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Nonlinear dynamical systems have been used in many disciplines to
model complex behaviors, including biological motor control, robotics,
perception, economics, traffic prediction, and neuroscience. While often
the unexpected emergent behavior of nonlinear systems is the focus of
investigations, it is of equal importance to create goal-directed behavior
(e.g., stable locomotion from a system of coupled oscillators under per-
ceptual guidance). Modeling goal-directed behavior with nonlinear sys-
tems is, however, rather difficult due to the parameter sensitivity of these
systems, their complex phase transitions in response to subtle parameter
changes, and the difficulty of analyzing and predicting their long-term
behavior; intuition and time-consuming parameter tuning play a major
role. This letter presents and reviews dynamical movement primitives, a
line of research for modeling attractor behaviors of autonomous nonlin-
ear dynamical systems with the help of statistical learning techniques.
The essence of our approach is to start with a simple dynamical system,
such as a set of linear differential equations, and transform those into a
weakly nonlinear system with prescribed attractor dynamics by means
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of a learnable autonomous forcing term. Both point attractors and limit
cycle attractors of almost arbitrary complexity can be generated. We ex-
plain the design principle of our approach and evaluate its properties in
several example applications in motor control and robotics.

1 Introduction

In the wake of the development of nonlinear systems theory (Guckenheimer
& Holmes, 1983; Strogatz, 1994; Scott, 2005), it has become common practice
in several branches of science to model natural phenomena with systems of
coupled nonlinear differential equations. Such approaches are motivated by
the insight that coupling effects of nonlinear systems exhibit rich abilities for
forming complex coordinated patterns without the need to explicitly plan
or supervise the details of such pattern formation. Among the many dif-
ferent forms of nonlinear systems (e.g., high-dimensional, weakly coupled,
strongly coupled, chaotic, Hamiltonian, dissipative), this letter addresses
low-dimensional nonlinear systems, for example, as typically used to model
phenomena of motor coordination or cognitive science (Kelso, 1995; Thelen
& Smith, 1994).1 In this domain, there are often two modeling objectives.
First, a model of a baseline behavior is required, as in generating a basic
pattern for bipedal locomotion or reach-and-grasp in arm movement. Such
behaviors are goal oriented; the focus is less on emergent coordination phe-
nomena and more on achieving a task objective. After this baseline model
has been accomplished, the second objective is to use this model to account
for more complex phenomena with the help of the coupling dynamics of
nonlinear systems. For instance, a typical example is the modulation of lo-
comotion due to resonance entrainment of the pattern generator with the
dynamics of a physical body (Nakanishi et al., 2004; Hatsopoulos & War-
ren, 1996). Another example is the coupling between motor control and
perception (Dijkstra, Schoner, Giese, & Gielen, 1994; Kelso, 1995; Swinnen
et al., 2004). In order to allow investigations of such second objectives, a
dynamical systems model has to be found first.

Finding an appropriate dynamical systems model for a given behavioral
phenomenon is nontrivial due to the parameter sensitivity of nonlinear
differential equations and their lack of analytical predictability. Thus, mod-
eling is often left to the intuition and the trial-and-error patience of the
researchers. Many impressive studies have been generated in this manner
(Schoner & Kelso, 1988; Schöner, 1990; Taga, Yamaguchi, & Shimizu, 1991;
Schaal & Sternad, 1998; Kelso, 1995), but the lack of a generic modeling tool
is unsatisfactory.

In this letter, we propose a generic modeling approach to generate
multidimensional systems of weakly nonlinear differential equations to

1With low-dimensional, we refer to systems with less than about 100 degrees of
freedom.
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capture an observed behavior in an attractor landscape. The essence of
our methodology is to transform well-understood simple attractor systems
with the help of a learnable forcing function term into a desired attractor
system. Both point attractor and limit cycle attractors of almost arbitrary
complexity can be achieved. Multiple degrees of freedom can be coordi-
nated with arbitrary phase relationships. Stability of the model equations
can be guaranteed. Our approach also provides a metric to compare differ-
ent dynamical systems in a scale-invariant and temporally invariant way.

We evaluate our approach in the domain of motor control for robotics,
where desired kinematic motor behaviors will be coded in attractor land-
scapes and then converted into control commands with inverse dynamics
controllers. Importantly, perceptual variables can be coupled back into the
dynamic equations, such that complex closed-loop motor behaviors are
created out of one relatively simple set of equations. Inspired by the bio-
logical concept of motor primitives (Giszter, Mussa-Ivaldi, & Bizzi, 1993;
Mussa-Ivaldi, 1999), we call our system dynamical movement primitives, as
we see them as building blocks that can used and modulated in real time
for generating complex movements.

The following sections first introduce our modeling approach (see section
1), then, examine its theoretical properties (see section 2), and finally explore
our approach in the example domain of motor control in various scenarios
(see section 3). Matlab code is provided as supplemental material to allow
readers to explore properties of the system.2 Early versions of the dynamical
system presented in this letter have been published elsewhere in short
format (Ijspeert, Nakanishi, & Schaal, 2002b, 2003) or some review articles
(Schaal, Mohajerian, & Ijspeert, 2007; Schaal, Ijspeert, & Billard, 2003). Here,
we review previous work and present our system in more detail, introduce
examples of spatial and temporal couplings, and discuss issues related to
generalization and coordinate systems. In the end, this letter presents a
comprehensive and mature account of our dynamic modeling approach
with discussions of related work, which will allow readers to apply or
improve research on this topic.

2 A Learnable Nonlinear Attractor Systems

Before developing our model equations, it will be useful to clarify the
specific goals pursued with this model:

1. Both learnable point attractor and limit cycle attractors need to be
represented. This is useful to encode both discrete (i.e., point to point)
and rhythmic (periodic) trajectories.3

2The code can be downloaded from http://www-clmc.usc.edu/Resources/Software.
3Note that we borrowed the terminology discrete trajectories from the motor control

literature (Schaal, Sternad, Osu, & Kawato, 2004) to denote point-to-point (nonperiodic
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2. The model should be an autonomous system, without explicit time
dependence.

3. The model needs to be able to coordinate multidimensional dynam-
ical systems in a stable way.

4. Learning the open parameters of the system should be as simple as
possible, which essentially opts for a representation that is linear in
the open parameters.

5. The system needs to be able to incorporate coupling terms, for exam-
ple, as typically used in synchronization studies or phase resetting
studies and as needed to implement closed-loop perception-action
systems.

6. The system should allow real-time computation as well as arbitrary
modulation of control parameters for online trajectory modulation.

7. Scale and temporal invariance would be desirable; for example,
changing the amplitude or frequency of a periodic system should
not affect a change in geometry of the attractor landscape.

2.1 Model Development. The basic idea of our approach is to use an
analytically well-understood dynamical system with convenient stability
properties and modulate it with nonlinear terms such that it achieves a
desired attractor behavior (Ijspeert et al., 2003). As one of the simplest
possible systems, we chose a damped spring model,4

τ ÿ = αz(βz(g − y) − ẏ) + f,

which, throughout this letter, we write in first-order notation,

τ ż = αz(βz(g − y) − z) + f, (2.1)

τ ẏ = z,

where τ is a time constant and αz and βz are positive constants. If the forcing
term f = 0, these equations represent a globally stable second-order linear
system with (z, y) = (0, g) as a unique point attractor. With appropriate val-
ues of αz and βz, the system can be made critically damped (with βz = αz/4)
in order for y to monotonically converge toward g. Such a system imple-
ments a stable but trivial pattern generator with g as single point attractor.5

The choice of a second-order system in equation 2.1 was motivated

or episodic) trajectories—trajectories that are not repeating themselves, as rhythmic tra-
jectories do. This notation should not be confused with discrete dynamical systems, which
denotes difference equations—those that are time discretized.

4As will be discussed below, many other choices are possible.
5In early work (Ijspeert et al., 2002b, 2003), the forcing term f was applied to the second

ẏ equation (instead of the ż equation), which is analytically less favorable. See section 2.1.8.
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by our interest in applying such dynamical systems to motor control prob-
lems, which are most commonly described by second-order differential
equations and require position, velocity, and acceleration information for
control. In this spirit, the variables y, ẏ, ÿ would be interpreted as desired
position, velocity, and acceleration for a control system, and a controller
would convert these variables into motor commands, which account for
nonlinearities in the dynamics (Sciavicco & Siciliano, 2000; Wolpert, 1997).
Section 2.1.7 expands on the flexibilities of modeling in our approach.

Choosing the forcing function f to be phasic (i.e., active in a finite time
window) will lead to a point attractive system, while choosing f to be
periodic will generate an oscillator. Since the forcing term is chosen to be
nonlinear in the state of the differential equations and since it transforms the
simple dynamics of the unforced systems into a desired (weakly) nonlinear
behavior, we call the dynamical system in equation 2.1 the transformation
system.

2.1.1 A Point Attractor with Adjustable Attractor Landscape. In order to
achieve more versatile point attractor dynamics, the forcing term f in equa-
tion 2.1 could hypothetically be chosen, for example, as

f (t) =
∑N

i=1 �i(t)wi
∑N

i=1 �i(t)
,

where �i are fixed basis functions and wi are adjustable weights. Represent-
ing arbitrary nonlinear functions as such a normalized linear combination
of basis functions has been a well-established methodology in machine
learning (Bishop, 2006) and also has similarities with the idea of popula-
tion coding in models of computational neuroscience (Dayan & Abbott,
2001). The explicit time dependence of this nonlinearity, however, creates
a nonautonomous dynamical system or, in the current formulation, more
precisely a linear time-variant dynamical system. However, such a system
does not allow straightforward coupling with other dynamical systems and
the coordination of multiple degree-of-freedom in one dynamical system
(e.g., as in legged locomotion; cf. section 3.2).

