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Abstract

Data Integration is an essential step for developing data-driven decision in companies
and for enhancing the awareness in managers towards the importance of information.
However, nowadays is not easy to exert it properly due to the explosion of the Big
Data phenomenon, of which consequences are affecting every corner of the enterprise,
especially the processing time during projects’ development. This research study pro-
poses a solution to address this problem and promote effectiveness in companies, i.e.
introduce a novel approach to automatically detect the content of a dataset, with
a special attention on the information stored in one of its columns. This intelli-
gent categorization is made possible by the exploitation of ontologies knowledge and
structure, according to the principles of the Semantic Web, which is an extension
of the World Wide Web. As a starting point, we tested several approaches using
41 datasets belonging to the city of Los Angeles. Hence, we tracked the improve-
ments obtained in each step to design a more comprehensive methodology, i.e. the
final model. Finally, we investigated the performance of this final model including
also, when available, the exploitation of other information in the datasets, such as
the location. Experimental results on datasets has shown that the accuracy and
correctness of the outcome improved significantly with the development of the final
design.
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Sommario

L’Integrazione dei Dati è un passaggio fondamentale nello sviluppo di decisioni basate
su di essi nelle aziende e nella maturazione da parte dei manager di una certa con-
sapevolezza della loro importanza. Tuttavia, oggi non è così banale praticare tecniche
di Integrazione dei Dati a causa dell’esplosione dal fenomeno dei Big Data, le cui con-
seguenze stanno sfidando il mondo aziendale in ogni ambito, specialmente il tempo di
processo richiesto durante lo sviluppo di qualsiasi progetto. Questo lavoro di ricerca
propone un tentativo di soluzione a questo problema e di incoraggiamento ad una più
elevata efficacia nelle imprese, suggerendo un nuovo approccio per l’identificazione
automatica del contenuto di un dataset, ponendo particolare attenzione sulle infor-
mazioni mostrate da una delle sue colonne. Questa categorizzazione intelligente è
resa possibile grazie all’utilizzo delle informazioni e dalla struttura che contraddistin-
guono le ontologie, definite sulla base dei principi del Web Semantico, che consiste in
una estensione del World Wide Web. Come punto di partenza del progetto, sono stati
testati diversi approcci su 41 dataset appartenenti alla città di Los Angeles. Quindi,
durante ogni fase di sviluppo, sono stati tracciati tutti i miglioramenti ottenuti fino
a generare una metodologia più completa e ampia che si è identificata in un modello
finale. Infine, le performance di quest’ultimo sono state esaminate includendo anche
nell’analisi, quando possibile, l’utilizzo di ulteriori informazioni dal dataset, come ad
esempio la colonna contenente la posizione. I risultati ottenuti dagli esperimenti sui
dataset hanno mostrato un significativo miglioramento dell’accuratezza e correttezza
delle risposte, dato dallo sviluppo graduale del modello finale.
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Chapter 1

Introduction

The current transformation regarding data management and its recent developments
constitutes one of the most discussed topics of the recent times. Indeed, the way
information is exchanged embodies a new paradigm in terms of the impact on our
society and on the environment around us. The consequences of this extraordinary
innovation process are countless and affect many aspects of our daily life, resulting
in the proliferation of the amount of data generated and raising significant
problems towards information storage and integration.

Indeed, these fundamental processes, that already seem challenging, have turned out
to be even more effort-demanding in the so-called Big Data Era. This widespread
expression ("Big Data") refers to the extensive degree at which data is created,
shared and utilized in recent times, including a set of methodologies that looks
more complex than the usual procedures, and impacting many fields of activities
of our society [41]. Big Data can be characterized along six different dimensions:
volume, variety, velocity, value, veracity and variability [118]. Volume addresses
the challenge in the relationship between the huge amount of information generated
and the limited processing capacity of the current technical resources. Variety
expresses the wide range of information that needs to be processed and analyzed,
including also its structure and format. Velocity measures the temporary value
of data, facing the problem of rapid information changes, on one hand, and the
need of having it available in real-time, on the other. Value embodies the potential
benefits that can be gained from Big Data and Big Data practices. Veracity shows
the quality and the authenticity of data, addressing issues related to conflicting or
impure information. Finally, variability conveys to what extent, and how fast, the
structure of data is changing.

