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ABSTRACT

In Schenkerian analysis, one seeks to find structural de-
pendences among the notes of a composition and organize
these dependences into a coherent hierarchy that illustrates
the function of every note. This type of analysis reveals
multiple levels of structure in a composition by construct-
ing a series of simplifications of a piece showing various
elaborations and prolongations. We present a framework
for solving this problem, called IVI, that uses a state-space
search formalism. IVI includes multiple interacting compo-
nents, including modules for various preliminary analyses
(harmonic, melodic, rhythmic, and cadential), identifying
and performing reductions, and locating pieces of the Ur-
satz. We describe a number of the algorithms by which IVI
forms, stores, and updates its hierarchy of notes, along with
details of the Ursatz-finding algorithm. We illustrate IVI’s
functionality on an excerpt from a Schubert piano composi-
tion, and also discuss the issues of subproblem interactions
and the multiple parsings problem.

1 SCHENKERIAN ANALYSIS

A number of types of music analysis are concerned with “la-
beling” individual objects in a musical score. In harmonic
analysis, labels are assigned to chords and notes correspond-
ing to harmonic function; in contrapuntal voice segregation,
labels are assigned to notes indicating voice assignment. A
rhythmic analysis may assign different levels of metrical im-
portance to notes. These styles of analysis are similar in that
they often describe musical components in isolation, or only
in relation to their immediate neighbors on the musical sur-
face.

Structural analysis, on the other hand, emphasizes dis-
covering relationships among notes and chords in a com-
position, rather than studying individual tones in a vacuum.
The word “structure” here refers to “the complete fabric of
the composition as established by melody, counterpoint, and
harmony in combination” [1].

Schenkerian analysis is the most well-developed type of
structural analysis. This type of analysis examines the “in-
terrelationships among melody, counterpoint, and harmony”

[1] in a hierarchical manner. Schenker’s theory of music al-
lows one to determine which notes in a passage of music
are more structurally significant than others. It is important
not to confuse “structural significance” with “musical im-
portance;” a musically important note (e.g., crucial for artic-
ulating correctly in a performance) can be a very insignifi-
cant tone from a structural standpoint. Judgments regarding
structural importance result from finding dependences be-
tween notes or sets of notes: if a note X derives its musical
function or meaning from the presence of another note Y ,
then X is dependent on Y and Y is deemed more structural
than X .

The process of completing a Schenkerian analysis pro-
ceeds in a recursive manner. Starting from the musical score
of a composition, one may locate any number of structural
dependences. After no more can be found, an abstracted
score is produced by rearranging or removing the less struc-
tural notes. The new abstracted score will reveal new de-
pendences: when their subservient neighbors are moved or
eliminated, various structurally important notes in the origi-
nal score will be deemed less significant to their new neigh-
bors.

This iterative process illustrates Schenker’s conception
that tonal compositions consist of a “continuum of interre-
lated structural levels,” [1] where each structural level of the
music represents that composition at a different level of ab-
straction. Each successively abstract level expands or pro-
longs various aspects of the previous one. The most abstract
level of the piece is the background level. At the other end of
the spectrum is the foreground level: an analysis at this level
usually still contains most of the notes of the score and most
closely represents the musical surface. Between these levels
is the middleground level. While Schenker’s own analyses
usually only contain these three levels, there can be many
levels in between the surface level music and the ultimate
background level; rarely are the levels clearly delineated.

Schenker theorized that at the background level, all tonal
works could be represented by one of three basic outlines,
consisting of a three chord harmonic progression (the Bass-
brechung or bass arpeggiation) supporting a three-, five-,
or eight-note descending melodic line (the Urlinie or funda-
mental line). Together, these form the Ursatz or fundamen-
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tal structure. The Ursatz is a basic structure that appears
over most of the length of a single composition, though it
often manifests itself at other levels in the structural hier-
archy as well. While the Ursatz is an important facet of
Schenkerian analysis, the idea of structural levels is more
encompassing, as the Ursatz can be seen as another musical
device that may appear at multiple levels of abstraction [2].