Thus, as a novel component, we introduce a replacement of time by
means of the following first-order linear dynamics in x

τ ẋ =−αxx, (2.2)

where αx is a constant. Starting from some arbitrarily chosen initial state x0,
such as x0 = 1, the state x converges monotonically to zero. x can thus be
conceived of as a phase variable, where x = 1 would indicate the start of
the time evolution and x close to zero means that the goal g has essentially
been achieved. For this reason, it is important that x = 0 is a stable fixed
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point of these equations. We call this equation the canonical system because
it models the generic behavior of our model equations, a point attractor
in the given case and a limit cycle in the next section. Given that equation
2.2 is a linear differential equation, there exists a simple exponential func-
tion that relates time and the state x of this equation. However, avoiding
the explicit time dependency has the advantage that we have obtained an
autonomous dynamical system now, which can be modified online with
additional coupling terms, as discussed in section 3.2.

With equation 2.2, we can reformulate our forcing term to become

f (x) =
∑N

i=1 �i(x)wi
∑N

i=1 �i(x)
x(g − y0) (2.3)

with N exponential basis functions �i(x),

�i(x) = exp
(

− 1
2σ 2

i
(x − ci)

2
)

, (2.4)

where σi and ci are constants that determine, respectively, the width and
centers of the basis functions and y0 is the initial state y0 = y(t = 0).

Note that equation 2.3 is modulated by both g − y0 and x. The modulation
by x means that the forcing term effectively vanishes when the goal g
has been reached, an essential component in proving the stability of the
attractor equations. The modulation of equation 2.3 by g − y0 will lead to
useful scaling properties of our model under a change of the movement
amplitude g − y0, as discussed in section 2.1.4. At the moment, we assume
that g �= y0, that is, that the total displacement between the beginning and
the end of a movement is never exactly zero. This assumption will be relaxed
later but allows a simpler development of our model. Finally, equation 2.3
is a nonlinear function in x, which renders the complete set of differential
equations of our dynamical system nonlinear (instead of being a linear time-
variant system), although one could argue that this nonlinearity is benign
as it vanishes at the equilibrium point.

The complete system is designed to have a unique equilibrium point at
(z, y, x) = (0, g, 0). It therefore adequately serves as a basis for constructing
discrete pattern generators, with y evolving toward the goal g from any ini-
tial condition. The parameters wi can be adjusted using learning algorithms
(see section 2.1.6) in order to produce complex trajectories before reaching
g. The canonical system x (see equation 2.2) is designed such that x serves
as both an amplitude and a phase signal. The variable x monotonically and
asymptotically decays to zero. It is used to localize the basis functions (i.e.,
as a phase signal) but also provides an amplitude signal (or a gating term)
that ensures that the nonlinearity introduced by the forcing term remains
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Figure 1: Exemplary time evolution of the discrete dynamical system. The pa-
rameters wi have been adjusted to fit a fifth-order polynomial trajectory between
start and goal point (g = 1.0), superimposed with a negative exponential bump.
The upper plots show the desired position, velocity, and acceleration of this
target trajectory with dotted lines, which largely coincide with the realized
trajectories of the equations (solid lines). On the bottom right, the activation
of the 20 exponential kernels comprising the forcing term is drawn as a func-
tion of time. The kernels have equal spacing in time, which corresponds to an
exponential spacing in x.

transient due to asymptotical convergence of x to zero at the end of the
discrete movement.

Figure 1 demonstrates an exemplary time evolution of the equations.
Throughout this letter, the differential equations are integrated using Euler
integration with a 0.001 s time step. To start the time evolution of the
equations, the goal is set to g = 1, and the canonical system state is initialized
to x = 1. As indicated by the reversal of movement direction in Figure 1
(top left), the internal states and the basis function representation allow
generating rather complex attractor landscapes.

Figure 2 illustrates the attractor landscape that is created by a two-
dimensional discrete dynamical system, which we discuss in more detail in
section 2.1.5. The left column in Figure 2 shows the individual dynamical
systems, which act in two orthogonal dimensions, y1 and y2. The system
starts at y1 = 0, y2 = 0, and the goal is g1 = 1, g2 = 1. As shown in the vector
field plots of Figure 2, at every moment of time (represented by the phase
variable x), there is an attractor landscape that guides the time evolution of
the system until it finally ends at the goal state. These attractor properties
play an important role in the development of our approach when coupling
terms modulate the time evolution of the system.

2.1.2 A Limit Cycle Attractor with Adjustable Attractor Landscape. Limit
cycle attractors can be modeled in a similar fashion to the point attractor
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system by introducing periodicity in either the canonical system or the basis
functions (which corresponds to representing an oscillator in Cartesian or
polar coordinates, respectively). Here we present the second option (see
Ijspeert et al., 2003, for an example of the first option).

A particularly simple choice of a canonical system for learning limit cycle
attractors is a phase oscillator:

τ φ̇ = 1, (2.5)

where φ ∈ [0, 2π] is the phase angle of the oscillator in polar coordinates
and the amplitude of the oscillation is assumed to be r.

Similar to the discrete system, the rhythmic canonical system serves to
provide both an amplitude signal (r) and a phase signal (φ) to the forcing
term f in equation 2.1:

f (φ, r) =
∑N

i=1 �iwi
∑N

i=1 �i

r, (2.6)

�i = exp(hi(cos(φ − ci) − 1)), (2.7)

where the exponential basis functions in equation 2.7 are now von Mises
basis functions, essentially gaussian-like functions that are periodic. Note
that in case of the periodic forcing term, g in equation 2.1 is interpreted
as an anchor point (or set point) for the oscillatory trajectory, which can
be changed to accommodate any desired baseline of the oscillation. The
amplitude and period of the oscillations can be modulated in real time by
varying, respectively, r and τ .

Figure 3 shows an exemplary time evolution of the rhythmic pattern gen-
erator when trained with a superposition of several sine signals of different
frequencies. It should be noted how quickly the pattern generator con-
verges to the desired trajectory after starting from zero initial conditions.
The movement is started simply by setting the r = 1 and τ = 1. The phase
variable φ can be initialized arbitrarily: we chose φ = 0 for our example.
More informed initializations are possible if such information is available
from the context of a task; for example, a drumming movement would
normally start with a top-down beat, and the corresponding phase value
could be chosen for initialization. The complexity of attractors is restricted
only by the abilities of the function approximator used to generate the
forcing term, which essentially allows almost arbitrarily complex (smooth)
attractors with modern function approximators.

2.1.3 Stability Properties. Stability of our dynamical systems equations
can be examined on the basis that equation 2.1 is (by design) a simple
second-order time-invariant linear system driven by a forcing term. The
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Figure 3: Exemplary time evolution of the rhythmic dynamical system (limit
cycle behavior). The parameters wi have been adjusted to fit a trajectory
ydemo(t) = sin(2πt) + 0.25cos(4πt + 0.77) + 0.1sin(6πt + 3.0). The upper plots
show the desired position, velocity, and acceleration with dotted lines, but
these are mostly covered by the time evolutions of y, ẏ, and ÿ. The bottom plots
show the phase variable and its derivative and the basis functions of the forcing
term over time (20 basis functions per period).

development of a stability proof follows standard arguments. The constants
of equation 2.1 are assumed to be chosen such that without the forcing term,
the system is critically damped. Rearranging equation 2.1 to combine the
goal g and the forcing term f in one expression results in

τ ż = αzβz

((

g + f
αzβz

)

− y
)

− αzz = αzβz(u − y) − αzz, (2.8)

τ ẏ = z

where u is a time-variant input to the linear spring-damper system. Equa-
tion 2.8 acts as a low-pass filter on u. For such linear systems, with appro-
priate αz and βz, for example, from critical damping as employed in our
work, it is easy to prove bounded-input, bounded-output (BIBO) stability
(Friedland, 1986), as the magnitude of the forcing function f is bounded by
virtue that all terms of the function (i.e., basis functions, weights, and other
multipliers) are bounded by design. Thus, both the discrete and rhythmic
system are BIBO stable. For the discrete system, given that f decays to zero,
u converges to the steady state g after a transient time, such that the system
will asymptotically converge to g. After the transient time, the system will
exponentially converge to g as only the linear spring-damper dynamics
remain relevant (Slotine & Li, 1991). Thus, ensuring that our dynamical
systems remain stable is a rather simple exercise of basic stability theory.



338 Ijspeert et al.

Another path to prove stability for our approach was suggested by Perk
and Slotine (2006), who proved that our dynamical systems equations are
two hierarchically coupled systems, each fulfilling the criterion of contrac-
tion stability (Lohmiller & Slotine, 1998). Contraction theory provides that
any parallel or serial arrangement of contraction stable systems will be
contraction stable too, which concludes the stability proof. This property
will be useful below, where we create multiple degree-of-freedom dynami-
cal systems, which inherit their stability proof from this contraction theory
argument.

