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ABSTRACT

This article presents a method for unraveling the hypercube axd oliaining the 3D-cross (tesserad) that
corresponds to the hyper-flattening o its boundiry. The hypercube can be raveled bad using the method
in an inverse way. Also a methodfor visualizing the processes is presented. The transformations to apply
include rotations arounda plane (charaderistic of the 4D spacg. All these processs can be viewed using

a omputer animation system.
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1. INTRODUCTION

[Coxet84], [Rucke8d], [Kaku94, [Robki92] and
[Banch9q| start their introductions to the 4D space
study presenting three methods for visuaizing the
hypercube: through their shadows (projedions),
their cross ®dions with 3D space ad their
unravelings.
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Projeding a aube on aplane (central projedion).
Figure 1

If it is pasgble to make drawings of 3D
solids when they are projeded orto a plane, then it
is posshble to make drawings or 3D models of 4D
polytopes when they are projeded orto a hyperplane
[Coxet84]. The shadows method is based in this
principle.

Let us follow the aalogy presented in
"Flatland" [Abba84]. If a3D beingwantsto show a
cube to a 2D being (a flatlander) then the first one
must projed the aube's sradow onto the plane where
the flatlander lives. For this case, the projeced
shape could be, for example, a square inside ancther
square (Fig. 1).

Hypercube's central projedion orto the 3D space
Figure 2

If a 4D being wants to show us a
hypercube, he must projed the shadow orto the 3D
spacewhere we live. The projeded bodycould be a
cube inside another cube [Kaku94 cdled central
projedion (Fig. 2). We know that a projeded cube
onto aplaneisjust an approximation d the red one.



Anaogously, the hypercube projeded orto ou 3D
spaceis a'so amimic of the red one. Ancther useful
projedion is due to Claude Bragdon (see[Rucke77]
for detail s abou this projedion). SeeFig. 3.
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Claude Bragdoris hypercube projedion.
Figure 3

A cube can be unraveled as a 2D cross
The six faces on the aibe's boundiry will compaose
the 2D cross (Fig. 4). The set of unraveled faces is
called the unravelings of the abe.

o

Unraveling the aube.
Figure 4

In analogous way, a hypercube dso can be
unraveled as a 3D cross The 3D crossis compaosed
by the aght cubes that forms the hypercube's
boundry [Kaku94. This 3D cross was named
tesseract by C. H. Hinton (Fig. 5).

The unraveled hypercube (the teserad).
Figure 5

A flatlander will visualizethe 2D cross but
he will not be ale to asembly it badk as a abe
(even if the spedfic instructions are provided). This

faa is true because of the neaded facerotations in
the third dmension around an axis which are
physicdly impossble in the 2D space However, it
is posdble for the flatlander to visualize the raveling
processthroughthe projedion o the faces and their
movements onto the 2D spacewhere he lives.

Analogowsly, we can visudize the tessrad
but we wont be &le to asembly it bak as a
hypercube. We know this becaise of the neealed
volume-rotations in the fourth dmension around a
plane which are physicdly impassble in ou 3D
space

Before going any further, we would like to
uncerline that the aibe’s boundry faces can be
grouped into threepairs of paral el faces, where their
suppating danes define two 2D-spaces paralel to
eadt other. Each pair can be obtained by ignaring all
those alges parallel to eat main axis (X, Y and Z),
seeFig. 6
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Viewingthe aibe’ sboundxry faces.
Figure 6

It is interesting to analyze the hypercube
using its analogy with the abe and the visualizaion
methods above described. [Hilbe52] has determined
that a hypercube is composed ou of sixteen vertices,
thirty-two edges, twenty-four faces and eight
boundng cubes (also cdled cdls or volumes).
Similarly, and as shown in Fig. 7, al these volumes
can be grouped into four pairs of paralel cubes,
furthermore, their suppating hyper-planes define
two 3D-spaces paral el to ead ather.

Viewingthe hi/bércube’ sboundry volumes.
Figure 7



[Coxet63] points out that ead face is
shared by two cubes not in the same three
dimensional space because they form aright ange
through a rotation around the shared facés
suppating fdane. These properties are visible
throughBragdoris projedion (Fig. 3). The Bragdoris
projedion as well as the ceitral projedion will be
used throughou the remainder of this article.

2. PROBLEM

[Kaku94] and [Banch9€] describe with detail a
representation model for the hypercube throughtheir
unravelings. They aso mention the physicd
incgpadty of a 3D being to ravel the hypercube
badk, becaise the required transformations are not
possblein ou 3D space(Fig. 8).
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The hypercube's unraveling process
Figure 8

[Kaku94 and [Banch96] also describe that
if we witness the raveling pocess seven o eight
cubes that compose the tessrad will suddenly
disappea, because they have moved in the diredion
of the fourth dmension. However, they dorit
provide a methoddogy that indicaes the
transformations and their parameters to exeaute the
raveling process In spite of our physicd incgpadty,
we ca visudize aprojedion orto ou 3D space of
the aubes on the hypercube's boundxry throughthe
unraveling and raveling processs.

