A Framework for Evaluating Caching Policies in
A Hierarchical Network of Caches

Eman Ramadan, Pariya Babaie, Zhi-Li Zhang
Department of Computer Science and Engineering
University of Minnesota, Twin Cities
Email: eman, babai008, zhzhang @cs.umn.edu

Abstract—Much attention of the research community has
focused on performance analysis of cache networks under various
caching policies. However, the issue of how to evaluate and com-
pare caching policies for cache networks has not been adequately
addressed. In this paper, we propose a novel and general frame-
work for evaluating caching policies in a hierarchical network of
caches. We introduce the notion of a hit probability/rate matrix,
and employ a generalized notion of majorization as the basic tool
for evaluating caching policies for various performance metrics.
We discuss how the framework can be applied to existing caching
policies, and conduct extensive simulation-based evaluation to
demonstrate the utility and accuracy of our framework.

I. INTRODUCTION

The emergence of information-centric network (ICN) ar-
chitectures [1], [2], [3], [4], [5] (see [6] for a survey of
ICN architectures) has attracted a flurry of renewed research
interest in caching policies and their performance analysis.
Classical caching policies such as FIFO, LRU, or LFU — which
specify what object should be evicted when the cache is full —
have been widely used in computer systems. It is notoriously
difficult to exactly analyze the performance of these caching
policies, instead one has to resort to approximation methods
with various assumptions [7], [8], [9]. These policies can be
viewed as organizing the cached objects in an ordered list for
replacement. More recently, timer-based caching policies have
gained particular attention (see, e.g., [10], [11], [12], [13])
— where each object is associated with a time-to-live (TTL)
timer, and is evicted when the timer expires. The interest in
timer-based caching policies is due to the fact that objects
within a cache can be viewed independently, and their hitting
probabilities can be analyzed separately. As an analytical aid,
TTL-cache can provide a good avenue to approximate classical
list-based caching policies [14], e.g., in terms of characteristic
times [7], [15], [16].

One important feature ICNs offer is a distributed network
of caches, namely, a cache network, which poses additional
challenges both in terms of practical cache management issues
and performance analysis. For example, when an object is
evicted from one cache, should it simply be discarded, or
should it be inserted into the next cache (i.e., as a new arrival
to this next cache) along the path to the origin server? When
an object is returned from an upstream cache (or the origin
server) back down along the request path, should it be cached

ISBN 978-3-903176-08-9 © 2018 IFIP

along the way (e.g., as advocated by [1], [2]), selectively
or probablistically at some caches (e.g., leave-copy-down or
leave-copy-probabilistically [7]), or only at the edge (e.g., as
advocated by [4])? Should caches in a network be operated
independently, in a cooperative fashion [17], or managed
globally with a coherent view [18]?

Moreover, no single caching policy is likely to perform
well for all user request patterns. For example, under the
Independence Reference Model (IRM), static caching is shown
to be optimal [19] if the object popularity distribution is known
a priori. However, it is shown in [20] that static caching
is no longer optimal when the interarrival distribution of
object requests has a decreasing hazard rate (e.g., when the
interarrivals of object requests are Pareto-distributed). In this
case, instead of always caching the most popular objects as in
the case of static caching, the optimal policy is to cache each
object with a probability less than 1. This means that objects
do not have to be always in the cache, leaving space for more
objects to be cached. In addition, static caching cannot cope
with changes in user request patterns, e.g., a flash-crowd.

From a theoretical standpoint, performance analysis of a
network of caches is significantly more difficult: consider the
simple case of a line of caches where each cache employs
its own cache replacement policy (e.g., LRU) independently;
assuming that object request streams at the first cache (the
edge cache) are independent, the request arrival streams at
the upstream caches are no longer independent — they are
generated by cache misses from the downstream caches. Such
coupling of the caches in tandem network is what makes the
analysis of cache networks a challenging task. Approximation
results for cache networks of specific topologies (e.g., a line
or star network) have been obtained for LRU caches (see,
e.g., [7], [15], [16]); exact and approximation results for a
general network of TTL-caches have been developed recently
under either the renewal arrival processes or Markov arrival
processes (MAP) [7], [12], [13]. In our previous work [18],
we have shown that when caches in a network are operated
independently (with their own cache replacement policy such
as LRU), the utilization of intermediate caches can be ex-
tremely poor, due to the “thrashing” problem caused by the
(non-independent) filtered (cache miss) arrival processes at
intermediate servers. To address this problem, we proposed the
innovative notion of “BIG” cache abstraction [18] by viewing
a line of caches from an edge server along the path to the origin

server as a single “BIG” cache, and argued that it affords the
added benefits of simplifying the analysis of a line of caches.

Unlike a single cache where the performance of various
caching policies can be directly compared, evaluating and
comparing the (relative) performance of caching policies for
a network of caches are no longer straightforward. From a
user’s perspective, hit probabilities at individual caches are
immaterial; what matters is the latency he/she experiences. On
the other hand, a cache network provider is more concerned
with the efficient utilization of all cache capacities in the
network; whereas from the standpoint of a content provider,
the utility of a cache network is its ability to decrease the
overall load on its origin server(s), and reduce the network
bandwidth cost (it also cares about improved content access
latencies to its users). Despite much focus on performance
analysis of cache networks, this important problem has not
received much attention in the research community.

In this paper, we propose a novel and general framework
to evaluate and compare caching policies for a network of
caches. Consider a collection of content objects served by
a network of caches with a fixed set of ingress points (or
edge servers) where user requests for content are routed. We
assume caches are organized in a hierarchy, from the edge
servers to the origin server(s). Given the request streams for
the collection of objects at each ingress point (edge server),
we introduce the notion of a hit probability matrix, which
characterizes the hit probability of content objects that are
served at different layers of the cache hierarchy. We employ
(and define an extended version of) the majorization notion
as the basic tool to evaluate and compare caching policies for
various performance metrics of cache networks in Section II.

