
A Counselors-Based Intrusion Detection
Architecture

Silvio E. Quincozes†, Carlos Raniery∗, Raul Ceretta Nunes∗, Célio Albuquerque†, Diego Passos†, Daniel Mosse‡

†Computer Science Department, Universidade Federal Fluminense
Niterói–RJ, Brazil

∗Department of Applied Computing, Universidade Federal de Santa Maria
Santa Maria–RS, Brazil

‡Department of Applied Computing, University of Pittsburgh
Pittsburgh–PA, EUA

sequincozes@id.uff.br, {csantos,ceretta}@inf.ufsm.br, {celio,dpassos}@ic.uff.br, mosse@cs.pitt.edu

Abstract—Intrusion Detection Systems (IDSs) are a fundamen-
tal component of defensive solutions. In particular, signature-
based IDSs aim to detect malicious activities on computer systems
and networks by relying on data classification models built from
a training dataset. However, classifiers performance can vary
for each attack pattern. A common technique to overcome this
issue is to use ensemble methods, where multiple classifiers
are employed and a final decision is taken combining their
outputs. Despite the potential advantages of such an approach,
its usefulness is limited in scenarios where (i) multiple expert
classifiers present divergent results or (ii) representative data
are missing to detect a specific attack class. In this work, we
introduce the concept of counselor networks to deal with conflicts
from different classifiers by exploiting the collaboration between
IDSs that analyze multiple and heterogeneous data sources. Our
empirical results demonstrate the feasibility of the proposed
architecture in improving the accuracy of the intrusion detection
process.

Index Terms—Intrusion Detection Systems (IDS), Multiple
Sources Analysis, Machine Learning, Self-learning IDS

I. INTRODUCTION

Nowadays there are several approaches for attackers to
perform intrusive or malicious activities. In order to reduce
the damage caused by those attacks, it is fundamental to
implement and use IDSs. The purpose of an IDS is to monitor
a data source and to identify when a suspicious activity takes
place [1]. When an attack is properly identified, the appropriate
countermeasures can be taken in order to mitigate or even
eliminate its effects on the target system.

To distinguish between suspicious and normal activities,
a plethora of data analysis techniques could be employed.
Among those, classification techniques are the most used in the
literature for detecting anomalies. They use a training database
with samples of known attacks to assemble a classification
model that can be later used for detecting abnormal behavior.
One of the benefits of this approach is that it may be able to
detect attacks for which there is no samples available during
the training phase [2] [3] [4].

Selecting the most appropriate classification algorithm is
a challenging task. There are diverse algorithms available in
the literature, but there is no “one size fits all” classifier. In
practice, a good classifier for identifying one class of attack
is often inefficient for other classes. As a consequence, the
development of a single classifier that covers all possible
attacks seems unfeasible. This leads to a scenario where the
output of an IDS may be unreliable [5].

In order to solve this issue, the literature proposes the use of
methods to dynamically select the most appropriate classifier
for each attack pattern [6], [7]. Still, the effectiveness of
such approaches is limited in scenarios where multiple expert
classifiers present divergent results. For example, the chosen
classifier can still provide wrong results depending on the data
available for analysis.

By considering the limitations of existing solutions, this
work proposes an architecture that combines dynamic classi-
fier selection with the analysis of multiple and heterogeneous
data sources (e.g., network statistics and application logs).
More specifically, we introduce the concept of a counselor
network that enables an IDS to solve conflicts based on advice
from expert classifiers, thus leading to increased reliability of
the output and also incremental learning.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of related research efforts avail-
able in the literature. In Section III, we introduce and discuss
the proposed architecture. Section V evaluates the proposed
solution and discusses the obtained results. Finally, in Sec-
tion VI, we present our conclusions and ideas for future work.

II. RELATED WORK

Existing literature reveals that IDSs that use multiple classi-
fiers usually outperform those based on a single classifier [8],
[9]. Furthermore, collaboration among multiple IDSs analyz-
ing different data sources is already being explored [10]. How-
ever, to the best of our knowledge, ours is the first proposal that
combines both approaches, namely, multiple classifiers and

978-3-903176-23-2 © 2019 IFIP

multiple data sources. Therefore, in this section, we discuss
separately advances in the usage of multiple classifier systems
and collaborative IDS architectures.

A. Multiple Classifier Systems

Sabourin [11] introduces the precursor solutions for the
dynamic selection of classifiers. The proposal is based on
a classifier ranking method, which evaluates the classifiers’
performance through a training database to estimate its overall
accuracy and then rank them. A simplified version of this
work is proposed in [7], where the classifiers are ranked
based on their accuracy in the classification of the known
neighboring samples. However, both approaches are prone to
fail for unknown samples. Additionally, no decisions criteria
are presented to resolve conflict among the classifiers.