This article presents a method for
unraveling the hypercube and getting the 3D-cross
(tesserad) that corresponds to the hyper-flattening o
its boundry (Fig. 8). The hypercube can be raveled

bad using the same method in an inverse way. The
transformations to apply include rotations around a
plane (charaderistic of the 4D space). All these
processes can be viewed using a computer animation
system.

3. HYPERCUBES SUNRAVELING
METHODOLOGY

The processwill be eaier if we take the following
considerations:

e Seled the hypercube's positionin the 4D space
Seled the hyperplane (a 3D subspace enbedded
in the hyperspace where the volumes will be
rotated to.

e Establish the angles which guarantee that all
volumes will be totaly embedded in the
seleded hyperplane.

e All the volumes through their movement into
the seleded hyperplane must maintain a face
adjacent to another volume.

The hypercube's position in the 4D spaceis
esential, because it will define the rotating danes
used by the volumes to be positioned orto a
hyperplane. For simplicity, one vertex of the
hypercube will coincide with the origin, six of its
faces will coincide eat ore with some of XY, YZ,
ZX, XW, YW and ZW planes and all the @mordinates
will be positive (see[Banch96| for the methoddogy
to get the hypercube's coordinates). The @mordinates
to use ae presented in Table 1 (ead vertex is
arbitrary numbered).

Vertex
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15
Hypercube's coordinates.
Tablel

We know now why the hypercube's
pasition in the 4D spaceis important, since it will



define the rotating ganesto use. The situationisthe
same for the seleded hyperplane, because it iswhere
al the volumes will be finaly positioned.
Observing the hypercube's coordinates we car see
that eight of them present their fourth coordinate
value (W) equa to zero. This fad represents that
one of the hypercube's volumes (formed by \ertexes
0-1-2-3-4-5-6-7) has W=0 as its suppating
hyperplane. Seleding the hyperplane W=0 is useful
becauise one of the volumesis "naturally embedded"
in the 3D space ad it wont require ay
transformations.

ore identified vdume, it is formed by vertexes 0-1-
2-3-4-5-6-7, and it will be cdled vdume A. See
Table 2.

y B
A /
/

Volume A Volume B
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Volume C Volume D
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Volume E Volume F

(8-9-10-11-12-13-14-15) | (4-5-6-7-12-13-14-15)

Volume G
(1-3-5-7-9-11-13-15)

VolumeH
(2-3-6-7-10-11-14-15)

The hypercube's volumes (the numbers indicate the
vertices that compase the volume).
Table 2

Now, it is aso useful to identify the
hypercube's volumes through their vertices and to
label them for future references. Until now we have

Adjacent volume Position in the 3D
(previous to rotation), spaceandin the
rotation plane and angle | tesseract after rotation
Y ; Y z
W y g
AN
N\
( :
X
\
B, XY, +90° Front (-2)
Y 7 Y z
W
X
C,YZ-90° Left (-X)
Y Z
Y z
/
W
X
X
'
D, ZX, +90° Down (-Y)
z 1 / ‘
\r“‘\ AN
X
X
F, XY, -90° Badk (+2)
Y z Y /Z
{ )
W / AN
X
X
G, YZ, -90° Right (+X)
/_\' z ! / z
W
AN
X
H, ZX, -90° Up (+Y)

Applied transformations to the adjacent volumes.
Table 3

We have drealy described vdume A as
"naturally embedded” in the 3D space becaise it



won't require any transformations. Volume A will
occupy the central paosition in the 3D cross and it
will cdled the "central volume".

From the remaining vdumes, six of them
will have face ajacency with the ceitral volume.
Due to this charaderistic they can easily be rotated
toward ou space becaise their rotating plane is
clealy identified. Each of these volumes will rotate
aroundthe suppating dane of its dared facewith
central volume. They will be cdled "adjacent
volumes'. Adjacent volumesare B, C, D, F, G and
H. The remaining vdume E will be cdled "satellite
volume" and it will be discussed later on.

All of the adjacent volumes will rotate right
angles. In this way we guarantee that their W
coordinate will be equal to zero. It is also important
to consider their rotating dredions, becaise the
volumes, after the rotations, could aherwise
coincide with the central volume. The diredion and
rotating fdanes for ead adjacet volume ae
presented in Table 3 (the central volume is aso
included in ead image & a reference for the initial
andfinal position d the volume being analyzed).

