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Abstract

A permutation σ of {1, 2, . . . , n} contains a 123-pattern provided it con-
tains an increasing subsequence of length 3 and, otherwise, is 123-avoiding.
In terms of the n× n permutation matrix P corresponding to σ, P con-
tains a 123-pattern provided the 3 × 3 identity matrix I3 is a submatrix
of P . If A is an n× n (0, 1)-matrix, then A is 123-forcing provided every
permutation matrix P ≤ A contains a 123-pattern. The main purpose of
this paper is to characterize such matrices A with the minimum number
of 0’s.

1 Introduction

Let n be a positive integer and let Pn be the set of n × n permutation matrices
corresponding to the set Sn of permutations of {1, 2, . . . , n}. A permutation σ of
{1, 2, . . . , n} contains a 123-pattern provided it contains an increasing subsequence
of length 3 and, otherwise, is 123-avoiding. In terms of the n × n permutation
matrix P corresponding to σ, P contains a 123-pattern provided the 3 × 3 identity
matrix I3 is a submatrix of P . If A is an n× n (0, 1)-matrix, then A is 123-forcing
provided every permutation matrix P ≤ A (pointwise order) contains a 123-pattern;
the matrix A thus blocks all 123-avoiding permutations in that every 123-avoiding
permutation matrix has at least one 1 in a position of a 0 of A. The number of n×n
123-avoiding permutation matrices is the Catalan number

Cn =

(
2n
n

)
n + 1

.

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



R.A. BRUALDI AND L. CAO/AUSTRALAS. J. COMBIN. 86 (1) (2023), 169–186 170

In fact, this is the same number for any of the six permutations of {1, 2, 3}, see e.g.
[1]. The ideas of forcing and blocking can be extended to other patterns [3].

The main purpose of this paper is to characterize 123-forcing matrices (equiva-
lently, blockers of 123-avoiding matrices) A with the minimum number of 0’s. Such
matrices have been previously investigated in [3] where it was shown that the mini-
mum possible number of 0’s is n. The following example illustrates these concepts.

Example 1.1 Let n = 6 and let

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then every permutation matrix P ≤ A contains one of the two 1’s from row 1, one
of the three 1’s from column 6, and then necessarily one of the 1’s from the 2 × 3
submatrix formed by rows 2 and 3, and columns 3, 4, and 5, thereby resulting in a
123-pattern. Thus A is a 123-forcing matrix; equivalently, A blocks all 6 × 6 123-
avoiding permutation matrices. Another example of a 123-forcing matrix with 6 0’s
that is readily checked is ⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Of course, an n × n matrix A with a row or column of all 0’s is 123-forcing, since
there are no permutation matrices P ≤ A. �

2 Characterization of minimum 123-forcing matrices

In [3] the cyclic-Hankel decomposition of the n × n matrix Jn of all 1’s into n per-
mutation matrices was defined by starting with row 1 and cyclically permuting it as
for circulant matrices, but in a right-to-left fashion, obtaining n disjoint permuta-
tion matrices. This is illustrated below for n = 6 using letters a, b, c, d, e, f below to
designate the resulting permutation matrices:⎡

⎢⎢⎢⎢⎢⎢⎣

a b c d e f
b c d e f a
c d e f a b
d e f a b c
e f a b c d
f a b c d e

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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The cyclic-Hankel decomposition gives a decomposition of Jn into permutation matri-
ces each of which avoids a 123-pattern, since each permutation in the decomposition
corresponds to a decreasing subsequence followed by another decreasing subsequence
(empty in one case). Such a decomposition was shown to be unique in [3]. The re-
sulting permutation matrices H1, H2, . . . , Hn (our notation is such that the 1 in row
1 of Hi is in column i) are the n × n cyclic-Hankel permutation matrices, with Hn

also called the Hankel diagonal. So with n = 5 we have

H1 =

⎡
⎢⎢⎢⎢⎣

1
1

1
1

1

⎤
⎥⎥⎥⎥⎦ , H2 =

⎡
⎢⎢⎢⎢⎣

1
1

1
1

1

⎤
⎥⎥⎥⎥⎦ , H3 =

⎡
⎢⎢⎢⎢⎣

1
1

1
1

1

⎤
⎥⎥⎥⎥⎦ ,

H4 =

⎡
⎢⎢⎢⎢⎣

1
1

1
1

1

⎤
⎥⎥⎥⎥⎦ , H5 =

⎡
⎢⎢⎢⎢⎣

1
1

1
1

1

⎤
⎥⎥⎥⎥⎦ .

