Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Mar 2024 (v1), last revised 16 May 2024 (this version, v3)]
Title:An Adaptive Cost-Sensitive Learning and Recursive Denoising Framework for Imbalanced SVM Classification
View PDF HTML (experimental)Abstract:Category imbalance is one of the most popular and important issues in the domain of classification. Emotion classification model trained on imbalanced datasets easily leads to unreliable prediction. The traditional machine learning method tends to favor the majority class, which leads to the lack of minority class information in the model. Moreover, most existing models will produce abnormal sensitivity issues or performance degradation. We propose a robust learning algorithm based on adaptive cost-sensitiveity and recursive denoising, which is a generalized framework and can be incorporated into most stochastic optimization algorithms. The proposed method uses the dynamic kernel distance optimization model between the sample and the decision boundary, which makes full use of the sample's prior information. In addition, we also put forward an effective method to filter noise, the main idea of which is to judge the noise by finding the nearest neighbors of the minority class. In order to evaluate the strength of the proposed method, we not only carry out experiments on standard datasets but also apply it to emotional classification problems with different imbalance rates (IR). Experimental results show that the proposed general framework is superior to traditional methods in accuracy, recall and G-means.
Submission history
From: Lu Jiang [view email][v1] Wed, 13 Mar 2024 09:43:14 UTC (9,940 KB)
[v2] Fri, 10 May 2024 07:45:51 UTC (7,011 KB)
[v3] Thu, 16 May 2024 07:06:05 UTC (6,934 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.