Computer Science > Databases
[Submitted on 23 Mar 2022]
Title:A Framework for Fast Polarity Labelling of Massive Data Streams
View PDFAbstract:Many of the existing sentiment analysis techniques are based on supervised learning, and they demand the availability of valuable training datasets to train their models. When dataset freshness is critical, the annotating of high speed unlabelled data streams becomes critical but remains an open problem. In this paper, we propose PLStream, a novel Apache Flink-based framework for fast polarity labelling of massive data streams, like Twitter tweets or online product reviews. We address the associated implementation challenges and propose a list of techniques including both algorithmic improvements and system optimizations. A thorough empirical validation with two real-world workloads demonstrates that PLStream is able to generate high quality labels (almost 80% accuracy) in the presence of high-speed continuous unlabelled data streams (almost 16,000 tuples/sec) without any manual efforts.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.