Section III provides an overview of the existing works to
estimate the hit probability matrix, including their limitations.
Then, we provide and evaluate a general simplified approach
to estimate the hit probability matrix based on the “BIG”
cache abstraction in Section IV. As we have shown in [18],
implementing caching policies as a single caching strategy
for the virtual “BIG” cache outperforms their implementation
at each layer independently. In this paper, we show that our
approach to estimate the hit probability matrix achieves the
exact result as the “BIG” cache simulation for LRU and q-LRU
caching strategies as examples. Thus, this estimation approach
can be used to generate the hit matrix for the comparison
framework without wasting any time on simulations. Section V
shows the accuracy of applying our proposed framework to
compare caching policies for different user request patterns.
Finally, the paper is concluded in Section VI.

II. CACHING POLICIES COMPARISON FRAMEWORK

In this section, we present a general framework to evaluate
and compare two caching policies, P and (), for network-
wide performance analysis, where P, () represent any caching
policy such as LRU, static caching, k-LRU, ... etc. We first
describe the network model, basic assumptions, and the key
notion of hit probability matrix associated with a caching
policy (here we assume it is given). Then, we identify the

452

oo 9 —— [o
[‘é //{ | ‘\\ [*tH:L Layer H-2
L & N
/I\ IS /|‘\1
n.é S B
/N /\ VAN
QRQ EEE QQQ Users
Figure 1. Network Model

conditions for policy P to dominate policy () by generalizing
the notion of majorization defined for vectors to matrices.

A. Network Model and Assumptions

For ease of exposition, we make a simplifying assumption
and model the cache network as a hierarchy of cache servers
organized in an (H —1) level k-ary tree, as shown in Figure 1,
which is commonly used in today’s content distribution net-
works [21], [22]. Cache servers at leaf nodes represent edge
servers, which are the closest to users located at layer 1. The
root of the tree is connected to the origin server (at layer
H, which has a permanent copy of each object). The content
population is a collection of N unique objects of unit size,
denoted by O = {01, 04, ...On}. The popularity of objects
follows a Zipf distribution with parameter «. The access
probability of each object is denoted by a; = A;/A, where \;
is the request rate of object ¢, and A is the aggregate request
rate, A =) . \;. The access probability a; is proportional to
Z% for a > 0, and Zfil a; = 1. Without loss of generality,
we assume that a; > as > ... > ap, namely, O; is the
most popular object, Oy is the second most popular object,
and so forth. Object requests arrive randomly at one of the
edge servers. When a request is received at a server, which
does not have the object, it forwards the request to its parent.
This process continues till the request reaches the root, and
the origin server eventually if no other server on the path
has a copy. Each request experiences a latency depending on
the layer it is served from. First, we consider comparing the
caching policies P and) for a tandem cache network (a
line of caches) starting from one edge cache C. at layer 1,
till the origin server at layer H. The concepts and notations
introduced below can be generalized to a cache network of
any arbitrary topology, where we construct a request routing
tree/graph formed by the request forwarding paths from each
edge server towards an origin server as illustrated at the end
of this section.

B. Tandem Cache Network

We define L; to denote the latency experienced by an object
served from a cache server at layer j. We assume L1 < Lo <

. < Ly and Lj = Lj—l +ALJ'_1, 2 < j < H. For a
caching policy P, a;p;; represents the hit probability of object
O; at layer j cache, where 1 < j < H, p;; is the percentage
of requests for O; served from layer j cache, and a; is the
access probability of object O;.

The set of values {a;p;;},1 < i < N,1 < j < H can be
compactly represented using an N x H matrix, and by abuse
of notation, we denote it as “P”.

ai1pi1 a1P12 a1P13 a1P1H
a2P21 a2pP22 azp23 a2p2H
Py =
GNPN1 GNPN2 OANPN3 GNPNH

Majorization of Hit Probability Matrices. We employ the
notion of majorization as the basic tool to evaluate and
compare caching policies for a cache network. The standard
notion of majorization is defined for vectors. We generalize
it to a (hit probability) matrix as follows. Given two caching
policies P and @), with hit probability matrices represented
by P = [a;p;;] and Q = [a;q;;] respectively. Without loss
of generality, we assume both policies are “sensible” at layer
1 cache — namely, the first column is decreasing in value.
As caching policies react based on the received requests, thus
popular objects are cached more often than others, which is
also confirmed by the simulation results shown in [18] for
different caching policies. Therefore, we assume the following

holds: P11 = P21 2 P31 =+ 2 PN1 0
q11 = 21 2 q31 =+ = (N1

Also, the summation of the hit probabilities of object O; for
all H layers equals 1 under both policies, i.e., a request for
object O; has to be served from one of the H layers.

H

Zpij = Z%‘j =1,
- =

Given the above conditions, we say P majorizes @, denoted
by P > @, if the following criterion holds:

The summation of the hit probabilities in the top-left (k, k)
sub-matrix of P is equal or larger than that of @ for all values
of k,h, where 1 <k < N,1 <h < H, (ie., policy P utilizes
the first A cache layers to serve the top k objects better than

policy Q). kE ok 5
Z Z aipij = Z Z @iqij 3)

i=1j=1 i=1 j=1

V1<i<N)

Thus, we say caching policy P dominates () if and only if

P >~ Q (i.e., P majorizes Q).
Comparing Overall Performance. Having two general
caching policies P, (), where P dominates () (from the per-
spective of the edge server), we show that P outperforms ()
in terms of both the overall latency (as seen by the end user),
and the load of the origin server.

