
word (Swinney 1982). In summary, the computation 
models a constraint satisfaction process that uses the 
semantics of microfeatures to set context. The micro-
feature relaxation computation can be viewed as the 
post-access decision process that performs word sense 
disambiguation. 

H I . T H E M I C R O F E A T U R E S E T 

Below is a description of the microfeatures used in 
this research. We have tried to be somewhat systematic 
and fair in choosing them. We make no claims, however, 
that this is the only such set. Our purpose is only to 
demonstrate that microfeatures are useful. The features 
we chose can be broken down into the following 
categories: 

• Lengths of events: second, minute, hour, day, week, month, year, 
decade. 

• Temporal relationships between events: before, after, current. 
• Locations: house, store, office, school, factory, casino, bar, restau­

rant, theatre, racetrack, city street, city park, city, rural, forest, 
lake, desert, mountain, seashore, canyon. 

• Events: competition, social, business, entertainment. 
• Distinctions needed to survive: threatening/safe, 

animate/inanimate, edible/inedible, good outcome/neutral 
outcome/bad outcome, moving/still, intentional/unintentional, 
inside/outside, temporary/permanent. 

• Life themes: sleep, hunger, thirst, sex, sickness, health, death, 
crime, subsistence, marriage, education, learning, profession, 
work, hobby. 

• Methods of communication: speech, written, machine, telephone, 
satellite. 

• Means of transportation: walk, bus, car, train, airplane. 
• Object site: very large, large, medium, small, very small. 
• State change 
• Goals: enjoyment goals, achievement goals, preservation goals, 

satisfaction goals. (See Schank & Riesbeck, 1981). 
• Some primitives to encode event-types: atrans, mtrans, ptrans, 

propel. (See Schank & Riesbeck, 1981). 

The categories: locations, events, methods of communica­
t ion, means of transportation are important to a culture 
and were chosen on this basis. The categories: life 
themes, distinctions needed to survive, state change, 
length of events, and temporal relationships are common 
across cultures and were chosen for this reason. The size 
category te context dependent and provides a means for 
relational comparison. Goals and the Schank-inspired 
primitives were chosen as a basis for encoding "script-
l ike" knowledge. There are roughly 90 microfeatures; 
however, probably several thousand are needed for a suf­
ficiently rich semantics. 

I V . S O M E E X P E R I M E N T A L R E S U L T S 

In the following examples we will illustrate the uti l­
ity of the approach in determining the ''meanings" of the 
sentences: 

(51) John went to Mary's party. He had a good time. 

(52) John ran the 500 meters yesterday. He had a good time. 

(53) John was talking to his boss. The language he used was inap-
propriate. 

(54) John was programming at his computer. The language he used 
was inappropriate. 

The networks that model these sentences are shown in 
figures 2 and 3 (actually only the local connectionist layer 
is shown). The networks for sentences S2 and S4 are not 
shown as they are similar to the ones for SI and S3 
respectively. The rectangular nodes in the figure represent 
the input words. The elliptical nodes below them 
represent the competing word senses, and the structure 
above them the syntactic parse tree for the sentence. 

Figure 2. Network: "John went to Mary 's party. He had a good 
t ime" , after 30 cycles of relaxation. 

Figure 3. Network: "John was talking to his boss. The language 
he-used* was inappropriate", after 26 cycles of relaxation. 

AUTOMATIC CONTEXT SETTING 

In the first simulation, the two sentences (Si): 
"John went to Mary's party. He had a good t ime." were 
processed. Note, the meaning of the second sentence is 
ambiguous. In the context of party it means he had a 
good experience, but in the context of track meet, it 

Note: we are using hE USED as as adjective to simplify tht parse tree. The 
correct parse could be represented as follows: np (Det (the in N| ( g ^ Comp( |g he 

u s e d I s N N 
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means the measured time for the race he has just run was 
quite good. In this example we have used four senses of 
the input word " t ime" : 
R H Y T H M - a noun, meaning the grouping of the beats of music. 
D U R A T I O N - a noun, meaning the measured time for an event. 
E X P E R I E N C E - a noun, meaning a person's experience during a 
specified period. 
SCHEDULE - a verb, meaning to arrange or set the time of. 

The purpose of this experiment was to demonstrate the 
resolution of the ambiguity of the second sentence, 
through the normal processing of the first sentence, but 
without any context being initially primed by an experi­
menter. Instead, this was to occur automatically, and 
dynamically through the constellations of microfeatures. 
After 30 cycles of processing, the system settled into the 
correct stable state, wi th the experience sense of time 
winning out (see fig. 2). Note we have sequenced the pro­
cessing so that we first process the first sentence and then 
we process the second. If we process only the second sen­
tence then the system wil l settle into an ambiguous state 
in which the two senses of time: duration and experience 
are both equally active. This demonstrates that the 
second sentence is really ambiguous to the system. 

