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ABSTRACT 
 

This article presents a method for unraveling the hypercube and obtaining the 3D-cross (tesseract) that 
corresponds to the hyper-flattening of its boundary. The hypercube can be raveled back using the method 
in an inverse way. Also a method for visualizing the processes is presented. The transformations to apply 
include rotations around a plane (characteristic of the 4D space). All these processes can be viewed using 
a computer animation system. 
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1. INTRODUCTION 
 
[Coxet84], [Rucke84], [Kaku94], [Robbi92] and 
[Banch96] start their introductions to the 4D space 
study presenting three methods for visualizing the 
hypercube: through their shadows (projections), 
their cross sections with 3D space and their 
unravelings. 
 

 
 

Projecting a cube on a plane (central projection). 
Figure 1 

 
 

If it is possible to make drawings of 3D 
solids when they are projected onto a plane, then it 
is possible to make drawings or 3D models of 4D 
polytopes when they are projected onto a hyperplane 
[Coxet84].  The shadows method is based in this 
principle. 
 

Let us follow the analogy presented in 
"Flatland" [Abbot84].  If a 3D being wants to show a 
cube to a 2D being (a flatlander) then the first one 
must project the cube's shadow onto the plane where 
the flatlander lives.  For this case, the projected 
shape could be, for example, a square inside another 
square (Fig. 1). 
 

 
Hypercube's central projection onto the 3D space. 

Figure 2 
 

 
If a 4D being wants to show us a 

hypercube, he must project the shadow onto the 3D 
space where we live.  The projected body could be a 
cube inside another cube [Kaku94] called central 
projection (Fig. 2). We know that a projected cube 
onto a plane is just an approximation of the real one.  



Analogously, the hypercube projected onto our 3D 
space is also a mimic of the real one. Another useful 
projection is due to Claude Bragdon (see [Rucke77] 
for details about this projection).  See Fig. 3. 
 

X

Y ZW

 
 

Claude Bragdon's hypercube projection. 
Figure 3 

 
 

A cube can be unraveled as a 2D cross.  
The six faces on the cube's boundary will compose 
the 2D cross (Fig. 4). The set of unraveled faces is 
called the unravelings of the cube.  
 

 
 

Unraveling the cube. 
Figure 4 

 
 

In analogous way, a hypercube also can be 
unraveled as a 3D cross. The 3D cross is composed 
by the eight cubes that forms the hypercube's 
boundary [Kaku94]. This 3D cross was named 
tesseract by C. H. Hinton (Fig. 5).  
 

 
 

The unraveled hypercube (the tesseract). 
Figure 5 

 
 

A flatlander will visualize the 2D cross, but 
he will not be able to assembly it back as a cube 
(even if the specific instructions are provided). This 

fact is true because of the needed face-rotations in 
the third dimension around an axis which are 
physically impossible in the 2D space. However, it 
is possible for the flatlander to visualize the raveling 
process through the projection of the faces and their 
movements onto the 2D space where he lives. 
 

Analogously, we can visualize the tesseract 
but we won't be able to assembly it back as a 
hypercube. We know this because of the needed 
volume-rotations in the fourth dimension around a 
plane which are physically impossible in our 3D 
space. 

 
Before going any further, we would like to 

underline that the cube’s boundary faces can be 
grouped into three pairs of parallel faces, where their 
supporting planes define two 2D-spaces parallel to 
each other. Each pair can be obtained by ignoring all 
those edges parallel to each main axis (X, Y and Z), 
see Fig. 6 

 
 

 
Viewing the cube’s boundary faces. 

Figure 6 
 
 

It is interesting to analyze the hypercube 
using its analogy with the cube and the visualization 
methods above described. [Hilbe52] has determined 
that a hypercube is composed out of sixteen vertices, 
thirty-two edges, twenty-four faces and eight 
bounding cubes (also called cells or volumes). 
Similarly, and as shown in Fig. 7, all these volumes 
can be grouped into four pairs of parallel cubes, 
furthermore, their supporting hyper-planes define 
two 3D-spaces parallel to each other. 
 