2.1.4 Invariance Properties. A useful property of modeling behaviors in
a dynamical systems framework comes from the scaling properties and in-
variance properties that can be designed into dynamical systems. We are
particularly interested in how the attractor landscape of our model changes
when the parameters of the model are changed, as needed for online trajec-
tory modulation. There are three kinds of parameters: (1) the constants on
the right-hand side of the differential equations, (2) the weights wi of the
forcing term, and (3) the global timescaling parameter τ and the goal pa-
rameter g, or amplitude parameter r. We assume that the first and second are
kept constant for a particular behavior, but the parameters of the third can
be varied as we consider them natural high-level parameters that should
adjust the behavior to a particular context without changing the behavior
qualitatively. Thus, formally, we wish that the attractor landscape of the
dynamical systems does not change qualitatively after a change of τ , g, or
r. This topic can be addressed in the framework of topological equivalence
(Jackson, 1989). Mathematically, if two dynamical systems ẋ = f(x) and
ẏ = g(y) are topologically equivalent, then there exists an orientation pre-
serving homeomorphism h : [x, ẋ] → [y, ẏ] and h−1 : [y, ẏ] → [x, ẋ], where
the notation → denotes a functional mapping. When scaling the movement
amplitude g − y0 in the discrete dynamical system (see equations 2.1–2.4)
with a scalar mapping k, (g − y0) → k(g − y0), the following scaling law is
an orientation-preserving homeomorphism between the original equations
using g − y0 and the scaled differential equations using k(g − y0):

y → ky, ẏ → kẏ, z → kz, ż → kż. (2.9)

This result can be verified by simply inserting equations 2.9 into the scaled
equations using the simple trick of k(g − y0) + ky0 as a goal. Similarly, when
scaling r → kr in the rhythmic system (see equations 2.1 and 2.5–2.7), the
same scaling law (see equation 2.9) allows proving topological equivalence
(for simplicity, assume that g = 0 in equation 2.1 for the rhythmic system,
which can always be achieved with a coordinate shift). For the scaling of
the time constant τ → kτ , topological equivalence for both the discrete and
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Figure 4: Illustration of invariance properties in the discrete dynamical systems,
using the example from Figure 1. (a) The goal position is varied from −1 to 1 in
10 steps. (b) The time constant τ is changed to generate trajectories from about
0.15 seconds to 1.7 seconds duration.

rhythmic systems can be established trivially with

ż → ż
k
, ẏ → ẏ

k
, ẋ → ẋ

k
, φ̇ → φ̇

k
. (2.10)

Figure 4 illustrates the spatial (see Figure 4a) and temporal (see Figure 4b)
invariance using the example from Figure 1. One property that should be
noted is the mirror-symmetric trajectory in Figure 4a when the goal is at a
negative distance relative to the start state. We discuss the issue again in
section 3.4.

Figure 5 provides an example of why and when invariance properties
are useful. The blue (thin) line in all subfigures shows the same handwritten
cursive letter a that was recorded with a digitizing tablet and learned by a
two-dimensional discrete dynamical system. The letter starts at a StartPoint,
as indicated in Figure 5a, and ends originally at the goal point Target0.
Superimposed on all subfigures in red (thick line) is the letter a generated
by the same movement primitive when the goal is shifted to Target1. For
Figures 5a and 5b, the goal is shifted by just a small amount, while for
Figures 5c and 5d, it is shifted significantly more. Importantly, for Figures
5b and 5d, the scaling term g − y0 in equation 2.3 was left out, which destroys
the invariance properties as described above. For the small shift of the goal
in Figures 5a and 5b, the omission of the scaling term is qualitatively not
very significant: the red letter “a” in both subfigures looks like a reasonable
“a.” For the large goal change in Figures 5c and 5d, however, the omission of
the scaling term creates a different appearance of the letter “a,” which looks
almost like a letter “u.” In contrast, the proper scaling in Figure 5c creates
just a large letter “a,” which is otherwise identical in shape to the original
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a) b)

c) d)

Start
Point

Target_0

Target_1

Figure 5: Illustration of the significance of the invariance properties, exempli-
fied in a two-dimensional discrete dynamical system to draw a cursive letter
a. In all subfigures, the blue (thin) line denotes the letter “a” as taught from a
human demonstration using a digitizing tablet. The start point for all figures
is the same, while the goal is originally Target0, and, for the purpose of testing
generalization, the goal is shifted to Target1. In a and b, the shift of the goal is
small, while in c and d, the shift of the goal is much more significant. Subfigures
a and c use equations 2.1 to 2.4, the proper formulation of the discrete dynamical
system with invariance properties. As can be noted from the red (thick) lines,
the generalized letter “a” is always a properly uniformly zoomed version of
the original letter “a.” In contrast, in subfigures b and d, the scaling term g − y0
in equation 2.3 was left out, which destroys the invariance properties. While
for a small shift of the goal in b the distortion of the letter “a” is insignificant,
for a large shift of the goal in d, the distortion creates more a letter “u” than a
letter “a.”

one. Thus, invariance properties are particularly useful when generalization
properties are required that are not just confined to a very local area of the
originally learned primitive. It should also be noted that a simple change
of the goal state automatically creates a complex rescaling of the entire
movement, without any need for explicit rescaling computations.

In conclusion, our dynamical systems equations for point attractors
and limit cycles are actually a model of a family of similar behaviors,
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parameterized by the timing, goal, or amplitude. Importantly, the weights
wi in the forcing term remain unscaled, that is, constant under these scal-
ings, which will allow us to use them later as means to statistically classify
a behavior.

2.1.5 Extension to Multiple Degrees of Freedom. In order to obtain a system
with multiple DOFs, three approaches can be pursued. First, every DOF
could simply have its own complete set of dynamic equations, that is, we
copy the discrete or rhythmic systems above for every DOF. While this
approach is theoretically viable, it has the disadvantage that there is no
coordination between the DOFs; for a longer run of the dynamical systems,
for example, they may numerically diverge from each other. Moreover,
disturbance rejection will normally require that in case of a disturbance of
one DOF, the coordination among DOFs is not destroyed.

A second possibility would be to create coupling terms between the
different DOFs, in particular, between the canonical systems, for example,
as done in Taga et al. (1991). This is especially interesting for maintaining
desired phase lags between DOFs during periodic movements, such as for
locomotion, and for switching between different rhythmic patterns (e.g.,
gaits) by changing the coupling terms. However, such modeling becomes
rather complex in terms of tuning coupling parameters for tight synchro-
nization, analyzing stability, and dealing with the complex transient behav-
ior before the system phase-locks.

A simpler multi-DOF approach is to share one canonical system among
all DOFs and maintain only a separate set of transformation systems (see
equation 2.1) as well as separate forcing terms for each DOF (see Figure 6).
Thus, the canonical system provides the temporal coupling between DOFs,
while the transformation system achieves the desired attractor dynamics
for each DOF. As mentioned above, the argument of contraction stability
put forward by Perk and Slotine (2006) extends to this multi-DOF approach,
which is thus guaranteed to provide stable coordination among the DOFs.
We have been pursuing this solution in our evaluations below. Interest-
ingly, the canonical system becomes a central clock in this methodology,
not unlike the assumed role of central pattern generators in biology (Get-
ting, 1988; Grillner, 1981), in particular with the notion of two-level central
pattern generators (McCrea & Rybak 2008), with one part of the network
providing synchronized timing signals (in our case, the canonical systems)
and another part of the network providing the shape of the motor patterns
(the transformation systems).

Note that for different modeling purposes, different coupling approaches
can be chosen. For some applications, for instance, on a humanoid robot,
it might be useful to have one canonical system per limb with multiple
transformation systems for controlling the joints within a limb. By adding
coupling terms between canonical systems, movements of different limbs
can then be synchronized with stable and adjustable phase differences.
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Figure 6: Conceptual illustration of a multi-DOF dynamical system. The canon-
ical system is shared, while each DOF has its own nonlinear function and trans-
formation system.

2.1.6 Learning the Attractor Dynamics from Observed Behavior. Our systems
are constructed to be linear in the parameters wi, which allows applying
a variety of learning algorithms to fit the wi. In this letter, we focus on a
supervised learning framework. Of course, many optimization algorithms
could be used too if only information from a cost function is available.

We assume that a desired behavior is given by one or multiple de-
sired trajectories in terms of position, velocity, and acceleration triples
(ydemo(t), ẏdemo(t), ÿdemo(t)), where t ∈ [1, . . . , P].6 Learning is performed in
two phases: determining the high-level parameters (g, y0, and τ for the dis-
crete system or g, r, and τ for the rhythmic system) and then learning the
parameters wi.

For the discrete system, the parameter g is simply the position at the
end of the movement, g = ydemo(t = P) and, analogously, y0 = ydemo(t = 0).
The parameter τ must be adjusted to the duration of the demonstration.
In practice, extracting τ from a recorded trajectory may require some
thresholding in order to detect the movement onset and end. For in-
stance, a velocity threshold of 2% of the maximum velocity in the move-
ment may be employed, and τ could be chosen as 1.05 times the duration

6We assume that the data triples are provided with the same time step as the integration
step for solving the differential equations. If this is not the case, the data are downsampled
or upsampled as needed.
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of this thresholded trajectory piece. The factor 1.05 is to compensate for
the missing tails in the beginning and the end of the trajectory due to
thresholding.