1) Expected Overall Latency:

Theorem 1: For a hierarchy of caches of H layers, if caching
policy P dominates caching policy Q, the overall expected
latency for P is less than or equal to that of Q.

Proof: Expected latency under caching policy P (OLp):
N H

OLp = Z(ai Z(piij)) “4)

Since, L; = Ly — ZALh,1<J<H71

h=j

By substituting for L; in “(4)”, and rearranging the summation

indices:
Z ALh Z a; szj
h=1

N H
OLp = Z(Z(szLH)

From “(2)” and Zfil a; = 1

OLp =Ly — Z ALhZZazpz]
From “(3)”: H 1 “ 1 J '

OLP S LH - Z ALhZZaqu

h=1 i=1 j=1
OLPSOLQ

Intuitively, caching policy P dominates () means that under
policy P, the top k£ most popular objects are likely to be placed
in the first h layer caches than under policy @, for 1 < k <
N ,1<h<H.Given that L, < Ly < --- < Ly, we would
expect that P outperforms () in terms of expected latency. W

2) Origin Server Load:

Theorem 2: For a hierarchy of caches of H layers, if caching
policy P dominates caching policy Q, the origin server load
under policy P is less than or equal to that of policy Q.

Proof: Origin server load under caching policy P (Sp):
N

Sp = Z @ipiH S
From “(2)” and Z 0= 1
N H-1
Sp=1->"> aip;
i=1 j=1
From “(3)”: N H-1
Sp<1— Z a;qij
i=1 j=1
Sp < SQ

Intuitively, caching policy P dominates () means that under
policy P, the top k£ most popular objects are likely to be placed
in the first h layer caches than under policy @, for 1 < k <
N ;1 < h < H. Since, the number of requests is directly
proportional to the object popularity, we expect more requests
to be satisfied form the first h layer caches under policy P.
Thus, the origin server load under policy P would be less than
or equal to that of Q.]

C. General Cache Networks

We now discuss how this framework can be utilized for any
general cache network. Consider a cache network as shown in
Figure 1. Each edge server C,. € & (set of all edge servers) is
deployed to service content requests from one user populace
located close to C.. The content population of edge C. is
denoted by O, = {05, 05, ... O% }, and the object popularity
follows a Zipf distribution with parameter «.. The access
probability of each object is denoted by a$§ = A\¢/)\., where
A is the request rate of object OF, A\° is the aggregate request
rate for the edge server C,, and A\, = 21 AS.

A user’s request for an object O is first routed to the edge
server C, closest to her. The request is serviced directly by

453

C. if it has Of cached; otherwise C, routes the request along
a request path £¢ — consisting of a sequence of intermediate
cache servers, Cj € L° — towards the origin server. If one
of the intermediate servers, C}, has Of cached, the request
is serviced by C}, and the cached copy is returned along the
reverse path back to C., which then delivers it to the user.
Otherwise, the request is serviced by the origin server. Thus,
we consider the hierarchical topology as multiple tandem
cache networks, each corresponding to an edge server C.. The
request paths £¢ from multiple edge servers traverse and share
the cache resources at the intermediate cache servers C},.

Given two caching policies P and (), and their hit probabil-
ity matrices P(¢) and Q(®) respectively from the prospective of
each edge cache server C.. We can then apply the comparison
framework detailed earlier to compare the two caching policies
P and Q for each edge server C,. Clearly, if P(¢) = Q(¢) for
each edge server C,, then P = Y P = >~ Q) = @,
where P =), P(©) is the aggregate hit probability matrix
over all edge servers, as shown in Section V. The aggregate hit
probability matrix can be determined using approaches such
as [7], in which the authors extend their proposed method
(discussed in Section III) for a general cache network, and
use the miss rate of lower layer caches as an estimate of the
request arrival rate for the current cache node. Finally, these
concepts and notations can be generalized to a cache network
of any arbitrary topology, where we construct a request routing
tree/graph formed by the request forwarding paths from each
edge server towards an origin server. Moreover, the cache
network does not have to be symmetric, the tandem cache
network from each edge server till an origin server could have
a different height, and the missing layers could be replaced
by dummy cache nodes with zero capacity. Hence, their hit
probability is zero, and our proposed comparison framework
would still be applicable.

III. HIT PROBABILITY MATRIX ESTIMATION
USING TTL CACHES

As mentioned before, the analysis of cache networks is a
complex and challenging task. This is because the request
arrival streams at the upstream caches are not independent
— they are generated by cache misses from the downstream
caches. Thus, for each cache in the network, the miss rate
of content objects should be calculated, along with splitting
the miss streams to the other upstream caches. Moreover, the
superposition of the miss streams which form the requests
arriving at the intermediate caches needs to be calculated.
Therefore, several approaches (e.g., [7], [12], [15], [23])
have been proposed to estimate the requests arrival rate at
intermediate caches. Thus, the object hit probability for every
cache in the network can be calculated.

The complexity of the analysis of capacity-based caching
policies is due to the dynamics of the content objects in
the cache. Hence, Che er al. [15] proposed the relationship
between a capacity-based caching policy (LRU) and a timer-
based caching, by defining the characteristic time. Timer-based
caching also simplifies the performance analysis of caching

systems, as it decouples the dynamics of content objects within
a cache, as they can be analyzed independently. In this section,
we categorize some of the existing TTL-based approaches
according to the type of the approximations they proposed to
estimate the request arrival rates at caches, and briefly discuss
their limitations.