These issues are compelling for businesses and ambitious strategies are needed to look
ahead and exploit the potential of new opportunities driven by advanced Big Data
management. The tremendous amount of information available, in fact, is harshly
testing the industries and the whole business world in the attempt to make valuable
and data-driven decisions. According to a survey by [46], among several companies
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Introduction

from UK and US, business leaders say that data informs their decisions an average
of 16 times a day and 46% of them stated that they do not have the technology in
place to take advantage of data. Thus, in a society that is changing very fast it is
becoming fundamental for enterprises to catch up with the global market, and, thus,
to manage intelligently the information they already have.
Looking more thoroughly, all this data must be molded into an information foun-
dation that is integrated, consisted and trustworthy. Indeed, these resulted to
be the current leading priorities for top managers, as revealed by a research study
pursued at MIT and published in the MIT Sloan Management Review [99] (Figure
1.1 shows the integral responses obtained by 500 managers in the US).

Figure 1.1: What Managers Want Most In Their Data [99]

Focusing on the first priority highlighted by this study, the Data Integration prob-
lem can be defined as the combination of data coming from different sources,
providing the user with a unified vision of it [45]. It is essential, especially for com-
panies, to benefit from integrated access to their information in such a way that both
visualization and analysis of data across a wide range of sources become easy. Time
and efficiency also represent key resources to gain competitive advantage against
competitors. Thus, finding a way to access the content of datasets in a fast
and efficient way could be an example of strategy to improve the competitive
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position of the organization.

Moreover, the Big Data phenomenon combined with Data Integration practices has
caused processing time dilation in all Data Integration steps [82], especially during
record linkage, which is an intermediate phase devoted to combine two or more
sets of records referring to the same entity [27].

Considering this critical context, the main objective of this research project is to
sustain the enterprises in the process of integrating and analysing the data they have,
taking into account as a starting point a collection of available datasets containing a
huge amount of various and heterogeneous information about the city of Los Angeles.
The number of datasets is so large (more than a thousand) that departments within
the city will often be unaware of the information they have. Thus, they are often
unable to exploit and gain benefit from it. To address this problem, the design
of a new integration model has been brought up, with the final aim to develop a
strategy to access data more efficiently and effectively. In particular, the goal of this
research is to find a methodology for automatically extracting the content
from each dataset. In order to do so, the model should parse the information
contained in each dataset and extract the category to which the dataset belongs.
Categories refer to classes of items having particular shared characteristics and, in
this case, the model should be able to capture these peculiarities and to detect the
correct category from them. Categories (or classes) occur in a standardize form so
that they result to be human understandable. For example a dataset can be labeled
as containing information about Companies or Hospitals.

The methodology used in this project exploits the incredible knowledge spread in
the World Wide Web and its arising technologies, including the Semantic Web
paradigm, which has been introduced as a development of the World Wide Web
and where data is structured and written in such a way that it becomes machine
readable [126]. Leveraging on the Semantic Web means to have the opportunity to
access a huge amount of data and compare it with the information stored in the
datasets. This process recalls the characteristics of the record linkage step in Data
Integration and it is made possible thanks to Knowledge Bases, which characterised
the Semantic Web paradigm. A knowledge base consists in a store of information
on which it is allowed automatic inference [66]. Particularly, the knowledge bases
used for the purpose of this project are defined as ontologies, i.e. the explicit
and structured specifications of the concepts represented in a knowledge base [26].
Ontology specifications are typically Classes, which are sets where similar items are
grouped together, Attributes, which define the item properties andRelationships,
which specifies the relations between Classes. For it is, in fact, ontologies benefit
from a hierarchical structure where all the entities, i.e. the objects, are stored and
represented [64].

As a result of this well organized structure, ontologies represent the perfect instru-
ment to achieve the goals of this research study: to integrate datasets’ information
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with Semantic Web data and to correctly categorize datasets on the basis of ontolo-
gies’ structure. To address these issues, many approaches have been evaluated as a
starting point, including the Column Entity Annotation (CEA) and the Col-
umn Type Annotation (CTA) models described by [123]. The former focused
on comparing entities of one single column of a dataset with ontologies data, with
the aim to find matches; the latter focused on identifying for that column what the
correct class (i.e. the type) is, leveraging on the information gained from the ontolo-
gies. Subsequently, a more comprehensive approach has been considered to disclose
the subject of the information stored in those datasets, including also the analysis
of the column containing locations, when available, in the final design of the model.
The results obtained has shown a correctness in the model of 80% (considering the
evaluation of 41 datasets), highlighting what a difficult task this is.

