计算机科学 ›› 2019, Vol. 46 ›› Issue (10): 1-6.doi: 10.11896/jsjkx.180901792
• 大数据与数据科学* • 下一篇
葛梦凡, 刘真, 王娜娜, 田靖玉
GE Meng-fan, LIU Zhen, WANG Na-na, TIAN Jing-yu
摘要: 大多数推荐算法常采用基于迁移学习的跨领域推荐技术,借助辅助领域的丰富数据信息来解决传统单域推荐中普遍存在的数据稀疏等问题。但若迁移的知识比较单一,没有结合用户行为,则往往会在目标领域导致负迁移、推荐结果不佳等问题。因此,考虑结合其他知识来辅助完成目标领域的学习任务。利用用户异构行为改善推荐结果,正是近年来的新兴研究热点之一。在用户数据中,标签与用户的真实偏好相关,通常能够反映用户或项目的部分隐式特征。通过结合迁移学习及用户标签数据,文中提出了基于标签迁移的跨领域项目推荐算法ITTCF(Item-based Tag Transfer Collaborative Filtering)。该算法摒弃了在跨领域迁移推荐中仅对评分模式进行挖掘迁移的单一辅助方式,将用户行为反馈与数字评分相结合,融合了评分模式和标签这两种异构用户行为。在多个数据集中的实验结果均表明,ITTCF具有更好的RMSE和MAE值,较传统算法分别提升了1.61%~6.67%和1.97%~8.83%。
中图分类号:
[1]BELLOGÍN A,CANTADOR I,CASTELLS P.A comparative study of heterogeneous item recommendations in social systems[J].Information Sciences,2013,221(1):142-169. [2]IVÁN C,VALLET D.Content-based recommendation in social tagging systems[C]//ACM Conference on Recommender Systems.ACM,2010:237-240. [3]PAN W.A survey of transfer learning for collaborative recommendation with auxiliary data[J].Neurocomputing,2016,177(C):447-453. [4]MA F,WANG W,DENG Z.TagRank:A New Tag Recommendation Algorithm and Recommender Enhancement with Data Fusion Techniques[M]//Social Media Retrieval and Mining.Berlin:Springer,2013:80-91. [5]CREMONESI P,TRIPODI A.Cross-Domain Recommender Systems[C]//11th IEEE International Conference on Data Mining Workshops.IEEE Computer Society,2011:496-503. [6]CHEN L,ZHENG J,GAO M,et al.TLRec:Transfer Learning for Cross-Domain Recommendation[C]//2017 IEEE International Conference on Big Knowledge (ICBK).IEEE Computer Society,2017:167-172. [7]ZHUANG F,LUO P,XIONG H,et al.Cross-Domain Learning from Multiple Sources:A Consensus Regularization Perspective[J].IEEE Transactions on Knowledge & Data Engineering,2010,22(12):1664-1678. [8]TIROSHI A,KUFLIK T.Domain Ranking for Cross Domain Collaborative Filtering[M]//User Modeling,Adaptation,and Personalization.Berlin:Springer,2012:328-333. [9]LONI B,SHI Y,LARSON M,et al.Cross-domain collaborative filtering with factorization machines[C] //European Conference on Information Retrieval.Springer,2014:656-661. [10]AZAK M.Crossing:A Framework to Develop Knowledge-based Recommenders in Cross Domains[D].Middle East Technical University,2010. [11]KAMINSKAS M,RICCI F.A generic semantic-based frame-work for cross-domain recommendation[C]//International Workshop on Information Heterogeneity and Fusion in Recommender Systems.ACM,2011:25-32. [12]SHI Y,LARSON M.Tags as bridges between domains:improving recommendation with tag-induced cross-domain collaborative filtering[C]//19th International Conference on User Modeling,Adaption and Personalization.Springer,2011:305-316. [13]WAN J,WANG X,YIN Y,et al.Transfer Learning in Collaborative Filtering for Sparsity Reduction Via Feature Tags Learning Model[C]//Computer Science and Technology.2015:56-60. [14]ADAMS R P,DAHL G E,MURRAY I.Incorporating side information into probabilistic matrix factorization using Gaussian processes[C]//Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence.ACM,2010:1-9. [15]PAN W,XIANG E W.Transfer learning in collaborative filtering with uncertain ratings[C]//Twenty-Sixth AAAI Conference on Artificial Intelligence.AAAI Press,2012:662-668. [16]LI B,YANG Q,XUE X.Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for Sparsity Reduction[C]//Proceedings of 2009 International Joint Conference on Artificial Intelligence.Morgan Kaufmann,2009:2052-2057. [17]LI B,YANG Q,XUE X.Transfer learning for collaborative filtering via a rating-matrix generative model[C]//International Conference on Machine Learning.ACM,2009:617-624. [18]VIG J,SEN S,RIEDL J.Tagsplanations:explaining recommendations using tags[C]//International Conference on Intelligent User Interfaces.ACM,2009:47-56. [19]SALTON G,BUCKLEY C.Term-weighting approaches in automatic text retrieval[J].Information Processing & Management,1988,24(88):513-523. [20]SHEPITSEN A,GEMMELL J,MOBASHER B,et al.Personali-zed recommendation in social tagging systems using hierarchical clustering[C]//Proceedings of the 2008 ACM Conference on Recommender Systems(RecSys 2008).ACM,2008:259-266. [21]HARPER F M,KONSTAN J A.The MovieLens Datasets:History and Context[J].ACM Transactions on Interactive Intelligent Systems,2016,5(4):1-19. [22]WINLAW M,HYNES M B,CATERINI A,et al.Algorithmic Acceleration of Parallel ALS for Collaborative Filtering:Spee-ding up Distributed Big Data Recommendation in Spark[C]//IEEE International Conference on Parallel and Distributed Systems.IEEE,2016:682-691. [23]BELL R M.Lessons from the Netflix prize challenge[J].ACM SIGKDD Explorations Newsletter,2007,9(2):75-79. |
[1] | 张佳, 董守斌. 基于评论方面级用户偏好迁移的跨领域推荐算法 Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer 计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131 |
[2] | 郑文萍, 刘美麟, 杨贵. 一种基于节点稳定性和邻域相似性的社区发现算法 Community Detection Algorithm Based on Node Stability and Neighbor Similarity 计算机科学, 2022, 49(9): 83-91. https://doi.org/10.11896/jsjkx.220400146 |
[3] | 方义秋, 张震坤, 葛君伟. 基于自注意力机制和迁移学习的跨领域推荐算法 Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning 计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011 |
[4] | 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉. 基于边框距离度量的增量目标检测方法 Incremental Object Detection Method Based on Border Distance Measurement 计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132 |
[5] | 武红鑫, 韩萌, 陈志强, 张喜龙, 李慕航. 监督和半监督学习下的多标签分类综述 Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning 计算机科学, 2022, 49(8): 12-25. https://doi.org/10.11896/jsjkx.210700111 |
[6] | 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰. 基于多源迁移学习的大坝裂缝检测 Dam Crack Detection Based on Multi-source Transfer Learning 计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124 |
[7] | 何茜, 贺可太, 王金山, 林绅文, 杨菁林, 冯玉超. 比特币实体交易模式分析 Analysis of Bitcoin Entity Transaction Patterns 计算机科学, 2022, 49(6A): 502-507. https://doi.org/10.11896/jsjkx.210600178 |
[8] | 朱旭东, 熊贇. 基于样本分布损失的图像多标签分类研究 Study on Multi-label Image Classification Based on Sample Distribution Loss 计算机科学, 2022, 49(6): 210-216. https://doi.org/10.11896/jsjkx.210300267 |
[9] | 彭云聪, 秦小林, 张力戈, 顾勇翔. 面向图像分类的小样本学习算法综述 Survey on Few-shot Learning Algorithms for Image Classification 计算机科学, 2022, 49(5): 1-9. https://doi.org/10.11896/jsjkx.210500128 |
[10] | 谭珍琼, 姜文君, 任演纳, 张吉, 任德盛, 李晓鸿. 基于二分图的个性化学习任务分配 Personalized Learning Task Assignment Based on Bipartite Graph 计算机科学, 2022, 49(4): 269-281. https://doi.org/10.11896/jsjkx.210500125 |
[11] | 左杰格, 柳晓鸣, 蔡兵. 基于图像分块与特征融合的户外图像天气识别 Outdoor Image Weather Recognition Based on Image Blocks and Feature Fusion 计算机科学, 2022, 49(3): 197-203. https://doi.org/10.11896/jsjkx.201200263 |
[12] | 张舒萌, 余增, 李天瑞. 跨领域文本的可迁移情绪分析方法 Transferable Emotion Analysis Method for Cross-domain Text 计算机科学, 2022, 49(3): 218-224. https://doi.org/10.11896/jsjkx.210400034 |
[13] | 李星燃, 张立言, 姚树婧. 结合特征融合和注意力机制的微表情识别方法 Micro-expression Recognition Method Combining Feature Fusion and Attention Mechanism 计算机科学, 2022, 49(2): 4-11. https://doi.org/10.11896/jsjkx.210900028 |
[14] | 方仲礼, 王喆, 迟子秋. 面向多标签小样本学习的双流重构网络 Dual-stream Reconstruction Network for Multi-label and Few-shot Learning 计算机科学, 2022, 49(1): 212-218. https://doi.org/10.11896/jsjkx.201100143 |
[15] | 侯宏旭, 孙硕, 乌尼尔. 蒙汉神经机器翻译研究综述 Survey of Mongolian-Chinese Neural Machine Translation 计算机科学, 2022, 49(1): 31-40. https://doi.org/10.11896/jsjkx.210900006 |
|