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Summary 

A "s t ruc tura l descript ion" for two-dimensional 
black and white patterns is defined as the set of contour 
l ines for an appropriate function which f i ts the binary 
pat tern. These contour lines are mutually non-
intersecting closed polygonal curves with edges in only 
eight different directions and they represent the bound­
ar ies between connected black and white areas of the 
pattern. Rigorous procedures are described to t rans­
fo rm a "mat r i x pat tern" into a "st ructura l descr ipt ion" 
and vice versa. Advantages of this method for descr ib­
ing patterns previous to pattern recognition are d is ­
cussed at some length. 

Introduction 

This paper presents a method for obtaining a "s t ruc­
tura l descr ipt ion" of any two-dimensional picture whose 
elements are a f ini te set of points in the plane each hav­
ing value zero (white) or one (black) and such that the 
points are arranged in the fo rm of a square lat t ice. 
Figure 1 shows one such p ic ture. The "st ructura l 

descript ion" we employ consists of a set of simple polyg­
onal closed curves whose vertices are ordered in either 
clockwise or counter-clockwise sense. These curves 
represent the continuous boundaries between connected 
sets of black points which we cal l "objects" and con­
nected sets of white points which we cal l "ho les . " F ig . 
2 depicts the structural description of the pattern in 

FIG. 1 

♦Work supported by U.S. Atomic Energy Commission. 

FIG. 2 

F ig . 1. Our structure also includes information ind i ­
cating which curves are inside each other as shown 
schematically by dotted lines in Fig. 2. The points of a 
curve are ordered so that the curve is traced keeping 
black points to the r ight and white to the left . As a 
resul t , curves which define the outside boundary of 
black areas (objects) proceed clockwise and those for 
white areas (holes) proceed counter-clockwise. It 
should be noticed that the curves do not go through the 
outermost picture points of an area but rather go be­
tween these outermost points and the adjacent points of 
opposite color . 

Our selection of this part icular format to describe 
the information content of a black/white pattern was 
motivated by a belief that the sequential trace of the 
boundary of an object contains the most useful data for 
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recognizing objects one f rom another in a great many app l i ­
cations . Experimental evidence f rom the psychology of hu-
man visual perception and the neurophysiology of animal 
visual perception support this belief to an amazing extent. 

For a more detailed descript ion of this "s t ruc tura l 
descr ipt ion" and an extended discussion of i ts uses, the 
reader is re fer red to Z a h n . 1 

Structural Descript ion as Contour 

The closed curves of the "s t ructura l descr ipt ion" 
are , in fact, the contour l ines at a height of 1/2 for a 
continuous function F(x,y) defined over the square area 
of the picture and such that F takes value 1 where the 
picture has a black point and 0 where it has a white 
point. The precise construction of F is as fol lows: 

Consider the subdivision of the picture area into 
smal ler squares defined by the square mat r ix of picture 
points by drawing horizontal and vert ical l ines through 
the points of the p ic ture. It should be clear that a t r i -
angulation* of the picture area can now be effected by 
separately tr iangulating each smal ler square, as shown 
in F ig . 3. We shall describe rules for determining which 
diagonal w i l l be added to each square to complete the 
tr iangulat ion. 

to connect two black points or two white points, choose 
the black and t r y to have as few curvaturepoints as 
possible. The triangulation ru le embodied in (d) of 
F ig . 3 assures that black points have precedence, while 
rules (b) and (c) prevent a straight edge at 45° f rom 
being encoded as a saw-tooth contour l ine. The reader 
may ver i fy these statements by choosing the other d iag­
onal and then constructing the contour. The actual con­
tour for the top pattern in F ig . 3 is presented at the 
bottom of F ig . 3 and hatch marks have been appended to 
show which side of a contour l ine is the high or black 
side. 

There are only six essentially different combina­
tions of values possible for the corners of a square. 
These are shown in F ig . 3 along with the proper d iag­
onal. Where no diagonal is shown it means that either 
one may be chosen. 

