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Abstract 2. The KBMS Architecture 
We define and discuss an architecture for a knowledge 

base management system (KBMS) to support the efficient 
manipulation of large and diverse bodies of knowledge. The 
architecture has been formulated within an amalgamated 
language-metalanguage framework. All aspects of the system 
possess a logical semantics. Our emphasis is on modularity, 
the organization of theories and their metatheories within the 
system theory, and the clean integration of multiple 
representation languages. The expressivity of the architecture 
is discussed and an implementation based on an extended 
Prolog reported. Its utility is currently being investigated in a 
number of diverse applications. 

1. Introduction 
The work reported here began two years ago with the aim 

of addressing the problems of complexity and efficiency that 
arise in the management of large and diverse bodies of 
knowledge. Logic programming is our starting point. Although 
Prolog is the most mature logic programming language, it has 
a number of shortcomings that make it unsuitable in its current 
form as the basis for a KBMS. We have attempted to 
overcome these failings. 

What are the attributes of a KBMS that we believe are 
important? It must: 

o possess simple semantics 
o support and integrate multiple representations 
o encourage reusability of knowledge 
o support a logical model of updating 
o efficiently handle very large amounts of data 
o provide a general basis for a range of flexible and 

powerful tools 
o subsume RDBMS capabilities 

These attributes are further discussed in [Sharpe ef a/ 86]. 
The key to overcoming the problems with Prolog is using the 
Horn clause language as its own metalanguage - the strict 
separation of logic from metalogic expressed in an 
amalgamated language and metalanguage [Bowen & Kowalski 
82]. However, this amalgamation merely provides a framework 
within which we must define a KBMS architecture that meets 
our stated objectives. 

Our architecture incorporates theories as first-class 
data-objects which provide the basis for the representation, 
storage, retrieval and updating of knowledge. The KBMS 
provides an organization of theories that controls their access 
and interactions. 

In our view a knowledge base comprises not only the data 
but also the metadata - in other words knowledge about how 
to handle that data. All this knowledge is partitioned into 
theories and organized within a single system. Theories are 
referred to via terms that act as names for those theories. 
There are two basic interfaces to named theories: proving and 
updating. The former is used for handling all queries, and the 
latter for handling all updates. 

The representation of knowledge within a named theory is 
regarded as hidden. The theory is effectively a black box with 
only its metatheories (interpreters and assimilators) having 
direct access to the contents of the theory. As a consequence 
of this structuring, multiple representations of knowledge within 
a single knowledge base is possible. Integration of the 
separate theories is achieved by allowing variables of a query in 
a named theory to be bound by the interpreter of that theory to 
terms within the theory. We therefore require a global 
convention across the whole knowledge base for the meaning 
of such terms. 

2.1 The System 
In our architecture, the entire knowledge base is 

represented by a distinguished theory known as the system. 
This theory defines the relationship between names of theories, 
the theories themselves and the names of their metatheories 
(interpreters, assimilators and attributes). Whenever a query is 
made in a named theory that theory must be retrieved from the 
system - performed by querying the system. The relationships 
between names and theories is expressed using the full power 
of Horn clauses, thereby enabling the representation of 
complex many-to-many relationships. 

Since the system is itself a theory, it can easily be 
extended by including extra axioms to define, say, a variety of 
methods for retrieving named theories and choosing any 
metatheories required. Another effect of this architectural 
decision is that updates to the system are handled like updates 
to any other theory. Consequently, a new system results from 
any update. Potentially access to all previous versions of the 
system is possible. 

2.2 Theories 
Theories are built from bags of Horn clauses. Unit 

clauses can readily support a variety of representation 
languages. Of course, if queries are to be handled for a given 
representation then an interpreter must be defined. Every 
clause in a theory has a unique identifier for possible use in 
metatheories. AM theories in the system have associated with 
them three sets of metatheories: interpreters, assimilators, and 
attributes. Each of these sets contains one or more members 
but if there is more than one member then inference within the 
system is needed to choose between them. All metatheories, 
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being theories, similarly possess three associated sets. 
However, to avoid the apparent infinite regress, recursion in 
each of the three sets quickly terminates with built-in 
metatheones. For instance, efficiency considerations mean 
that more than two levels of interpretation are rarely used in 
practice. The built-in interpreter is Prolog. 
2.3 Interpretation 

All theories are queried via a standard predicate interface. 
This interface takes a theory name and a set of goals: 
kbms prove(System,TheoryName,Goals). The system is 
consulted to find the current version of the named theory and 
the name of its interpreter. If there is more than one interpreter 
for the named theory then inference within the system is used 
to choose between them. The KBMS then attempts to prove 
that the interpreter can solve the goals. This causes a 
recursion - due to the need to find an interpreter for the 
interpreter - terminated by the built-in interpreter. 