It is interesting to note that if the sentences were 
input in the reverse order (i.e. He had a good time. John 
went to Mary's party), the system still resolves the ambi­
guity. However, in this case it took the system 40 cycles 
of processing before it settled into the correct stable state. 
The increase in time correlates .with our own difficulty in 
trying to understand an ambiguous sentence that is out of 
context - it takes us a l itt le longer also. 

In the second simulation the two sentences (S2): 
"John ran the 500 meters yesterday. He had a good 
t ime." were processed. In this experiment we wanted to 
see if the system could correctly disambiguate the word 
time given the context of a different first sentence. After 
26 cycles of relaxation, the system settled into the correct 
state, wi th the duration sense of time winning out. A plot 
(not shown) of the activation of the different word senses 
of time shows that the incorrect senses: rhythm, experi­
ence, and schedule quickly die out. As before, we have 
sequenced the processing so that we first process the first 
sentence and then we process the second sentence. 

The sentences (S3) and (S4) were also tried and 
similar results were obtained. In either case the system 
was able to resolve the ambiguity of the second sentence, 
namely, John's manner of speech was inappropriate or 
the programming language he used was inappropriate. 
Figure 3 depicts the final state after having processed sen­
tence S3. The processing of sentence S4 is similar, except 
here the prog-lang sense of language wins out. 

V. SUMMARY 

This paper has presented some preliminary results 
toward understanding the "meaning" of sequences of 

sentences. Its basic conclusions are that the semantics of 
microfeatures can be used to automatically and dynami­
cally perform context setting as a sentence is being pro­
cessed, helping to disambiguate the different word senses 
in the sentences that follow; and that the underlying 
sense of a sentence can be realized through the use of a 
distributed shared set of microfeatures. For a machine to 
"understand" language, it must have a means of "know­
ing" what the context is and what is its relationship with 
the sentences that follow. The model developed here pro-
vides a basis for understanding this dynamic relationship 
and thus, this work presents a starting point from which 
one can build a dynamic natural language understanding 
system. In addition, the approach presented allows for 
massively parallel networks to be used as the basis for 
implementing this mechanism. 

Acknowledgements . Special thanks to Dave Waltz for 
suggesting many improvements to earlier drafts. Also 
special thanks to Hon Wai Chun for many discussions 
and comments on this paper, and James Pustejovsky for 
providing useful comments. 

REFERENCES 

1 Bookman, LA . , "A Microfeature Based Scheme for Modelling 
Semantics," CS-1987-128, Computer Science Department, Bran­
ded University, Waltham MA 02254, 1087. 

2 Chun, H.W., L A . Bookman, k N. Afshartous, "NETWORK 
REGIONS: Alternatives to the Winner-Take-All Structure,'* 
IJCAI-87, 1987. 

3 Chun, H.W., "AINET-2 User's Manual," Computer Science 
Department, Brandeis University, CS-86-126, Waltham MA, 1086. 

4 Cottrell, G.W. & S.L. Small, "A connectionist scheme for model­
ling word sense disambiguation," Cognition and Brain Theory, 
6(1), (1083) 80-120 

5 Cottrell, G.W. "A connectionist approach to word sense disambi­
guation," (PhD thesis) Available as TR 154, University of Roches­
ter Computer Science Department, 1085. 

6 Cottrell, G.W., "Toward connectionist semantics," Proceedings of 
TINLAP-S, 1087. 

7 Feldman, J.A. and D.H. Ballard, "Connectionist Models and Their 
Properties," Cognitive Science, 6, (1082) 205-254. 

8Hinton, G.E., "Distributed Representations," CMU-CS-84-157. 
Computer Science Department, Carnegie-Mellon University, Pitts­
burgh PA 15213, 1084. 

0 Minsky, M.L. "K-lines: A theory of memory," Cognitive Science, 
4, (1080) 117-130. 

10 Minsky, M.L. (draft) "Connection Machines, Parallel Learning, 
and Societies of Mind, " 1086. 

11 Quillian, M.R. "Semantic Memory," In M. Minsky (Ed.) Semantic 
Information Processing, Cambridge: MIT Press, 1068. 

12 Schank, R.C. and C.R. Riesbeck, Inside Computer Understanding, 
Hillsdale, New Jersey: LEA, 1081. 

13 Swinney, DA . , "The structure and time-course of information 
interaction during speech comprehension: Lexical segmentation, 
access, and interpretation. In J. Mehler, E.C.T. Walker, and M. 
Garrett (Eds.), Perspectives on mental representation. Hillsdale, 
NJ: Erlbaum, 1082. 

14 Walts, D.L. and J.B. Pollack, "Massively Parallel Parsing: A 
Strongly Interactive Model of Natural Language Interpretation/' 
Cognitive Science, 0, (1085) 51-74. 

15 Wilks, Y, "Primitives and words," Proceedings of TINLAP-1, 
Cambridge, Ma. June 1075, pp. 42-45. 

614 NATURAL LANGUAGE 