 

 
Viewing the hypercube’s boundary volumes. 

Figure 7 
 



[Coxet63] points out that each face is 
shared by two cubes not in the same three-
dimensional space, because they form a right angle 
through a rotation around the shared face's 
supporting plane. These properties are visible 
through Bragdon's projection (Fig. 3). The Bragdon's 
projection as well as the central projection will be 
used throughout the remainder of this article. 

 
2.  PROBLEM 
 
[Kaku94] and [Banch96] describe with detail a 
representation model for the hypercube through their 
unravelings. They also mention the physical 
incapacity of a 3D being to ravel the hypercube 
back, because the required transformations are not 
possible in our 3D space (Fig. 8).  
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The hypercube's unraveling process. 
Figure 8 

 
 

[Kaku94] and [Banch96] also describe that 
if we witness the raveling process, seven of eight 
cubes that compose the tesseract will suddenly 
disappear, because they have moved in the direction 
of the fourth dimension. However, they don't 
provide a methodology that indicates the 
transformations and their parameters to execute the 
raveling process.  In spite of our physical incapacity, 
we can visualize a projection onto our 3D space of 
the cubes on the hypercube's boundary through the 
unraveling and raveling processes. 

 
This article presents a method for 

unraveling the hypercube and getting the 3D-cross 
(tesseract) that corresponds to the hyper-flattening of 
its boundary (Fig. 8). The hypercube can be raveled 

back using the same method in an inverse way. The 
transformations to apply include rotations around a 
plane (characteristic of the 4D space). All these 
processes can be viewed using a computer animation 
system. 

 
3.  HYPERCUBES'S UNRAVELING 

METHODOLOGY 
 
The process will be easier if we take the following 
considerations: 

 
�� Select the hypercube's position in the 4D space. 
�� Select the hyperplane (a 3D subspace embedded 

in the hyperspace) where the volumes will be 
rotated to. 

�� Establish the angles which guarantee that all 
volumes will be totally embedded in the 
selected hyperplane. 

�� All the volumes through their movement into 
the selected hyperplane must maintain a face 
adjacent to another volume. 

 
The hypercube's position in the 4D space is 

essential, because it will define the rotating planes 
used by the volumes to be positioned onto a 
hyperplane. For simplicity, one vertex of the 
hypercube will coincide with the origin, six of its 
faces will coincide each one with some of XY, YZ, 
ZX, XW, YW and ZW planes and all the coordinates 
will be positive (see [Banch96] for the methodology 
to get the hypercube's coordinates).  The coordinates 
to use are presented in Table 1 (each vertex is 
arbitrary numbered). 

 
Vertex X Y Z W 

0 0 0 0 0 
1 1 0 0 0 
2 0 1 0 0 
3 1 1 0 0 
4 0 0 1 0 
5 1 0 1 0 
6 0 1 1 0 
7 1 1 1 0 
8 0 0 0 1 
9 1 0 0 1 
10 0 1 0 1 
11 1 1 0 1 
12 0 0 1 1 
13 1 0 1 1 
14 0 1 1 1 
15 1 1 1 1 

Hypercube's coordinates. 
Table 1 

 
 

We know now why the hypercube's 
position in the 4D space is important, since it will 



define the rotating planes to use.  The situation is the 
same for the selected hyperplane, because it is where 
all the volumes will be finally positioned.  
Observing the hypercube's coordinates we can see 
that eight of them present their fourth coordinate 
value (W) equal to zero.  This fact represents that 
one of the hypercube's volumes (formed by vertexes 
0-1-2-3-4-5-6-7) has W=0 as its supporting 
hyperplane.  Selecting the hyperplane W=0 is useful 
because one of the volumes is "naturally embedded" 
in the 3D space and it won't require any 
transformations. 
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Volume A 
(0-1-2-3-4-5-6-7) 

X

Y Z

W

 
 
Volume B 
(0-1-2-3-8-9-10-11) 

X

Y Z

W

 
 
Volume C 
(0-2-4-6-8-10-12-14) 

