
A FRAMEWORK FOR THE RAPID
DEVELOPMENT OF ANOMALY DETECTION
ALGORITHMS IN NETWORK INTRUSION

DETECTION SYSTEMS

Richard J Barnett1 and Barry Irwin2

Security and Networks Research Group
Department of Computer Science

Rhodes University

Grahamstown, South Africa

1barnettrj@acm.org, 2b.irwin@ru.ac.za

ABSTRACT

Most current Network Intrusion Detection Systems (NIDS) perform detec-
tion by matching traffic to a set of known signatures. These systems have
well defined mechanisms for the rapid creation and deployment of new signa-
tures. However, despite their support for anomaly detection, this is usually
limited and often requires a full recompilation of the system to deploy new
algorithms.

As a result, anomaly detection algorithms are time consuming, difficult and
cumbersome to develop. This paper presents an alternative system which
permits the deployment of anomaly detection algorithms without the need
to even restart the NIDS. This system is, therefore, suitable for the rapid
development of new algorithms, or in environments where high-availability
is required.

KEY WORDS

NIDS, prototyping, rapid development, anomaly detection, Perl, Snort, frame-
works



A FRAMEWORK FOR THE RAPID
DEVELOPMENT OF ANOMALY DETECTION
ALGORITHMS IN NETWORK INTRUSION

DETECTION SYSTEMS

1 INTRODUCTION

With the increased frequency of intrusion attempts from the Internet, simple
passive technologies such as firewalls are no longer sufficient on their own.
Systems which actively monitor traffic within a network are now common-
place and act as a second line of defence for cases when intruders evade
first line defences. These systems, known as Network Intrusion Detection
Systems (NIDS), act on traffic in one of two specific ways. They either per-
form signature detection, or they perform anomaly detection. Most current
NIDS perform signature detection as a primary feature and perform anomaly
detection on a more ad-hoc basis.

While these systems have well defined mechanisms for the addition and al-
teration of signatures, they have fairly labour intensive methods for the in-
troduction of new algorithms for anomaly detection. This is because these
systems usually require new modules to be developed in a compiled language
(such as C) and then be loaded. Many of these systems require that these
modules be compiled into the NIDS and this process increases the mean time
to deployment.

This paper proposes an alternative system which permits the rapid devel-
opment and deployment of anomaly detection algorithms. This system has
its primary use in development environments where the additional time re-
quired for other systems makes development cumbersome, and in environ-
ments where the deployment of additional (new) algorithms is essential with
little or no downtime of the IDS.

1.1 Paper Organisation

The remainder of this paper is structured as follows. Section 2 highlights
some of the literature which influenced the design of this framework. Sec-
tion 3 then presents this design, followed by the implementation in Section
4. Thereafter, Section 5 presents a case study of its use, and highlights

1



some performance considerations therein. Finally, the paper is concluded in
Section 6.

2 BACKGROUND

The field of Intrusion Detection, and Network Intrusion Detection inparticu-
lar, is one with a considerable volume of literature, some of which is related
to the construction of this framework, and our extended research. This sec-
tion highlights some of this work, and describes the context of our extended
study.

The authors’ ongoing research is focused into the effective detection of net-
work scanning, and was fueled by previous research at Rhodes University
[4] which discovered several flaws in the detection methods in popular NIDS
such as Snort [10] and Bro [8].

The design of the framework needed to consider numerous factors in scan-
detection, network intrusion detection and IDS design. For the purposes of
our research, we define scanning as it is defined by Allman et al. in [1]. That
is, connections being determined as good, bad and unknown (based on the
success of the connection) and the classification of hosts as scanning hosts if
they produce a majority of bad connections. This definition, coupled with
our own taxonomy of network scanning [2] form the basis of a number of
algorithms into scan-detection.

Existing research into the construction of a NIDS is scarce, however there is
a small selection of research which is of interest. Lee and Stolfo [6] present re-
search into the construction of a novel framework for automated data mining
based intrusion detection. Their system, MADAM ID, performed admirably
in the 1998 DARPA Intrusion Detection Evaluation [7]. Yang et al. [12]
present a framework for the use of expert systems and clustering analysis in
amalgamating misuse and anomaly detection systems.

In their seminal papers on Snort and Bro (respectively), Roesch [10] and
Paxson [8] describe the structure and internal workings of each system. Both
Snort and Bro have design features based on the older NIDS, The Network
Flight Recorder (NFR) [9] which pioneered the field.

2



3 FRAMEWORK DESIGN

The design of a framework for the rapid development of anomaly detection
algorithms takes a number of important considerations. This section details
a number of those considerations and how they influenced the design of the
system.

The design of the framework was based on a number of criteria. These criteria
were formulated both from our own need, and from the observed literature.
The following were considered:

Light-Weight The system needed to be small and efficient with a minimal
code base, to keep resource usage by the base system as low as possible.

Efficient While the system was designed for prototyping algorithms, it was
important to be able to test these algorithms on production traffic. To
this end, the system needed to perform well on commodity desktop
grade hardware and be able to process traffic from gigabit networking
in real time.