A Hierarchical Network of LRU Caches with LCE, LCP,
and LCD Replication Strategies. The authors in [7] provided
a unified approach to analyze the performance of caching
policies such as LRU, FIFO, RANDOM, g-LRU, k-LRU, ...
etc. for single cache, by extending the decoupling technique
introduced in [15]. The authors also analyzed LRU for a two-
layered cache network with respect to the following object
replication strategies, which define how the object is cached
when it is returned from an upstream cache (or the origin
server) back down along the request path. /) Leave-Copy-
Everywhere (LCE): the object is cached at all the downstream
caches along the request path. 2) Leave-Copy-Probabilistically
(LCP): the object is cached at the downstream caches along
the request path with a probability q. 3) Leave-Copy-Down
(LCD): the object is cached only at the cache preceding to the
one where it is currently cached.

For a single cache, the authors considered a temporal local-
ity relation between requests by considering renewal process
for request arrival process. However, the key assumption for a
hierarchical network of caches is that the request arrival pro-
cess at any cache in the network is Poisson (IRM request traf-
fic). The existing spatial-correlation and temporal-correlation
among requests are ignored as the requests interarrival process
is considered Poisson at the intermediate caches. The authors
justified this assumption by mentioning that the error gets
smaller as the network grows (in terms of the number of
branches), hence, the proposed model becomes valid. Finally,
the authors proposed another extension for their model to work
for a network of caches with any topology.

Equations “6” & “7” define the hit probability at each
layer for object m in an LRU-cache with LCE & LCP object
replication strategies respectively. The hit probability of object
m at cache i is denoted by pp(i,m). T¢ is the timer
assigned to all objects at cache ¢ which is related to the
cache size, and ¢ is the probability to cache objects for LCP.
The average arrival rate for object m at cache i is calculated
by: A\ (i) = Zj Am (7)1 = ppit(j, m))r;.4, where 7, ; is the
probability that cache j forwards its miss stream to cache i. We
use these equations in Section V to calculate the hit probability
matrix, and compare them using our proposed framework.

LCE

prie(l,m) =1 — e m(WTE o
phit(Q,m) ~1— efxm(Q)(TéfTé)
LCP .
q(1 - e Am(l Tc)
(1, = “
Ph t(m) €7Am(1)Té + q(l o eiAm(l)Té) o

Prit(2,m) 2 [Prit(2,m) + q(1 — prie(2,m))]
(1 — e m@(TE-TE) = Am((1-0)TE)

Approximate Analysis of Hierarchical and General TTL-
Cache Networks. Fofack et al. [10], [12], [24] focus on
analyzing the performance of LRU, FIFO, and RANDOM
caching policies using the characteristic time. The timer is
set up so that the number of objects in the cache does not
exceed the cache size, considering the same size for all objects.
The key assumption of this model is considering the requests
arriving at any cache in the network to have a renewal process
interarrival time. The authors also assume that requests are
forwarded in a feed-forward network in contrast with [7].
This approach characterizes three request streams: i) the miss
stream of each cache, ii) the splitted miss streams to next layer
caches, and iii) the superposition of request streams arriving
from different caches along with exogenous request arrival as
a renewal process. The main source of error of this approach
is considering the superposition of renewal processes as a
renewal process, which is a non-renewal in general. Moreover,
this approach is computationally very extensive when the size
of the cache network grows, thus, it is not scalable. Finally, it
has the limitation of assuming the routing of the cache network
to be feed-forward.

Exact Analysis of a Hierarchical Network of TTL-Caches.
Following the approach in [12], Berger et al. [23] propose
an exact model for performance evaluation of a hierarchical
network of caches. The key contribution of this approach
is adopting Markovian Arrival Process (MAP) for request
arrival processes, and showing that the miss stream of TTL-
based caches is MAP as well. Since the superposition of
MAP processes is also MAP, the provided analysis are the
exact values for feed-forwarded cache networks with a MAP
process as an input for all caches in the network. However, this
approach suffers from the computation cost for large networks,
as well as [12], and suffers also in case of non feed-forward
cache networks.

IV. GENERAL APPROACH FOR HIT PROBABILITY
MATRIX ESTIMATION

The input to our proposed comparison framework (Sec-
tion II) is the hit probability matrices of both policies ones
wish to compare, which on general is a challenging task to
calculate as discussed in Section III. Ether of exact or approx-
imatation calculated values are known for specific network set
ups [7], [12], [23], assumptions about the request inter-arrival
processes. As mentioned, currently, there exists no general
methodology for computing, approximating or even bounding
the hit probabilities for a network of caches within a reasonable
computation cost. Even with the simplifying IRM assumption,
the request arrival processes to intermediate network caches
are filtered, and no longer independent. This creates technical
difficulty in analyzing a cache network for any arbitrary
caching policy under general assumptions of request arrival
processes. Thus, in this section for a caching policy P, given
the equations to calculate the hit probability for a single cache,
we propose a general simplified approach to calculate the
hit probability matrix for a tandem cache network, using the
notion of “BIG” cache abstraction introduced in [18]. At the

end of this section, we extend this approach to be applied for
any general cache network.

The main idea of “BIG” cache is to view a group of
hierarchical caches as if they are “glued” together to form one
virtual “BIG” cache with a storage capacity distributed across
multiple layers. Consider a tandem cache network of [layers,
where C'y represents the origin server, and C'; the edge server,
where requests are first received. Assume, the cache size of
each layer is denoted by C;, 1 < j < H. The size of the
virtual “BIG” cache is denoted by Cp := Zf[:_ll C;. Then,
any caching policy can be directly applied to this one (virtual)
“BIG” cache as a single consistent strategy. Objects can be
cached in any layer of the hierarchy, and moved between cache
boundaries of different layers according to the caching policy
(see [18] for more details). Using this “BIG” cache abstraction,
the cache network can be viewed as a single “giant” (blackbox)
cache with storage capability Cg, receiving multiple streams
of content requests {);}. The goal of any caching policy is
to maximize the overall hit probability of the entire cache
network, and minimize the load at the origin server. We now
explain in details how “BIG” cache abstraction allows us to
estimate the hit probability matrix for a line of caches, given
the hit probability p;(C, A;, P) of object O; under caching
policy P as a function of the cache size C, and the object
request rate \;.