Remark 2.1 The famous Frobenius-König Theorem can be put in the context of
our investigations. Consider the empty permutation σ0. Then every permutation of
{1, 2, . . . , n} contains the pattern σ0. Thus every n× n (0, 1)-matrix A is σ0-forcing,
and no permutation matrix is σ0-avoiding. Thus the property that the n× n (0, 1)-
matrix A blocks all σ0-avoiding permutation matrices is equivalent to the property
that there does not exist a permutation matrix P ≤ A. By the Frobenius-König
Theorem, this holds if and only if A contains an r × (n + 1 − r) zero submatrix for
some r with 1 ≤ r ≤ n.

Lemma 2.2 The number of 0’s in a 123-forcing n × n (0, 1)-matrix is at least n.
A 123-forcing n× n (0, 1)-matrix with exactly n 0’s contains exactly one 0 from the
positions of the 1’s of each cyclic-Hankel permutation matrix.

Proof. The cyclic-Hankel decomposition of Jn consists of n mutually disjoint 123-
avoiding permutation matrices. Hence a 123-forcing n × n matrix must have a 0 in
a position of a 1 of each of them, and thus must contain at least n 0’s. �

We characterize the 123-forcing n× n (0, 1)-matrix with the minimum number n
of 0’s. Our characterization is based on the following construction generalizing the
matrix A constructed in Example 1.1.

Let k ≤ n and let a and b be integers with 1 ≤ a, b ≤ n where a+ b = k + 1. By
Lk
n(a, b) we denote the n × n (0, 1)-matrix with exactly k 0’s forming an L-shaped

region whose last a positions in row 1 equal 0 and whose first b positions in column
n equal to 0, giving a total of k 0’s. In particular, there is a 0 in the corner position
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(1, n). (Sometimes we refer to the set of positions of the 0’s of Lk
n(a, b).) For example,

we have

L6
7(4, 3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Lemma 2.3 The n× n matrices Ln
n(a, b) with a + b = n + 1 are 123-forcing (0, 1)-

matrices with the minimum number n of 0’s.

Proof. The number of 0’s in Ln
n(a, b) equals n. If a or b equals n, we have a row or

column of all 0’s and so (vacuously) a 123-forcing matrix. Now assume that neither a
nor b equals 1. The matrix Ln

n(a, b) contains an n×n matrix which is the direct sum
of the following matrices of all 1’s: J1,n−a, Jb−1,a−1, and Jn−b,1. Every permutation
matrix P ≤ Ln

n(a, b) contains a 1 from the J1,n−a and a 1 from the Jn−b,1. Since
b − 1 = n − a, such a permutation matrix must also contain a 1 from the Jb−1,a−1

and hence has a 123-pattern. �

There is a similar construction and lemma with Ln
n(a, b) replaced with the L-

shaped region V k
n (a, b) with corner at position (n, 1), the transpose of Lk

n(a, b).

The following example illustrates the complexities involved in characterizing the
123-forcing n× n (0, 1)-matrix with the minimum number n of 0’s.

Example 2.4 Consider n = 10 and the labeling of the positions of a 10×10 matrix
with a, b, c, . . . , where all the positions on the same cyclic-Hankel permutation matrix
are labeled the same. We start with the 123-forcing matrix L10

10(5, 6). We move its
first two 0’s in row 1 (the positions labeled f and g there), down their cyclic-Hankel
permutation matrices to the positions z1 = (4, 3) (on H6) and z2 = (6, 2) (on H7);
these are colored, respectively, red and green in (1). The remaining positions of
L10
10(5, 6), now forming a L8

10(3, 6), are colored yellow. This results in a set of 10
positions (the colored positions).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)
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The resulting matrix of 10 0’s is not 123-forcing as shown by the 123-avoiding per-
mutation matrix colored blue in (2) that does not intersect it.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

If, instead, we move the positions labeled f and g in row 1 to the positions colored
red in (3), we obtain a 123-forcing matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0
0

0 0
0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

We argue this as follows referring to the labels of the positions. Suppose that the
matrix in (3) (illustrated there as a (0, 1)-matrix with its 1’s in the empty positions)
contains a 123-avoiding permutation matrix Q. In row 1, either position f or g must
contain a 1 of Q since, by Lemma 2.3, L10

10(5, 6) is a 123-forcing matrix. Suppose first
that the f in row 1 is a 1 of Q. Then, since Q is a 123-avoiding permutation matrix,
the submatrix determined rows 2, 3, 4, 5, 6 and columns 7, 8, 9 cannot contain a 1 of
Q implying that Q has to have only 1’s on the Hankel diagonal of the 6×6 submatrix
determined by rows and columns 1, 2, 3, 4, 5, 6; but the 0 in position f precludes that.