Interpretable One of the biggest flaws with the development of preproces-
sors for systems such as Snort, is the extensive compile time whenever
a change is made. For this reason, our framework was required to use
an interpreted language.

End User Simplicity Finally, the base framework should be independent
from each test. This permits authors constructing tests to have limited
knowledge of how the base system works. This has the added benefit
of permitting changes to the base system without tests having to be
rewritten, provided that the interface is well thought out and remains
unchanged.

Many of these features are common with Snort and Bro’s original design.
However, other considerations made for those systems are either implicit in
our design, or have been ignored completely.

As a result of these considerations, the framework has been designed to be
simple. Figure 1 illustrates this design, and it can be seen that there are only
three components to the system. Each of these will be discussed separately.

3



Anomaly Detection System

Framework

Test(s) Alert OutputPacket Capture Packet DispatcherPacket

Figure 1: Framework Structure

3.1 Packet Capture

The packet capture component of the system is designed to provide an ab-
stract packet data structure to the remainder of the system. This provides
a mechanism for different Packet Capture and Dispatcher implementations.
As the system is intended to be Light-Weight, the design strips all unnec-
essary information from each packet before passing it onto the Dispatcher.
The packet capture component needs to be as efficient as possible as it is
the point at which the most intensive IO occurs within the system, and is
discussed further in Section 5.1.

3.2 Packet Dispatcher

The packet dispatcher component is possibly the most important in the sys-
tem. It is this component that loads each of the tests discussed in Section
3.3 and passes the packets captured from the component discussed in Sec-
tion 3.1. It ensures that incoming packets are processed by the tests, without
being dropped and that the tests are executed in order. It also provides an
alert mechanism for tests, and the ability to load tests in real-time.

3.3 Test(s)

The final component(s) of the framework is(are) the test(s), or the algorithms
themselves. As illustrated in Figure 1, the tests are not strictly part of
the framework, but a separate element of the overall system. The interface
provided by the dispatcher permits several tests to be loaded in a specific
order and executed, in real time. The framework allows tests to be loaded
and executed without restarting the system. This is to permit the rapid
development of algorithms, but at the same time, to permit high availability.

4



4 FRAMEWORK DEVELOPMENT

Given the design considerations discussed in Section 3. This section presents
the development decisions made in order to achieve the desired design ob-
jectives. The authors settled on Perl as an appropriate language for the
construction of the framework. This was to permit both the interpreted re-
quirement, but to retain some level of efficiency. Each of the components
illustrated in Figure 1 is implemented as a Perl module.

The Comprehensive Perl Archive Network (CPAN) [3] contains numerous
modules to perform a wide variety of functions. Amongst these are modules
for packet capture, and the authors have made full use of the Net::Pcap

library, and its interface to libpcap to perform efficient packet capture.

The framework was constructed to be threaded, and as a result we could make
use of the built in queue system in Perl for the dispatching of packet data.
However, we found that Perl’s threading system does not share variables
between threads by default, and that it is unable to share complex data
structures. This limitation was overcome by developing a sharable wrapper
for complex data structures, which abstracts the complexities of sharing data
from the end user, at a fairly limited performance cost.

The threading system processes each packet in a single thread, and therefore
guarantees that tests will run in the correct order for a packet. It does not,
however, ensure that packets will be processed in the order that they are
lifted from the wire. As IP does not guarantee that packets are received in
order, this is of little significance. Perl’s ability to compile and recompile
code on the fly permitted us to allow the loading and reloading of modules
automatically. This fulfils the design goal of permitting rapid development.

5 CASE STUDY: NETWORK SCANNING DETECTION

The authors have developed this framework for use in their ongoing research
into Scan Detection. This section presents a look at the usability of the
framework in the context of rapid development of scan-detection algorithms.
The developed algorithms have been tested against both live traffic as it is
read off the wire, and traffic previously captured in pcap files.

We find that we are able to manipulate algorithms in real time, and observe

5



the effects of our changes. An unintentional side effect of the implementation
of the module loading is, however, that memory is garbage collected during
a reload, and it is equivalent to restarting the system.

5.1 Performance Considerations

Given that Snort [10] is written in C/C++, it follows that it should offer
significantly better performance to our own system, and that the interpreted
nature of Perl should offer lower performance. However, since Perl compiles
on demand, it offers good performance with a start-up time cost, and a
memory cost. Neither of these limitations are of concern, however, and the
overall performance remains good.

Despite this we find that the system has a few performance limitations. The
threaded testing system permits tests to run effectively, however, we note
that the interface to libpcap is not as efficient as it could be, and under
heavy load the packet capture and dispatch thread pushes the CPU load up.
We have not, however, observed any packet loss.

Memory use is significant and is largely due to the design of the tests, rather
than due to the framework. The packet data structure is, however, fairly
well designed, and a large number of packets can be easily stored in memory.

Our observations are that the packet capture framework can be deployed in a
production environment, but that (like with most IDSs [5]) it would perform
significantly better when run on its own dedicated system.