Consider a line of caches with cache sizes C},, 1 < h < H.
We can view the caches from layer 1 to layer j as if they repre-
sent a single virtual cache of total capacity CTy.;) := 371 Ch.
Thus, p;(Cl1.51, Ai, P) (upper) bounds the probability of serv-
ing requests for object O; from one of the first j caches under
P’ and ﬁl] = pl(C[lj]v)‘iv P) - pi(C[l:j—1]7)‘iv P)l ylelds an
estimate (upper bound) of p;;, the probability that requests for
object O; are served by cache C;. Knowing the hit probability
of object O; at L1, we can find its probability at L2. Then,
we repeat this process iteratively till layer Ly _1. Then, p;g
can be calculated as 1 — Zf_lpij, which represents the
percentage of requests served from the origin server. Hence,
we can calculate the hit probability matrix. Thus, “BIG” cache
abstraction completely avoids the aforementioned technical
challenges and interdependency between cache layers, such
as the filtered requests at intermediate layers. Since content
objects can be stored at any layer of the cache hierarchy,
the overall hit probability of each object p; = Zth_ll Dip 18
not affected by “BIG” cache since the percentage of requests
satisfied by the cache network does not change based on the
location of the object in the hierarchy, as the total caching ca-
pacity is the same. Hence, the origin server load is not affected
either. However, the user’s latency depends on which layer the
object is served from, which depends on the caching policy.
Therefore, our proposed approach can be used to estimate the
hit probability matrices for different caching policies. Then,
our comparison framework mentioned in Section II can be
used to find the appropriate policy for the given request traffic.
Estimation Approach Validation. We evaluate our proposed

I'This linear relationship is valid under IRM model assumption.

455

overall hit rate
o
>

overall hit rate
o
Y

AA Ru-model —
®-@ LRU(B)-sim "
B8 LRU(I)-sim

AA o-LRU-model
@-@ g-LRU(B)-sim
B8 g-LRU(I)-sim

10 50 100 500
Cache Size

(a) LRU

1000 2500 10 50 100 500
Cache Size

(b) g-LRU (q = 0.5)
Figure 2. Hit Probability Matrix Estimation

1000 2500

approach to estimate the hit probability matrix by comparing it

to the simulation results for some known caching policies, and

also to show how implementing these caching policies using

“BIG” cache abstraction always enhances their performance

when they are implemented at each cache layer independently.
LRU

C=Y pnis(i) =1-eNTe (®)

q-LRU
_ L q(l—eTNTe)
C= thit(l) e MiTe 4 g(1 — e~ NiTe))

From [7], anh considering Poisson interarrival process for
requests, we use “(8)” to calculate the hit probability of
each object in a single cache of size C' for LRU (always
cache a copy of the requested object), and use “(9)” for g-
LRU (cache a copy of the object with probability g). These
equations calculate the characteristic time T for cache using
the cache size C' and the request rates for each object {);}.
Using our proposed approach, we calculate the hit probability
matrix by considering the cache size of the first j layers
Chy = >3 _1 Ch, which would give us a new value for
the characteristic time using the corresponding equation “(8)”
or “(9)” according to the caching policy. Using this new
characteristic time, we can calculate the probability that the
object is being served from the first j layers.

We compare the hit probability matrix calculated by our
proposed approach with simulation results. We consider a
line of five caches, and a collection of 10K unique objects.
The edge cache server, and intermediate caches, have the
same cache size, ranging from [10,50, 100, .. .,2500]. User
requests follow Zipf-distribution with « = 1. We use LRU
as the cache eviction policy at each cache layer, and LCE as
the object replication strategy when the object is traversing
a request path back to the user. The results are shown in
Fig. 2a, in which LRU(I)-sim represents the simulation results,
and model represents our proposed approach results. We also
simulate LRU using “BIG” cache abstraction, which maintains
one copy at a time at any layer due to applying LRU as a
single caching strategy for the “virtual” “BIG” cache, where
requested objects are always cached at the first layer L1 (edge
server), and when L1 is full, the evicted objects are cached in
L2, and so on (denoted by LRU(B)-sim).

The result shown in Fig. 2a indicates that LRU(B)-sim
outperforms LRU-LCE. This is confirmed by the results

456

in [18], which show that applying existing caching policies
to a hierarchical network as a single cache, improves the per-
formance, instead of having each cache layer taking decisions
independently. In LRU(B)-sim, we considered the available
storage as a single aggregated cache capacity which leads to
caching one copy at most. Whereas other policies like LRU(I)-
sim (LRU-LCE) results in having more than one copy of the
requested object at different cache layers. Having only one
copy at the cache, leaves more space for other objects to
be cached, and hence improves the overall hit probability,
minimizes the latency and origin server load. Our proposed
estimation (model) consideres available storage as one single
“virtual” cache with the aggregate cache capacity allowing
one copy of an object in cache. In Fig. 2a it is observed that
the values of (model) estimations and LRU(B)-sim matches.
As LRU(B)-sim outperforms other policies [18], our proposed
method for estimation of hit probability matrix provides an
upper bound for other approximations. Similar results are
shown for g-LRU in Fig. 2b.