Now suppose that the position of g in row 1 is a 1 of Q. Then the submatrix of
Q determined by rows 2, 3, 4, 5, 6 and columns 7, 8, 9, 10 cannot contain a 1 of Q and
the submatrix of Q determined by rows 8, 9, 10 and columns 8, 9, 10 must contain a
1 of Q. Since the Hankel diagonal of the 7 × 7 submatrix determined by rows and
columns 1, 2, . . . , 7 contains a 0 in position g, it now follows that the matrix in (3)
is a 123-forcing matrix. �

The following result, Theorem 2.10 from [3], is important in characterizing the
n× n 123-forcing (0, 1)-matrices with the minimum number n of 0’s.
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Theorem 2.5 Let n ≥ 3. If an n×n 123-forcing (0, 1)-matrix contains the minimum
number n of 0’s, then it must contain one of the positions (1, n) and (n, 1); if it
contains a 0 in position (1, n) (respectively, position (n, 1)), then it also contains a
0 in either the position (1, n − 1) or position (2, n) (respectively, position (n, 2) or
position (n− 1, 1)).

In view of Theorem 2.5, by symmetry it is enough to consider minimum 123-
forcing (0, 1)-matrices that contain a 0 in the positions (1, n) and (1, n− 1), and we
assume this throughout.

We now label the positions in an n × n matrix A with the integers 1, 2, . . . , n
where the positions in row 1 are labeled, in order, 1, 2, . . . , n and the positions on
the corresponding cyclic-Hankel permutation matrices have the same labels. We call
this the standard labeling. For example, with n = 5, the standard labeling is⎡

⎢⎢⎢⎢⎣

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

⎤
⎥⎥⎥⎥⎦ .

In what follows, A is an n × n matrix with the standard labeling and exactly n
0’s. We start with A = Ln

n(a, b) where a + b = n + 1 so that A contains a total of
n 0’s. Let a′ and b′ be integers with 0 ≤ a′ < a and 0 ≤ b′ < b. The L-shaped
matrix Lk

n(a− a′, b− b′) is obtained from Ln
n(a, b) by removing the 0’s in the first a′

positions in row 1 and the last b′ positions in column n leaving k = n − a′ − b′ 0’s.
In order that we have a 123-blocking matrix with exactly n 0’s, the (a′ + b′) 0’s that
are removed from Ln

n(a, b) need to be shifted to new positions on their corresponding
cyclic-Hankel permutation matrices. This is what was done in Example 2.4 in two
cases one of which gave a 123-forcing matrix and one of which did not. We refer to
matrices obtained in this way from an Ln

n(a, b) as L-cyclic matrices.

We now set out to characterize the 123-forcing (0, 1)-matrices with the minimum
number n of 0’s. The k× k leading Hankel principal submatrix of an n× n matrix A
is the k × k submatrix of A determined by the first k rows and last k columns of A.

Lemma 2.6 Let A be an n×n 123-forcing (0, 1)-matrix containing exactly n 0’s with
a 0 in position (1, n) and let 2 ≤ k ≤ n. Then the k × k leading Hankel principal
submatrix Ak of A is a k × k 123-forcing matrix.

Proof. If there is a 123-avoiding permutation matrix P ≤ Ak, then since there is a 0
in position (1, n) (and thus no more 0’s on the Hankel diagonal of A by Lemma 2.2),
with the Hankel diagonal of the complementary (n− k)× (n− k) matrix, we obtain
a 123-avoiding permutation matrix in A, a contradiction. �

Corollary 2.7 Let A be a 123-forcing matrix containing exactly n 0’s with a 0 in
position (1, n). If A contains two 0’s in row n, then A is not a 123-forcing matrix.
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Proof. If there are two 0’s of A in row n, then the leading (n− 1)× (n− 1) Hankel
principal submatrix contains at most (n−2) 0’s, and then with Lemma 2.2 this gives
a contradiction of Lemma 2.6 with k = n− 1. �

Lemma 2.8 Let A an n × n (0, 1)-matrix with exactly n 0’s including 0’s in the
positions (1, 1) and (1, n), but not the position (1, 2). Then A is not a 123-forcing
matrix.