The project is divided into seven Chapters which have been defined as follows.
An Introduction Chapter which is devoted to the presentation of the target problem
and the explanation of the purpose of the research.
A second Chapter dedicated to the description of the Preliminary Notions needed
to understand the topic and the technicalities behind the approaches applied, in-
cluding the definition of the Semantic Web paradigm and it principles, and other
important tools implemented in the project, like SPARQL and Elasticsearch..
The third Chapter is represented by the State Of The Art that encompasses the
literature used as reference, such as Data Integration steps in a Big Data and Web-
oriented environment, past work that show how to address the entity linking problem
using ontologies and to automatically integrate data of organizations by creating a
spatio-temporal index.
The fourth Chapter of this project is focused on the description of the Methods
and Materials; thus, explaining the methodologies pursued, the tools applied in
each step of the research and the reasons behind it.
In the fifth Chapter, a more detailed description of the problem and the way it has
been faced is reported, including the technical explanation of the Model Design in
all its facets and development steps.
Sixth Chapter is devoted to the illustration of the Experiments done according
to the objective of the research and the exhibition of the results obtained, both
quantitative and qualitative.
A Concluding Chapter shows the data-driven insights collected during the research
and lays the foundation for future developments of the model.
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1.1 Research Proposal

This research project provides an attempt to meet the companies’ need to process
data in a more efficient and effective way, since one of the main problems they have
to deal with, rather than the amount of information available, consists in how the
latter is handled and in the level of awareness they have acquired. Indeed, often the
companies are not sufficiently conscious of the data they have, not even
of where and how it is stored, and this may lead to serious issues. In addition,
today’s measures for integrating information from different sources are often too
time-consuming and too costly [12].
There are two driving factors causing this unpleasant situation:

• databases are still seen as silos only controlled by experts,

• the way data is stored is heterogeneous as information architecture, its meta-
data and schema are not separated well from application logic, so that it is
impossible to reuse it effectively.

In this perspective, this research study has the ambitious aim to sustain enterprises in
the process of analysing and processing data by facilitating the access to it. The main
objective of the presented project, in fact, is the generation of a model that should
support the automatic organization of information regarding the city of Los Angeles,
according to its content. In this way, departments and companies working in the
city, and often awash in data, can easily find the information they need avoiding
repetitions throughout different sources.
In order to pursue this objective, we have leveraged on Wikidata and DBpedia
ontologies to analyse the information available in a dataset and detect the Class
it belongs to. According to [75], Wikidata is a knowledge base born to be the
central data management platform of Wikipedia and to supplement its project, while
DBpedia extracts structured content from the information created in the Wikipedia
projects and made it available on the World Wide Web in a standardised format [5].
This choice has been dictated by the fact that all the information stored in DBpedia
is also incorporated in Wikidata. Wikidata hosts open knowledge where anyone can
contribute and it is one of the most important centralized storage of structured data.
Indeed, this information availability constitutes a favourable factor for the purpose
of the research.
Moreover, the representation of the data in the DBpedia ontology adheres to the
Semantic Web model [53], where each element is represented considering also its
relationships with other elements according to different levels of expressiveness [60].
At the basis of the mentioned model, information is described through a triple sub-
ject, predicate, object in order to highlight the relationships between data. Since
good modelling is key of efficient reasoning [132], the structure of these

5



Introduction

ontologies has been considered appropriate for the objective of the re-
search. Particularly, we considered the configuration of DBpedia ontology, built
upon a structured, hierarchical system base on classes, as a very good model of
reference.