General Cache Network. Finally, this approach can be ap-
plied to any general cache network topology using the idea
discussed in Section II-C by constructing a path from each
edge server to an origin server. However, to apply the “BIG”
cache approach to estimate the hit matrix for each line of
caches, we need to (logically) partition the cache resources
at intermediate cache servers through which the request paths
L¢ from multiple edge servers traverse, and allot appropriate
cache resources to each edge server C,. Taking into account,
the characteristics of the requests of each user populace (i.e.,
edge server) in terms of object popularity, request interarrival
distribution, ... etc, with the goal of optimizing the perfor-
mance objectives. For an intermediate server Cp, h € L€, let
C}, be the portion of its cache C, that is (logically) allotted to
Ce. In other words, the cache (7}, is logically partitioned into
multiple pieces, C’s, among the edge servers; » _ C5 = Cj
(here by abuse of notation we also use C} and C}, to denote
the cache size). Collectively, C}’s, h € L, form a tandem
cache network with respect to the edge server C.; its total
size is C°:=) ;.. Cf.

For each tandem cache network corresponding to an edge
server C¢, let uf be the object occupancy probability, and let
U¢(-) be a generic (concave) objective (or utility) function (of
object occupancy or allotted cache size). We can formulate
the following cache partition/allotment optimization problem.
The solution? of this optimization problem indicates how to
partition the cache resources at each intermediate cache, and
allot them to the tandem cache network of each edge server
to maximize the hit probability of the entire cache network.
Once we have these partitions, we can apply the previously
mentioned approach for each edge cache and estimate its hit
probability matrix.

2Due to space limit, we do not elaborate on the solution of the optimization
problem here.

Ls Lk
(c) CS =500

Ls Lo L
(b) CS =100

Ly Ly

(a) CS = 50

Ly L4

Figure 3. Majorization Conditions “(3)” for the caching policies LCP & LCE in Section III

SO>S U ()

ecf i

maximize
wf€l0,1],C8

N
s.t. Zuf < C° Ve € & Z Cr=C°ecé&; (10)

i=1 heLe

> Cr<CnheH,
ec&

and

V. EVALUATION

The goal of this section is to validate our proposed policy
comparison framework, and show its evaluation in all the
considered cases through simulation. Using common existing
caching policies such as static caching, LRU, ... etc, we show
that if policy P outperforms policy @, then P majorizes
@ according to our definition in Section II, and show that
the majorization condition “(3)” is satisfied. First, we start
by applying the comparison framework to a tandem line of
caches. Then, we show the framework extension (discussed
in Section II-C) applied to a hierarchical cache network.

A. Tandem Cache Network

We use a hierarchical network organized as a line of four
caches. Edge server lies at L1, where user requests are first
received. The origin server lies at L4, which serves a collection
of 10K unique objects each of a unit size. The edge server
and intermediate caches have the same cache size, which
ranges from [50, 100, ...,3000]. User requests follow Zipf-
distribution with o = 0.8. Each object has a request rate \;,
where the aggregate request rate A = » . \; = 1. We simulated
two distributions for the request intervarrival times of each
object: 1) Poisson & 2) Pareto (w. parameter 2) [20]. We
compare the following caching policies: static, q-LRU, LRU
with different object replication strategies (LCD & LCE) [7].
Comparison Framework Validation. Using the hit proba-
bility matrices of policies P & (), we calculate new corre-
sponding matrices, P & Q, where pr, = S, 2?21 a;pij,
1 <k < N1 < h < H, similarly for Q. P & Q
represent the summation of all the possible submatrices of
P & @ respectively. Finally, we define a comparison matrix
Xp_q, where z;; = 1 if p;; > §;;; and 0 otherwise,
where 1 < ¢ < N,1 < j < H. The matrix Xp_g is
the representation of the majorization condition “(3)”. If all
elements of matrix Xp_g are equal to one, then policy P
dominates policy (). We visualized Xp_¢ using a heatmap,
representing 1 as black, and 0 as white.

Analytically. We use the equations defined for LRU-LCE and
LRU-LCP “6” & “7”. The only change to the simulation

(d) CS = 1000 (e) CS = 2500 (f) CS = 3000
Table 1
POISSON

P, Q cs 50 | 100 | 500 | 1000 | 2500 | 3000
Static, LRU(B) v v v v v v
Static, LRU-LCD v v v v v v
Static, LRU-LCE v v v v v v
LRU-LCD, LRU(B) v v v X X X
LRU-LCD, LRU-LCE v v v v v v
LRU(B), LRU-LCE v v v v v v
Static, qLRU(B) |7 7 v 7 7
Static, qLRU v v v v v v
gqLRU(B), gLRU |/ v/ v/ v/ v/
qLRU(B), LRU-LCE v v v v v v
qLRU, LRU-LCE v v v v v v
LRU-LCD, qLRU v v v v v v

settings mentioned at the beginning of this section is the
number of layers, as these equations are defined for a network
of 3 layers. For each policy, we calculate the characteristic
time of each cache, then the hit probability matrix. We apply
our comparison framework to compare their performance.
The heatmap comparing LRU-LCP and LRU-LCE is shown
in Fig. 3. As expected, LRU-LCP dominates LRU-LCE for
the different cache sizes.

Simulation. We implemented several caching policies to com-
pare their performance using our proposed framework. Fig. 4
shows the overall performance of these caching strategies
in terms of the average hit probability (Zi.vzl Zszl aipij),
latency and origin server load for both Poisson (top row)
& Pareto (bottom row) request interarrival distributions. As
expected in case of Poisson request interarrival distribution,
static caching is shown to be optimal [19] if the object popu-
larity distribution is known a priori, followed by LRU-LCD,
LRU-LCP(g-LRU), and LRU-LCE caching policies (similar
to results reported in [7]). The latency and origin server load
follows the same behavior of the average hit probability, thus
are not included for the other policies due to space limitations.
Figs. 4a, 4d show LRU(B) & g-LRU(B), implemented using
“BIG” cache abstraction [18].