Proof. Suppose that A is a 123-forcing matrix. We illustrate the argument with
n = 10. The positions (1, 1) and (1, n) are in red below; the position (1, 2) with a b
is in green. None of the other positions labeled a or j can be 0 by Lemma 2.2. Then
the n positions colored green in (4) give a 123-avoiding permutation matrix which
cannot contain a 0 of A, no matter what the other positions of the 0’s in A.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

�

The following theorem is crucial for our characterization of the n× n 123-forcing
matrices with the minimum number n of 0’s. It implies, assuming (as we know
we can) that position (1, n) has a 0 in a 123-forcing matrix, that every n × n 123-
forcing matrix with the minimum number n of 0’s is obtained from an Ln(a, b) with
a+b = n+1 by shifting, along the corresponding cyclic-Hankel permutation matrices,
x initial zeros in row 1 of Ln(a, b) and y terminal zeros in column n of L(a, b) where
0 ≤ x ≤ a− 1 and 0 ≤ y ≤ b − 1. The problem then becomes how these should be
shifted in order to obtain a 123-forcing matrix. It may be useful here to recall our
Example 2.4.

Theorem 2.9 Let A = [aij] be an n× n 123-forcing (0, 1)-matrix with exactly n 0’s
not all in a row or a column. Without loss of generality, assume that there is a 0 in
position (1, n). Then the 0’s of A in the first row are consecutive and the 0’s of A in
the last column are consecutive.

Proof. Since the 123-forcing property is preserved by reflecting with respect to the
Hankel diagonal, we only need to show that the statement is true for the 0’s of A in
the first row. Thus we need to show that there does not exist k with 1 < k < n− 1
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such that a1,k−1 = 0 while a1,k �= 0. We prove the result by assuming that we have
such a k and obtain a contradiction. Note that Lemma 2.8 shows the theorem is
true for k = 2. So we just need to show the theorem is true for 2 < k ≤ n − 1. If
n = 3, then there is nothing more to prove. We now proceed by induction on n using
a 10× 10 matrix to elucidate the general proof.

Referring to (5), suppose that the position (1, k − 1) (the d in row 1) contains a
0 but the positions (1, k) and e.g., (1, k+ 1) (the e and f in row 1) contain 1’s, with
the positions (1, k + 2), . . . , (1, n) also containing 0’s (those labeled g, h, i, j below).
These zero positions are colored red in (5) below. (There could be more than just
two positions e and f with 1’s but the argument will be the same.)

There are two cases to consider.

(I) The position (n, k − 1) (the green c) does not contain a 0. Then we can
construct a 123-avoiding permutation matrix as shown in (5) in color green
since the positions of the green d’s cannot contain 0’s as we already have a 0
in the position labeled d in row 1.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

(II) The position (n, k − 1) (now the red c in (6)) contains a 0.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

We now consider the (n−1)×(n−1) submatrix of (6) obtained by deleting the
first column and last row. Since the position of the red c in the last row contains
a 0, this submatrix contains at most n − 1 0’s. By induction this submatrix
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contains an (n− 1)× (n− 1) 123-avoiding permutation matrix which with the
green j (which cannot contain a 0 since the position of the red j contains a 0)
gives an n× n 123-avoiding permutation matrix.

Thus the theorem holds by induction. �

Lemma 2.10 Let A be an n×n (0, 1)-matrix with exactly n 0’s having a 0 in position
(1, n). Assume that positions z1 = (i, k) and z2 = (j, l) above the Hankel diagonal
with i < j and l ≤ k contain 0’s. Then A is not a 123-forcing matrix.