The available data regarding the city of Los Angeles includes a significant number
of datasets containing a wide range of information (from the trees in the streets
to the characteristics of restaurants) and presented in a table form. In accordance
with the aim of the project and the nature of the ontology chosen, the process of
the attributes’ selection during the analysis has been pursued considering columns
containing text. In addition, we made sure that the final model was able to identify
which was the column that best defined the dataset, in order to work on that specific
column.
The integration has been done according to the information content, which meant
leveraging on the analysis of the information contained in datasets single column to
find matches with ontologies data and use the latter structure to retrieve a class for
the dataset. In fact, from the exploitation of the knowledge stored in Wikidata and
DBpedia, the model could enhance its knowledge about the content of the dataset.
The class was derived by moving along DBpedia hierarchical structure and stopping
according to certain conditions, evaluated during the development of the final model.
We also tracked the processing time of the model to check its effectiveness in pursuing
the objective. Since the time involved was little, even for datasets containing millions
of rows, this solution enable users to gain time for analysing data and to enjoy an
easy access to the dataset contents.
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Chapter 2

Preliminary Notions

The scope of this Chapter is that of providing the background information which
determined the knowledge base of the whole research project. In particular, this
Chapter includes the explanation of the theories behind the Semantic Web and its
structure, the Linked Open Data paradigm, the Knowledge Graph and the tools im-
plemented in the project, such as SPARQL and Elasticsearch search engine. Through
a high detailed elucidation of these preliminary notions, we aim to make the content
of this paper even more understandable.

2.1 Semantic Web

Figure 2.1: Semantic Heterogeneity [57]
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Preliminary Notions

In this paragraph we introduce the main theory on which the research project lays,
i.e. the definition of the so-called Semantic Web paradigm, also known as Web
of Data. The Semantic Web is basically an extension of the Web and of the Web-
enabling database and Internet technology [60] and it was originally proposed by its
inventor, Tim Berners-Lee, as the way to solve the problem of semantic hetero-
geneity in the Web. Indeed, when datastores for the same domain are developed
by independent parties, this causes discrepancies in the information content and
these differences are referred to as semantic heterogeneity. Semantic heterogeneity
also appears in the presence of multiple XML documents, web services and ontologies
- or more broadly, whenever there is more than one way to represent and organize
a body of data [68]. Figure 2.1 shows in a nice and intuitive way what semantic
heterogeneity is as a multiple perspective of reality which causes ambiguity, vague-
ness and inconsistency [57]. Therefore, in this scenario, the Web was designed as an
information space with the goal to be useful for human-to-human communication,
while the Semantic Web approach develops methods and languages for ex-
pressing information in a machine-processable form [19]. Thus, this solution
has been introduced with the aim to overcome the limitations of the World Wide
Web as that virtual environment where data form is for human consumption and
formats available require specialized algorithms to access, search and reuse [91].
The question naturally arises: how does the Semantic Web help solving the
Web’s drawbacks? To answer this question it is useful to describe the architecture
of the Semantic Web. Its design, in fact, stems from the idea of adding an extra
abstraction layer, a so-called semantic layer, built on top of the Web, in order to
make data not only human-processable but also machine-processable [60].
Figure 2.2 shows the technical structure that has been introduced within the Se-
mantic Web, where data is organized in (at least) four levels of increased expressive
power, each one corresponding to a specific representation need [60][91][19], namely:

1. eXtensible Markup Language (XML) [28][93][30]: allows the users to
create customized tags - hidden labels, such as zip code, that annotate Web
pages or sections of text - which are used by scripts or programs to exchange in
a sophisticated manner a wide variety of information on the Web and elsewhere.
XML grants users to add arbitrary structure to their documents but has no
built-in mechanism to convey the meaning of the user’s new tags to other users.
An example of XML fragment is provided below [6].

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

8
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Figure 2.2: Standard Stack Architecture Of The Semantic Web

In addition to XML, XML Schema has been introduced with the purpose of
defining a set of rules to which an XML document should conform [60] and to
allow the exchange of information between interested parties who have agreed
to adhere to those regulations and basic syntactical constraints [85] [124].

Generally speaking, there are several recommendations that users should follow
to produce usable XML documents according to the World Wide Web Consor-
tium [126]. However, there are no explicit constructs for defining classes and
properties in XML Schema, therefore ambiguities may still arise when map-
ping an XML-based data model and that is why a semantic layer has been
introduced [40].