LRUB) & q-LRU(B) outperform their corresponding
caching policies when implemented independently at each
cache. Moreover, their performance is close to static caching
performance (similar to results reported in [18]). However, as
shown in [20] static caching is no longer optimal when the
interarrival distribution of requests has a decreasing hazard rate
(e.g., when the interarrivals of requests are Pareto-distributed),
we can see that LRU(B) & q-LRU(B) achieve better perfor-
mance when the cache size is large as shown in Figs. 4e, 4h.

The heatmap of comparing LRU-LCD & LRU(B) in both

457

o o o =
ES o o =3

overall hit rate

o
N

1.0

overall hit rate
o
o

0.2

—@— Static
—4— LRU(B)
—B- LRU-LCD
—*— LRU-LCE

v
o

100 500 1000 2500 3000
Cache Size

(a) Hit Probability

—@— Static
—4— LRU(B)
—B- LRU-LCD
—*— LRU-LCE

50 100 500 1000 2500 3000
Cache Size

(e) Hit Probability

> 150
2
@ 125
2
©
= 100

—@— Static
—4— LRU(B)
—&- LRU-LCD
—— LRU-LCE

50

100

500 1000
Cache Size

(b) Latency

2500 3000

—@— Static
—4— LRU(B)
—&- LRU-LCD
—— LRU-LCE

50

100

500 1000
Cache Size

(f) Latency

2500 3000

1.0
—@— Static
0.8 —4— LRU(B)
o 8- LRU-LCD 0.8
3 —*— LRU-LCE g
<06 ®
[
¢ 206
[=
204 s o —e— Static
) 30 4~ qLRU(B) (g=0.5)
502 -8 LRU-LCD
0.2 —&— g-LRU (g=0.5)
—— LRU-LCE
0.0
50 100 500 1000 2500 3000 50 100 500 1000 2500 3000
Cache Size Cache Size
(c) Origin Server Load (d) Hit Probability
0.8 —— Static b
—4— LRU(B)
) -8 LRU-LCD 08
® © 0
0.6 —— LRU-LCE L
- e
[£~
2 £0.6
0.4 =
w © r
p 4 —@— Static
- [
=) 304 —4— qLRU(B) (4=0.5)
502
5 8- LRU-LCD
—&— g-LRU (g=0.5)
0.2 —+— LRU-
0.0 LRU-LCE
50 100 500 1000 2500 3000 50 100 500 1000 2500 3000
Cache Size Cache Size
(g) Origin Server Load (h) Hit Probability

Figure 4. Overall Performance for Caching Policies for a network with N = 10K, H = 4, R = 5M, Poisson 1st row, Pareto 2nd row

| . . .
Osod Osod Osod “ n O‘OKI I

L1 Lile Lels Lylg

Li Ll Lils Lils L

Lile Lils Lyl

(a) CS =50 (b) CS =100
Figure 5. Majorization Conditions “(3)” for the caching policies LRU-LCD & LRU(B) Poisson in Fig. 4

| . . “ I I
Osod Osod Osod n n Ojsod

L1 Lile Lels Lilg

L1 Lile Lels Lyl Ly

Lils Lils Lyl

(a) CS =50 (b) CS =100
Figure 6. Majorization Conditions “(3)” for the caching policies LRU-LCD & LRU(B) Pareto in Fig. 4

Table 11
PARETO

(c) CS =500

(c) CS =500

CS

wn
=

P?Q

—
=3
=]

wn
=3
=]

1000

2500

3000

Static, LRU(B)

Static, LRU-LCD

Static, LRU-LCE

LRU-LCD, LRU(B)

LRU-LCD, LRU-LCE

LRU(B), LRU-LCE

Static, qLRU(B)

Static, qLRU

qLRU(B), gLRU

gLRU(B), LRU-LCE

qLRU, LRU-LCE

ANAYANANANANANANANANANAN

LRU-LCD, qLRU

ANAYANANANANANANANANANAN

ANANANANE N NENRNENRANANAN

ENENENANENESENENERENENES

ANANANANENEIENANENANANE

ANANANANENEIENENENANANE

L Lile Lels Lils L Lile Lels Lils Li Lile Ll Lylg
(d) CS = 1000 (e) CS = 2500 (f) CS = 3000

L Lile Lels Lilg Li Lile Lels Lils L1 Lile Lels Lyl
(d) CS = 1000 (e) CS = 2500 (f) CS = 3000

& Il summarize the comparison of every two policies P, () for
Poisson & Pareto interarrival distributions respectively for the
different cache sizes, where v is used if P dominates (@, and
X otherwise. The results in these tables reflect 100% accuracy
for our proposed comparison framework in determining the
dominance of the policies in comparison with respect to their
simulated overall performance.

B. Tree Topology

We use a hierarchical network organized as a binary tree of
three levels (i.e., four edge servers). Edge servers lie at L1,
where user requests are first received. The origin server lies
at L4, which serves a collection of 2K unique objects each

cases (Poisson and Pareto distributions) are shown in Fig. 5 of a unit size. The size of the cache servers at layers [L1, L2,
& Fig. 6 respectively, where they accurately reflect the domi- 3] are [400, 800, 1600]. We compare the following caching
nance of LRU-LCD over LRU(B) only when the cache size is policies: q-LRU and LRU with different object replication
small as their corresponding average hit probability. Tables I strategies (LCD & LCE) [7].