2 PREVIOUS WORK AND STATE OF THE ART

The most widely known formalization of musical structure
in a hierarchical fashion similar to Schenker’s is that of Ler-
dahl and Jackendoff [8]. The authors attempt to describe
the structure of music from a linguistic perspective by pro-
viding preference-rule systems that govern various aspects
of musical structure. They present a set of rules for group-
ing of notes in a voice, and another for deducing metrical
structure in term of strong beats and weak beats. Their most
intriguing contributions here, however, are the preference-
rule systems for two recursive reductive systems, one based
on “time-span analysis” that is governed by metrical and
grouping structure, and another based on “prolongational
analysis” that is controlled by the ideas of rising and falling
musical tension in a piece. These reductions can be illus-
trated by trees, where the leaves are the surface-level notes
of the piece and higher-level branches represent the more
structural tones, or by an equivalent musical depiction as a
sequence of staves showing successive levels of the resultant
hierarchy of pitches.

Though Lerdahl and Jackendoff frame their discussion
in terms of discovering a grammar of music, they acknowl-
edge that their system is incomplete and probably cannot
be directly turned into a formal algorithm. This is mainly
due to the lack of weightings for the preference rules and
that the authors’ representations are based primarily on ver-
tical segmentation of the input music as chords, and do not
give enough weight to voice-leading considerations. Never-
theless, a number of people have undertaken formalization
of Lerdahl and Jackendoff’s system, though the results usu-
ally require tweaking of parameters. For example, Hirata
and Aoyagi [6] present a framework for the representation
of musical knowledge in the spirit of Lerdahl and Jackend-
off, while Hamanaka et al. [4, 5] describe an implementa-
tion that can automatically make reductions according to a
set of preference rules, but the weights on the rules must be
adjusted by hand for each piece.

Temperley [15] presents models for meter, phrase struc-
ture, voice segregation, pitch spelling, harmonic structure,
and key structure using a preference rule system very simi-
lar to that of Lerdahl and Jackendoff. Temperley, however,
went further and was able to use his models in algorithms
that “implement Lerdahl and Jackendoff’s initial concep-
tion.” The models and algorithms vary in level of success
and sophistication [13]. All of the models developed could

be useful in automating Schenkerian analysis, though the
concept of hierarchical reductions is not discussed. Temper-
ley later re-developed some of these modules and a number
of new ones with a Bayesian statistics slant [16]; here he
does present a high-level discussion on how to test or verify
Schenker’s ideas from a Bayesian viewpoint.

Schenkerian analysis has largely resisted formalization
because it was not presented in any sort of formal man-
ner by Schenker himself. Indeed, many textbooks illustrate
concepts largely through examples and long paragraphs of
prose [1, 3] rather than by giving a recipe for constructing
an analysis step-by-step. There have only been three large-
scale initiatives in developing a computational procedure
for Schenkerian analysis; other relevant work (e.g., Meehan
[12]) was undertaken on a smaller scale and was restricted
to models, not algorithms. The first large project, the work
of Smoliar [14], resulted in a tool used to assist a human
in performing an analysis, largely by confirming the valid-
ity of reductions; the system did not perform any analysis
on its own. The second, by Kassler [7], described a model
that took the analysis from the middleground level to the
background, but did not work directly with the surface-level
musical notes (what one sees in the actual score). The third
project in Schenkerian analysis is more current: an under-
taking by Marsden [9, 10, 11], which seeks to derive an
analysis directly from a MIDI-style music representation.
This project, however, is still in its infancy and is focused
on calculating all possible reductions using a dynamic pro-
gramming algorithm and scoring each analysis. For exam-
ple, it makes no mention of locating the Ursatz (a critical
step), does not take advantage of other notational informa-
tion that would be given by a higher-level representation of a
score such as MusicXML, and the published research makes
no mention of harnessing previous research in voice segre-
gation, key finding, or harmonic analysis to bootstrap the
process.

3 THE IVI FRAMEWORK

We now explain the functionality of the IVI framework, a
system to perform automated Schenkerian analysis. The IVI
name (pronounced like ivy, the plant) was chosen for the I-
V-I (tonic-dominant-tonic) harmonic structure that Schenker
theorized was at the background level of all tonal composi-
tions. The framework consists of numerous components,
which we detail in the following section.