For the rhythmic system, g is an anchor point that we set to the midposi-
tion of the demonstrated rhythmic trajectory g = 0.5(mint∈[1,...,P](ydemo(t)) +
maxt∈[1,...,P](ydemo(t))). The parameter τ is set to the period of the demon-
strated rhythmic movement divided by 2π . The period must therefore be
extracted beforehand using any standard signal processing (e.g., a Fourier
analysis) or learning methods (Righetti, Buchli, & Ijspeert, 2006; Gams,
Ijspeert, Schaal, & Lenarcic, 2009). The parameter r, which will allow us
to modulate the amplitude of the oscillations (see the next section), is set,
without loss of generality, to an arbitrary value of 1.0.

The learning of the parameters wi is accomplished with locally weighted
regression (LWR) (Schaal & Atkeson, 1998). It should be emphasized that
any other function approximator could be used as well (e.g., a mixture
model, a gaussian process). LWR was chosen due to its very fast one-shot
learning procedure and the fact that individual kernels learn independent
of each other, which will be a key component to achieve a stable parameter-
ization that can be used for movement recognition in the evaluations (see
section 3.3).

For formulating a function approximation problem, we rearrange equa-
tion 2.1 as

τ ż − αz(βz(g − y) − z)= f. (2.11)

Inserting the information from the demonstrated trajectory in the left-hand
side of this equation, we obtain

ftarget = τ 2ÿdemo − αz(βz(g − ydemo) − τ ẏdemo). (2.12)

Thus, we have obtained a function approximation problem where the pa-
rameters of f are to be adjusted such that f is as close as possible to ftarget.

Locally weighted regression finds for each kernel function �i in f the
corresponding wi, which minimizes the locally weighted quadratic error
criterion,

Ji =
P∑

t=1

�i(t)( ftarget (t) − wiξ (t))2, (2.13)

where ξ (t) = x(t)(g − y0) for the discrete system and ξ (t) = r for the rhyth-
mic system. This is a weighted linear regression problem, which has the
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solution

wi =
sT�iftarget

sT�is
, (2.14)

where

s =

⎛

⎜
⎜
⎜
⎝

ξ (1)

ξ (2)

. . .

ξ (P)

⎞

⎟
⎟
⎟
⎠

�i =

⎛

⎜
⎜
⎜
⎝

�i(1) 0

�i(2)

· · ·
0 �i(P)

⎞

⎟
⎟
⎟
⎠

ftarget =

⎛

⎜
⎜
⎜
⎝

ftarget (1)

ftarget (2)

. . .

ftarget (P)

⎞

⎟
⎟
⎟
⎠

.

These equations are easy to implement. It should be noted that if mul-
tiple demonstrations of a trajectory exist, even at different scales and
timing, they can be averaged together in the above locally weighted regres-
sion after the ftarget information for every trajectory at every time step has
been obtained. This averaging is possible due to the invariance properties
mentioned above. Naturally, locally weighted regression also provides
confidence intervals on all the regression variables (Schaal & Atkeson,
1994, 1998), which can be used to statistically assess the quality of the
regression.

The regression performed with equation 2.14 corresponds to what we
will call a batch regression. Alternatively, we can also perform an incre-
mental regression. Indeed, the minimization of the cost function Ji can be
performed incrementally, while the target data points ftarget (t) come in. For
this, we use recursive least squares with a forgetting factor of λ (Schaal &
Atkeson, 1998) to determine the parameters wi.

Figures 1 and 3 illustrate the results of the fitting of discrete and rhyth-
mic trajectories. The demonstrated (dotted lines) and fitted (solid lines)
trajectories are almost perfectly superposed.

2.1.7 Design Principle. In developing our model equations, we made spe-
cific choices for the canonical systems, the nonlinear function approximator,
and the transformation system, which is driven by the forcing term. But it
is important to point out that it is the design principle of our approach
that seems to be the most important, and less the particular equations that
we chose for our realization. As sketched in Figure 7, there are three main
ingredients in our approach. The canonical system is a simple (or well-
understood) dynamical system that generates a behavioral phase variable,
which is our replacement for explicit timing. Either point attractive or pe-
riodic canonical system can be used, depending on whether discrete or
rhythmic behavior is to be generated or modeled. For instance, while we
chose a simple first-order linear system as a canonical system for discrete
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Coupling 
Terms

Position, Velocity, Acceleration 
of Dynamic Behavior

Figure 7: Graphical sketch of the design principle of our approach to learnable
dynamical systems.

movement, it is easily possible to choose a second-order system instead
(see Ijspeert et al., 2003) or even nonlinear equations. Similarly, the rhyth-
mic canonical system in our case was a phase oscillator, but a van der Pol
oscillator, Duffing oscillator (Strogatz, 1994), or any other oscillatory system
could be a useful alternative choice. For instance, if the transient behavior
of a rhythmic system from a rest state to an oscillatory behavior would be
of interest, using a canonical oscillator that has a Hopf bifurcation could be
beneficial.

With the input from the canonical system, the nonlinear function ap-
proximator generates a forcing term. As mentioned before, any choice of
function approximator is possible (Bishop, 2006).

Finally, the transformation system should be a dynamical system that is
easily analyzed and manipulated when excited with a forcing term. We used
a critically damped linear spring system, but other systems, like higher-
order or lower-order dynamical systems are equally possible. This choice
is partially guided by which level of derivatives the output behavior of the
entire dynamical system should have.

All systems together should fulfill the principle of structural equiva-
lence, should be autonomous, and should have easily analyzable stability
properties. Obviously a large variety of model equations can be generated,
tailored for different contexts. We address the coupling terms in Figure 7 in
section 3.2.



346 Ijspeert et al.

2.1.8 Variations. Given the general design principle from the previous
section, we briefly discuss some variations of our approach that have been
useful in some applications.

When switching the goal g to a new value, equation 2.1 generates a
discontinuous jump in the acceleration ÿ. This can be avoided by filtering
the goal change with a simple first-order differential equation:

τ ġ = αg(g0 − g). (2.15)

In this formulation, g0 is the discontinuous goal change, while g is now a
continuous variable. This modification does not affect the scaling properties
and stability properties of the system and is easily incorporated in the
learning algorithm with LWR.

It is also possible to enforce that the forcing term f cannot create a dis-
continuity in acceleration. For this purpose, it is useful to work with a
second-order canonical system (instead of equation 2.2),

τ v̇ = αv(−βvx − v), (2.16)

τ ẋ = v,

whose constants are chosen to be critically damped (see Ijspeert et al., 2003,
for an example). The forcing term is reformulated as

f (x) =
∑N

i=1 �i(x)wi
∑N

i=1 �i(x)
v(g − y0). (2.17)

Note that in contrast to equation 2.3, the multiplication on the right-hand
side has v instead of x. v starts at zero at moment onset and returns to
zero at the end of the movement, such that the forcing term vanishes at
both movement end and beginning. The danger of a discontinuous initial
acceleration is thus avoided.

An interesting problem arises when the start point y0 and goal g coincide.
As can be seen in equation 2.3, the forcing term would always be zero in
this case. This problem can be circumvented by defining the forcing term
as

f (x) =
∑N

i=1 �i(x)wi
∑N

i=1 �i(x)
x

(
g − y0

|g f it − y0, f it | + ε

)

. (2.18)

gfit and y0, f it denote the goal and start point used to fit the weights of the
nonlinear function. Thus, during fitting, this quotient is always equal to +1
or −1, such that the forcing term is guaranteed to be active. The numerically
very small positive constant ε avoids dividing by zero. There is, however,
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a numerical danger that after learning, a new goal different from y0 could
create a huge magnification of the originally learned trajectory. For instance,
if during learning we had g f it − y0, f it = 0, and ε = 0.0001, a change of the
goal offset to the start position of g − y0 = 0.01 would create a multiplier of
100 in equation 2.18. While theoretically fine, such a magnification may be
practically inappropriate. A way out is to modify the forcing term to use the
maximal amplitude of a trajectory as scaling term, A = max (y) − min (y):

f (x) =
∑N

i=1 �i(x)wi
∑N

i=1 �i(x)
xA. (2.19)

In this variant, the goal g becomes decoupled from the amplitude A, and
both variables can be set independently. While it is easy to lose the strict
property of structural equivalence in this way, it may be practically more
appropriate for certain applications. Hoffmann, Pastor, Park, and Schaal
(2009) suggested a similar approach.

For the rhythmic system, equation 2.15 is equally useful as for the discrete
system if the midpoint of the oscillation is supposed to be changed during
the run of the dynamical systems and a discontinuity is to be avoided.
Similarly, the amplitude of the oscillation can be changed with a smooth
dynamics equation,

τ ṙ = αr(r0 − r), (2.20)

such that a discontinuous change in r0 creates a smooth change in r. Another
useful addition could be to make the input vector to the forcing term in
equation 2.6 two-dimensional:

f (x) =
∑N

i=1 �i(x)wT
i

∑N
i=1 �i(x)

ξ(t)r, (2.21)

ξ(t)= [sinφ, cosφ]T . (2.22)

This input vector is composed of first-order Fourier terms, which exploits
our knowledge that the rhythmic system must be periodic.7 Simple oscilla-
tions are easier to fit with this variant, while for more complex oscillations,
numerically we could not see an advantage in our experiments. For this two-
dimensional formulation, the weighted regression in equation 2.14 needs
to become a two-dimensional weighted regression, which requires a matrix
inversion instead of the simple division. This is an insignificant change, of
course.