Now that the picture area has been tr iangulated, we 
define our function F separately for each t r iangle. 
Supposing some tr iangle to have vert ices A, B, and C, 
we let P A , PB, Pc denote the picture values at points 
A, B, C which are indeed points of the "mat r i x p ic ture. " 
There is a unique l inear function F*(x,y) = ax -t by + c 
which takes on values PA, P g , PC at points A, B, C 
Each tr iangle of the tr iangulation determines uniquely 
an F*ABC and F is defined so that F(x,y) = F ^ g ^ x . y ) 
whenever (x,y) is inside or on tr iangle ABC. 

The proofs that F is well-defined and continuous are 
easily derived f rom the exemplary behavior of l inear 
functions. In fact, the only way discontinuity could pos­
sibly occur is by way of F being double defined for some 
point on a common edge SB between two tr iangles A^ 
and A2* The reason that this cannot occur is because 
F1* and F2* (the l inear functions for A^ and A2) when 
rest r ic ted to the edge AB are both found to vary l inear ly 
between A and B and to have the same values at these 
two points; hence F1* = F2* on the edge AB and F is w e l l -
defined . 

Having defined F over the picture area as a cont in­
uous piecewise-l inear approximation to the or ig inal p i c ­
ture , we can simply repeat that the "s t ructura l descr ip­
t ion" of the picture is the set of contour l ines of F drawn 
at a height of 1/2. This approach certainly corresponds 
wel l wi th any intuit ive notion of edges in a binary p ic ture. 

Curvaturepoints 

We use the t e rm "curvaturepoints" to describe the 
points where the contour l ines (called "edges") change 
d i rect ion. For example, in the bottom of F ig . 3 the 
numbered points 1 - 1 0 are the curvaturepoints whereas 
E and F are points on the contour but not at bends. This 
is because the two sections of contour l ine which meet 
at E are both in the same d i rect ion, t Referr ing to F ig . 
4, we see that at E there is an incoming edge and an 
outgoing edge both in d i rect ion 5, whereas at point 8 
there is an incoming edge in direct ion 6 and an outgoing 
edge in direct ion 5. 

It turns out that curvaturepoints can only occur at 
points midway between two picture points. Fur ther ­
more, the question of whether or not a given point is a 

tContours are directed so that the hatch mark is on the 
right. 
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FIG. 5 

curve is not disturbed at a l l . The bend at point 5 in 
F ig . 6 is not exactly +1 as can readi ly be seen, but as 
an approximation it does not real ly go far wrong. Fur ­
thermore, i f more precision is required, i t can be c a l ­
culated f rom the X and Y coordinate values of the 3 
points 1, 5 and 9. 

The main advantages of performing this smoothing 
of inflections are the reduction in the amount of data to 
be processed in subsequent d iscr iminat ion algori thms 
and the el imination of some sequences of edge bends 
which we may cal l "spurious wiggles" since the co r ­
responding edge in a typical or ig inal continuous pattern 
was probably straight. Figure 5 shows a "spurious 
wiggle" of 4 pai rs of points. In the example depicted 
the reduction in data is substantial, amounting to 40%, 
although the picture pattern contains a great deal of 
rea l deta i l . 

As a f ina l point we want to make it perfect ly clear 
that this smoothing procedure is not an absolutely nec­
essary part of the overa l l method. Depending on the 
part icular application, it may or may not be appropr i ­
ate. We present it here in place of several other 
smoothing algori thms which we have experimented with 
because it has been found to accomplish a substantial 
reduction in data without el iminat ing many major de­
ta i ls and while requi r ing only simple decision c r i t e r i a . 



SMOOTHED EDGE CONTOUR 

FIG. 6 

Bend Groups 

When the sequence of curvaturepoints describing a 
single closed contour has been constructed and the " i n ­
f lect ions" have been deleted as described in the previous 
section, then a very compact but extremely character-
izing signature can be computed by merging curvature-
points according to the following ru les: 

Transform the closed curve into a sequence of i n ­
tegers representing amounts of bend by adding together 
the values of bend for two adjacent curvaturepoints of 
l ike sign whenever their distance apart is less than some 
threshold which is appropriate to a given application. 