2. Resource Description Framework (RDF): a scheme that defines the Se-
mantic Web data structure by providing the technology to express the meaning
of terms and concepts in a form that computers can readily process and that
intelligent agents can automatically parse [19]. It is a language for represent-
ing information about resources and the relationships among them in the Web
[113], which are called statements. Items in RDF are identified by a Univer-
sal Resource Identifier (URI), which is a compact string of characters for
describing both abstract and physical resources, globally recognised through
standards stated by Berners-Lee et al. [125]. All data in RDF is defined as an
ordered set where its terms can be either a URI u ∈ U, a blank node b ∈ B,
or a literal l ∈ L. In addition, RDF allows statements about resources to be
expressed in a form of RDF graphs, where a RDF graph consists in a group of
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RDF triples. Each triple s, p, o is characterized by a subject s, where s ∈ U
∪ B, a predicate p. where p ∈ U and an object o, where o ∈ U ∪ B ∪ L [42]
[49]. According to [86] the advantages of using URIs, to identify elements in
the triples, especially subjects and predicates, are many, allowing:

• to avoid confusions among different elements with the same name,

• to precisely identify properties,

• to express concepts not just as words but to tie them to a unique definition
so that everyone can find them on the Web.

There are various type of identifiers belonging to the URI category, such as
the Universal Resource Locator (URL), which specifies the location of an
item, and the Universal Resource Name (URN) that is used to uniquely
identify resources.

Figure 2.3: RDF Graph Model Example

Figure 2.3 shows an example of RDF graph model describing statements about
a person called "Joe Smith". The graph used in RDF model is a directed graph
where each triple is represented as an edge with two connecting nodes (from
subject to object) which form webs of information about related things. In this
kind of RDF representations there could be blank nodes, i.e. empty resources
for which a URI or literal is not given. In Figure 2.3 there are no blank nodes,
but objects expressed through URIs or in literal form, such as "Joe".

RDF triples can be textually represented using XML tags to explain entities,
concepts, properties and relations according to several specifications given in
[16][32][76] [15][113][56] and they are used to describe the vast majority of the
data processed by machines. RDF model better facilitates inter-operation than
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XML because it provides a data model that can be extended to address other
sophisticated representation techniques [43]; Figure 2.3 [104] shows an example.

Moreover, RDF is provided with a vocabulary named RDFSchema where all
the elements are called Resources and with the sophisticated aim to specify
the inference rules implied by the triples. RDFSchema is a form of semantic
Metadata (broadly defined by [47] as "structured data about data") where
information describes or supplements actual data by defining the semantic
relationship between resources and properties[40][9]. The main RDFSchema
constructs are based on the Class and the Property as resource types, i.e.
characteristics of the entities represented, and subClassOf and subPropertyOf
as relationship names. This terminology allows to declare resources as an
instance of one or more classes and to specify hierarchies of both classes and
properties through the usage of subClassOf and subPropertyOf [25]. Here we
provide an example of RDFSchema written in XML.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns="http://www.example.org/~joe/contact.rdf#">

<foaf:Person rdf:about= "http://www.example.org/~joe/

contact.rdf#joesmith">

<foaf:mbox rdf:resource="mailto:joe.smith@example.org">

<foaf:homepage rdf:resource="http://www.example.org/~joe/"/>

<foaf:family_name>Smith</foaf:family_name>

<foaf:givenname>Joe</foaf:givenname>

</foaf:Person>

</rdf:RDF>

As it is possible to notice, properties can be defined by a prefix, such as
/rdfs and /foaf, while each resource is uniquely described by a URI, like
http://www.example.org/joe/contact.rdf/joesmith

3. Ontology Vocabulary: this is the Web Ontology Language (OWL), the
third basic component of the Semantic Web, defined according to [19] as a col-
lection of statements that describes the contextual relations between concepts
and specifies logical rules for reasoning about them on the Web. OWL facili-
tates greater machine interpretability of Web content than that supported by
XML, RDF, and RDF Schema, by providing additional vocabulary along with
a formal semantics [95]. OWL, in fact, represents an extension of RDFSchema
as it classifies elements within the vocabulary according to their semantics and
meanings.

Generally speaking, OWL is a formal syntax for defining ontologies, which are
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the cornerstone of the knowledge domain and explicitly specify concepts by
providing the syntax to define Classes and various operations on them[60][63].
Indeed, OWL ontology is characterized by a hierarchical structure of classes
and subclasses named taxonomy. For example, the resources student and pro-
fessor represent different entities belonging to the same class: person. Through
classes, subclasses and relations among entities it is possible to express a large
number of concepts by assigning properties to classes and allowing subclasses
to inherit such properties. In addition, instances in OWL are called individuals
and are related by two main properties:

• object properties which relate individuals of two different OWL classes,

• datatype properties which relate individuals with literal values. For
example, the address of a house and its zipcode represent the datatypes
of the property location.