In [6], authors present a methodology for estimating the
best classifier for a given class, where the competence of each
classifier is evaluated according to its performance on specific
classes. Thus, the probability of correct classification of an
unknown sample is defined from the average of the results
given for each evaluated class. However, in real scenarios,
there are many attack classes, making this approach costly.

A classifier selection method based on clustering and the
weighted average is proposed in [9]. This method consists of
clustering known samples and measuring the performance of
each classifier for all the formed clusters. Then, the unknown
sample is associated to the cluster with the nearest centroid.
The classifier with the best performance for that cluster and the
classifier with the best performance for the nearest neighboring
cluster are selected. Finally, from these selected classifiers, the
one with the highest reliability is chosen. Reliability is defined
by means of a confusion matrix from known results. However,
classification conflicts are not addressed.

Although better than single classifier approaches, the choice
of the best classifier remains an open issue, especially on
conflicting scenarios. In addition, they do not consider collab-
oration from multiple sources nor the possibility self-learning.

B. Collaborative Architectures

Although the collaboration between expert systems to ana-
lyze multiple and heterogeneous sources is barely investigated
in the literature [12], some proposals attempt to consolidate
data from different sources for intrusion detection.

In [13], syslog events are correlated with alerts generated by
Snort [14]. This correlation is based on the context in which
events and alerts are generated — defined by a time window.
Therefore, features extracted from both sources allow the
detection of more complex attack patterns. However, according
to [12], the original architecture structure is prone to Denial-
of-Service (DoS) attacks and has performance issues when
being executed in a distributed fashion.

A multiple heterogeneous source architecture for intrusion
detection is presented in [10]. Network flows, such as HTTP
and DNS, are correlated by using their IP addresses. However,
a system administrator is required to define rules and make the
final decision when multiple correlated alarms are presented.

In [15], a distributed framework is presented to optimize
results from homogeneous IDSs. These IDSs are evaluated
separately by event injection, where labeled events are used to
check their specialty (i.e., ability to accurately detect a certain
type of attack). Every IDS node must evaluate its neighbor IDS
nodes by sending known samples to check the consistency of
the neighbor’s output. The neighbor with the best accuracy
is chosen as the specialist for the given class. Nevertheless,
conflicting scenarios and multiple source are not addressed.

In [16], an architecture for processing heterogeneous alerts
is proposed. This architecture has an anomaly detector that
works with the Snort IDS. The main purpose of this proposal
is to reconfigure Snort to support new signatures. However,
those signatures are generated based on manually created rules
which often result in false alarms.

An architecture for detecting multiple-step attacks is pro-
posed in [17]. Authors analyze logs in netflow and syslog
formats to identify sequential patterns for the same IP address.
This approach aims to detect multistage malicious actions
(e.g., correlating authentication errors with failed attempts to
access the system’s root user). However, monitoring and taking
preventive actions lies on the network administrator. Therefore,
this approach also presents high dependence on human action
for decision making.

Finally, a collaborative IDS [18] deploys IDSs in different
parts of the network. IDSs with different specialties or training
datasets can consult each other. However, every IDS analyzes
the same type of source. Therefore, the results are redundant
from a global point of view. Despite the limitations, we
consider this work a reference for building cooperative IDSs.
In the next section, we improved this network by analyzing
multiple and heterogeneous

C. Summary

Although there are efforts focused on employing decision
methods for dynamically selecting the most appropriate classi-
fier, those techniques do not leverage different data sources. On
the other hand, the integration of heterogeneous sources is also
being investigated by the research community. In this trend,
however, no efficient methods are presented for the integration
of multiple outputs by different classifiers, requiring the human
intervention (e.g., network administrator) for decision making.

TABLE I
SUMMARY OF THE CHARACTERISTICS OF SEVERAL RELATED PROPOSALS.

Ref Souce Integration Self-learning Human Dependency

[16] Single No Yes High

[15] Single Yes Yes Low

[18] Single Yes Yes Low

[13] Multiple Yes No High

[17] Multiple Yes No High

[10] Multiple No No High

Table I summarizes the proposals reviewed in this section
in terms of human dependency, cooperation among multiple
detectors, self-learning capability and the ability of using

multiple heterogeneous data sources. None of the proposals
combines low human dependency, self-learning, and the usage
of multiple data sources with the integration of multiple
classifiers. Our proposal, detailed in the next section, attempts
to fill this void.

III. PROPOSED ARCHITECTURE

This section presents the proposed counselors-based IDS
architecture. Figure 1 provides an overview of the components,
which are explained in the following subsections.