We have chosen MusicXML as the input format for IVI.
While the MIDI file format is more widely used for music
file storage than MusicXML, the richer score format of Mu-
sicXML facilitates the analysis process. A MIDI file gives
little information to the user other than pitch and timing
information; even such vital clues as the spelling of acci-
dentals is lost. Though hierarchical music analysis is de-
signed to reflect processes in tonal music that are aurally
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Figure 1. The DAG structure illustrating how the middle
note in a neighbor tone musical figure is dependent on the
outer tones.

perceived by music theorists and average listeners alike (and
so the process could conceivably use MIDI as input), hav-
ing as much of the printed score as possible available to
IVI removes many of the preprocessing steps that otherwise
would be inevitable. MusicXML gives us key and time sig-
natures, clefs, beaming information, stem directions, slurs,
ornaments, barlines, and written repeats, all of which are po-
tentially useful for Schenkerian analysis, and most of which
are not included in a MIDI file.

3.1 Data Structures

The primary data structure that IVI uses to store an analysis
(in any state of completeness) is the directed acyclic graph,
or DAG. A DAG is an abstract data type consisting of a set
of nodes (or vertices) and arcs (or edges). An arc is a con-
nection between two nodes.

We augment the basic DAG definition to support two dif-
ferent kinds of arcs:

• Regular (directed) arcs: An arc directed from node x
to node y specifies that the note(s) represented by y
are dependent on those represented by x. That is, a
node’s children are its dependents.

• Equivalence arcs: These arcs are non-directional. An
equivalence arc connecting nodes x and y represents
the claim that x and y must be at the same structural
level. These arcs are inserted to force nodes to be at
the same level.

Note that with equivalence arcs as well as regular arcs
between nodes, we can enforce both dependences and struc-
tural level equivalences. We show the DAG for a neighbor
note idiom in Figure 1,where regular arcs are shown as solid
lines, and equivalence arcs are shown as dashed lines.

Initially, the DAG contains one node for each note in
the input composition and no arcs; this corresponds to the
surface-level information before any analysis has occurred.

3.2 The Informed Search Paradigm

We can formalize Schenkerian analysis as a computational
search problem. The search space consists of all possible
empty, intermediary, and completed Schenkerian analyses
of a piece; since we are using DAGs, this is the space of

all possible DAGs over n nodes. This space is prohibitively
large for an exhaustive search; Marsden [11] showed that
even if we restrict ourselves to DAGs that resemble binary
trees, the size of the search space is still factorial in n, the
number of notes in the input piece. Therefore, we employ
various informed (heuristic) search methods.

A state in the search space consists of an individual DAG,
corresponding to a partial Schenkerian analysis. Goal states
are completed analyses, where there are only a small num-
ber of nodes at the top-most level of the DAG; these nodes
will correspond to the tones of the Ursatz. The various
operators that IVI can apply correspond to either individ-
ual Schenkerian reductions, which transform the DAG by
adding new nodes and edges, or adding properties to the
search state. A property is an attribute-value pair that stores
additional information about the the state of the analysis not
captured by the DAG; the attributes are name-note pairings.
The most important property is called level and may be
attached to any note. This is an integer that represents the
importance of that note in the structural hierarchy. Higher
numbers represent higher levels of structure. Initially, all
notes are assigned a level of 1. There is a procedure (de-
tailed later) that updates these values as the analysis pro-
gresses. Additional properties correspond to marks an ana-
lyst would make on a physical musical score, such as har-
monic analysis chord symbols. Since there are myriad prop-
erty assignments and reductions possible at numerous lo-
cations in the analysis, we are investigating using various
ranking algorithms to evaluate possible reductions and de-
termine the musical plausibility of each.

Two metrics are needed to perform an intelligent search.
If n is a state in the search tree, we need a metric ĝ(n) to
tell us the distance from the start state (a “blank” analysis)
to n, and ĥ(n) to tell us the estimated distance from n to a
goal state. ĝ depends primarily on the number of reductions
applied and the aggregate musical plausibility level of those
reductions. ĥ takes into account more global measurements,
such as the plausibility of the current analysis as a whole
(rather than individual reductions), the levels of each of
the most structural notes in the DAG, and the probability of
further reductions.