Figure 7 depicts how the grouping of l ike points 
would be made for our sample curve of the last section, 
assuming a threshold distance of approximately 4 .0 . 

Once again we must emphasize that special appl i ­
cations w i l l generally suggest variations in the merging 
of bends in addition to guiding the determination of the 
distance threshold. Some applications may, of course, 
requi re the retention of more detailed edge length in for ­
mation in which case this simple scheme would not be 
appropriate. 

FIG. 7 

Recovery Algor i thm 

An important property of "s t ructura l descript ions" 
is that an algorithm exists which w i l l recover the o r i g ­
inal digit ized binary matr ix pattern given only the struc­
tura l descript ion. We shall give a br ief outline of such 
an algorithm and discuss the theoretical foundation for 
i ts val id i ty. 

The famous mathematical theorem known as the 
"Jordan Curve Theorem" states that any simple closed 
curve in the plane divides the remainder of the plane 
into two distinct sets called the " ins ide" and "outs ide," 
such that any two points in the same set can always be 
connected with a continuous curve lying entirely in that 
same set; any continuous plane curve joining a point 
" ins ide" the curve to one "outside" must have at least 
one point in common with the closed curve. The proof 
of this theorem is much simpler for polygons than for 
general curves; Courant and Robbins2 give a proof for 
the polygonal case which depends on the fact that if a 
point "outside" a closed curve is connected by a 
straight l ine L to another point P, then P is also "out­
side" if and only if L intersects " an even number 
of t imes. If L intersects an odd number of t imes, 
then P is " ins ide" 

The algori thm we propose is based on the latter 
fact, which is also proved in Ref. 2. Referr ing to 
F ig . 9, we shall show how it is possible to determine 
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while ranges a, and are outside. The proper 
assignment of values then depends only on the status of 

The determination that ranges p and 5 are inside 
proceeds as fol lows: 

Curve r is traced f rom i ts top a l l the way around 
and back to the top again. Whenever the curve 
crosses the vert ical l ine , we record the fact by 
making a mark in a l l points below the crossing. For 
example, crosses f i r s t at and al l points in ranges, 

and c are marked + as shown in the table. 
This means that each of these marked points can be con­
nected by a straight l ine to the top of the picture area 
only by a l ine crossing at The table is f i l led in 
f o r a n d i n a n ent i rely s im i la r manner. After 
64, mere are no more crossings and the curve returns 
to the start ing point. We then determine which points 
have received an odd number of marks and find that a l l 
points of ranges B and 5 are inside 

When this procedure is car r ied out fo r a l l ver t ica l 
l ines then the " ins ide" points f o r w i l l have been 
determined. In any actual implementation, we assume 
that a l l would be handled simultaneously while 
was being traced only once. 

If the same process is repeated for a l l curves in 
a "s t ruc tu ra l descr ip t ion" then the result is Just as valid 
as for one curve because curve crossings always rep re ­
sent a color change. 

No cla im is made for the efficiency of this procedure; 
we merely wanted to show with some degree of mathe­
mat ica l r i go r that the "s t ruc tura l descr ipt ion" contains 
a l l the information of the or ig ina l digi t ized pattern and it 
can be mechanically recovered if necessary. 

Advantages of the Curvaturepoint Method 

The general i ty of the curvaturepoint method is one 
of i ts most important proper t ies. The method applies to 
any "black and whi te" pattern whose significant content 
consists of connected sets of s imi la r points. Hence, it 
also applies to input pictures which can be made to com­
ply wi th this condition by suitable preprocessing; fa i r l y 
simple local transformations on binary pictures have 
been found to be very successful at regular iz ing pictures 
in this way. Our method can be used in some cases to 
extract contrast information from grey-sca le* pictures 
by converting the picture to binary several t imes using 
dif ferent thresholds. This idea is more fu l ly elaborated 
in Zahn. 1 This appl icabi l i ty to mul t i level pictures 
should come as no surpr ise when it is remembered that 
the method is s imply a contouring of a two-dimensional 
d is t r ibut ion of numer ica l values. 