A theory's interpreter may be one of the standard 
theorem-provers, but, as is well-known, uniform proof 
procedures are very inefficient [Bundy et al 79]. It is desirable 
to make use of domain-specific control in order to direct the 
proof especially when large bodies of knowledge are involved. 
By allowing each theory to have its own interpreters we are 
able to carry out theory-specific inference control. Inference 
control can make use of both syntactic and semantic 
constraints, for example type information and the number of 
sub-goals in a candidate clause [Gallaire & Lasserre 82, Bundy 
et al 79]. The primary use of attribute theories is to allow 
particular theory-dependent information to be abstracted out of 
interpreters and assimilators thereby making them 
theory-independent and hence reusable. Non-standard 
interpreters have to be user-supplied; they have to be 
accessible to the querying interface and "understand" (supply a 
semantics for) the representation of the theories for which they 
act as theorem-provers. Interpreters have the full power of the 
Horn clause metalanguage at their disposal and they operate 
on theories via a number of lower-level, built-in KBMS 
primitives. Theory-to-theory linkages are obtained by including 
goals in one theory that require a proof in another named 
theory. 

2.4 Assimilation 
All assimilation proceeds via a standard interface: 

kbms update( System .Theory Name.Updates,New System). In a 
similar fashion to interpretation, all assimilators must 
understand, and translate into, the representation of the theory 
they are updating. Updates are specified as a list of actions -
all actions are eventually reduced into primitive, declarative add 
and delete operations on the theory. The simplest form of 
assimilator is one that merely carries out all additions and 
deletions without any kind of check. Alternatively the 
assimilator can enforce integrity constraints. There are two 
basic approaches to updating under constraints: to carry out a 
list of actions, checking on the consistency of the final theory; 
to carry out the whole set of relevant checks after the addition, 
or deletion, of each clause. The former method has the 
advantage of ignoring unavoidably inconsistent transitional 
states of the theory. If an illegal update is attempted, the 
assimilation fails and all related updates will be undone during 
backtracking. The checks advocated by Kowalski [Kowalski 
79] can be incorporated into an assimilator, but they prove to 
be very expensive. A second set of checks might be called 
domain-dependent, syntactic and semantic integrity 
constraints. Under this heading one might place constraints 
such as: predicate P must always be binary; the second 
argument of predicate P must always be less than 100. As 
with interpreters this type of theory-dependent information can 

be abstracted out into the theory's attribute theory thereby 
making the assimilator applicable to more than one theory. 

The update model used is completely declarative. This 
means that any update (addition or deletion) to a theory results 
in a new theory. Both the previous version and the new 
version are accessible as long as references to both still exist. 
This can be achieved with very little time and space overhead. 
Since the system in some sense contains all theories, an 
update to a theory is also an update to the system. As the 
system is also a theory, a new system is created whenever any 
update occurs. Again, all previous versions of the system are 
available as long as they are still referenced. 

The system also has an assimilator. A typical task might 
be to check that when adding a new theory to the system all of 
its nominated metatheories also belong to that system. 

3. An Implementation 
We have implemented a KBMS, KBMSO, adhering to the 

principles stated earlier. It possesses all the functionality 
described above and was built from an extended Prolog 
developed to meet our requirements. The extensions provide 
the theory as a first-class data-object supporting declarative 
operations. All of these operations are backtrackable leaving 
the state of the KBMS unchanged. In implementing declarative 
updating, our design decision was to maximize the speed of 
accessing versions of a theory at the expense of space. 
However updates to the most recent version of a theory are 
handled incrementally with the minimum of space overhead as 
a single theory datastructure contains all such incrementally 
produced versions. When an update is made to a version 
which is no longer the current one copying occurs. 

The execution speed of querying Horn clauses stored in 
theories, using Prolog as their interpreter, runs at about 
two-thirds the speed of the native Prolog system. There is no 
space overhead, and little time overhead, incurred in querying 
previous versions of a theory. 

4. Expressivity and Limitations 
There are several techniques that have been reported as 

being important in the management of large knowledge bases 
(Bowen 85, Kauffman & Qrumbach 86, Furukawa et al 84]. 
We believe that these are really secondary to the fundamental 
problem of organizing information into a rigorous 
logic-metalogic framework. With the right architecture, they all 
become artefacts of particular representation methodologies or 
specialized logic programming devices. 

4.1 Inheritance 
Inheritance has been put forward as a primary structuring 

concept for the design of modularized knowledge bases. It 
has also been used to tackle problems of representation (such 
as in default reasoning). It is undoubtedly useful in certain 
cases, but it is an imprecise term with many interpretations. In 
introducing any form of inheritance into our architecture we 
must not violate our basic design philosophy of named theories 
behaving as private queriable bodies of knowledge. This 
precludes any assumptions being made about the 
representation of such theories. Direct inheritance of clauses 
of one theory by another is therefore not allowed since it would 
violate this principle for two reasons: 

1) it would create a reliance on understanding the 
representation of clauses in other inherited theories; 
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2) a theory's assimilator would no longer have 
absolute control over the contents of that theory 
and would be unable to enforce any associated 
integrity constraints. 