Before the intelligent search begins, however, IVI needs
to perform a number of preliminary analyses: a harmonic
analysis to determine the initial chord structure, a melodic
analysis to determine voice leading, a rhythmic analysis to
locate strong beats and weak beats, and a cadential analysis
to locate cadences. While we already have basic algorithms
in place for these first two analyses, we plan on harnessing
the wealth of existing published algorithms for harmonic,
melodic, and rhythmic analyses to improve IVI. We have
found no existing systems for explicitly finding cadences,
however, and so we are currently implementing our own
cadence-locating algorithm that will use the results from the
other three analysis modules and measurements of harmonic
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rhythm to identify cadences.
After the preprocessing steps, the search control algo-

rithm begins its work. Once a goal state is found, IVI can
save the resulting analysis and backtrack to locate other plau-
sible analyses if desired by the user. We embrace the idea
of multiple musically-plausible analyses. Because we are
operating with numerical parameters, there will be a single
analysis that is deemed the best (or most-likely). Still,much
musical knowledge and insight can be gleaned from seeing
the “second tier” of analyses.

4 IMPLEMENTATION DETAILS

4.1 Memory Issues

One of the major problems facing a naı̈ve implementation of
IVI’s search control is that of memory management. Storing
a complete DAG and all the properties of all the notes at
every search state in the search tree would be infeasible, as
the computer would quickly run out of RAM. While we are
investigating using beam search to ameliorate this situation,
there is a fundamental data structure change we use to lower
our memory requirements.

First, we choose to implement the storage of the DAG
itself as a collection of properties in a search state. We
use properties named “children” and “parents” to store a
set of regular arcs indicating structural dependences, and an
“equivalent-to” property to store equivalence arcs. By doing
this, all local information about a search state is combined
into a collection of properties. We cannot store a global set
of properties in a central location as we need to support mul-
tiple (possibly conflicting) analyses that may interpret the
same musical structures in different fashions, leading to dif-
ferent values for the same name-note property attribute.

Because properties are local to a search state, one may be
tempted to copy the property set (currently implemented as
a hash table) when creating successor states of a particular
search state. However, much memory can be saved (with a
small sacrifice in time) if we allow properties to be implic-
itly inherited from a search state’s predecessor. When IVI
needs to look up a property, it checks the property set of
the current search state, and if the property attribute in ques-
tion is not found, it walks up the search state’s chain of pre-
ceding states, looking for the appropriate attribute. This in-
heritance model prevents us from copying properties many
times over and wasting memory. We plan on investigating
the loss in efficiency due to time spent traversing the search
tree, and possibly implementing a compromising solution
where properties are duplicated, but only at certain states in
the search tree.

4.2 Updating the Structural Levels

Updating the level of nodes in the DAG must take place
after reductions are performed that modify the DAG in some

fashion. If one temporarily coalesces nodes connected by
equivalence edges into “meta-nodes,” then the pure DAG
structure is restored while preserving equivalence relations.
It is then possible to assign new level values by using
a dynamic programming algorithm to find the longest path
from each node to a node with no parents; these path lengths
become the new level values.

4.3 Voice Segregation and Searching for the Ursatz

IVI’s current voice segregation algorithm works by find-
ing voice-leading connections between individual notes. It
prefers stepwise connections between notes, and therefore
does very well at identifying cases of implicit polyphony,
where voice changes are often signaled by leaps. The pro-
cedure also can detect voices being doubled at the octave;
instead of creating separate voices for each musical line in
the doubling, properties are stored in the current search state
indicating the notes are part of a doubling.

Our computational procedure for finding the Ursatz in a
piece requires we already have the soprano line extracted,
which IVI’s voice segregation algorithm does for us. IVI
first identifies the final most structural cadence (the one with
the highest values for level) and locates the 2̂-1̂ and V-I
pieces. (We use an integer with a circumflex accent to in-
dicate a scale degree.) Next, one must locate possible loca-
tions for the primary tone of the Urlinie. A method for ac-
complishing this is to search for candidate primary tones by
locating all notes on scale degrees 3̂, 5̂, and 8̂, and selecting
the most structural of each scale degree. Now that potential
beginning and ending points are determined, the last step is
to locate the intermediary tones of the Urlinie (not needed
for a 3̂-line). This can be viewed as an optimization proce-
dure: we have a notescape of candidate tones with various
levels of structure indicated by the level property, and we
must pick the descending sequence that maximizes, say, the
sum of the levels of structure of each individual tone. This
is a variant of the longest decreasing subsequence problem,
where the items are weighted, and can be solved with dy-
namic programming. After the Urlinie is found, the last re-
maining note to locate is the initial tone of the bass arpeg-
giation, which is contained in the initial tonic chord of the
composition. Note that as the analysis proceeds, levels of
structure may change, so it is possible to run this procedure
whenever a new level is created in the analysis.