 Counselors Network Architecture

Signatures Repository
(Training and Evaluation)

Detector N

Classifiers

Detector 1

Classifiers

Data
Source 1

Data
Source 2

...

...

Observer

 Unknown Samples
 Repository

Data
Source N

Extractor 1
Data Source 1
Feature set = {A, B, C}

Detector 2

Classifiers

Counselors Network

.........

Labeled
Samples

3.A 3.B 3.C

4

5

6.A 6.B

6.C

1.A 1.B 1.C

2.A 2.B 2.C

8.B

8.C8.A

7.A 7.B
Advice Request Advice Request

Fig. 1. Architecture Overview.

A. Extractor

The first step in analyzing data is to collect it, such as
demonstrated in Figure 1 at 3.A, 3.B, and 3.C. Thus, the
Extractor component is responsible for reading data from
heterogeneous sources and extracting relevant features. The
implementation of this component is dependent on the sources
that are being monitored. In this paper we consider application
logs, network traffic statistics, and connection features.

The Extractor then transfers the filtered data to the Unknown
Samples Repository (step 4 in Figure 1), which stores data

samples and provides access to the detection engines that will
consume them. In real scenarios, where large volumes of data
must be processed, bottlenecks in storage can compromise sys-
tem performance. Thus, it is important to consider employing
tools that provide good performance for retrieving the stored
data, such as Firebase Real-time Database [19].

B. Observer

The Observer component is based on the publish/subscribe
model and serves as a broker for the samples published by
Extractors to be delivered to interested subscribers (at step
6.A, 6.B, and 6.C, in Figure 1). Detectors, in turn, subscribe
to certain topics of interest (e.g., a specific data source). There-
fore, any unnecessary processing overhead at the detection
component is avoided, because the Observer monitors the
Unknown Samples Repository (at step 5 in Figure 1), and only
forwards those samples of interest for each detector. In a sense,
the Observer’s role is similar to a load balancer.

C. Detection Engines

The Detection Engines contain all the algorithms used for
detecting intrusions, such as data mining techniques. These
algorithms perform both offline training and evaluation pro-
cedures (at steps 2.A, 2.B, and, 2.C) using samples retrieved
from a Signature Repository (at steps 1.A, 1.B, and, 1.C). Once
trained, Detectors can perform the online analysis of samples
(i.e., retrieved from Unknown Samples Repository).

The process performed by the Detection Engines is orga-
nized in three steps: sample consumption, classifier selection,
and data classification. A fourth step is the counsel exchang-
ing, performed only for conflicting cases (steps 7.A and 7.B).

1) Data Consumption: The intrusion detection process oc-
curs in real-time, therefore, it assumes that the training and
evaluation phases has already been performed previously (off-
line). Therefore, data consumption occurs in two different
moments: learning/training and intrusion detection phases.
First, signatures (i.e., an array of features with regard to the
monitored data source) are used to build the classifiers models.
Then, during the intrusion detection process, every notification
from the Observer triggers a new analysis task that requires
consuming the respective new sample. Feature filtering may be
performed at this time to retrieve only the relevant resources
from the new sample, avoiding network overhead [20].

It is important to note that the offline model can be re-built
in parallel to online intrusion detection to periodically update
the classifier models with new training data without harming
the detection time performance.

2) Classifier Selection: We assume that each detector node
employs multiple classifiers in the classification of unknown
samples. As related in Section II, there are already different
existing methods for combined results from multiple clas-
sifiers into a final result. These methods aim to maximize
the accuracy of the intrusion detection process, however us-
ing inaccurate classifiers can harm the results. Additionally,
computational resources may be unnecessarily wasted for
additional classifiers without accuracy improving. Therefore,

instead of applying all classifiers to each new sample, we rely
on a clustering method during the evaluation phase to choose
the most specialized classifiers according to their historical
performance for similar samples. During the evaluation phase,
every classifier is evaluated for each formed cluster. Then, the
most accurate classifiers are selected to the next phase. This
choice requires a selection criteria and a comparative metric.
In this work, we use the accuracy as a metric to define the
potential of a classifier to take a correct decision. Classifiers
accuracy can be computed at evaluation time according to
Equation 1, where true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) are considered.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Since multiple classifiers can present good accuracy during
the evaluation, we select both the most accurate classifier and
those that present it accuracy slightly worst by adopting a
maximum threshold. For example, assuming the threshold of
0.1% and the best classifier accuracy is 90%, classifiers with
at least 89.9% of accuracy are also selected.