458

-#- LRU-LCD
—A— q-LRU (q=0.5)
—*— LRU-LCE

w
o

w w
N IS

w
o
w
o

N

«n
N
@

overall hit rate
overall hit rate

~
o

- LRU-LCD
—A— g-LRU (q=0.5)
—%— LRU-LCE

g
o
N
>

0.6 1.0 12

0.
alpha for Zipf distribution

(a) Changing Alpha

P.P,P,P P,P,RR P.R,P.R RRRR
interarrival distribution combination

(b) Changing Interarrival Distr.

Figure 7. Hierarchical Tree Cache Network

First Scenario. The distribution of the interarrival time is
Poisson. We simulated 4 different values of a for zipf-
distribution [0.6,0.8,1.0,1.2] for all the edge servers. The
average hit probability is shown in Fig. 7a. We find the
relationship between the three policies is still as expected, and
when « increases, the average hit probability increases.
Second Scenario. We use o« = 0.8 for all edge servers, and we
changed the distribution of interarrival time for the four edge
servers as following: [P, P,P,P', 'P,P,R,R', 'P,R, P, R/,
'R, R, R, R'], where ' P’ refers to Poisson and 'R’ for Pareto
for the corresponding edge server. For example, 'P, P, P, P’
means the distr. is Poisson for all edge servers in this experi-
ment. The average hit probability is shown in Fig. 7b.

For both scenarios, we used our proposed framework to
compare each two policies at each edge server. We construct
a tandem cache network from this edge server to the origin
server, and calculate the hit probability matrix for the objects
related to this edge server. If policy P has a better performance
than policy @, policy P majorizes policy @) for each cache
server in all the different cases for a.

VI. CONCLUSION

In this paper, we have discussed the renewed research
interest in caching policies and their performance analysis
as a result of the ICN architectures. Also, the additional
challenges both in terms of practical cache management issues
and performance analysis for cache networks. We also have
discussed some of the related work done by the research
community which focuses on the performance analysis of
cache networks under various caching policies, and that the
issue of how to evaluate and compare caching policies for a
network of caches has not been adequately addressed. In this
paper, we propose and develop a novel and general framework
for evaluating caching policies in a hierarchical network of
caches. We introduced the notion of a hit probability matrix,
and employed (a generalized notion of) majorization as the
basic tool for evaluating and comparing cache policies in
terms of various performance metrics for a network of caches.
We discussed how the framework can be applied to various
existing caching policies and conduct extensive simulation-
based evaluation to demonstrate the utility of our framework.

Acknowledgment: This research was supported in part by

NSF grants CNS-1411636, CNS 1618339 and CNS 1617729
and a Huawei gift.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in CoNEXT, 2009.

[2] “Named data networking,” http://named-data.net/.

[3] T. Koponen and et al., “A data-oriented(and beyond)network architec-
ture,” in ACM SIGCOMM Computer Communication Review, 2007.

[4] S. K. Fayazbakhsh and et al., “Less pain, most of the gain: Incrementally
deployable icn,” in SIGCOMM, 2013.

[5] E. Ramadan, A. Narayanan, and Z.-L. Zhang, “Conia: Content
(provider)-oriented, namespace-independent architecture for multimedia
information delivery,” in ICMEW, 2015.

[6] B. Ahlgren and et al.,, “A survey of information-centric networking,”
IEEE Communications Magazine, July 2012.

[71 M. Garetto, E. Leonardi, and V. Martina, “A unified approach to
the performance analysis of caching systems,” ACM Transactions on
Modeling and Performance Evaluation of Computing Systems, 2016.

[8] A. Dan and D. Towsley, “An approximate analysis of the lru and fifo
buffer replacement schemes,” in ACM SIGMETRICS, 1990.

[9] P.R. Jelenkovi, “Asymptotic approximation of the move-to-front search

cost distribution and least-recently used caching fault probabilities,” The

Annals of Applied Probability, 1999.

N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Analysis of ttl-based

cache networks,” in VALUETOOLS, 2012. 1EEE.

M. Dehghan, L. Massoulié, D. Towsley, D. S. Menasché, and Y. C. Tay,

“A utility optimization approach to network cache design,” CoRR, 2016.

N. C. Fofack, M. Dehghan, D. Towsley, M. Badov, and D. L. Goeckel,

“On the performance of general cache networks,” in ValueTools, 2014.

D. S. Berger, S. Henningsen, F. Ciucu, and J. B. Schmitt, “Maximizing

cache hit ratios by variance reduction,” SIGMETRICS, 2015.

N. Gast and B. Van Houdt, “Transient and steady-state regime of a

family of list-based cache replacement algorithms,” ACM SIGMETRICS

Performance Evaluation Review, 2015.

H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchical

web caching systems,” in INFOCOM, 2001.

C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approx-

imation for lru cache performance,” in ITC, 2012.

A. Wolman and et al., “On the scale and performance of cooperative

web proxy caching,” ACM SIGOPS Operating Systems Review, 1999.

E. Ramadan, A. Narayanan, Z.-L. Zhang, R. Li, and G. Zhang, “Big

cache abstraction for cache networks,” in ICDCS, 2017. IEEE.

Z. Liu, P. Nain, N. Niclausse, and D. Towsley, “Static caching of web

servers,” in Multimedia Computing and Networking 1998.

A. Ferragut, I. Rodriguez, and F. Paganini, “Optimizing ttl caches under

heavy-tailed demands,” in Proceedings of the 2016 ACM SIGMETRICS.

V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang, “Vivisecting youtube:

An active measurement study,” in INFOCOM, 2012.

E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: A

platform for high-performance internet applications,” SIGOPS, 2010.

D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of ttl

cache networks,” Performance Evaluation, 2014.

N. C. Fofack and et al., “Performance evaluation of hierarchical ttl-based

cache networks,” Computer Networks, 2014.

[10]
(11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]

[24]

459