7This input vector was used in Ijspeert et al. (2003).
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2.1.9 Summary. Table 1 summarizes the key equations of our model.
Given the previous sections, the equations should be self-explanatory. The
only special component is the initialization of hi for the discrete system,
which generates equal spacing in time t by using the analytical solution of
equation 2.2 to compute the corresponding spacing in x. In the following
section, we provide a variety of evaluations of our suggested approach to
learning attractor systems models.

3 Evaluations

In the next sections, we present and review several experimental evaluations
of applying our approach to learning attractor systems in the domain of
motor control, using both simulation and robotic studies. The evaluations
are intended to demonstrate the properties of our methodology, but also
the domain-specific choices that need to be made. We will discuss imitation
learning of discrete and rhythmic movement, online modulation with the
help of coupling terms, synchronization and entrainment phenomena, and
movement recognition based on a motor generation framework.

3.1 Imitation Learning. Imitation learning (Schaal, 1999) is simply an
application of supervised learning given in section 2.1.6. Ijspeert et al. (2003)
and Ijspeert, Nakanishi, and Schaal (2002a) demonsrated imitation learning
with a 30 degrees-of-freedom (DOFs) humanoid robot (Atkeson et al., 2000)
for performing a tennis forehand, a tennis backhand, and rhythmic drum-
ming movements. Importantly, these tasks required the coordination and
phase locking of 30 DOFs, which was easily and naturally accomplished in
our approach. The imitated movement was represented in joint angles of
the robot or Cartesian coordinates of an end effector. Indeed, only kinematic
variables are observable in imitation learning. Thus, our dynamical systems
represented kinematic movement plans—accelerations as a function of po-
sition and velocity. The robot was equipped with a controller (a feedback
PD controller and a feedforward inverse dynamics controller) that could
accurately track the kinematic plans (i.e., generate the torques necessary
to follow a particular joint angle trajectory, given in terms of desired posi-
tions, velocities, and accelerations). Movies illustrating these results can be
viewed at http://biorob.epfl.ch/dmps.

There are numerous other ways to accomplish imitation learning. In
robotics, one of the most common classic methods to represent movement
plans is by means of third-order or fifth-order splines, which could be
equally applied to the learning from demonstration approach in this sec-
tion. For instance, Wada and Kawato (2004) presented an elegant algorithm
that recursively fits a demonstrated trajectory with a growing number of
spline nodes until an accuracy criterion is reached. However, splines are
nonautonomous representations with no attractor properties, not dynam-
ical systems. Thus, while splines are effective for imitation learning, they
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ġ

=
α

g(
g 0

−
g)

E
qu

at
io

n
2.

15
τ

ġ
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would not allow online modulation properties as presented in section 3.2.
Rescaling the splines in space and time for generalization is possible but
requires an explicit recomputing of the spline nodes.

Another alternative to fitting a dynamical system to observed data was
presented by Khansari-zadeh and Billard (2010), who used a mixture model
approach to estimate the entire attractor landscape of a movement skill from
several sample trajectories. To ensure stability of the dynamical system to-
ward an attractor point, a constraint optimization problem has to be solved
in a nonconvex optimization landscape. This approach is different from ours
in that it creates the attractor landscape in the state-space of the observed
data, while our approach creates the attractor landscape in the phase space
of the canonical system. The latter is low dimensional even for a high-DOF
system. A state-space mixture model for our humanoid robot above would
require a 60-dimension state space and thus would create computational
and numerical problems. However, state-space models can represent much
more complex attractor landscapes, with different realizations of a move-
ment in different parts of the state-space. Our approach creates inherently
stereotypical movements to the goal, no matter where the movements starts.
Thus, the state-space approach to fitting a dynamical systems appears to
pursue a quite different set of goals than our trajectory-based approach
does.

3.2 Online Modulation of the Dynamical Systems. One goal of mod-
eling with dynamical systems is to use the ability of coupling phenomena to
account for complex behavior. Imitation learning from the previous section
demonstrated how to initialize dynamical systems models with learning
from demonstration. In this section, we discuss different methods for how
dynamical system models can be modulated online to take dynamic events
from the environment into account. Those online modulations are among
the most important properties offered by a dynamical systems approach,
and these properties cannot easily be replicated without the attractor prop-
erties of our proposed framework.

3.2.1 Spatial Coupling. In Figure 7, we already included the possibility
of coupling terms for our dynamical systems model. Coupling terms can
affect either the transformation system or the canonical system, or both
systems. In this section, we address a coupling term in the transformation
system only, which will primarily affect the spatial evolution (y, ẏ, ÿ) and
less the temporal evolution, which is more anchored in the canonical system.
Practically, we add a coupling term Ct to equation 2.1 to become

τ ż =αz(βz(g − y) − z) + f + Ct, (3.1)

τ ẏ = z.
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It should be noted that a prudent choice of the coupling term is critical
and often needs to be specialized for different objectives. The design of
coupling terms is a research topic by itself. A typical example from the
domain of motor control is obstacle avoidance with the help of potential
fields (Khatib, 1986; Koditschek, 1987; Rimon & Koditschek, 1992). Here,
obstacles are modeled as repelling potential fields that are designed to
automatically push a control system to circumnavigate them in an online
reactive way instead of deliberative preplanning. Such reactive behavior
assumes that obstacles may appear in an unforeseen and sudden way, such
that preplanning is not possible or useful.

Fajen and Warren (2003) suggested a model for human obstacle avoid-
ance that is nicely suited to demonstrate the power of coupling terms in
our approach (Hoffmann et al., 2009). We start with a 3 degree-of-freedom
(DOF) discrete movement system that models point-to-point reaching in
a 3D Cartesian space. We denote the 3D position vector of the 3 DOF
discrete dynamical system by y = [y1 y2 y3]T , with ẏ as the correspond-
ing velocity vector. The objective of a movement is to generate a reaching
movement from any start state to a goal state g = [g1 g2 g3]T . The discrete
dynamical system is initialized with a minimum jerk movement (Flash
& Hogan, 1985), which is frequently used as an approximate model of
smooth human movement. On the way to the goal state, an obstacle is posi-
tioned at o = [o1 o2 o3]T and needs to be avoided. A suitable coupling term
Ct = [Ct,1 Ct,2 Ct,3]T for obstacle avoidance can be formulated as

Ct = γ Rẏ θ exp(−βθ ), (3.2)

where

θ = arccos
(

(o − y)T ẏ
|o − y||ẏ|

)

, (3.3)

r = (o − y) × ẏ. (3.4)

The angle θ is interpreted as the angle between the velocity vector ẏ and the
difference vector (o − y) between the current position and the obstacle. The
vector r is the vector that is perpendicular to the plane spanned by ẏ and
(o − y), and serves to define a rotation matrix R, which causes a rotation
of 90 degrees about r (Sciavicco & Siciliano, 2000). Intuitively, the coupling
term adds a movement perpendicular to the current movement direction as
a function of the distance vector to the obstacle (see Hoffmann et al., 2009,
for more details). The constants are chosen to γ = 1000 and β = 20/π .

Figure 8 illustrates the behavior that the obstacle-avoidance coupling
term generates for various trajectories starting from different initial position
around the origin y = [0 0 0]T but ending at the same goal state g = [1 1 1]T .
Depending on the start position, the coupling term creates more or less
curved movements around the obstacle at o = [0.5 0.5 0.5]T . The behavior
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Figure 8: Illustration of obstacle avoidance with a coupling term. The obstacle
is the large (red) sphere in the center of the plot. Various trajectories are shown,
starting from different start positions and ending at the sphere labeled “goal.”
Also shown is the nominal trajectory (green) that the discrete dynamical system
creates when the obstacle is not present: it passes right through the sphere.
Trajectories starting at points where the direct line to the goal does not intersect
with the obstacle are only minimally curved around the obstacle, while other
trajectories show strongly curved paths around the obstacle.

looks intuitively natural, which is not surprising as it was derived from
human obstacle-avoidance behavior (Fajen & Warren, 2003).

A more complex example of spatial coupling is given in Figure 9. Using
imitation learning, a placing behavior of a cup on a target was coded in a
discrete dynamical system for a 3D end effector movement of the robot, a
Sarcos Slave 7 DOF robot arm. The first row of images shows the unper-
turbed behaviors. In the second row, the (green) target is suddenly moved
to the right while the robot has already begun moving. This modification
corresponds to a change of the goal parameter g. The third row of images
demonstrates an avoidance behavior based on equation 3.2, when the blue
ball comes too close to the robot’s movement. We emphasize that one sin-
gle discrete dynamical system created all these different behaviors; there
was no need for complex abortion of the ongoing movement or replanning.
More details can be found in Pastor, Hoffmann, Asfour, and Schaal (2009).

3.2.2 Temporal Coupling. By modulating the canonical system, one can in-
fluence the temporal evolution of our dynamical systems without affecting
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Figure 9: Sarcos slave robot placing a red cup on a green coaster. The first row
shows the placing movement on a fixed goal with a discrete dynamical system.
The second row shows the ability to adapt to changing goals (white arrow)
after movement onset. The third row shows the resulting movement as a blue
ball-like obstacle interferes with the placing movement, using the coupling term
from equation 3.2.

the spatial pattern generated by the transformation system. For instance, a
coupling term can be added similarly as in the previous section, changing
equation 2.2 to

τ ẋ = −αxx + Cc (3.5)

or equation 2.5 in the rhythmic system to

τ φ̇ = 1 + Cc. (3.6)

A typical example is phase coupling between two oscillators (Sternad,
Amazeen, & Turvey, 1996; Matthews, Mirollo, & Strogatz, 1991), which
is often accomplished by a coupling term Cc = αc(φext − φ). Here φext is the
phase of another oscillator, and the coupling term with strength αc will force
the rhythmic canonical system into phase locking with this oscillator.