Proof. Let Z be the set of positions of A with a 0. Since both z1 and z2 are above the
Hankel diagonal, then in our standard labeling, z1 has label (i+k−1) and z2 has label
(j+ l−1). If i+k < j+ l−1, we can always do a comparison using positions having
consecutive labels between i+k and j+l−2 inclusively with z1 and z2. Thus without
loss of generality, we assume that i+ k = j + l+1 meaning that the labels of z1 and
z2 are consecutive integers and the cyclic-Hankel permutation matrix corresponding
to z1 immediately precedes the cyclic-Hankel permutation matrix corresponding to
z2.

For ease of understanding, we argue with a 12 × 12 matrix and two specific
positions but the argument is easily seen to hold in general. Suppose that the
positions of the red 8 and 9 in (7) contain a 0. There are two possibilities to consider:
(i) z1 and z2 are not in the same column, and (ii) z1 and z2 are in the same column.

(i) z1 and z2 are not in the same column, like the red positions in (7).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 1
3 4 5 6 7 8 9 10 11 12 1 2
4 5 6 7 8 9 10 11 12 1 2 3
5 6 7 8 9 10 11 12 1 2 3 4
6 7 8 9 10 11 12 1 2 3 4 5
7 8 9 10 11 12 1 2 3 4 5 6
8 9 10 11 12 1 2 3 4 5 6 7
9 10 11 12 1 2 3 4 5 6 7 8
10 11 12 1 2 3 4 5 6 7 8 9
11 12 1 2 3 4 5 6 7 8 9 10
12 1 2 3 4 5 6 7 8 9 10 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

(a) If the yellow 4 in (7) is not in Z, then we can construct a 123-avoiding
permutation matrix as in (8) using the fact that we already have a 0 in a
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position labeled with an 8,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 1
3 4 5 6 7 8 9 10 11 12 1 2
4 5 6 7 8 9 10 11 12 1 2 3
5 6 7 8 9 10 11 12 1 2 3 4
6 7 8 9 10 11 12 1 2 3 4 5
7 8 9 10 11 12 1 2 3 4 5 6
8 9 10 11 12 1 2 3 4 5 6 7
9 10 11 12 1 2 3 4 5 6 7 8
10 11 12 1 2 3 4 5 6 7 8 9
11 12 1 2 3 4 5 6 7 8 9 10
12 1 2 3 4 5 6 7 8 9 10 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

(b) If the yellow 6 in (7) is not in Z, then we can construct a 123-avoiding
permutation matrix as in (9).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 1
3 4 5 6 7 8 9 10 11 12 1 2
4 5 6 7 8 9 10 11 12 1 2 3
5 6 7 8 9 10 11 12 1 2 3 4
6 7 8 9 10 11 12 1 2 3 4 5
7 8 9 10 11 12 1 2 3 4 5 6
8 9 10 11 12 1 2 3 4 5 6 7
9 10 11 12 1 2 3 4 5 6 7 8
10 11 12 1 2 3 4 5 6 7 8 9
11 12 1 2 3 4 5 6 7 8 9 10
12 1 2 3 4 5 6 7 8 9 10 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

(c) If both the positions of the yellow 4 and yellow 6 in (7) are in Z, then
that Z does not give a blocking follows directly from Corollary 2.7.
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(ii) z1 and z2 are in the same column as in (10).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 1
3 4 5 6 7 8 9 10 11 12 1 2
4 5 6 7 8 9 10 11 12 1 2 3
5 6 7 8 9 10 11 12 1 2 3 4
6 7 8 9 10 11 12 1 2 3 4 5
7 8 9 10 11 12 1 2 3 4 5 6
8 9 10 11 12 1 2 3 4 5 6 7
9 10 11 12 1 2 3 4 5 6 7 8
10 11 12 1 2 3 4 5 6 7 8 9
11 12 1 2 3 4 5 6 7 8 9 10
12 1 2 3 4 5 6 7 8 9 10 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

(a) If the position of the yellow 5 in (10) is not in Z, then we can construct
a 123-avoiding permutation matrix as shown in green in (11).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 1
3 4 5 6 7 8 9 10 11 12 1 2
4 5 6 7 8 9 10 11 12 1 2 3
5 6 7 8 9 10 11 12 1 2 3 4
6 7 8 9 10 11 12 1 2 3 4 5
7 8 9 10 11 12 1 2 3 4 5 6
8 9 10 11 12 1 2 3 4 5 6 7
9 10 11 12 1 2 3 4 5 6 7 8
10 11 12 1 2 3 4 5 6 7 8 9
11 12 1 2 3 4 5 6 7 8 9 10
12 1 2 3 4 5 6 7 8 9 10 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