Simpl ic i ty and mathematical r i go r are propert ies of 
the method which we feel have been largely overlooked in 
most "edge-detection" schemes. The two propert ies are 
closely re lated, for the mathematical r i go r wi th which 
"curvaturepoint extract ion" and " l inkage" are performed 
is a d i rect consequence of the simple and straightforward 
definit ion of the "s t ruc tura l descr ip t ion . " Being contour 

♦Picture values range over an ordered f ini te set such as 
(0, 1 , 2, 3). 

l ines of a simple function, the "s t ruc tura l descr ipt ion" 
is constrained to consist of non-intersecting closed 
polygonal curves whose edges are directed in only eight 
different ways and whose edge bends or "curvaturepoints" 
are also t ight ly constrained. It is precisely because of 
such constraints that the " l inkage" of widely spaced 
"curvaturepoints" can be accomplished in a completely 
assured way. Not only is the transformation f rom b in ­
ary pattern to structural descript ion r igorous and 
uniquely defined; the reverse transformation (see Re­
covery Algori thm) exists as we l l , proving a unique one-
to-one correspondence between a binary pattern and i ts 
st ructural descript ion and also showing that the s t ruc­
tu ra l descript ion contains total information f rom the 
binary pattern. 

One of the most serious obstacles to the further 
development of digi tal picture processing is the volume 
of data impl ied by the two-dimensionality of p ictures. 
When the resolution is doubled the data volume is quad­
rupled; a picture 1,000 x 1,000 has one mi l l i on data 
points, an amount which is s t i l l prohibi t ively high for 
even the largest computers. The "s t ructura l descr ip­
t ion" on the other hand contains one-dimensional in for ­
mation (contour lines) and therefore the data volume 
increases only l inear ly with resolut ion. This means 
that if "curvaturepoint extract ion" can be done in special 
d ig i ta l hardware then the storage requirement for imp le­
menting the method on a general purpose computer w i l l 
be greatly reduced and more r ich ly detailed patterns can 
be handled. The " l inkage" would be accomplished by 
programming. It turns out very happily that "curvature­
point extract ion" is defined by extremely simple Boolean 
logic (see Curvaturepoints) and its digi ta l hardware 
implementation could be accomplished with the addition 
of two long shift reg is ters . We consider this efficient 
implementation to be an extremely v i ta l aspect of the 
method. 

The intuit ive character of our method should prove 
of considerable benefit in constructing recognition a l ­
gor i thms. In a recent ar t ic le Uhr3 c laims that edges, 
angles and the interrelat ions between lengths and slopes 
are the important and meaningful propert ies for human 
pattern perception and recognit ion. If this is t rue then 
it is reasonable to expect that algorithms based on 
"s t ruc tura l descr ipt ions" w i l l be highly intuit ive in na­
ture and hence less mysterious than those based on i n ­
formation other than edges. In support of Uhr !s c la im 
we shall c i te evidence f rom psychology and neurophysi­
ology which tends to indicate the predominance of edge 
information in animal visual perception. Attneave4 in 
experiments on human subjects found that the number of 
bends in polygonal shaped objects accounted for 80% of 
the difference between objects when rated by subjects 
according to judged complexity. This c lear ly suggests 
importance of curvaturepoints. Other researchers have 
found that an object's v is ib i l i ty is related to the length 
of i ts boundary, strongly suggesting that for purposes of 
perception the edge is the predominant information con­
tent. 