Instead of just phase-based synchronization, it is also possible to model
adaptation of frequency for synchronization at a specific phase relationship
(Nakanishi et al., 2004; Pongas, Billard, & Schaal, 2005). For instance, drum-
ming at the beat of music requires such an adaptation. For this purpose, the
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Figure 10: Desired acceleration trajectory for the elbow flexion-extension joint
over time in a drumming movement, generated by a rhythmic dynamical sys-
tem. Vertical bars represent the external signal. Panels b and c are zoomed
versions of panel a in order to show more detail.

rhythmic canonical system can be reformulated as

τ φ̇ =ω, (3.7)

τ ω̇ = kω(ωext − ω) + kφ(mod2π (φext − φ + φd)).

In this model, the frequency ω of the canonical system becomes adaptive
through the differential equation ω̇. An external signal with frequency ωext
and phase angle φext is used to synchronize the canonical system with the
external oscillation and to ensure that the final phase relationship is phase-
locked at φd. kω and kφ are positive scalars that determine the adaptation
rate.

Figure 10 illustrates this approach for a robot drumming example. A
rhythmic 7 DOF dynamical system was initialized with a drumming pat-
tern that consisted of one slow drumbeat followed by two quick ones (Pon-
gas et al., 2005). An external metronome generated the beat of a rhythm
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to which the slow drumbeat of the robot was to synchronize. In the begin-
ning, the robots started from immobility (ω = 0). Within two beats (the time
needed to extract the frequency from the acoustic signal), perfect synchro-
nization and phase locking is achieved with a 0.15 Hz signal—very rapid
synchronization. Afterward, we had the external metronome pace increase
frequency slowly to 0.5 Hz to demonstrate the continuous adaptation abil-
ity of the oscillator. Figure 10 shows the elbow DOF angular acceleration
of the drumming pattern, which has the most significant contribution to
the whole arm movement. As can be seen, with increasing frequency, the
overall acceleration amplitude of the pattern changes but not the qualitative
waveform. This property is due to the invariance properties of the dynami-
cal systems. All other DOFs of the arm demonstrate the same behavior and
are equally phase-locked to the beat of the metronome.

3.2.3 Temporal and Spatial Coupling. In this section, we illustrate how both
temporal and spatial coupling can be used together to model disturbance
rejection, a property that is inherent in attractor systems. For this purpose,
we assume a simple control system:

ÿa = kp(y − ya) + kv(ẏ − ẏa). (3.8)

Here, the position y and velocity ẏ of the 1 DOF discrete dynamical system
drive the time evolution of ya, which can be interpreted as the position
of a simple point mass-controlled by a proportional-derivative controller
with gains kp and kv. We use the dynamics from Figure 1 to generate the
input y, ẏ. At time t = 0.35 s, the point mass is suddenly blocked from any
further motion and released again at t = 0.9 s. Thus, for t ∈ [0.35 s, 0.9 s] we
have ya = const, ẏa = ÿa = 0. Without coupling terms, the dynamical system
would just continue its time evolution, regardless of what happens to the
point mass. For a practical control system, this behavior is undesirable as
the desired trajectory y can move away significantly from the current state
ya, such that on release of the mass, it would create a dangerously large
motor command and jump to catch up with the desired target.

To counter this behavior, we introduce the coupling terms

ė = αe(ya − y − e), (3.9)

Ct = kte, (3.10)

τ = 1 + kce
2. (3.11)

The first equation is just a low-pass filter of the tracking error e = ya − y.
This error is used as an additive coupling term in the transformation sys-
tem, which hinders the state y to evolve too far away from ya. Equation
3.11 affects the time constant τ of all differential equations of the dynamical
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Figure 11: Subjecting the discrete dynamical system from Figure 1 to “holding”
perturbation. At time t = 0.35 s, the actual movement system is blocked from
its time evolution: its velocity and acceleration are zero, and its position (dash-
dot line in the top-left figure) remains constant until t = 0.9 s (see the shaded
area). Due to the coupling terms, the time evolution of the dynamical system
decays to zero and resumes after the actual system is released. For comparison,
the unperturbed time evolution of the dynamics is shown in a dashed line.
Essentially the perturbation simply delays the time evolution of the dynamical
system without any large motor commands leading to possible harm.

system, that is, both the canonical and the transformation systems. This
modification of the time constant slows the temporal evolution of the dy-
namics in case of a significant tracking error. The constants are chosen to be
kp = 1000, kv = 125, αe = 5, kt = 1000, kc = 10,000. It should be noted that
many other coupling terms could be created to achieve similar behavior
and that our realization is just a simple and intuitive design of such a
coupling term.

Figure 11 illustrates the behavior due to these coupling terms in com-
parison to the unperturbed (dashed line) time evolution of the dynamics.
The top-left plot of Figure 11 also shows with the dash-dot line the position
ya. During the holding time period, the entire dynamics comes almost to a
stop and then smoothly resumes after the release of the mass roughly with
the same behavior as where the system had left off; the system continues
with the negative dip before moving toward the goal. Without the coupling
terms, y would already have evolved all the way to the goal position, and
the error between ya and y would have grown very large. These types of
couplings have been used successfully with the humanoid robot (see the
video at http://biorob.epfl.ch/dmps). It should also be emphasized that
many different behaviors could be generated with other coupling terms,
and it is really up to the modeler to decide which behavioral properties to
realize with a particular realization of coupling terms.
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3.3 Movement Recognition. Due to the temporal and spatial invari-
ance of our representation, an interesting aspect of our dynamical systems
approach arises as trajectories that are topologically similar tend to be fit
by similar parameters wi. This property opens the possibility of using our
representation for movement recognition, for example, in order to recog-
nize the intent, the style, or the sequential decomposition of movement.8

It should be noted that such recognition is about spatiotemporal patterns,
not just spatial patterns, as in typical character recognition research. For
instance, copying the signature of another person is usually done with the
aim of generating the same spatial pattern on paper. The temporal pattern,
however, is usually vastly different during the copying process. This tempo-
ral difference would manifest itself in a change of wi in our representation,
even if the spatial copy were perfect. Thus, the following example should
not be confused with standard spatial character recognition.

To illustrate this idea, we carried out a simple task of fitting trajectories
performed by a human user when drawing two-dimensional single-stroke
patterns. The 26 letters of the Graffiti alphabet used in hand-held computers
were chosen. These characters are drawn in a single stroke and are fed as
a two-dimensional trajectory (y1(t), y2(t)) to be fitted by a 2 DOF discrete
dynamical system. Five examples of each character were presented (see
Figure 12 for some examples).

Similarities between two characters a and b can be measured by com-
puting the correlation between their parameter vectors. The correlation
corresponds to

wT
a wb

|wa||wb|
, where wa and wb are the parameter vectors of char-

acters a and b. These vectors are the union—i.e., wa = [w
y1
a , w

y2
a ]—of the

parameter vectors for the y1(t) and y2(t) trajectories, respectively, w
y1
a and

w
y2
a . It should be pointed out that using the LWR function approximator (see

section 2.1.6) is particularly advantageous in this application. LWR learns
each coefficient of w locally using nearest-neighbor interpolation, unlike
mixture models or gaussian process regression (Schaal & Atkeson, 1998),
which are global function approximators. Thus, for instance, a variation at
the end of a movement will not affect the parameter values at the begin-
ning of a movement, which creates a very robust parameter representation,
suitable for the correlation-based classification above.

Figure 13 shows the correlations of all 130 instantiations of the char-
acters. The correlation indicates similarity in the acceleration profiles. As
illustrated by high correlation values in the diagonal of the correlation ma-
trix, the correlations between instances of the same character tend to be
systematically higher than correlations between instances of different char-
acters. These similarities in weight space can therefore serve as a basis for

8In recent years, significant neuroscientific research has suggested that movement
recognition could be generated with a movement-generating representation (Rizzolatti &
Arbib, 1998).
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Figure 12: Different instances of Graffiti alphabet letters.

recognizing demonstrated movements by fitting them and comparing the
fitted parameters wi with those of previously learned characters in memory.
In this example, a simple one-nearest-neighbor classifier in weight space
would serve the purpose. More sophisticated classifiers like support vector
machines would be possible too but are beyond the scope of this letter.
Using such a classifier within the whole alphabet (5 instances of each let-
ter), we obtained a 87% recognition rate (113 out of the 130 instances had a
highest correlation with an instance of the same letter). The wrongly labeled
instances are sometimes similar-looking letters (e.g., a Q being recognized
as a G), but sometimes significantly different (e.g., a J being recognized as
an S). The latter cases usually mean that the correlation coefficient is rather
low, such that the nearest neighbor is chosen by chance rather than due to
a significant correlation coefficient. Such cases could be excluded by more
sophisticated classifiers that would employ, for example, confidence levels
in decision making.
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Figure 13: Correlation between the parameter vectors of different instantiations
of the Graffiti characters (5 instances of each of the 26 alphabet characters). A
grayscale value is used, with black corresponding to a correlation of 1.0 and
white corresponding to a correlation of 0.0 or below.