(b) If the yellow 5 (now colored red in (12)) is in Z, then we take the (n, 1)
position and then consider the (n − 1)× (n − 1) submatrix, obtained by
removing the first column and the last row, which contains at most n− 1
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positions in Z.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 1
3 4 5 6 7 8 9 10 11 12 1 2
4 5 6 7 8 9 10 11 12 1 2 3
5 6 7 8 9 10 11 12 1 2 3 4
6 7 8 9 10 11 12 1 2 3 4 5
7 8 9 10 11 12 1 2 3 4 5 6
8 9 10 11 12 1 2 3 4 5 6 7
9 10 11 12 1 2 3 4 5 6 7 8
10 11 12 1 2 3 4 5 6 7 8 9
11 12 1 2 3 4 5 6 7 8 9 10

12 1 2 3 4 5 6 7 8 9 10 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

The matrix in (13) is this (n − 1) × (n − 1) matrix relabeled using our
standard labeling.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 1
3 4 5 6 7 8 9 10 11 1 2
4 5 6 7 8 9 10 11 1 2 3
5 6 7 8 9 10 11 1 2 3 4
6 7 8 9 10 11 1 2 3 4 5
7 8 9 10 11 1 2 3 4 5 6
8 9 10 11 1 2 3 4 5 6 7
9 10 11 1 2 3 4 5 6 7 8
10 11 1 2 3 4 5 6 7 8 9
11 1 2 3 4 5 6 7 8 9 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

We now have to consider several possibilities.

(i) If the position of the yellow 4 in (13) does not contain a 0, we can
construct an (n− 1)× (n− 1) 123-avoiding permutation matrix as in
the following matrix (14).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 1
3 4 5 6 7 8 9 10 11 1 2
4 5 6 7 8 9 10 11 1 2 3
5 6 7 8 9 10 11 1 2 3 4
6 7 8 9 10 11 1 2 3 4 5
7 8 9 10 11 1 2 3 4 5 6
8 9 10 11 1 2 3 4 5 6 7
9 10 11 1 2 3 4 5 6 7 8
10 11 1 2 3 4 5 6 7 8 9
11 1 2 3 4 5 6 7 8 9 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)
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(ii) If the position of the yellow 3 in (15) contains a 0, then we consider
the (n − 2) × (n − 2) submatrix obtained by removing the first two
columns and bottom two rows as in (15).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 1
3 4 5 6 7 8 9 10 11 12 1 2
4 5 6 7 8 9 10 11 12 1 2 3
5 6 7 8 9 10 11 12 1 2 3 4
6 7 8 9 10 11 12 1 2 3 4 5
7 8 9 10 11 12 1 2 3 4 5 6
8 9 10 11 12 1 2 3 4 5 6 7
9 10 11 12 1 2 3 4 5 6 7 8
10 11 12 1 2 3 4 5 6 7 8 9

11 12 1 2 3 4 5 6 7 8 9 10
12 1 2 3 4 5 6 7 8 9 10 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

(iii) We can repeat this process if the position of the yellow 3 in (15)
contains a 0 and continue until we arrive at the situation displayed in
(16).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 1
3 4 5 6 7 8 9 10 11 12 1 2
4 5 6 7 8 9 10 11 12 1 2 3
5 6 7 8 9 10 11 12 1 2 3 4
6 7 8 9 10 11 12 1 2 3 4 5
7 8 9 10 11 12 1 2 3 4 5 6

8 9 10 11 12 1 2 3 4 5 6 7
9 10 11 12 1 2 3 4 5 6 7 8
10 11 12 1 2 3 4 5 6 7 8 9
11 12 1 2 3 4 5 6 7 8 9 10
12 1 2 3 4 5 6 7 8 9 10 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

The position of the yellow 12 in (16) is not in Z, since the (1, n)
position is in Z. We then obtain a 123-avoiding permutation matrix
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as shown in green in (17).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 1
3 4 5 6 7 8 9 10 11 12 1 2
4 5 6 7 8 9 10 11 12 1 2 3
5 6 7 8 9 10 11 12 1 2 3 4
6 7 8 9 10 11 12 1 2 3 4 5
7 8 9 10 11 12 1 2 3 4 5 6

8 9 10 11 12 1 2 3 4 5 6 7
9 10 11 12 1 2 3 4 5 6 7 8
10 11 12 1 2 3 4 5 6 7 8 9
11 12 1 2 3 4 5 6 7 8 9 10
12 1 2 3 4 5 6 7 8 9 10 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

This completes the proof. �

An analogous lemma holds for positions below the Hankel diagonal by reflection
with respect to the Hankel diagonal with i ≤ j and k < l.

