
A LOGIC-BASED ARCHITECTURE FOR KNOWLEDGE MANAGEMENT

Damian Black & John Manley

Bristol Research Centre
Hewlett-Packard Laboratories

Filton Road, Stoke Qifford
Bristol BS12 6QZ, England

Abstract 2. The KBMS Architecture
We define and discuss an architecture for a knowledge

base management system (KBMS) to support the efficient
manipulation of large and diverse bodies of knowledge. The
architecture has been formulated within an amalgamated
language-metalanguage framework. All aspects of the system
possess a logical semantics. Our emphasis is on modularity,
the organization of theories and their metatheories within the
system theory, and the clean integration of multiple
representation languages. The expressivity of the architecture
is discussed and an implementation based on an extended
Prolog reported. Its utility is currently being investigated in a
number of diverse applications.

1. Introduction
The work reported here began two years ago with the aim

of addressing the problems of complexity and efficiency that
arise in the management of large and diverse bodies of
knowledge. Logic programming is our starting point. Although
Prolog is the most mature logic programming language, it has
a number of shortcomings that make it unsuitable in its current
form as the basis for a KBMS. We have attempted to
overcome these failings.

What are the attributes of a KBMS that we believe are
important? It must:

o possess simple semantics
o support and integrate multiple representations
o encourage reusability of knowledge
o support a logical model of updating
o efficiently handle very large amounts of data
o provide a general basis for a range of flexible and

powerful tools
o subsume RDBMS capabilities

These attributes are further discussed in [Sharpe ef a/ 86].
The key to overcoming the problems with Prolog is using the
Horn clause language as its own metalanguage - the strict
separation of logic from metalogic expressed in an
amalgamated language and metalanguage [Bowen & Kowalski
82]. However, this amalgamation merely provides a framework
within which we must define a KBMS architecture that meets
our stated objectives.

Our architecture incorporates theories as first-class
data-objects which provide the basis for the representation,
storage, retrieval and updating of knowledge. The KBMS
provides an organization of theories that controls their access
and interactions.

In our view a knowledge base comprises not only the data
but also the metadata - in other words knowledge about how
to handle that data. All this knowledge is partitioned into
theories and organized within a single system. Theories are
referred to via terms that act as names for those theories.
There are two basic interfaces to named theories: proving and
updating. The former is used for handling all queries, and the
latter for handling all updates.

The representation of knowledge within a named theory is
regarded as hidden. The theory is effectively a black box with
only its metatheories (interpreters and assimilators) having
direct access to the contents of the theory. As a consequence
of this structuring, multiple representations of knowledge within
a single knowledge base is possible. Integration of the
separate theories is achieved by allowing variables of a query in
a named theory to be bound by the interpreter of that theory to
terms within the theory. We therefore require a global
convention across the whole knowledge base for the meaning
of such terms.

2.1 The System
In our architecture, the entire knowledge base is

represented by a distinguished theory known as the system.
This theory defines the relationship between names of theories,
the theories themselves and the names of their metatheories
(interpreters, assimilators and attributes). Whenever a query is
made in a named theory that theory must be retrieved from the
system - performed by querying the system. The relationships
between names and theories is expressed using the full power
of Horn clauses, thereby enabling the representation of
complex many-to-many relationships.

Since the system is itself a theory, it can easily be
extended by including extra axioms to define, say, a variety of
methods for retrieving named theories and choosing any
metatheories required. Another effect of this architectural
decision is that updates to the system are handled like updates
to any other theory. Consequently, a new system results from
any update. Potentially access to all previous versions of the
system is possible.

2.2 Theories
Theories are built from bags of Horn clauses. Unit

clauses can readily support a variety of representation
languages. Of course, if queries are to be handled for a given
representation then an interpreter must be defined. Every
clause in a theory has a unique identifier for possible use in
metatheories. AM theories in the system have associated with
them three sets of metatheories: interpreters, assimilators, and
attributes. Each of these sets contains one or more members
but if there is more than one member then inference within the
system is needed to choose between them. All metatheories,

Black and Manley 87

being theories, similarly possess three associated sets.
However, to avoid the apparent infinite regress, recursion in
each of the three sets quickly terminates with built-in
metatheones. For instance, efficiency considerations mean
that more than two levels of interpretation are rarely used in
practice. The built-in interpreter is Prolog.
2.3 Interpretation

All theories are queried via a standard predicate interface.
This interface takes a theory name and a set of goals:
kbms prove(System,TheoryName,Goals). The system is
consulted to find the current version of the named theory and
the name of its interpreter. If there is more than one interpreter
for the named theory then inference within the system is used
to choose between them. The KBMS then attempts to prove
that the interpreter can solve the goals. This causes a
recursion - due to the need to find an interpreter for the
interpreter - terminated by the built-in interpreter.