At this point, we have seven of the aght
hypercube's volumes placed in their fina positions
(volumes A, B, C, D, F, G and H). Volume E will
perfform a rather more mplex set of
transformations. There ae two reasons that justify
this conclusion:

e The suppating hyperplane for volume E is
parallel to the suppating hyperplane for the
central volume. Consequently, there ae no
adjacencies between vdume E and central
volume (this is the reason for not cdling
"adjacent volume" to vdume E).

¢ Inthetessrad, we still have an empty paosition.
This position corresponds to the most distant
volume from the ceitral volume (the inferior
position, Fig. 5). This pasition will be occupied
by vdume E. Thisisthe reason for cdli ng E the
"satellit e volume".

At the beginning d this document is
mentioned the nead for maintaining aface ajacency
between al the volumes while they rotate towards
the seleded hyperplane. Volumes B, C, D, F, G and
H share afacewith central volume (remember that
central volume is datic during the whale unraveling
procesy. In oder to determine the nealed
transformations for the satellite volume, we must
first seled the volume which will share afacewith
it. Any vdume, except the ceitral one, can be
seleded for this. In this work, volume D will be
seleded to share afacewith satellit e volume through
the hyper-flattening process

The diredion and the rotation pane for
volume D was determined before (ZX plane +90°).
These transformations will take it to its fina
pasition.  During the beginning o the unraveling
process the same transformations will be gplied to
satellite volume. In this way, we esure that
volumes E and satellit e will share aface

When vdume D has finished its movement,
it will be placed in itsfinal positionin the tesserad.
At this moment, the satellite volume's suppating
hyperplane will be perpendicular to the seleded
hyperplane and the shared facewill be parallel to ZX
plane. The last movement to apply to the satellite
volume will be a +90° rotation around the
suppating dane of the shared facewith vdume D.

The set of movements to be exeauted for
the satellite volume ae resumed in the Table 4
(Central volume and vdume D are shown too).

Current position Transformations

Y z

/

W Rotation o volu-

\ mes D and sate-

7/ lite aound the

( plane ZX (+90°).
~v X

W Y z Volume D is in

\ its final position.

Rotation o sate-
llite volume of
+90° around the
shared face with
volume D (para-
llel planeto ZX).

Satellite volume
in its fina posi-
tion (inferior po-
sition in the 3D
cross on -Y
axis).

s

-W

Associated transformations to satellit e volume.
Table4

Now, all the transformations to urravel the
hypercube have been determined. To ravel it back,
the same process must be gplied in an inverse way
(the aagles’ signs must be changed).




4. IMPLEMENTATION
4.1 Rotationsin the 4D Space

[Banks94] and [Holla91] have identified that if a
rotation in the 2D spaceis given arounda point, and
a rotation in ou 3D spaceis given around a line,
then a rotation in the 4D space in analogows way,
must be given arounda plane.

[Holla91] considers that rotations in the 3D
space must be cnsidered as rotations parallel to a
2D plane instead of rotations around an axis.
[Holla91] suppats this idea considering that given
an arigin o rotation and a destination pant in the
3D space the set of al rotated pdnts for a given
rotation matrix lie in a single plane, which is cdled
the rotation dane. Moreover, the rotation axis in the
3D spaceis perpendicular to the rotation dane. The
concept of rotation dane is consistent with the 2D
spacebecaise dl the rotated pdnts lie in the same
and orly plane. Findly, with the &ove idess,
[Holla91] constructs the six basic 4D rotation
matrices around the main planes in the 4D space
(namely XY, YZ, XZ, XW, YW and ZW planes)
based in the fad that only two coordinates change
for a given rotation (these danging coordinates
correspondto the rotation dane).

Using these ideas, [Duffi94] generdlize the
concept of rotation in an nD space(N = 2) as the
rotation d an axis Xain dredionto an axis Xb. The
plane described by axis Xa and Xb iswhat [Holla91]
defined as rotation dane. [Duffi94] presents the
following genera rotation matrix:

[ =1 i#a,i=b]
l, = COSY
I, = COSH
Ru(0) =%, ry =—Sin@
I = SiNG
r,=0 elsawhere

Matrix Rayn(6) is an identity matrix except in
the intersedion d columns a and b and rows a and
b. Becaise in an nD spacethere ae C(n,2) main
planes, thisis predsely the number of main rotations
for such space

From these mncepts, we must consider that
arotation can be referenced by wsing two ndations:
using the ais that describe the rotation gdane or
using the ais that describe the (n-2)D subspacethat
is fixed duing the rotation. In this work we have
referred to rotations in the 4D space using the
seoond ndation.