Lemma 2.11 Let A be an n×n (0, 1)-matrix with exactly n 0’s having a 0 in position
(1, n). Assume that positions z1 = (i, k) and z2 = (j, l) below the Hankel diagonal
with i ≤ j and k < l contain 0’s. Then A is not a 123-forcing matrix. �

Before formulating the next lemma, we consider a revealing example.

Example 2.12 Consider n = 8 and an 8× 8 123-forcing (0, 1)-matrix A with 8 0’s
with some of our standard labeling shown in (18). There are 0’s assumed in the
positions labeled 5,6,7,8,1 2 as in L6

8(4, 3). The positions 4 in row 1 and position 3
in column 8 are assumed not to contain 0’s. Suppose the position 4 in red contains
a 0. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 5 6 7 8
1
2

4 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Then none of the other positions labeled with a 4 can contain a 0 and, as demon-
strated in (19), the positions colored yellow give a 123-avoiding permutation matrix.
Hence the position of the red 4 in the lower left submatrix of (18) cannot contain a
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0 in a 123-forcing matrix with n = 8 0’s including those 0’s in an L6
8(4, 3).⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 5 6 7 8
4 1

4 2

4 3
5

4
4

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

. �

The preceding example illustrates the following lemma.

Lemma 2.13 Let A be an n × n 123-forcing (0, 1)-matrix with exactly n 0’s where
the 0’s in row 1 and column n are precisely the 0’s of an Lk

n(a, b) where a+ b ≤ n+1
and k = a + b. Let X be the (n − b) × (n − a) submatrix of A formed by rows
b + 1, b + 2, . . . , n and columns 1, 2, . . . , n − a. Then A does not contain any 0’s in
X.

Proof. We assume the standard labeling of the positions of A. If a+b = n+1, there is
nothing to prove and so we assume that a+b ≤ n. We prove the lemma by induction
starting with the position labeled n − a in the first row. Suppose the blocker uses
a position α with label n − a in X. Then we choose those positions labeled n − a
starting from row 1 down to, but not including, that position α. We then choose
below α the positions on the cyclic Hankel-permutation matrix labeled (n − a + 1)
down to column 1, say in row p. We also choose the position in column n in the same
row as α. We complete with the positions on the Hankel diagonal containing (n− a)
starting with row p + 1 down to the last row to obtain a 123-avoiding permutation
matrix. This is illustrated with n = 10, a = 3, b = 3 in (20).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 8 9 10
7 1

7 2

7
7

7 5
7 8
8

7
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

We now proceed by induction.
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Suppose the lemma holds for positions with labels q +1, q+ 2, . . . , n− a, and we
consider the position in row 1 with label q. Suppose the blocker uses a position α
labeled q in X. We then choose the positions labeled q on the cyclic-Hankel diagonal
with labels q starting from row 1 down to, but not including, position α. Below
position α we choose the positions on the cyclic-Hankel permutation matrix labeled
q + 1 down to column 1, say in row r. We also choose the position in column n in
the same row as α. Finally, we choose the positions on the cyclic Hankel diagonal
labeled q in the lower (r + 1)× (r + 1) submatrix. Using the induction hypothesis,
we obtain a 123-avoiding permutation matrix without any 0’s. This is illustrated in
Example 2.14. �

Example 2.14 To illustrate Lemma 2.13, let n = 12 and consider a 123-forcing
(0, 1)-matrix A given in (21) whose 0’s in row 1 and column 12 are those where
L6
12(4, 3) has 0’s (colored yellow). Suppose we know that A does not contain a 0 in

positions labeled 7 within the lower left 9× 8 matrix X, and consider the positions
labeled 6. If A has a 0 in a position in X containing a 6 as shown in color green, we
then choose the positions colored red as shown .⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12
6 1

6 2

6 3
6 4
7 5

7 6
6 7

6 8
6 9

6 9
6 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

Since the position labeled 4 in the last column is not a 0 in the L6
12(4, 3), and so is

not a 0 in A, we get a 123-avoiding permutation matrix. �

We now show that the properties given in Lemmas 2.10, 2.11, and 2.13 charac-
terize the 123-forcing (0, 1)-matrices with the minimum number n of 0’s.