A theory's interpreter may be one of the standard
theorem-provers, but, as is well-known, uniform proof
procedures are very inefficient [Bundy et al 79]. It is desirable
to make use of domain-specific control in order to direct the
proof especially when large bodies of knowledge are involved.
By allowing each theory to have its own interpreters we are
able to carry out theory-specific inference control. Inference
control can make use of both syntactic and semantic
constraints, for example type information and the number of
sub-goals in a candidate clause [Gallaire & Lasserre 82, Bundy
et al 79]. The primary use of attribute theories is to allow
particular theory-dependent information to be abstracted out of
interpreters and assimilators thereby making them
theory-independent and hence reusable. Non-standard
interpreters have to be user-supplied; they have to be
accessible to the querying interface and "understand" (supply a
semantics for) the representation of the theories for which they
act as theorem-provers. Interpreters have the full power of the
Horn clause metalanguage at their disposal and they operate
on theories via a number of lower-level, built-in KBMS
primitives. Theory-to-theory linkages are obtained by including
goals in one theory that require a proof in another named
theory.

2.4 Assimilation
All assimilation proceeds via a standard interface:

kbms update(System .Theory Name.Updates,New System). In a
similar fashion to interpretation, all assimilators must
understand, and translate into, the representation of the theory
they are updating. Updates are specified as a list of actions -
all actions are eventually reduced into primitive, declarative add
and delete operations on the theory. The simplest form of
assimilator is one that merely carries out all additions and
deletions without any kind of check. Alternatively the
assimilator can enforce integrity constraints. There are two
basic approaches to updating under constraints: to carry out a
list of actions, checking on the consistency of the final theory;
to carry out the whole set of relevant checks after the addition,
or deletion, of each clause. The former method has the
advantage of ignoring unavoidably inconsistent transitional
states of the theory. If an illegal update is attempted, the
assimilation fails and all related updates will be undone during
backtracking. The checks advocated by Kowalski [Kowalski
79] can be incorporated into an assimilator, but they prove to
be very expensive. A second set of checks might be called
domain-dependent, syntactic and semantic integrity
constraints. Under this heading one might place constraints
such as: predicate P must always be binary; the second
argument of predicate P must always be less than 100. As
with interpreters this type of theory-dependent information can

be abstracted out into the theory's attribute theory thereby
making the assimilator applicable to more than one theory.

The update model used is completely declarative. This
means that any update (addition or deletion) to a theory results
in a new theory. Both the previous version and the new
version are accessible as long as references to both still exist.
This can be achieved with very little time and space overhead.
Since the system in some sense contains all theories, an
update to a theory is also an update to the system. As the
system is also a theory, a new system is created whenever any
update occurs. Again, all previous versions of the system are
available as long as they are still referenced.

The system also has an assimilator. A typical task might
be to check that when adding a new theory to the system all of
its nominated metatheories also belong to that system.

3. An Implementation
We have implemented a KBMS, KBMSO, adhering to the

principles stated earlier. It possesses all the functionality
described above and was built from an extended Prolog
developed to meet our requirements. The extensions provide
the theory as a first-class data-object supporting declarative
operations. All of these operations are backtrackable leaving
the state of the KBMS unchanged. In implementing declarative
updating, our design decision was to maximize the speed of
accessing versions of a theory at the expense of space.
However updates to the most recent version of a theory are
handled incrementally with the minimum of space overhead as
a single theory datastructure contains all such incrementally
produced versions. When an update is made to a version
which is no longer the current one copying occurs.

The execution speed of querying Horn clauses stored in
theories, using Prolog as their interpreter, runs at about
two-thirds the speed of the native Prolog system. There is no
space overhead, and little time overhead, incurred in querying
previous versions of a theory.

