
A CONTROL STRUCTURE FOR TIME DEPENDENT REASONING 

by 
William J. Long and Thomas A. Russ 

Clinical Decision Making Group, Laboratory for Computer Science 
Massachusetts Institute of Technology, Cambridge, Massachusetts 

Abstract 
by afternoon having changed to another state. 

In many domains it is important to reason about processes that 
change over time. Unfortunately, in many situations relevant data may 
not be available when the reasoning is done; there may be corrections to 
the data; or the state of the process may be changing. These problems 
are particularly evident in the reasoning involved in patient management. 
Physicians tend to reason about the patient state as a series of states. 
Therefore, a system attempting to capture their expertise must be able to 
find the appropriate time intervals in which to do the reasoning, handle 
incomplete data and handle changes to data even when the data relates 
to a state that has since changed. 

We present a data-driven control structure for reasoning processes 
in a domain in which updating or changes can occur. This mechanism 
implements two abstractions for these processes: the abstraction of data 
from a continuous process and the abstraction of decision making in a 
static state context. We will illustrate the use of the system with an 
example from a medical expert system for patient assessment, but the 
techniques are also applicable to other domains such as business 
decision making with result tracking and sensor interpretation. 

Introduction 

Decisions in an intensive care setting often have to be made quickly 
even though information from such sources as laboratory tests (taking 
hours to process) are not available. When those results are received, 
they may still be pertinent but they refer to a previous patient state 
possibly modified by therapy. 

A second problem concerns modeling change over time. Many 
processes, including many of those that provide patient data, evolve. 
Each new state is dependent on the previous state and current inputs. 
The obvious way to model such evolution is as a continuous process, but 
people tend to think in terms of states. That is, people consider a 
parameter to be low or high even though it is continuously varying or 
composed of separate values at time points. If a change has special 
significance, it is given a name and used in reasoning as if it were a static 
state: "The patient's blood pressure dropped this morning." These states 
are linked together by a more abstract notion of change. The key to such 
reasoning is picking the proper time intervals to divide a problem. This 
kind of behavior is reflected in a physician's summary of the patient's 
status. The patient is described as being in one state in the morning, but 

This research was supported in part by the National Institutes of Health 
Grant No. 1 P01 LM 03374-03 from the National Library of Medicine, in 
part by the Whitaker Health Sciences Fund, and in part by BRSG S07 RR 
07047-17, awarded by the Biomedical Research Support Grant, Division 
of Research Resources, National Institutes of Health. 

Other Work 

The problem we address is different from those addressed so far in 
temporal reasoning. Most recent research in that field has focused on 
reasoning about relationships between events occurring at different times 
[Allen, 1931a; Allen, 1981b; Bruce, 1972; Kahn and Gorry, 1977; 
McDermott, 1981 ]. The reasoning issues in domains where data arrives at 
different times has only been dealt with tangentially in export systems to 
date. 

To a limited extent MYCIN [Shortliffe, 1976], and the Digitalis 
Advisor [Swartout, 1977] have addressed this problem. MYCIN uses a 
complete recomputation strategy to correct previous information and the 
Digitalis Advisor uses a dependency directed updating strategy. In both 
cases, the changes are assumed to take place within one consultation 
session. Interestingly both programs use a static state assumption for 
most of the input data. For example, the Digitalis Advisor asks for the 
serum potassium concentration as if there were only one. VM [Fagan, 
1980] is the closest in spirit to our work. It determines states from nearly 
continuous data, but is unable to update past assessments from newly 
received data about the past. Instead, data that is not current is either 
used as current or ignored as too old depending on how fast the 
particular parameter can change. Thus, the full problem of reasoning in a 
domain where data is received over time has not been addressed. 

System Rationale 

The motivation for this work is the need to take appropriate account 
of new data that pertains to past situations in which decisions have 
already been made. This often happens in the medical domain with 
laboratory data which takes hours to process, or when erroneous data is 
corrected. Treating such data as new data when it becomes available is 
wrong. Instead, we require that the program reexecute the reasoning in 
the time frame to which the data applies. Backtracking and withdrawing 
conclusions and then reexecuting the reasoning modules as if the data 
were available also has shortcomings because recommendations for 
actions in the past cannot be changed. Therefore, the reasoning routines 
must be able to distinguish between reasoning in the future, when both 
information (e.g., conclusions and diagnoses) and actions (e.g., drug 
therapy) can be changed and reasoning in the past, when only the 
information can be changed. 