As a baseline comparison, we repeated this spatiotemporal character
recognition experiment with dynamic time warping (DTW) (Sakoe & Chiba,
1987), a dynamic programming technique to compute a matching score be-
tween two arbitrary trajectories. DTW accomplished a 79% recognition rate,
which is significantly lower than our dynamical systems representation.
DTW is particularly well suited to match similar trajectories that have tem-
poral variance. For changes in spatial scale, DTW is less suitable, while the
invariance properties of our dynamical systems representation are built to
be immune to such changes. To demonstrate this fact, we changed the scale
of the five recorded instances per character by multiplying the position val-
ues of the trajectories for the first character with 1.0, the second with 1.25,
the third with 1.5, the fourth with 1.75, and the fifth with 2.0. We then re-
peated the character recognition experiment. As expected, the results with
the dynamical systems representation remained virtually identical as with-
out scaling. For DTW, however, the recognition rate reduced to only 25%.
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Further studies are required to evaluate the quality of recognition in
larger training and test sets. What we wanted to demonstrate is the ability
for recognition without any specific system tuning or sophisticated classi-
fication algorithm.

3.4 Generalization and Coordinate Systems. Section 2.1.4 already al-
luded to the invariance properties of our dynamical systems model. The
invariance properties are derived from the mathematical principle of struc-
tural equivalence and thus are theoretically sound. However, these in-
variance properties manifest themselves quite differently as a function of
different coordinate systems.

Figure 14 illustrates some of the interesting issues that can arise in gen-
eralizing a learned movement to new goal states. We used a 2 DOF discrete
dynamical system to represent a movement from the origin to a goal point,
where on the way to the goal, the movement makes a loop. In Figures 14a,
14b, and 14c, the original movement, which was used to fit the dynamical
system, is shown in a heavy (red) line. These original movements are in the
first quadrant of the coordinate systems and differ only in the orientation
of the goal relative to the start; Figure 14a is at roughly a 45 degree angle,
Figure 14b is at about 10 degrees, and Figure 14c is at a zero angle.

In Figures 14a and 14b, we used the formulation from Table 1 to fit the
model. Then we applied the model to generate movement to six different
targets, distributed with 60 degrees difference on a circle around the origin.

The generalization to new targets in Figure 14a looks, from our human
intuition, reasonable. The loop gets slightly distorted for goals close to
the horizontal or vertical line. Indeed, if the goal were to lie exactly on
a horizontal or vertical line, the loop would collapse. Movements in the
second quadrant are mirror symmetric to similar movements in the first
quadrant. The same holds for the third and fourth quadrants. Between the
first and third quadrants, and the second and fourth quadrants, we observe
point symmetry.

In Figure 14b, we repeated the experiment of Figure 14a, just that the
original movement is closer to the horizontal line. The generalization pat-
tern looks quite different. This effect comes from the fact that the start and
goal state of y2 are rather close together, such that in equation 2.3, the term
(g2 − y0,2) causes a rather large amplification of the movement in y2 when
the goal moves farther away from the origin in y2 direction. Theoretically,
from a spatial invariance point of view, there is nothing wrong with this
generalization pattern, just that it does not look very intuitive to us anymore
and that it would risk hitting joint angle limits.

In Figure 14c, we changed the coordinate system for representing the
movement to a local coordinate system. Here, one axis of the movement
is always aligned with the line from the start to the goal point. The sec-
ond coordinate axis is perpendicular. Thus, as can be seen in the two plots
on the right of Figure 14c, y2 has a zero difference between start and goal
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a)

b)

c)

Figure 14: Generalization of a 2 DOF discrete dynamical system under different
choices of coordinate systems. The 2D movement is a point-to-point movement
with a loop on the way to the goal. All movements start at the origin of the
coordinate system and terminate at six different goal positions, distributed
with 60 degree distance on a circle. The heavy (red) path in the first quadrant of
the coordinate system was the originally learned movement. The generalization
of this movement to six different targets is drawn with different line styles to
make it easier to see the paths of these movements. The two plots on the right
of each subfigure show the y1 and y2 trajectories of each original movement.
(a) The original movement is in a benign part of the Cartesian coordinate system.
(b) Again this is a Cartesian coordinate system, but the y2 coordinate of the
original movement has the start and end point of the movement within a small
distance. (c) Choosing a coordinate system that has as the first coordinate the
line between start and end point, and the second coordinate is perpendicular.
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coordinate, and only y1 has a difference. Thus, we use equation 2.19 for rep-
resenting y2. In order to generalize to new goals, the movement is generated
in local coordinates and requires a subsequent coordinate transformation
to rotate the trajectory to global coordinates. With this strategy, the gen-
eralization pattern in Figure 14c looks the most appealing to the human
eye. Mathematically, all we did was change coordinates to represent our
dynamical systems model.

In conclusion, the invariance properties in our dynamical systems model
are mathematically well founded, but the choice of coordinates for repre-
senting a model can make a big difference in how generalization of the
dynamics systems appears. From a practical point of view, one should first
carefully investigate what properties a model requires in terms of temporal
and spatial invariance and then realize these properties by choosing the
most appropriate variant of the dynamical systems model and the most
appropriate coordinate system for modeling.9

4 Related Work

As mentioned in section 1, the central goal of our work was to derive learn-
able attractor dynamical systems models for goal-directed behavior and
to explore generalization and coupling phenomena with such systems as
models for biological and technical systems. Thus, we roughly classify re-
lated work according to more biological or more technical domains. Besides
general nonlinear systems theory, most related work comes from the field
of biological and artificial motor control.

4.1 Neural Control of Movement. In the field of neural control of move-
ment, early work on dynamical systems models was suggested by Bullock
and Grossberg (1989), where the features of human point-to-point reach-
ing movements were modeled with a point attractor system. Giszter et al.
(1993) and Mussa-Ivaldi (1997, 1999) developed the idea of superposition
of force fields to model wiping behaviors in the frog and also the genera-
tion of human arm movement. Kelso, Scholtz, and Schoner (1988), Schöner
and Kelso (1988), Schöner (1990), Haken, Kelso, Fuchs, and Pandya (1990),
Kelso (1995), and Schöner and Santos (2001) have developed a large body
of work of how to model movement phenomena with dynamical systems,
emphasizing dynamic phenomena like phase transitions. Similarly, Kugler
and Turvey (1987), Turvey (1990), and Sternad et al. (1996) investigated
dynamic phenomena of biological movement, with a focus on rhythmic
movements and distinction of order parameters and control parameters.

9See, for instance, Pastor et al. (2009).
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There is also extensive work on using coupled oscillators as models of
biological behaviors, often discussed under the keyword “central pattern
generators.” (Ijspeert, 2008) provides an extensive review on this topic.

In general, all of these previous approaches focused their modeling on
rather specific systems and required a fair amount of user intuition. While
drawing inspiration from these previous projects, our work goes beyond by
suggesting a general approach to modeling with attractor systems, using
the same form of representations in all applications, and using machine
learning to adjust the model to observed data.

One can also draw an interesting parallel of our work with the equilib-
rium hypothesis in neuromotor control (Flash & Sejnowski, 2001; Latash,
1993). By rearranging equation 2.1 as follows,

τ ÿ = αz

(

βz

(

g + f
αzβz

− y
)

− ẏ
)

,

one can interpret the term g + f
αzβz

as a virtual trajectory or equilibrium point
trajectory. But in contrast to equilibrium point approaches, which were
meant to be a simplified computation to generate motor commands out
of the spring properties of the neuromuscular system, our work addresses
kinematic planing dynamics, which still requires a controller to convert
kinematic plans into motor commands. Gomi and Kawato (1996, 1997)
provide a useful discussion on this topic.

4.2 Robotics and Control Theory. Potential field approaches create vec-
tor fields according to which a movement system is supposed to move. This
idea has the same spirit as dynamical systems approaches in motor con-
trol. Deriving robot controllers from potential fields has a long tradition
in robotics (Khatib, 1986; Koditschek, 1987; Tsuji, Tanaka, Morasso, San-
guineti, & Kaneko, 2002; Okada, Tatani, & Nakamura, 2002; Li & Horowitz,
1999). Potential fields represent attractor landscapes, with the movement
goal acting as a point attractor. Designing such potential fields for a given
behavior is often a hard problem, with few analytically sound approaches
(Koditschek, 1987). Due to this lack of analytical tractability, some peo-
ple have suggested recurrent neural network (Paine & Tani, 2004; Jaeger
& Haas, 2004) or evolutionary methods (Ijspeert, Hallam, & Willshaw,
1999; Ijspeert, 2001) as a design strategy for nonlinear dynamical systems
controllers.

From a more theoretical side, Bühler and Koditschek (1990), Rizzi and
Koditschek (1994), Burridge, Rizzi, and Koditschek (1999), and Klavins and
Koditschek (2001) developed a variety of control algorithms in the context
of nonlinear dynamics that could be investigated both experimentally and
analytically and that demonstrated very good performance. The idea of
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contraction theory by Lohmiller and Slotine (1998) also offers a promising
set of tools for design principles with nonlinear dynamical systems.