5.2 Comparison with Snort

Snort is a popular, Open Source NIDS, but is focused on signature detec-
tion, rather than anomaly detection. This paper will not comment on the
relative effectiveness of the two systems, only on how they operate. Our
framework was developed to permit rapid deployment of new algorithms,
something which is not performed effectively by Snort. Our system is more
CPU intensive than Snort, under load, but not as memory intensive.

Snort offers more sophisticated pre-processing of packets, including stream
reassembly and a rule matching system, which make it a fairly large and
cumbersome application, and while it is a superb signature detection system,
we find that our system processes packets more efficiently if you are only
interested in scan-detection. This is largely because we have no interest in

6



passing packets through the signature engine.

6 CONCLUSIONS

This paper has presented the design and implementation of a novel frame-
work for the development of anomaly detection algorithms in the context of
network intrusion detection. It has presented the design, and implementation
of the framework, and has illustrated how it could be used in the development
of anomaly algorithms, in our case scan-detection algorithms.

We have seen that the concept of developing NIDS in an interpreted language
is viable, and that Perl is a suitable choice. We have also seen that the
overhead for an anomaly detection framework is significantly lower than that
for a full blown signature-detection system such as Snort.

6.1 Future Work

This research has primarily focused on the development of a framework for
the rapid development of anomaly detection algorithms. In particular, we
have considered scan-detection. Our research into scan-detection is ongoing
and is largely supported by this framework. The framework could, however,
be extended in a number of ways. It is a problem which could be offloaded to
commodity graphics cards (in a similar way to Gnort [11]) and to integrate
it into existing NIDS, such as Snort.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support of Telkom SA, Comverse,
Tellabs, Stortech, Mars Technologies, Amatole Telecommunication Services,
Bright Ideas Project 39, THRIP and the NRF through the Telkom Centre
of Excellence in the Department of Computer Science at Rhodes University.

References

[1] Allman, M., Paxson, V., and Terrell, J. A brief history of scan-
ning. In IMC ’07: Proceedings of the 7th ACM SIGCOMM conference

7



on Internet measurement (New York, NY, USA, 2007), ACM, pp. 77–82.

[2] Barnett, R. J., and Irwin, B. Towards a taxonomy of network
scanning techniques. In SAICSIT ’08: Proceedings of the 2008 annual
research conference of the South African Institute of Computer Scientists
and Information Technologists on IT research in developing countries
(New York, NY, USA, 2008), ACM, pp. 1–7.

[3] Hietaniemi, J. Cpan - comprehensive perl archive network. Online:
http://www.cpan.org/, April 2001.

[4] Irwin, B., and van Riel, J.-P. Inetvis: a graphical aid for the detec-
tion and visualisation of network scans. In Conference on Vizualisation
Security (VizSec2007) (2007).

[5] Kohlenberg, T., Alder, R., Dr. Everett F.Carter, J., Fos-

ter, J. C., Jonkman, M., Marty, R., and Poor, M. Snort Intru-
sion Detection and Prevention Toolkit. Syngress Publishing Inc., 2007.

[6] Lee, W., and Stolfo, S. J. A framework for constructing features
and models for intrusion detection systems. ACM Trans. Inf. Syst. Se-
cur. 3, 4 (2000), 227–261.

[7] Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W.,

Kendall, K. R., McClung, D., Weber, D., Webster, S. E.,

Wyschogrod, D., Cunningham, R. K., and Zissman, M. A.

Evaluating intrusion detection systems: The 1998 darpa off-line intru-
sion detection evaluation. In in Proceedings of the 2000 DARPA Infor-
mation Survivability Conference and Exposition (2000), pp. 12–26.

[8] Paxson, V. Bro: a system for detecting network intruders in real-time.
In SSYM’98: Proceedings of the 7th conference on USENIX Security
Symposium (Berkeley, CA, USA, 1998), USENIX Association, pp. 3–3.

[9] Ranum, M. J., Landfield, K., Stolarchuk, M., Sienkiewicz,

M., Lambeth, A., and Wall, E. Implementing a generalized tool for
network monitoring. In LISA ’97: Proceedings of the 11th USENIX con-
ference on System administration (Berkeley, CA, USA, 1997), USENIX
Association, pp. 1–8.

[10] Roesch, M. Snort - lightweight intrusion detection for networks. In
LISA ’99: Proceedings of the 13th USENIX conference on System ad-
ministration (Berkeley, CA, USA, 1999), USENIX Association, pp. 229–
238.

8



[11] Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos,

E. P., and Ioannidis, S. Gnort: High performance network intrusion
detection using graphics processors. In RAID ’08: Proceedings of the
11th international symposium on Recent Advances in Intrusion Detec-
tion (Berlin, Heidelberg, 2008), Springer-Verlag, pp. 116–134.

[12] Yang, D.-g., Hu, C.-y., and Chen, Y.-h. A framework of cooperat-
ing intrusion detection based on clustering analysis and expert system.
In InfoSecu ’04: Proceedings of the 3rd international conference on In-
formation security (New York, NY, USA, 2004), ACM, pp. 150–154.

9