The recalculation and updating schemes discussed above are 
restricted to the current consultation. One reason is that they do not 
include any concept of now. Now is of consequence when calculations 
can produce action recommendations, because a re-calculation in the 
past must deal with the actual action as a given, even if it is judged to be 
incorrect in light of the new data. 



W. Long and T. Russ 231 

Thus, the control structure must: 

• be able to determine appropriate intervals for reasoning and have the 
system enforce the state abstraction. 

• be able to interpret the data as if interpreting a continuous process. 

• allow changes to data in the past and control the process of 
changing the conclusions and even the reasoning intervals when 
appropriate. 

• execute changes with a minimum of recalculation. 

• support the distinction between the past and the future. 

The system will be described using a procedural implementation of 
the reasoning units The idea, however, is equally applicable to a rule or 
frame based system as long as there is a mechanism for processing raw 
data to determine appropriate intervals, explicitly representing data 
dependencies, and keeping a history of the data values. 

System Description 

The system has a relatively simple basic structure consisting of 
reasoning units, called modules, and the following kinds of variables: 

1. Point variables represent the raw data for the program. They 
represent facts true at specific instants (e.g., laboratory values at 
specific times or actions such as the injection of a drug). Internally, a 
point variable is simply a list of data-time pairs. The part of this list 
pertinent to the time interval of interest is provided to the reasoning 
module during execution. 

2. Interval variables support the state abstraction As such they 
represent an interpretation of raw data over a time interval for which a 
constant interpretation is appropriate. Thus the values for an interval 
variable are represented as a set of non-overlapping time intervals 
with a single value for each interval. The system must be able to 
support both past and future values since programs are often called 
to reason about the future to do planning. 

3. Continuation variables provide an interface between the 
continuous process abstraction and the state abstraction. They hold 
the process state information for continuous processes at specified 
time points. The problem they address is the breakdown of the 
continuous process abstraction when data is received out of 
chronological order. Our answer is to segment the process, 
remembering the state of the process in the appropriate continuation 
variable at the end of each time segment. Thus, the variable contains 
the information necessary to restart the process as if it were 
continuing from the previous interval. In this way a continuous 
process over a segment can be treated in the same way as other 
reasoning processes. In particular it can be reexecuted for any 
segment in which the input variable values have changed (including 
the state variable from the previous segment). 

All system variables have associated with them the type, the history 
of values, and pointers to modules affecting them. 

Modules are declared with the inputs and outputs explicitly listed as 
shown in figures 1 and 2. The only restriction on input and output 
variables is that each variable can appear in at most one module's output 
list, thus uniquely specifying the source when a value is needed. For 
each module the system creates a list of processes corresponding to the 
execution of the module over a time interval. Each process has an 
associated time interval to maintain the correspondence between the 
process and the variable values. 

An Example 

As an example of how such definitions could be constructed at both 
the data acquisition and reasoning levels, consider a (simplistic) pair of 
modules, one to interpret raw diastolic blood pressure data and one to 
evaluate blood pressure using interpreted diastolic and systolic values. In 
the example raw_diastoi ic is a point variable; d iasto l ic .cont is a 
continuation variable; diastol ic, systolic, and bp_eval are interval 
variables. The modules are called on the interval bounded by the system 
variables begin_time and end_time. with the current time set to now. ,The 
distinguished values - i n f i n i t y and i n f i n i t y are the system's end 
points. The purpose of interpret_d iastol ic (Figure 1) is to identify the 
interval over which the raw diastolic pressures are relatively constant and 
set the diastolic pressure for that interval to an appropriate value. 
Evaluate_bp (Figure 2) uses the abstract diastolic and systolic pressures 
and evaluates the blood pressure. 

The values of the input variables are supplied to the code in local 
variables of the same name. They assume the interval from beg in_time 
to end_t ime (except that the value of a continuation variable assumes the 
previous interval) unless times are explicitly stated. In this case 
i n t e r p r e t _ d i a s t o l i c needs the raw data from beg in_t ime to i n f i n i t y 
because changes or additions may cause the interval of stable values to 
be longer than before, f i rst_t ime returns the time of the first data item 
(or in f in i ty ) . First data returns the corresponding data part. 
Matching_t ime returns the time of the first datum accepted by the 
predicate. The predicate 5igni f_di f f decides whether the difference 
between two values is significant enough to start a new interval. Since 
changes to the earlier values could have eliminated the difference 
between the previous interval and the current interval, the continuation 
variable is used to verify that a difference still exists. If not, the current 
execution is aborted with an explicit request to reexecute the module on 
the previous interval. When that is complete the module is executed 
again on the remaining part of this interval After execution, the values for 
the output variables and the end_t ime of the interval are set from the local 
variables of the same name. 