X

Y Z

W

 
 
Volume D 
(0-1-4-5-8-9-12-13) 

X

Y Z

W

 
 
Volume E 
(8-9-10-11-12-13-14-15) 

X

Y Z

W

 
 
Volume F 
(4-5-6-7-12-13-14-15) 

X

Y Z

W

 
 
Volume G 
(1-3-5-7-9-11-13-15) 

X

Y Z

W

 
 
Volume H 
(2-3-6-7-10-11-14-15) 

 
The hypercube's volumes (the numbers indicate the 

vertices that compose the volume). 
Table 2 

 
 

Now, it is also useful to identify the 
hypercube's volumes through their vertices and to 
label them for future references.  Until now we have 

one identified volume, it is formed by vertexes 0-1-
2-3-4-5-6-7, and it will be called volume A.  See 
Table 2. 

 
Adjacent volume 

(previous to rotation), 
rotation plane and angle 

Position in the 3D 
space and in the 

tesseract after rotation  

X

Y
Z

W

 
B, XY, +90° 

X

Y Z

 
Front (-Z) 

X

Y Z

W

 
C, YZ, -90° 

X

Y Z

 
Left (-X) 

X

Y Z

W

 
D, ZX, +90° 

X

Y Z

 
Down (-Y) 

X

Y Z

W

 
F, XY, -90° 

X

Y Z

 
Back (+Z) 

X

Y Z

W

 
G, YZ, -90° 

X

Y Z

 
Right (+X) 

X

Y Z

W

 
H, ZX, -90° 

X

Y Z

 
Up (+Y) 

 
Applied transformations to the adjacent volumes. 

Table 3 
 

 
We have already described volume A as 

"naturally embedded" in the 3D space, because it 



won't require any transformations. Volume A will 
occupy the central position in the 3D cross and it 
will called the "central volume". 

 
From the remaining volumes, six of them 

will have face adjacency with the central volume.  
Due to this characteristic they can easily be rotated 
toward our space because their rotating plane is 
clearly identified.  Each of these volumes will rotate 
around the supporting plane of its shared face with 
central volume.  They will be called "adjacent 
volumes".  Adjacent volumes are B, C, D, F, G and 
H.  The remaining volume E will be called "satellit e 
volume" and it will be discussed later on. 

 
All of the adjacent volumes will rotate right 

angles.  In this way we guarantee that their W 
coordinate will be equal to zero. It is also important 
to consider their rotating directions, because the 
volumes, after the rotations, could otherwise 
coincide with the central volume.  The direction and 
rotating planes for each adjacent volume are 
presented in Table 3 (the central volume is also 
included in each image as a reference for the initial 
and final position of the volume being analyzed).  

 
At this point, we have seven of the eight 

hypercube's volumes placed in their final positions 
(volumes A, B, C, D, F, G and H). Volume E will 
perform a rather more complex set of 
transformations.  There are two reasons that justify 
this conclusion: 

 
�� The supporting hyperplane for volume E is 

parallel to the supporting hyperplane for the 
central volume. Consequently, there are no 
adjacencies between volume E and central 
volume (this is the reason for not calli ng 
"adjacent volume" to volume E). 

�� In the tesseract, we still have an empty position.  
This position corresponds to the most distant 
volume from the central volume (the inferior 
position, Fig. 5). This position will be occupied 
by volume E. This is the reason for calli ng E the 
"satellit e volume". 

 
At the beginning of this document is 

mentioned the need for maintaining a face adjacency 
between all the volumes while they rotate towards 
the selected hyperplane. Volumes B, C, D, F, G and 
H share a face with central volume (remember that 
central volume is static during the whole unraveling 
process). In order to determine the needed 
transformations for the satellit e volume, we must 
first select the volume which will share a face with 
it.  Any volume, except the central one, can be 
selected for this.  In this work, volume D will be 
selected to share a face with satellit e volume through 
the hyper-flattening process. 