3) Data Classification: In this phase the euclidian distance
between the cluster centroids and the unknown sample are
computed to verify which cluster this sample has more simi-
larity. Then, only the selected classifiers for this cluster are
used to classify the unknown sample. Thus, computational
resources are used only for those classifiers that show potential
to improve the detection accuracy. Note that evaluation phase
occurs offline, but classification phase is online. Thus, no
overhead is introduced to real-time intrusion detection.

Due our selection criteria allows multiple classifiers to be
classified, if there is no disagreement between their outputs,
the confidence in the final result is enhanced. However, it is
important to note that as more classifiers are selected for a
given cluster, greater is the chance of conflicting decisions. In
this case, it’s fundamental to define which one is presenting
true and reliable results. Even if one of them presents a slightly
superior accuracy, the final decision reliability is questionable.
The same problem also occurs in the opposite situation, when
none of the classifiers has sufficient historical accuracy to
make a reliable decision. In both cases any decision can
be reckless. Therefore, it is important to define a threshold
considering the trade-off between the decision reliability from
fewer classifiers and the potential for conflicting cases due to
classifiers overlapping.

Our proposal addresses these issues. We introduce a co-
operative counselors network composed of detectors that can
overcome conflicts by relying on advice from detectors with
different expertise and data sources. Further details regard to
the proposed counselors network are provided in Section III-D.

D. Counselors Network

A Counselors Network is a concept introduced in this paper
to deal with specific scenarios where the reliability of the
detector’s final decision is not ensured by itself. Usually,
this can be a consequence of two situations: (i) conflicting

outputs from accurate classifiers or (ii) questionable outputs
from inaccurate classifiers.

In particular, the first situation can be addressed by re-
questing advice from a homogeneous counselor detector (i.e.,
trained with a different knowledge dataset, but from the
same source). On the other hand, the second situation may
occur when detectors have a limited vision of the network
or applications that run on each host, preventing them from
accurately detecting attacks. That lack of relevant information
to detect specific attacks cab be overcome by requesting advice
to expert counselors that analyze complementary data sources.

It is important to note that advice exchanged between
detectors that rely on heterogeneous data sources should
have the same detecting goal (i.e., detecting the same attack
classes). For example, host-based and network-based detectors
can cooperate with each other to detect DoS attacks.

Another important factor to be considered in the advice
exchange is that the counselors reliability can be established
by its historical accuracy for detecting similar samples, in
the same way that is performed at classifier selection step.
Therefore, a response to advice must include both the coun-
selors result and its historical accuracy. Therefore, the detector
that asks for advice can ignore it if the counselor’s historical
accuracy for similar samples is considered low. In this case,
other counselors can be consulted, if available. Otherwise,
secondary metrics may be used, such as false alarm rate.

It is important to emphasize that the proposed method of
conflict resolution aims at mitigating the need for human
intervention, but another important feature is the ability to
recognize situations in which current conditions do not allow
effective detection. The causes for this limitation may include
factors such as insufficient training data or limited vision to
application or network information. In any case, those factors
are beyond the scope of this proposal.

Whenever a detector receives valid advice (i.e., with ac-
ceptable accuracy, according to the established parameters) it
generates a new signature that is added to the known sample
repository (as shown in Figure 1 at steps 8.A, 8.B, and 8.C).
That allows the proposed architecture to improve classifiers’
models by means of self-learning, because the new signatures
may be used for retraining the classifiers.

IV. IMPLEMENTATION

In order to deploy an IDS, several questions must be con-
sidered, such as, choosing the appropriate intrusion detection
technique (e.g., data classifiers or cluster algorithms), available
data-source, and which features to selected from those data-
source. Our proposed architecture is flexible into respect to
these project decisions. Bellow, we present a prototype that
enables the evaluation of the architecture.

A. Feature Extraction

The Extractor element must be prepared to extract features
from a specific data sources in which it is desired to perform
intrusion detection. Therefore, due to the multiple existing data
sources for intrusion detection, the implementation described

in this section abstracts the data extraction procedure. Thus,
from this point it is assumed that the relevant features have
been extracted. In particular, CICIDS2017 dataset is composed
of network traffic features extracted by CICFlowMeter [21].