Even when two theories have a common representation, 
semantic inconsistencies can still arise between the theories. 
The situation is even worse when non-unit clauses are used. 
Trying to overcome these problems by defining schemes for 
selectively overriding predicates is unsatisfactory: such 
techniques do not scale up for use in large, diverse knowledge 
bases. In spite of this other metalanguage-based architectures 
have placed a strong emphasis on provision of inheritance 
facilities [Kauffmann & Grumbach 86, Furukawa et ai 84]. A 
factoring of knowledge can be straightforwardly achieved by 
modularization into named theories, and the use of the 
kbms prove predicate to achieve explicitly what inheritance 
achieves implicitly, at the same time adhering to the ideal of 
black-box theories. 

The system allows the definition of arbitrary relationships 
between names and theories, bounded only by the expressivity 
of Horn clauses. This leads to a flexible method where an 
inheritance lattice can be readily described. One form of 
inheritance is merely theory selection where a goal is proved in 
one member of a set of theories that are related through the 
inheritance lattice. Backtracking on failing to satisfy the goal in 
one candidate theory causes attempted satisfaction in the next. 

Another form of inheritance is naturally incorporated into a 
theory's interpreter. Its principal disadvantage is that it admits 
the possibility of using semantically inconsistent knowledge. 
When solving a goal, the interpreter tries first to satisfy that 
goal in the named theory. If this fails, then instead of 
backtracking to the previous goal, it queries the system to find 
the name of a theory from which this theory inherits. It then 
attempts a proof of the current goal in this alternative theory, 
which of course proceeds via its own interpreter. This process 
can continue until the goal is satisfied or until the goal has 
failed in all the pertinent theories in the inheritance lattice -
backtracking takes care of multiple inheritance. It differs from 
the proceeding method in that it allows each individual subgoal 
to be tried in each theory, instead of just the overall goal. 
Implementing it requires only a minor enhancement to a 
theory's interpreter. Note that such a scheme does not violate 
any of the principles stated above. 

4.2 Set Operations on Theories 
Inheritance can be incorporated into a KBMS with regard 

to the principle of theories being treated as black boxes. The 
same is not so obviously true of set operations on theories. 
The union of two theories should not simply be constructed by 
forming a new theory that is the sum of the two sets of clauses 
- we might be merging two different representations, or even 
two semantically inconsistent bodies of knowledge. 
MetaProlog [Bowen & Weinberg 85), however, encourages this 
formation of theory unions through the provision of a special 
operator. If we regarded the union operation as being the 
addition of one theory to another, then clauses of the second 
could be added to the first via the firsts assimilator. The 
obvious faults of this method are that the assimilator might not 
understand the representation of the clauses it is adding, also 
that the merged theories might still be semantically inconsistent 
according to constraints in the second theory's assimilator. 
The same considerations apply to other set operations such as 
difference. Thus it appears that there are no general solutions 
to this problem. 

4.3 Proof Trees 
In some cases efficient control of inference requires being 

able to reason about global aspects of the proof so far - this 
requires access to a proof tree. However, like set operations, 
returning proof trees as a result of querying a named theory 
violates the principle of regarding that theory as a black box. 
This is because the nature of the proof tree depends heavily on 
the representation of the theory and the nature of its 
interpreter. Ideally control information should never be passed 
in or out of queries. It is the sole responsibility of the 
interpreter to employ whatever techniques it deems necessary 
to handle a query. If the formation and use of a proof tree is 
internal to a particular interpreter, no problems can arise. This 
is contrary to an approach described in metaProlog [Bowen & 
Weinberg 85]. 

4.4 Partial Evaluation 
Partial evaluation is a technique whose generality and 

applicability has been overstated. When there of static 
information available which affects control of inference, then 
partial evaluation can be effectively used to remove redundant 
run-time computation. This gives an elegant model of the 
process performed by compilation [Kahn 84, Kursawe 86]. 
However the power of an interpreter lies in controlling 
combinatorial explosion. This normally requires dynamic 
information and hence cannot be evaluated in advance. An 
example is goal ordering based on instantiation levels. Another 
problem with partial evaluation is that it is time and space 
consuming. It can be useful in certain restricted situations 
such as in handling a frequently used class of queries on a 
relatively static theory. The obvious place in the architecture 
for a partial evaluator is in the role of an assimilator. 

It is possible to incorporate all these aspects into the 
architecture described. In some cases strongly held ideals will 
be violated but this is a matter of user responsibility. What is 
required is a methodology for their use - this is beginning to 
come from the extensive and varied uses to which the system 
is currently being put. 

5. Summary 
We have described the motivation and principles 

underlying the design of a KBMS architecture. All aspects of 
the system possess a clear logical semantics. The use of an 
amalgamated language and metalanguage gives rise to 
considerable expressivity and flexibility in the representation 
and manipulation of knowledge. A central feature is the 
modularization of large bodies of knowledge into theories that 
can be regarded as black boxes. The use of standard query 
and update interfaces allows the representation of the 
knowledge to remain hidden. We have implemented a system 
(KBMSO) on top of an extended Prolog, and its utility is 
currently being investigated in domains such as: protein 
structure determination, co-operative problem solving, 
commercial database applications and declarative graphics. 
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