The direction and the rotation plane for 
volume D was determined before (ZX plane +90°).  
These transformations will t ake it to its final 
position.  During the beginning of the unraveling 
process, the same transformations will be applied to 
satellit e volume.  In this way, we ensure that 
volumes E and satellit e will share a face. 

 
When volume D has finished its movement, 

it will be placed in its final position in the tesseract.  
At this moment, the satellit e volume's supporting 
hyperplane will be perpendicular to the selected 
hyperplane and the shared face will be parallel to ZX 
plane.  The last movement to apply to the satellit e 
volume will be a +90° rotation around the 
supporting plane of the shared face with volume D. 
 

The set of movements to be executed for 
the satellit e volume are resumed in the Table 4 
(Central volume and volume D are shown too). 

 
Current position Transformations 

X

Y Z

W

 

Rotation of volu-
mes D and sate-
llit e around the 
plane ZX (+90°). 

X

Y ZW

 

Volume D is in 
its final position. 
Rotation of sate-
llit e volume of 
+90° around the 
shared face with 
volume D (para-
llel plane to ZX). 

X

Y

-Y

Z

-W

 

Satellit e volume 
in its final posi-
tion (inferior po-
sition in the 3D 
cross on -Y 
axis). 

 
Associated transformations to satellit e volume. 

Table 4 
 
 
Now, all the transformations to unravel the 

hypercube have been determined.  To ravel it back, 
the same process must be applied in an inverse way 
(the angles’ signs must be changed). 



4. IMPLEMENTATION 
 
4.1 Rotations in the 4D Space 

 
[Banks94] and [Holla91] have identified that if a 
rotation in the 2D space is given around a point, and 
a rotation in our 3D space is given around a line, 
then a rotation in the 4D space, in analogous way, 
must be given around a plane. 

 
[Holla91] considers that rotations in the 3D 

space must be considered as rotations parallel to a 
2D plane instead of rotations around an axis. 
[Holla91] supports this idea considering that given 
an origin of rotation and a destination point in the 
3D space, the set of all rotated points for a given 
rotation matrix lie in a single plane, which is called 
the rotation plane. Moreover, the rotation axis in the 
3D space is perpendicular to the rotation plane. The 
concept of rotation plane is consistent with the 2D 
space because all the rotated points lie in the same 
and only plane. Finally, with the above ideas, 
[Holla91] constructs the six basic 4D rotation 
matrices around the main planes in the 4D space 
(namely XY, YZ, XZ, XW, YW and ZW planes) 
based in the fact that only two coordinates change 
for a given rotation (these changing coordinates 
correspond to the rotation plane). 

 
Using these ideas, [Duff i94] generalize the 

concept of rotation in an nD space ( n � 2 ) as the 
rotation of an axis Xa in direction to an axis Xb. The 
plane described by axis Xa and Xb is what [Holla91] 
defined as rotation plane. [Duff i94] presents the 
following general rotation matrix: 
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Matrix Rab(�) is an identity matrix except in 

the intersection of columns a and b and rows a and 
b. Because in an nD space there are C(n,2) main 
planes, this is precisely the number of main rotations 
for such space. 

 
 From these concepts, we must consider that 
a rotation can be referenced by using two notations: 
using the axis that describe the rotation plane or 
using the axis that describe the (n-2)D subspace that 
is fixed during the rotation. In this work we have 
referred to rotations in the 4D space using the 
second notation.  

4.2 The 4D-3D-2D Projections 

 
[Banks94] establishes that the same techniques used 
to project 3D objects onto 2D planes can be applied 
to project 4D polytopes onto 3D hyperplanes (our 
3D space for example). Then we have that a 4D-3D 
parallel projection (or just removing W coordinate 
from the polytope's points) is: 

 
� � � �zyxPwzyxP ,,',,, �  

 
 And a 4D-3D perspective projection is 
defined when the center of projection is on W axis at 
a distance pw from the origin. If the projection 
hyperplane is W = 0 then we have a point P can be 
projected as: 
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 Because a 4D-3D projection will produce a 
volume as the "shadow" of a 4D polytope, [Holla91] 
considers valid to process this volume with some of 
the 3D-2D projections (parallel or perspective) to be 
finally projected onto a computer screen. Then we 
have four possible 4D-3D-2D projections: 

 
�� 4D-3D Perspective - 3D-2D Perspective Projection.  
�� 4D-3D Perspective - 3D-2D Parallel Projection. 
�� 4D-3D Parallel - 3D-2D Perspective Projection. 
�� 4D-3D Parallel - 3D-2D Parallel Projection. 