B. Model Building

The model building procedure can be split into two essential
phases: classifiers training and classifier evaluation. Since both
phases should be fed with a different signature dataset (i.e.,
samples with known labels), we split the entire signature
dataset — retrieved at steps 1.A, 1.B, and 1.C of Figure 1
— into a training dataset and an evalution dataset. Each one
with the same number of samples and the same proportion
for each existing class. These settings attempt to find a trade-
off between the classifiers training level and the confidence in
the evaluation phase to estimate classifiers accuracy for future
unknown samples. Algorithm 1 details each phase.

input : k // number of clusters
evalData // evaluation signatures
trainData // training signatures
α // selection threshold

output: Selected classifiers for each formed cluster

// Training Phase
1 foreach c ← classifiers do
2 c ← Build(trainData);
3 end

// Evaluation Phase
4 clusters [k] ← KMeans(k, evalData);
5 foreach cluster ← clusters do
6 clusterInstances ← GetInstances(cluster)

foreach c ← classifiers do
7 foreach i ← clusterInstances do
8 output ← Classify(i);
9 c ← UpdateAccuracy(output);

10 end
11 end
12 foreach c ← classifiers do

// Select if is accurate
13 selectedClassfiers ← Select(c, α) ;
14 end
15 cluster ← selectedClassfiers
16 end
Algorithm 1: Offline phases: training and evaluation.

At training phase (Algorithm 1, lines 1—3), the training
dataset is used to train the following supervised machine
learning classifiers: NBTree, Naive Bayes, Random Tree,
Rep Tree, and Random Forest. Once trained, these classifiers
are evaluated using the evaluation dataset. This dataset is
first clustered through K-Means algorithm (Algorithm 1, line
4), then each classifier is evaluated for each formed cluster
(Algorithm 1, lines 5—11). Since classifiers can perform better
for different class patterns, we set the number of clusters
(K) based on the number of existing classes from evaluation

and training datasets, attempting to form clusters with similar
attack types.

After the evaluation, the best classifiers for each cluster are
choosen (Algorithm 1, lines 12—15). The classifier selection
considers both the most accurate classifier and others with
slightly less accuracy. The “slightly” is based on a threshold
α, set to 0.1% in our prototype.

C. Detection Phase

Contrary to previous steps, the Detection Phase runs in real
time. Therefore, classifiers are assumed to be already trained
and selected for each cluster. This phase focus on clustering
the unknown instance, by computing the euclidean distance
from the sample to each cluster — also previously formed,
at evaluation step. Once the selected classifiers are retrieved,
they classify the unknown instance (Algorithm 2, lines 1—5).

input : centroids // K clusters centroids
instance // unknown instance

output: Classification of the unknown instance

1 centroid ← KMeans(instance) ;
2 classifiers ← selClassfiers(centroid);

// Detection Phase
3 foreach classifier ← classifiers do
4 Class ← Classify(instance);
5 end

// Counselors Phase
6 if HaveConflict(classifiers) then
7 timestamp ← GetTimeStamp(instance);
8 Class ← RequestAdvice(timestamp);
9 end

Algorithm 2: Online phase: real-time intrusion detection.

If every selected classifier yields the same result, the de-
tection phase is finished and the result is output. However,
a conflicting scenario may occur, defined as satisfying all
the following constraints simultaneously: (i) the unknown
sample is clustered into a cluster with at least two classifiers
in the same Detector elected during its previous evaluation
phase, and (ii) there is at least one disagreement between
these classifiers. When these conditions are satisfied, a conflict
occurs inside the detector, therefore it is necessary to request
an advice to an counselor IDS node. Figure 2 details the
messages involved involved in getting/providing advice.

The process begins when a detector which found a de-
cision conflict sends an Advice Request to the counselors
network (i.e., Detector 1 on Figure 2). Then, the counselor
which receives the request sends a reply based in it own
already analyzed samples. Notice that different data sources
may operate under different time frames (e.g., two samples
indicating the same attack may have been collected at slightly
different times). Therefore, whenever an advice is received by
a detector, it must ensure that the information used to base
that advice is temporally consistent with the sample being
classified. To that end, we consider a maximum two-second

ttt

Counselor
Heterogenous Source

Signature Repository

Detector 1
Conflicting Node

Advice Request
<Timestamp>

[GET]

Historical Analysis
<Two-Second>

Results Summary

Results Summary

New Signature

Fig. 2. Advice exchanging flow-model.

time delay between the timestamps (i.e., the past two seconds
from the highest timestamp) associated with the advice and the
sample being classified. This time-window is based on [22].
Finally, detectors can output the result and retro-feed its
signatures dataset without human intervention — at steps 8.A,
8.B, and 8.C in Figure 1. Thus, self-learning can be done.

V. EVALUATION

In order to evaluate the proposed architecture, we present
two scenarios according to the type of data analyzed by
detectors. First, we assess the collaboration between detec-
tors analyzing multiple and heterogeneous data sources. This
analysis focuses on detailing the counselors mechanism by
looking for specific conflict cases. Then, we appraise the pro-
posed solution into a scenario where multiples homogeneous
detectors compose the counselors network — each one with
a different knowledge database but processing the same data
source. In this second scenario, we focus on recent threats and
into whole accuracy based on a larger-scale analysis involving
more than one million samples (i.e., 1,116,750 samples).