Our suggested approach differs from such previous work in a variety
of details. In contrast to the majority of previous work, we address high-
dimensional dynamical systems rather than low-dimensional systems, as
we work directly with families of trajectories to cover the global space. Other
approaches seek global attractor landscapes out of general formulations, but
it is hard to understand and manipulate the geometry of global attractors.
Our trajectory-based thinking creates simpler although less flexible attrac-
tor landscapes but scales easily to higher dimensions and enables machine
learning to shape the landscapes. We also develop our work more from a
dynamical systems view that focuses on arbitrary vector fields, often inter-
preted as velocity or acceleration fields. In contrast, more control-theoretic
approaches work directly with motor command generation, at the cost that
motor commands do not generalize well to new situations because they are
posture dependent in a robot. Our velocity or acceleration fields generalize
more easily as they are purely kinematic in nature, but for robotics, we
require a controller that transforms vector fields into control commands.

Probably one of the approaches that comes closest to ours is reservoir
computing (Maass, Natschläger, & Markram, 2002; Jaeger & Haas, 2004).
Reservoir computing uses a large recurrent network of randomly connected
neurons with specific readout neurons for learning nonlinear dynamics,
in particular, for time-series prediction. The parameters of the network
(e.g., the synaptic weights) are kept constant except for the weights to the
readout neurons, which are updated using linear regression given a desired
output pattern. The approach has been used for predicting time series of
complex dynamical phenomena with impressive results. In principle, the
approach can learn a large class of dynamical systems, including point
attractor and limit cycle dynamics. The main differences with our approach
is that the underlying dynamics is much more complex than ours (with
several hundreds of state variables), that reservoir computing does not offer
proof of stability of learned attractors, and that it is less easy to incorporate
feedback terms for online trajectory modulation. Therefore, it is not yet clear
yet how reservoir computing can be used for controlling a robot (but, for
some interesting steps in that direction, see Joshi & Maass, 2005; Wyffels &
Schrauwen, 2009).

As a final remark, there is a rich literature on using optimization ap-
proaches to generate goal-directed movement (Kawato, 1996; Todorov,
2004), also discussed in some areas of reinforcement learning (Peters &
Schaal, 2008; Theodorou, Buchli, & Schaal, 2010). Optimization approaches
look for some general cost functions as a unifying priniciple to generate
movement behavior, usually by offline optimization. As optimization can
be rather sensitive to initial and final conditions of the movement and other
environment factors, optimization does not necessarily generate movement
primitives (i.e., stereotypical behavior), and every change of initial or final
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condition usually requires running the optimization again. Optimization
is also mostly done on time-indexed trajectories. Thus, optimization ap-
proaches to movement generation are inherently different from our sug-
gested approach to generate movement primitives with generalization and
coupling properties. Nevertheless, it is possible to use optimization ap-
proaches in the context of our dynamical systems model to optimize the
open parameters of the model (Peters & Schaal, 2008; Theodorou et al.,
2010), which creates an interesting bridge between dynamical systems ap-
proaches and optimization approaches that exploits the best of both worlds
(Schaal et al., 2007).

4.3 Dynamical Movement Primitives. Our work on learnable dynam-
ical systems originated from the desire to model elementary motor behav-
iors, called motor primitives, in humans and robots as attractor systems,
an approach that has a long tradition in neuroscientific modeling (Kelso,
1995; Ijspeert, 2008). Initial work addressed imitation learning for robotics
(Ijspeert et al., 2002a, 2002b, 2003). Subsequent investigation examined the
approach for biped locomotion (Nakanishi et al., 2004), adaptive frequency
modulation (Buchli, Righetti, & Ijspeert, 2006; Gams et al., 2009), reinforce-
ment learning (Peters & Schaal, 2008; Kober & Peters, 2009), models for
biological movement generation (Schaal et al., 2007; Hoffmann et al., 2009),
and generating libraries of motor skills (Pastor et al., 2009; Ude, Gams, As-
four, & Morimoto, 2010). Various other projects in robotics created work
that resembles our basic approach—the generation of kinematic movement
primitives as attractor systems using basis function approaches to model
the nonlinear dynamics (e.g., Billard & Mataric, 2001; Schaal et al., 2003;
Billard, Calinon, Dillmann, & Schaal, 2008; Kulvicius, Ning, Tamosiunaite,
& Worgötter, 2012).

A interesting variant was presented by Gribovskaya, Khansari-Zadeh,
and Billard (2010) and Khansari-zadeh and Billard (2010). In this work, the
authors use gaussian mixture models (GMM) to directly learn nonlinear at-
tractor landscapes for movement primitives from demonstrated trajectories
as a state-space approach; they avoid any explicit or implicit timing system
like our canonical system, and they do not include stabilizing dynamics as
accomplished with the spring-damper system in our transformation system
equations. As an advantage, they obtain a movement primitive represen-
tation that depends on only observable states, which can be considered
a direct policy learning approach, as discussed in Schaal (1999). Such a
representation can learn much more complex attractor landscapes, where
the attractor landscape can strongly vary throughout the state-space. As
a disadvantage, the authors have to spend significant numerical effort on
a nonconvex optimization problem to ensure stability of their movement
primitives, they have to address learning of mixture models in potentially
rather high-dimensional and ill-conditioned spaces where the number of
mixture components may be hard to determine, and they require many
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more data throughout the state-space to represent the attractor dynamics.
At this point, movement recognition and periodic motion are not addressed,
and it is not entirely predictable how their movement primitives general-
ize in areas of the state-space that have few or no data. In essence, this
approach differs in a similar way from ours as state-space-based optimal
control and reinforcement learning differs from trajectory-based optimiza-
tion approaches (Peters & Schaal, 2008). State-space approaches have a
more powerful representation but quickly degrade in high-dimensional
settings. Trajectory-based approaches work well in very high dimensions
and generalize well throughout these spaces, but they have less representa-
tional power. It is really up to a particular application which properties are
beneficial.

The large variety of follow-up and related approaches to our initial work
on dynamical movement primitives is one of the motivations to present in
this letter the theory, insights, and a refined approach to learnable dynamical
systems that we hope will continue to attract even more active research in
the future.

5 Conclusion

This letter presented a general design principle for learning and model-
ing with attractor dynamical systems for goal-directed behavior, which is
particularly useful for modeling motor behaviors in robotics but also for
modeling biological phenomena. Using nonlinear forcing terms that are
added to well-understood dynamical systems models, we can create a rich
variety of nonlinear dynamics models for both point attractive and limit
cycle systems. The nonlinear forcing term can be represented as an au-
tonomous coupling term that can be learned with standard machine learn-
ing techniques that are linear in the open parameters. We demonstrated the
properties of our approach, highlighting theoretical and practical aspects.
We illustrated our method in various examples from motor control.

To the best of our knowledge, the approach we have presented is the first
realization of a generic learning system for (weakly) nonlinear dynamical
systems that can guarantee basic stability and convergence properties of
the learned nonlinear systems and that scales to high-dimensional attractor
systems. Besides the particular realizations of nonlinear system models
presented in this letter, we believe it is of greater importance to highlight
the design principle that we employed. This design principle seems to be
applicable for many other nonlinear dynamical systems models, as well as
technical applications and computational neuroscience.

Several points of our approach require highlighting. First, the proposed
system of equations is not very complicated. We primarily make use of
linear spring-damper differential equations, while nonlinearities are in-
troduced with the help of standard kernel-based function approximators.
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Despite this simplicity, a rather powerful methodology can be developed
to create nonlinear dynamical systems models.

Second, many of the individual properties of our approach can be accom-
plished with alternative methods. For instance, imitation learning or coding
of observed trajectories is easily accomplished with classical spline methods
(Sciavicco & Siciliano, 2000; Miyamoto et al., 1996), and temporal and spa-
tial scaling of splines could be accomplished by appropriate manipulations
of the spline nodes. However, splines are time-based representations that
are not easily modulated online by external variables, and splines can have
quite undesirable behaviors between spline nodes, particularly when the
execution is perturbed. Another example is movement recognition, where
we illustrated that a simple classification based on the parameters of the
function approximator allowed rather successful classification. Of course,
many other pattern recognition methods could accomplish similar or bet-
ter performance. But what we wanted to emphasize is that the invariance
properties of our parameterization of dynamical systems allow an elegant
approach to identify a movement. Thus, not the individual properties of
our approach but rather the ability to address many issues in one coherent
and simple framework is what should be emphasized in our work.

Third, from the viewpoint of applying our work to the representation
and learning of motor behaviors, we followed the less common approach of
coding kinematic movement behaviors in our dynamical systems approach.
An inverse dynamics tracking controller was used to convert the kinematic
state variables into motor commands. Other approaches would prefer to di-
rectly code motor commands to represent motor behaviors. There is nothing
in our approach that would prevent us from interpreting the output of our
dynamical systems directly as motor commands, and reinforcement learn-
ing could be used to optimize such a representation (Theodorou et al., 2010).
However, it is only due to kinematic representations (Bernstein, 1967) that
we could make interesting use of the generalization properties of our dy-
namical systems. Generalizing motor commands in a similar way would
not create useful behavior as the nonlinear dynamics of physical systems
would significantly alter the desired behavior (Hollerbach, 1984). As track-
ing controllers are rather well understood by now (Sciavicco & Siciliano,
2000), many control-theoretic papers have equally turned to kinematic rep-
resentations of motor behaviors (Rizzi & Koditschek, 1994; Chevallereau,
Westervelt, & Grizzle, 2005). In this vein, understanding how to couple non-
linear kinematic planning behaviors with nonlinear controllers, and even a
closed loop through both system, seems to be an important topic to address.
Our approach can be seen as a step toward such goals.
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