 
For example, for the hypercube presented in 

Fig. 1, it was used 4D-3D Perspective Projection and 
3D-2D Perspective Projection.  

 
5. RESULTS 
 
Table 5 presents some snapshots from the 
hypercube's unraveling sequence. In snapshots 1 to 
6, the applied rotations are �0°, �15°, �30°, �45°, 
�60° and �75° (the rotation’s sign depends of the 
adjacent volume). In snapshot 7, the applied rotation 
is �82°; the satellit e volume looks like a plane -an 
effect due to the 4D-3D projection. In snapshot 8, 
the applied rotation is �90°; the adjacent volumes 
finish their movements. In snapshots 9 to 14, the 
satellit e volume moves independently and the 
applied rotations are +15°, +30°, +45°, +60°, +75° 
and +90°. 

 
  At the present time, the results of this 
research are used with eff iciency as didactic material 
at the Universidad de las Américas - Puebla, 
México. 
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Unraveling the hypercube (See text for details). 
Table 5 

 
6. FUTURE WORK 
 
The n-dimensional hyper-tesseract 
 
Observing the unravelings for the square (a 2D 
cube), the cube and the 4D hypercube we can 

generalize the n-dimensional hyper-tesseract (n�1) 
as the result of the (n+1)-dimensional hypercube’s 
unraveling with the following properties: 
�� The (n+1)-dimensional hypercube will have 

2(n+1) n-dimensional cells on its boundary 
[Banch96]. 



�� A central cell will be static during the 
unraveling/raveling process. 

�� 2(n+1)-2 cells are adjacent to central cell . All of 
them will share a (n-1)-dimensional cell with 
central cell . 

�� A satellit e cell won’ t be adjacent to central cell 
because their supporting hyperplanes are parallel.  
It will be adjacent to any of the adjacent cells (it 
will share a (n-1)-dimensional cell with the 
selected adjacent cell ). 

�� All the adjacent cells and satellit e cell during the 
unraveling/raveling process will rotate �90° 
around the supporting hyperplane of the (n-1)-
dimensional shared cells. 

 
For example, the 4D hyper-tesseract is the result of 
the 5D hypercube’s unraveling. The 4D hyper-
tesseract will be composed by 10 hypervolumes, 
where one of them will be the central hypervolume 
(static), eight of them are adjacent to central 
hypervolume (they share a volume) and the last one 
will  be the satellit e hypervolume (it shares a volume 
with any of the adjacent hypervolumes). See Fig. 9. 
The adjacent hypervolumes and the satellit e 
hypervolume will rotate around a volume or a 
hyperplane during the unraveling/raveling process.  
 

 
 
The possible adjacency relations between the 
4D hyper-tesseract's central hypervolume 
and the adjacent hypervolumes. 

Figure 9 
 
 
 In this research we found a method to 
unravel a hypercube to obtain the tesseract. Also, we 
have proposed a generalization to describe the 
properties of the n-dimensional hyper-tesseract, the 
result of the (n+1)-dimensional hypercube’s 
unraveling.  For the 5D space the rotations will be 
around a volume, for the 6D space they will be 

around a hypervolume and so forth. This is the 
direction to follow in our research to get the 
parameters to unravel the 5D hypercube and to 
obtain the 4D hyper-tesseract (and to unravel 
hypercubes in higher dimensional spaces). Also, 
another direction to follow will be the related to 
rotations  around arbitrary planes in the 4D space 
(analogously to rotations around an arbitrary axis in 
the 3D space). Finding the procedures to rotate 
around arbitrary planes, the hypercube’s position 
may be not relevant.   
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