A. Scenario 1: Heterogeneous Cooperative Network

To evaluate the proposed architecture in a scenario with
multiple and heterogeneous sources, we choose the NSL-KDD
[23] dataset — an improved version of KDD Cup 99. Although
this is not a recent data set, it serves as a baseline since it is
widely used in the literature to evaluate recent proposals. From
this dataset, three detectors of heterogeneous data sources were
configured. The data sources correspond to individual TCP
connections features, traffic statistics and application logs, and
were used to generate detectors 1, 2, and 3, respectively. To
demonstrate the specific cases where our solution can solve
conflicts and improve the final output, we selected a reduced
set containing 1,000 samples from this dataset.

When analyzing the samples, Detector 1 — which is based
on individual TCP connections features — found multiple

decision conflicts. One particular case occurred into cluster
3, were two classifiers algorithms (i.e., IBk and NBtree) pre-
sented the same historical accuracy of 95.11%. In most cases,
these well-rated classifiers present the same results, there-
fore, improving the confidence in the classification process
strengthens. Therefore, according to our conflict definition,
these cases are not considered as a conflict. However, during
the analysis of a teardrop attack sample — a subclass of
Denial of Service (DoS) —, at detection phase, the classifiers
presented different results, thus constituting a conflict. While
IBk classifier classified this sample as an attack, NBTree
classifier identified this sample as being corresponding to a
normal behavior, as shown in Table II.

TABLE II
CONFLICTING SITUATION IN DETECTOR 1.

Classifier Accuracy VP FN VP VN Output

IBk 95,12195% 28 2 0 11 Attack
J48 85,36585% 24 6 0 11 -

NBTree 95,12195% 28 2 0 11 Normal
Naive Bayes 60,97561% 15 15 1 10 -

ADTree 85,36558% 24 6 0 11 -

ADABostM1 82,92683% 23 7 0 11 -

RepTree 48,78049% 9 21 0 11 -

KStar 92,68293% 27 3 0 11 -

Random Forest 75,60975% 20 10 0 11 -

Therefore, since Detector 1 cannot make a reliable decision
due to the disagreement of its selected classifiers, it must
request advice to the counselor’s network. In this scenario,
Detector 2 — that analyzes traffic statistics — acts as a
counselor to Detector 1. Since it is assumed that Detector 2
runs in parallel with Detector 1, the advice response is based
on the past two-second analysis. Then, upon receiving the
request, Detector 2 checks its already processed results based
on the request timestamp. Since Detector 2 unambiguously
detected the occurrence of a teardrop attack, as shown in
Table III, the result of this request confirms the IBk output
from Detector 1. This confirmation was obtained with J48
classification, which historically has 100% of accuracy for this
sample class, according to this data source. One of the main
reasons each detector is more expert in a different type of
attack is due to the specific features set analyzed by them [24].

Therefore, the final result from Detector 1 is based on
the advice coming from Detector 2: the unknown sample is
classified as an attack. In addition, the signature database
is updated with the new sample. From this point on, the
IBk classifier will be selected as the best classifier for this
cluster, until new information changes the knowledge base.
This happens because its updated accuracy will be higher than
that of NBTree and others classifiers.

B. Scenario 2: Homogeneous Cooperative Network

In addition to previous analyses, we also evaluate an alter-
native scenario involving the CICIDS2017 dataset. This is a
recent dataset that includes the most common attacks based

TABLE III
ADVICE FROM DETECTOR 2 BASED ON ITS BEST CLASSIFIER.

Classifier Accuracy VP FN VP VN Output

IBk 63,41463% 15 15 0 11 -

J48 100% 30 0 0 11 Attack
NBTree 63,41463% 15 15 0 11 -

Naive Bayes 80,48780% 30 0 8 3 -

ADTree 63,41463% 15 15 0 11 -

ADABostM1 63,41463% 15 15 0 11 -

RepTree 63,41463% 15 15 0 11 -

KStar 63,41463% 15 15 0 11 -

Random Forest 63,41463% 15 15 0 11 -

on the 2016 McAfee report 1, such as Brute force, DoS and
DDoS, Web-based, Infiltration, Heart-bleed, Bot, and Scan.