4. Expressivity and Limitations
There are several techniques that have been reported as

being important in the management of large knowledge bases
(Bowen 85, Kauffman & Qrumbach 86, Furukawa et al 84].
We believe that these are really secondary to the fundamental
problem of organizing information into a rigorous
logic-metalogic framework. With the right architecture, they all
become artefacts of particular representation methodologies or
specialized logic programming devices.

4.1 Inheritance
Inheritance has been put forward as a primary structuring

concept for the design of modularized knowledge bases. It
has also been used to tackle problems of representation (such
as in default reasoning). It is undoubtedly useful in certain
cases, but it is an imprecise term with many interpretations. In
introducing any form of inheritance into our architecture we
must not violate our basic design philosophy of named theories
behaving as private queriable bodies of knowledge. This
precludes any assumptions being made about the
representation of such theories. Direct inheritance of clauses
of one theory by another is therefore not allowed since it would
violate this principle for two reasons:

1) it would create a reliance on understanding the
representation of clauses in other inherited theories;

88 ARCHITECTURES AND LANGUAGES

2) a theory's assimilator would no longer have
absolute control over the contents of that theory
and would be unable to enforce any associated
integrity constraints.

Even when two theories have a common representation,
semantic inconsistencies can still arise between the theories.
The situation is even worse when non-unit clauses are used.
Trying to overcome these problems by defining schemes for
selectively overriding predicates is unsatisfactory: such
techniques do not scale up for use in large, diverse knowledge
bases. In spite of this other metalanguage-based architectures
have placed a strong emphasis on provision of inheritance
facilities [Kauffmann & Grumbach 86, Furukawa et ai 84]. A
factoring of knowledge can be straightforwardly achieved by
modularization into named theories, and the use of the
kbms prove predicate to achieve explicitly what inheritance
achieves implicitly, at the same time adhering to the ideal of
black-box theories.

The system allows the definition of arbitrary relationships
between names and theories, bounded only by the expressivity
of Horn clauses. This leads to a flexible method where an
inheritance lattice can be readily described. One form of
inheritance is merely theory selection where a goal is proved in
one member of a set of theories that are related through the
inheritance lattice. Backtracking on failing to satisfy the goal in
one candidate theory causes attempted satisfaction in the next.

Another form of inheritance is naturally incorporated into a
theory's interpreter. Its principal disadvantage is that it admits
the possibility of using semantically inconsistent knowledge.
When solving a goal, the interpreter tries first to satisfy that
goal in the named theory. If this fails, then instead of
backtracking to the previous goal, it queries the system to find
the name of a theory from which this theory inherits. It then
attempts a proof of the current goal in this alternative theory,
which of course proceeds via its own interpreter. This process
can continue until the goal is satisfied or until the goal has
failed in all the pertinent theories in the inheritance lattice -
backtracking takes care of multiple inheritance. It differs from
the proceeding method in that it allows each individual subgoal
to be tried in each theory, instead of just the overall goal.
Implementing it requires only a minor enhancement to a
theory's interpreter. Note that such a scheme does not violate
any of the principles stated above.

4.2 Set Operations on Theories
Inheritance can be incorporated into a KBMS with regard

to the principle of theories being treated as black boxes. The
same is not so obviously true of set operations on theories.
The union of two theories should not simply be constructed by
forming a new theory that is the sum of the two sets of clauses
- we might be merging two different representations, or even
two semantically inconsistent bodies of knowledge.
MetaProlog [Bowen & Weinberg 85), however, encourages this
formation of theory unions through the provision of a special
operator. If we regarded the union operation as being the
addition of one theory to another, then clauses of the second
could be added to the first via the firsts assimilator. The
obvious faults of this method are that the assimilator might not
understand the representation of the clauses it is adding, also
that the merged theories might still be semantically inconsistent
according to constraints in the second theory's assimilator.
The same considerations apply to other set operations such as
difference. Thus it appears that there are no general solutions
to this problem.