The algorithm used by interpret_d iasto l ic identifies the points of 
significant change by making sure the change still holds at the beginning 
of the interval and by identifying the appropriate end of the interval using 
the same predicate. In this example the value for diastol ic is the first 



232 W. Long and T. Russ 

raw_diastol ic value in the interval In a more demanding situation, the 
module might average the values, identify intervals over which the 
parameter is unstable, or provide information about the trend over an 
interval or between intervals. 

The evaluate_bp module operates in a static state. When a request 
for bp_eval occurs in an interval for which the value does not exist, 
evaluate_bp is called with begin_t ime and end_t ime set for that interval. 
The diastolic and systolic values for evaluate_bp are provided by the 
system If they do not exist, the modules having them as output are 
called; e.g., interpret_d iastol ic for the diastolic value. If the values 
are not constant over the desired interval, evaluate_bp is called on each 
successive sub-interval for which they are constant. This continuation is 
handled by the same mechanism that initially called evaluate_bp. If new 
data becomes available, the system would reexecute the module, 
changing the interval boundaries as necessary. 

The result is reasoning code free from explicit handling of time 
dependencies. 

Figure 3 illustrates the interaction of the two example modules. 
From the raw diastolic data, in terpret_diasto l ic establishes two 
intervals, with pressures of 65 and 55 respectively. A similar modulo for 
interpreting the systolic pressure finds intervals with pressures 95 and 85, 
but the systolic pressure changes one data point before the diastolic. As 
a result, there are three intervals over which evaluate.bp is called. With 
a pressure of 95/65, bp_eval is normal. With pressures of 85/65 and 
85/55, bp.eval is abnormal. Even though there are three processes for 
computing bp_eval, only two intervals result. 

significant change predicate with a variable. In addition, a given variable 
may be an input for more than one module. When such variables change 
value, the modules that depend on the new value are queued to be 
executed If the output variables change, the attected processes are 
queued. The queue is emptied in time order and data dependency order 
(to the extent the order can be determined from the module declarations). 
Even so, it is possible that a process will be executed more than once. 

Since the conclusions of the reasoning modules are not valid until 
all changes are propagated, only the last execution's results should be 
displayed to the user. The system provides an output queuing 
mechanism to support this. 

The effect of this control mechanism is that changes are always 
propagated through the record of what has happened. It is as if the 
continuous process of evaluating the input over time were rolled back to 
the point where a change was made and restarted at that point, except 
that the reasoning procedures are aware of the fact that they can not 
recommend new actions during time in the past. Only those modules are 
reexecuted that are needed to correct the execution history. 

Conclusion 

Providing system support for the data point and state abstractions 
allows us to model time-dependent processes in a natural way while 
keeping the domain code as free from computer housekeeping chores as 
possible This simplification can be expected to ease the burden on 
knowledge engineers and enhance the reliability of expert systems. 

References 

[1] Allen, J. F., A General Model of Action and Time, Dept. of Computer 
Science, University of Rochester TR 97, November 1981. 

[2] Allen, J. F., Maintaining Knowledge about Temporal Intervals, Dept. 
of Computer Science, University of Rochester TR 86, January 1981. 

[3] Bruce, B. C, "A Model for Temporal References and its Application 
in a Question Answering Program," Artificial Intelligence 3, 1972. 

[4] Fagan, L. M., VM: Representing Time-Dependent Relations in a 
Medical Setting, Ph.D. Thesis, Department of Computer Science, 
Stanford University, June 1980. 

[5] Kahn, K. M. and G. A. Gorry, "Mechanizing Temporal Knowledge," 
Artificial Intelligence 9, 1977. 

[6] McDermott, D. V., "A Temporal Logic for Reasoning About 
Processes and Plans," Computer Science Department, Yale 
University, RR 196, 1981. 

[7] Shortliffe, E. H., Computer Based Medical Consultations: MYCIN, 
Elsevier North Holland, Inc., 1976. 

[8] Swartout, W. R., A Digitalis Therapy Advisor with Explanations, 
Massachusetts Institute of Technology Laboratory for Computer 
Science, MIT/LCS/TR-176, February 1977. 

System Control 

The system control is data driven. Processes to determine values 
are created when needed and values are propagated when the processes 
finish. If the value of a variable represents a change, the system 
reexecutes processes depending on the changed value, and so forth. 
This reexecution requires some care on the part of the control structure. 
The function that sets values must determine over what interval a new 
value actually constitutes a change. Otherwise, reexecution would 
always propagate to the end of the time space. To cover situations where 
changes may be arbitrarily small, it is possible to associate a 