5 A SHORT EXAMPLE

We illustrate running a few of IVI’s implemented compo-
nents on the first eight measures of Schubert’s Impromptu
in B� major, Opus 142, Number 3, depicted in Figure 2.
IVI’s extraction of the soprano line is shown in Figure 3.
Notice how IVI correctly separated the voices in the im-
plied polyphony, leaving only the upper voice in the right
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hand part. Though it may appear that in measures 5–7, IVI
simply took the top note of the right-hand octave doubling,
IVI actually detected this doubling (as described earlier) and
transfered the register of the soprano voice up an octave.

IVI also correctly locates the manifestation of the Ursatz
at this level of the Impromptu, as displayed in Figure 4. For
the primary tone, IVI chose the D6 in measure 5 over the
D5 in measure 1 as it prefers later-occurring notes to earlier
ones when structural levels cannot be distinguished, as was
the case here. (We use scientific pitch notation; C4 is middle
C.) We told IVI to look for a 3̂-line as the Ursatz-finding
algorithm currently requires specifying the scale degree of
the primary tone.

6 FUTURE WORK

6.1 Multiple Parsings

There is no single correct Schenkerian analysis for any given
musical composition. Because this type of analysis is based
in part on how a listener perceives a piece, different analysts
may produce (sometimes significantly) different analyses.
For example, a single piece may admit two different types
of Urlinie (e.g., a 3̂-line and a 5̂-line).

IVI must detect when there are multiple musically-valid
interpretations of some collection of notes in a piece and
consider possible analyses continuing from each of the view-
points. At the crux of this issue is the problem of conflicting
reductions, where two or more reductions can be applied but
not independently; applying one precludes the later possi-
bility of applying another. Furthermore, there is also the is-
sue of backtracking if either reduction should lead to a non-
musically-valid analysis later on in the process. This is in-
evitable even when humans perform Schenkerian analysis;
reductional decisions can have far-reaching consequences
and may occasionally lead to dead ends.

We are considering a number of approaches to the multi-
ple parsings problem. Weighted preference rules are a stan-
dard option, having been used with success by Lerdahl and
Jackendoff [8], Temperley and Sleator [17], and Temper-
ley [15] in their music analysis formalisms. Our current
model for preference rules uses a weighted system for mea-
suring the amount of “evidence” supporting various reduc-
tions. The intelligent search framework around which IVI is
based can use this evidence metric in its heuristics to choose
which analysis paths to follow. The backtracking compo-
nent of intelligent search gives us a method for handling
multiple interpretations and also any dead ends encountered:
because the search proceeds down multiple possible paths at
once by saving intermediate states in a queue, the algorithm
is always currently investigating the state most likely to lead
to the most musically-probable analysis.

6.2 Subproblem Interactions and Levels of Influence

Music analysis involves multiple interacting subproblems of
various levels of influence. It is impossible to isolate and
solve each problem in a vacuum; they are intertwined and
cannot (and should not) be separated. This, however, creates
a situation of seemingly circular dependences among the
problems. For example, doing a complete harmonic analysis
without knowing anything about the melodic and contrapun-
tal aspects of a composition is challenging at best, whereas
an analysis of the voice leading of the piece is informed
greatly by knowing the underlying chord structure. Mu-
sic theorists analyze compositions opportunistically, solv-
ing the easier cases within a subproblem before tackling the
harder ones (within the same subproblem or a different one),
as often the easier instances will shed new light on how to
solve the harder cases.

Every reduction in IVI has some amount of evidence as-
sociated with it. We have already discussed using this ev-
idence measurement to handle the multiple parsings prob-
lem; it gives us a method for choosing between multiple
non-independent reductions. The evidence for various pos-
sible reductions and property assignments, however, is an
ever-fluctuating quantity. Each reduction performed has the
potential to guide new ones, and so these evidence vari-
ables must be updated after every reduction. This suggests
a method for improving the performance of the preliminary
analyses (melodic, harmonic, rhythmic, and cadential), as
one can execute an iterative process by which the next most
likely property attribute-value pair is added at every step,
and evidence values are updated, possibly causing changes
to other property values. This contrasts with other methods
for, e.g., harmonic analysis, where often all of the chord la-
bels are assigned in an order that is independent of the actual
music being examined.
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