4.3 Proof Trees
In some cases efficient control of inference requires being

able to reason about global aspects of the proof so far - this
requires access to a proof tree. However, like set operations,
returning proof trees as a result of querying a named theory
violates the principle of regarding that theory as a black box.
This is because the nature of the proof tree depends heavily on
the representation of the theory and the nature of its
interpreter. Ideally control information should never be passed
in or out of queries. It is the sole responsibility of the
interpreter to employ whatever techniques it deems necessary
to handle a query. If the formation and use of a proof tree is
internal to a particular interpreter, no problems can arise. This
is contrary to an approach described in metaProlog [Bowen &
Weinberg 85].

4.4 Partial Evaluation
Partial evaluation is a technique whose generality and

applicability has been overstated. When there of static
information available which affects control of inference, then
partial evaluation can be effectively used to remove redundant
run-time computation. This gives an elegant model of the
process performed by compilation [Kahn 84, Kursawe 86].
However the power of an interpreter lies in controlling
combinatorial explosion. This normally requires dynamic
information and hence cannot be evaluated in advance. An
example is goal ordering based on instantiation levels. Another
problem with partial evaluation is that it is time and space
consuming. It can be useful in certain restricted situations
such as in handling a frequently used class of queries on a
relatively static theory. The obvious place in the architecture
for a partial evaluator is in the role of an assimilator.

It is possible to incorporate all these aspects into the
architecture described. In some cases strongly held ideals will
be violated but this is a matter of user responsibility. What is
required is a methodology for their use - this is beginning to
come from the extensive and varied uses to which the system
is currently being put.

5. Summary
We have described the motivation and principles

underlying the design of a KBMS architecture. All aspects of
the system possess a clear logical semantics. The use of an
amalgamated language and metalanguage gives rise to
considerable expressivity and flexibility in the representation
and manipulation of knowledge. A central feature is the
modularization of large bodies of knowledge into theories that
can be regarded as black boxes. The use of standard query
and update interfaces allows the representation of the
knowledge to remain hidden. We have implemented a system
(KBMSO) on top of an extended Prolog, and its utility is
currently being investigated in domains such as: protein
structure determination, co-operative problem solving,
commercial database applications and declarative graphics.

References
Bowen, K.A., (1985], "Meta-Level Programming and Knowledge
Representation," New Generation Computing, 3, 359-383.

Bowen, K.A. and Kowalski, R.A., [1982], "Amalgamating
Language and Metalanguage in Logic Programming,"
Logic Programming, Clark, K.L. and Tarnlund, S.-A. (eds),
153-172, Academic Press, New York.

Bowen, K.A. and Weinberg, T., [1985], "A Meta-level Extension
of Prolog," 1985 Symposium on Logic Programming,
Boston. 48-53, IEEE.

Black and Manley 89

Bundy, A., Byrd, L., Luger, Q., Mellish, C, Milne, R. and
Palmer, M., [1979], "Solving Mechanics Problems using
Meta-Level Inference," Proc IJCAI-79, Buchanan, B.Q. (ed),
1017-1027.

Furukawa, K., Takeuchi, A., Kunifuji, S., Yasukawa, H., Ohki, M.
and Ueda, K., [1984], "Mandala: A Logic-based Knowledge
Programming System," Proc Int Conf Fifth Generation Computer
Systems, 613-622.

Gallaire, H. and Lasserre, C, [1982], "Metalevel Control for
Logic Programs," Logic Programming, Clark, K.L. and
Tarnlund, S.-A. (eds), 173-185, Academic Press, New York.

Kahn, K., [1984], "The Compilation of Prolog Programs without
the Use of a Prolog Compiler," Proc Int Conf Fifth Generation
Computer Systems, 348-354.

Kauffmann, H. and Grumbach, A., [1986], "Representing and
Manipulating Knowledge within 'Worlds'," Proc First
Int Conf on Expert Database Systems, Kerschberg, L. (ed),
Charleston, 61-73.

Kowalski, R., [1979], Logic for Problem Solving, North-Holland,
New York.

Kursawe, P., [1986], "How to Invent a Prolog Machine," Proc
Third Int Conf on Logic Programming, Shapiro, E. (ed), London,
134-148, Springer-Verlag.

Sharpe, W.P., Hull, R., Black, D.S., Manley, J.C. and Zaba, S.J.
[1986], A Methodology and Architecture for Knowledge Base
Management Systems, HPLabs, Bristol Technical Report No.
HPL-BRC-TR-86-031.

90 ARCHITECTURES AND LANGUAGES