Theorem 2.15 Let A be an n × n (0, 1) with exactly n 0’s with one 0 on each
cyclic-Hankel permutation matrix where the position (1, n) contains a 0. Let a and b
be maximum such that k = a+ b ≤ n+1 and A has 0’s where Lk

n(a, b) has 0’s. Then
A is a 123-forcing matrix if and only if the following conditions hold:

(a) No other positions of A in row 1 and column n contain a 0.

(b) A does not have 0’s in two positions z1 = (i, k) and z2 = (j, l) above the Hankel
diagonal with i < j and k ≤ l.
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(c) A does not have 0’s in two positions z1 = (i, k) and z2 = (j, l) below the Hankel
diagonal with i < j and k ≤ l.

(d) The (n − b) × (n − a) submatrix of A formed by rows b + 1, b + 2, . . . , n and
columns 1, 2, . . . , n− a does not contain any 0’s.

Proof. The assumption that the position (1, n) contains a 0 is without loss of general-
ity. The necessity follows from previous lemmas, and we now prove these properties
are sufficient to guarantee that every permutation matrix P ≤ A contains a 123-
pattern.

We partition the (0, 1) matrix A as

[
A1 A2

A3 A4

]

where A2 is b×a and so A1 is b× (n−a), A3 = Jn−b,n−a, and A4 is (n− b)×a. Since
A2 contains 0’s in the positions of the 0’s of Lk

n(a, b), it follows from (a) that A2 has
0’s only in positions of its first row and last column with those 0’s in (a + b − 1)
cyclic-Hankel permutation matrices.

Since there is exactly one 0 in each cyclic-Hankel permutation matrix, A1 contains
p ≤ n − (a + b − 1) positions with a 0. Thus there are q = (n − (a + b − 1) − p)
columns of A1 not containing a 0 in A and thus this many positions with a 0 in
A3. Since the first row of A1 and the last column of A2 each contain a 1 of every
permutation matrix P ≤ A, a 123-avoiding permutation matrix P ≤ A cannot use a
1 in A2. Thus to get a 123-avoiding permutation matrix P ≤ A, P must contain a
strictly decreasing sequence (subpermutation) of b 1’s in A1 and a strictly decreasing
sequence (subpermutation) of a 1’s in A4. An example of this situation is given in
(22) with n = 15, a = 6, b = 4, and p = 3, where x = 0 denotes 0’s of A1 (shifted
from the red squares in row 1) and 0’s in A4 (shifted from the red squares in A4).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
1 x 0

1 x 0
1 x 0

1
x
1

x
1

1
x
1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)
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In (22) we need to have a decreasing subpermutation of size 4 in the upper left 4× 9
(a submatrix equal to a Hankel diagonal matrix Hk, k = 4 in (22)) and a decreasing
subpermutation of size 6 in the lower right 11× 6 (so a submatrix equal to a Hankel
diagonal matrix Hl, l = 6 in (22)). We show examples of these in (22).

With the x = 0’s on different cyclic-Hankel diagonals, it follows that the 1 (colored
yellow) in the Hk in the last row of the upper left submatrix is in column (n− b− 1)
or earlier (it is in column 3 in the example), and the 1 (also colored yellow) in row
Hl is the first column of the lower right submatrix (it is in row 13 in the example).

Now consider the submatrix A′ determined by the rows and columns not yet
containing a 1 (the 5× 5 submatrix in two shades of blue in (22)). The positions in
the submatrix of A3 determined by the columns of the x = 0’s in A1 and the rows of
the x = 0’s in A4 (colored dark blue in the example) must contain only 0’s, otherwise
with the two yellow 1’s we get a 123 pattern. This gives an l× l zero submatrix of A′

(l = 3 in the example) which violates the easy part of the Frobenius-König Theorem,
and hence we cannot complete the 1’s to a permutation matrix. Hence there does
not exist a 123-avoiding permutation matrix P ≤ A, completing the proof. �

There is an analogous theorem where in Theorem 2.15 we assume the position
(n, 1) contains a 0, thereby taking care of all possibilities.
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