In particular, we focus on analyzing samples containing
DoS, DDoS, and PortScan attacks variations. Whereas De-
tector 1 is trained with 20% of total samples containing four
DoS, such as slow loris, slow HTTP test, DoS Hulk, and DoS
GoldenEye, Detector 2 is trained with 20% of DDoS (Loit and

1www.mcafee.com/2016ThreatsPredictions

88,36%

77,42%

83,45%

83,46%

78,60%

81,96%

75,48%

74,57%

74,57%

74,56%

74,56%

68,84%

74,57%

40,28%

Accuracy

Proposed
Solution

Best Local

Majority
Voting

Weighted
Voting

Single
Classifier

(avg)

Single
Classifier

(max)

Single
Classifier

(min)

0% 13% 25% 38% 50% 63% 75% 88% 100%

Detector 1 Detector 2

Fig. 3. Accuracy for each approach.

Ares botnets) and PortScan signatures. Thus, each detector has
a different knowledge dataset. As explained in Section IV,
these signatures are split into two parts with the same size.
Thus, the training dataset is 10% of total available samples.

However, as our goal is to evaluate the cooperation between
these detectors, both analyze all classes. Then, we aggregate
the remaining 80% samples from each class and use them to
test the detectors. Therefore, even if each detector is trained
with specific attack classes, both are tested with all classes.

We compare our results in terms of accuracy (Figure 3)
and detection rate (Figure 4) with six different approaches.
The Best Local approach selects only the classifier which
demonstrates the best accuracy during the evaluation phase
to be used on real-time detection. This approach performed
worse than average among all classifiers from Detector 1.

Majority and Weighted Voting approaches consider the
output of all classifiers to take a final decision. However,
whereas Weighted approach considers the past accuracy of
each classifier to define its weight during the voting, Majority
Voting only considers the results from the classifiers that yields
the same result as the majority. Both approaches perform better
than the best single-classifier (i.e., Random Forest with 81.96%
into Detector 1 and 74.57% into Detector 2). The Majority

81,38%

45,77%

68,75%

68,75%

49,29%

57,55%

43,30%

34,53%

34,53%

34,52%

34,52%

42,16%

80,25%

34,52%

Detection Rate

Proposed
Solution

Best Local

Majority
Voting

Weighted
Voting

Single
Classifier

(avg)

Single
Classifier

(max)

Single
Classifier

(min)

0% 13% 25% 38% 50% 63% 75% 88% 100%

Detector 1 Detector 2

Fig. 4. Detection rate for each approach.

Voting performance is lower than Weighted Voting: it presented
conflicting cases that can not be solved (i.e., 50% of classifiers
present attack outputs and other 50% present normal outputs).

Regarding Detector 2, it presented a poor performance for
all methods and classifiers. The main reason may be related
to potentially insufficient training data. It is important to note
that Naive Bayes presents the best detection rate (81.38%),
but was the worst accuracy (40.28%). This is due to its poor
performance in detecting normal samples. Therefore, accuracy
can be considered more representative than the detection rate.

Finally, our approach can overcome every other, standing
out especially in the Detector 1, where the accuracy of
88.36% was achieved. The same can be observed in terms
of the Detection rate, in Figure 4, where 81.38% of attacks
were detected successfully. In particular, cluster number 2 at
Detector 1 resolved 1.485 conflicts (2.36% of total 61.339
clustered samples), thus improving its accuracy. In Detector
2 scenario, our proposal and Best Local achieves the best
accuracy — same as the best single classifier accuracy. This
low improvement is due the low number of conflicting cases
(i.e., only 417 conflicts among all clusters). The detection rate
is poor for all approaches except for Naive Bayes. In contrast,
NaiveBayes presented many false positives, which makes its
accuracy worse than the other classifiers.

VI. CONCLUSION

The heterogeneity of existing attacks on real computer
systems and networks is a very challenging issue that should
be carefully addressed. Data classification algorithms can be
helpful in dealing with this. The literature demonstrates that
the use of multiple classifier algorithms is more efficient
than a single algorithm. However, many existing works are
only concerned with choosing the best algorithm to correctly
classify samples from a single data source, consequently
presenting errors or conflicts. On the other hand, works that
consider multiple data sources do not present mechanisms to
deal with conflict situations when integrating different results.

This work proposed a new architecture that relies on the
dynamic choice between multiple classifiers supported by
advice exchange from detectors that can analyze multiple
and heterogeneous data sources, thus improving the trust in
the final decision. Our experiments demonstrate that dynamic
classifier selection can be enhanced when multiple sources are
analyzed, and conflicts are solved without human intervention.

In future work, we plan to extend our architecture by em-
ploying big data technologies to deal with scenarios of a huge
amount of traffic. In addition, we will explore other classifiers
and cluster algorithms, as well the detectors parameters.

REFERENCES

[1] R. Singh, H. Kumar, and R. Singla, “An intrusion detection system
using network traffic profiling and online sequential extreme learning
machine,” Expert Systems with Applications, vol. 42, no. 22, pp. 8609–
8624, 2015.