4.2 The 4D-3D-2D Projections

[Banks94] establishes that the same techniques used
to projed 3D objeds onto 2D planes can be gplied
to projed 4D poytopes onto 3D hyperplanes (our
3D spacefor example). Then we have that a 4D-3D
parallel projedion (or just removing W coordinate
from the palytope's paints) is:

Px, v, z wWieP(Xx vy 2

And a 4D-3D perspedive projedion is
defined when the ceanter of projedionison W axis at
a distance pw from the origin. If the projedion
hyperplane is W = 0 then we have apaint P can be
projeced as:

Px y z wieP X PW - Y PW o 2 pW
pW—wW'  pw-w pw-—w

Because a4D-3D projedion will produce a
volume & the "shadow" of a4D palytope, [Holla91]
considers valid to processthis volume with some of
the 3D-2D projedions (paralel or perspedive) to be
finally projeded orto a mmputer screen. Then we
have four passble 4D-3D-2D projedions:

e 4D-3D Perspedive - 3D-2D Perspedive Projedion.
e 4D-3D Perspedive - 3D-2D Pardl el Projedion.
e 4D-3D Parallel - 3D-2D Perspedive Projedion.
e 4D-3D Parallel - 3D-2D Parallel Projedion.

For example, for the hypercube presented in
Fig. 1, it was used 4D-3D Perspedive Projedion and
3D-2D Perspedive Projedion.

5 RESULTS

Table 5 presents ome snapshots from the
hypercube's unraveling sequence In snapshats 1 to
6, the gplied rotations are +0°, +15°, +30°, +45°,
+60° and £75° (the rotation's sgn depends of the
adjacent volume). In snapshat 7, the goplied rotation
is £82°; the satellit e volume looks like aplane -an
effed due to the 4D-3D projedion. In snapshat 8,
the gplied rotation is £90°; the ajacet volumes
finish their movements. In snapshats 9 to 14 the
satellite volume moves independently and the
applied rotations are +15°, +30°, +45°, +60°, +75°
and +90°.

At the present time, the results of this
research are used with efficiency as didadic material
a the Universidad de las Américas - Puebla,
México.
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Unraveling the hypercube (Seetext for detail s).

Table5
6. FUTURE WORK generalize the n-dimensional hyper-tesseract (n>1)
as the result of the (n+1)-dimensional hypercube’s
The n-dimensional hyper -tesser act unraveling with the foll owing properties:
e The (n+l)-dimensional hypercube will have
Observing the unravelings for the square (a 2D 2(n+1) n-dimensional cdls on its boundry

cube), the aibe and the 4D hypercube we can [Banch9g].



e A centra cdl wil be static during the
unraveling/raveling process

e 2(n+1)-2 cdls are ajacent to central cdl. All of
them will share a (n-1)-dimensional cdl with
central cdl.

e A satdlite cdl won't be ajacent to central cdl
because their suppating hyperplanes are parallel.
It will be ajacent to any o the ajacent cdls (it
will share a (n-1)-dimensional cdl with the
seleded adjacent cdl).

e All the ajacent cdls and satellite cdl during the
unraveling/raveling pocess will rotate +90°
around the suppating hyperplane of the (n-1)-
dimensional shared cdls.

For example, the 4D hyper-tessrad is the result of
the 5D hypercube's unraveling. The 4D hyper-
teserad will be composed by 10 hypervolumes,
where one of them will be the central hypervolume
(stetic), eight of them are aljacent to centra
hypervolume (they share avolume) and the last one
will be the satellit e hypervolume (it shares a volume
with any o the ajacent hypervolumes). SeeFig. 9.
The dajaceit hypervolumes and the satellite
hypervolume will rotate aound a volume or a
hyperplane during the unraveling/raveling process
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The possble ajacency relations between the
4D hyper-tesgract's central hypervolume
and the ajacent hypervolumes.

Figure9

In this reseach we found a method to
unravel a hypercube to oltain the tesserad. Also, we
have proposed a generalizaion to describe the
properties of the n-dimensional hyper-teserad, the
result of the (n+l)-dimensional hypercube's
unraveling. For the 5D spacethe rotations will be
around a volume, for the 6D space they will be

around a hypervolume and so forth. This is the
diredion to follow in ou reseach to get the
parameters to urravel the 5D hypercube and to
obtain the 4D hyper-teserad (and to urravel
hypercubes in higher dimensional spaces). Also,
ancther diredion to follow will be the related to
rotations around arbitrary planes in the 4D space
(analogouwsly to rotations aroundan arbitrary axisin
the 3D spacg. Finding the procedures to rotate
around arbitrary planes, the hypercube’'s paosition
may be not relevant.
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