The research of Let tv in et ah 5 on the optic nerve 
cel ls in the f rog indicates that signals reaching the 
f rog 's bra in f rom i ts eyes are highly contrast-or iented. 
Hubel and Wiese l 6 determined that nerve cel ls in the 
cat 's brain are specific to the existence of edges in the 
visual f ie ld of given slope. This neurophysiologyal 
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evidence if extrapolated to the human case lends further 
support to the c la im that edge information is the raw 
data for visual perception mechanisms in man. 

Although the method is clearly directed toward rec ­
ognition via edge-bend-sequence, nevertheless fami l iar 
quantitative properties such as per imeter, area, mo­
ments, height and width are easily calculated. In addi­
t ion, we can define and compute reasonably intuit ive 
quantitative measures of oblongness, compactness, 
wigglyness and total absolute curvature. 

For some pattern recognition applications (character 
recognition especially) it is useful to have a method 
which is position and size invariant. "Structural de­
scr ipt ions" contain position and size information but in 
such a way that it is quite easily disregarded. Rotation 
invariance is also easy to achieve by simply considering 
the sequence of curvaturepoints without paying attention 
to the in i t ia l edge d i rect ion. The information is always 
there when needed, however, so that recognition methods 
sensitive to posit ion, size and rotation are not hampered 
in the least. 

A pattern descript ion method is greatly enhanced if 
it is compatible with some fa i r ly elegant language for 
p ictures. This is par t icu lar ly true if the language has 
a formal phrase structure grammar which allows pat­
tern recognition to be accomplished by the formal par ­
sing procedures which have been developed for such 
grammars . The survey paper of M i l le r and Shaw13 

discusses this aspect of picture processing quite com­
prehensively. Ledley7 for example, has shown that 
fo rmal parsing techniques can be used to recognize d i f ­
ferent chromosome shapes by transforming their edge 
sequences into a str ing of pr imi t ives and then parsing 
this s t r ing. For example, in F ig . 8 O means no bend, 
E means sharp 180° convexity, Y means sharp 180° con­
cavity, etc. These are the pr imi t ives of the language. 
The formal grammar would define " a r m " as OEO, 
"double a r m " as arm Y a r m , etc. 

An essentially one-dimensional data format seems 
to be advantageous for l inguistic processing of pictures 
because phrase-structure grammars describe sets of 
" s t r i n g s . " When the data is not in a t r s t r ing" format 
there are some subtleties involved in making the cor ­
respondence between the data and l inguistic fo rmal ism. 
The recent work of Shaw8 shows that automatic parsing 
recognizers can be quickly implemented when the st ruc­
ture of the picture can be represented by a suitable one-
dimensional grammar. Syntax directed parsing methods 
are employed so that new recognition tasks require only 
a new syntax table and specially wr i t ten pr imi t ive r e c ­
ognizers. 

In addition to formal language parsing methods, our 
"s t ruc tu ra l descr ipt ion" can be used very readily in a 
decision t ree approach to recognit ion. In fact, the cycl ic 
l i s t data format of the "s t ruc tura l descr ipt ion" lends it-
self natural ly to sequential decisions made as the l i s t is 
t raversed. As with a l l pattern descript ion schemes, i t 
is possible to reduce to a vector of quantifiable proper­
t ies and then use one of the many procedures based on 
the property vector representation of a pattern. The 
algori thms of Freeman9 , 10,11 for "curve segment 
matching" are applicable with almost no change since 
"s t ruc tu ra l descr ipt ions" are essentially "Freeman 

encodings" of the curves defining boundaries in a binary 
picture. For example, the Freeman chain-encoding of 
the closed curves of F ig . 3 would be (00766555333111) 
and (5713). Each digit represents a unit vector as 
shown in F ig. 4 and the curve is traced sequentially. 
Our "s t ructura l descript ions" vary f rom this format 
only to the extent of merging l ike-direct ion contiguous 
unit vectors into a single vector with length. The 
"s t ructura l descript ion" for the outer curve of F ig . 3 is 
essentially These curve 
matching algorithms are capable 12 of putting together 
an "apictor ial jigsaw puzzle" which attests to the sub­
t lety of their shape discr iminat ion. 
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