[2] E. W. Ngai, L. Xiu, and D. C. Chau, “Application of data mining
techniques in customer relationship management: A literature review
and classification,” Expert systems with applications, vol. 36, no. 2, pp.
2592–2602, 2009.

[3] T. M. Mitchell, “Artificial neural networks,” Machine learning, vol. 45,
pp. 81–127, 1997.

[4] E. Alpaydin, Introduction to machine learning. MIT press, 2009.
[5] A. S. Britto, R. Sabourin, and L. E. Oliveira, “Dynamic selection

of classifiers—a comprehensive review,” Pattern Recognition, vol. 47,
no. 11, pp. 3665–3680, 2014.

[6] T. Woloszynski and M. Kurzynski, “A measure of competence based
on randomized reference classifier for dynamic ensemble selection,” in
20th International Conference on Pattern Recognition (ICPR). IEEE,
2010, pp. 4194–4197.

[7] K. Woods, W. P. Kegelmeyer, and K. Bowyer, “Combination of multiple
classifiers using local accuracy estimates,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 19, no. 4, pp. 405–410, 1997.

[8] J. Kevric, S. Jukic, and A. Subasi, “An effective combining classifier
approach using tree algorithms for network intrusion detection,” Neural
Computing and Applications, pp. 1–8, 2016.

[9] A. Mi and H. Sima, “Classifier selection method based on clustering
and weighted mean,” Journal of Intelligent & Fuzzy Systems, vol. 31,
no. 4, pp. 2335–2340, 2016.

[10] S. Marchal, X. Jiang, R. State, and T. Engel, “A big data architecture
for large scale security monitoring,” in International congress on Big
data (BigData Congress). IEEE, 2014, pp. 56–63.

[11] M. Sabourin, A. Mitiche, D. Thomas, and G. Nagy, “Classifier com-
bination for hand-printed digit recognition,” in Proceedings of the Sec-
ond International Conference on Document Analysis and Recognition.
IEEE, 1993, pp. 163–166.

[12] R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and
big heterogeneous data: a survey,” Journal of Big Data, vol. 2, no. 1,
p. 3, 2015.

[13] A. K. Ganame, J. Bourgeois, R. Bidou, and F. Spies, “A global security
architecture for intrusion detection on computer networks,” Computers
& Security, vol. 27, no. 1, pp. 30–47, 2008.

[14] M. Roesch, “Snort: Lightweight intrusion detection for networks.” in
Proceedings of LISA ’99: 13th Systems Administration Conference,
vol. 99, no. 1. USENIX, 1999, pp. 229–238.

[15] K. Bartos and M. Rehak, “Self-organized mechanism for distributed
setup of multiple heterogeneous intrusion detection systems,” in Sixth
international conference on Self-Adaptive and Self-Organizing Systems
Workshops (SASOW). IEEE, 2012, pp. 31–38.

[16] K. Hwang, H. Liu, and Y. Chen, “Cooperative anomaly and intrusion
detection for alert correlation in networked computing systems,” IEEE
Transaction on Dependable and Secure Computing, 2004.

[17] C.-M. Chen, G.-H. Lai, and P.-Y. Young, “Defense joint attacks based
on stochastic discrete sequence anomaly detection,” in Asia Joint Con-
ference on Information Security (AsiaJCIS). IEEE, 2016, pp. 74–79.

[18] C. J. Fung and Q. Zhu, “Facid: A trust-based collaborative decision
framework for intrusion detection networks,” Ad Hoc Networks, vol. 53,
pp. 17–31, 2016.

[19] Firebase realtime database. [Online]. Available: https://firebase.google.
com/docs/database/

[20] A. A. Olusola, A. S. Oladele, and D. O. Abosede, “Analysis of
KDD’99 intrusion detection dataset for selection of relevance features,”
in Proceedings of the World Congress on Engineering and Computer
Science, vol. 1, 2010, pp. 20–22.

[21] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization.” in
Proceedings of the 4th International Conference on Information Systems
Security and Privacy (ICISSP), 2018, pp. 108–116.

[22] (1999) KDD-CUP-99 Task Description. [Online].
Available: https://archive.ics.uci.edu/ml/machine-learning-databases/
kddcup99-mld/task.html

[23] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in Symposium on Computational
Intelligence for Security and Defense Applications (CISDA). IEEE,
2009, pp. 1–6.

[24] S. E. Quincozes, A. Copetti, and J. F. Kazienko, “Avaliação de Con-
juntos de Atributos para a Detecção de Ataques de Personificação na
Internet das Coisas,” in Brazilian Symposium on Computer Engineering
(SBESC). SBC, 2018, pp. 1–8.