As for the other layers in the Standard Stack, also for OWL the World Wide
Web Consortium has suggested several specifications which have been described
in detail in [95][133][13][106][71][36] and are constantly updated. With ontology
pages on the Web, machines can now manipulate information in a more effective
way that is useful and meaningful for the user [19][59] .

4. Logic, Proof and Trust Level: this level adopts technologies that are at
a very early stage due to the absence of already defined standards and open
architectural issues. According to [114] the layers that distinguish the upper
level of this Standard Stack are:

• Logic Layer to enable the writing of rules,

• Proof Layer to execute the rules and produce new knowledge,

• Trust Layer to decide whether to believe a given proof or not.

Last but not least, in accordance with [19], the real power of the Semantic Web is
based on software agents, i.e. programs that collect Web content from diverse
sources, process the information and exchange the results with other programs. As
a results of the Semantic Web development, such agents are now able to establish
a synergy and transfer data among themselves, enhancing their performances’ effec-
tiveness. Very likely, this phenomenon will increase exponentially as more machine-
readable Web content and automated services become available. That is the reason
why data providers should collaborate by properly publishing their data and linking
it to the existing ones.
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Figure 2.4: Linked Open Data Cloud [94]

2.2 Linked Data

The idea of Linked Data is a descendant of the Semantic Web paradigm as it refers to
a set of best practices for publishing and interlinking structured data on the
Web by using RDF structure and URIs [12][70]. Linked Data project goes along
with a standardised, uniform and generic APIs1, supporting information discovery,
reliable access to data and metadata and distributed querying [134]. Thus, Linked
Data represents a favourable environment for information exchanges and synergies
between programs. These characteristics, in fact, allow Linked Data to have a wider
adoption due to lower entry barriers for data providers. As information is not just
published but also uniformly linked using RDF [21], it becomes significantly more
discoverable and, therefore, more usable.

1Web Application Programming Interface is a set of instruction and standards for interacting
with a web server or browser over HTTP protocol [98].
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As it is possible to see from Figure 2.4, data sources are connected into a single global
space through links set between different items, echoing the diversity and increasing
the volume of information available to users and developers. The basic idea of Linked
Data is to provide a general architecture in the process of sharing data on a global
scale trough the application of four main principles [21]:

1. Use URIs to identify things

2. Use HTTP URIs 1 to allow people looking up things

3. Provide useful information in the URIs, trough standards such as RDF and
SPARQL (see Section 2.4)

4. Include RDF links to other URIs to enable the discovery of realted information

According to T. Berners-Lee [18], breaking these principles does not destroy anything,
but it means to miss the opportunity of making data interconnected. Thus, this will
limit the ways information could later be reused in unexpected ways, which eventually
represents the value added by the Web.
Furthermore, around the Linked Data paradigm, a whole community is moving with
the World Wide Web Consortium to take existing (open) datasets and make them
available on the Web [11], leveraging on the usage of open standards, like RDF, to
describe metadata. This is the reason why sometimes we refer to Linked Data as
Linked Open Data. The result of this global participation is shown in Figure 2.4
which illustrates all the knowledge bases engaged in the Linked Data project and
where the expansion is unstoppable.

2.3 Knowledge Graph

The termKnowledge Graph has been associated with a variety of partially contra-
dicting definitions and descriptions. The company which formulated this expression
for the first time was Google in 2012, basically describing the Knowledge Graph as
an enhancement of their search engine with semantics [119]. According to
the Semantic Web Conference, instead, the Knowledge Graph could be envisaged as
a network of all-kind things which are relevant to a specific domain or to
an organization, not limited to abstract concepts and relations but also including
instances of things like documents and datasets [23]. Many other different interpre-
tations of the Knowledge Graph have been identified in the Literature, including
definitions in [107][52][111]. Overall, the main aspect that is evident from these def-
initions is considering a Knowledge Graph as a large network; thus, a graph-based

1HTTP stands for Hypertext Transfer Protocol and it is used for distributed, collaborative
information systems which defines communication means between endpoints [98]. It is the Web’s
universal access mechanism.
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model embedding many different and heterogeneous elements. More re-
cently, Nickel et al. [102] have defined the Knowledge Graph in such an interesting
way that is worth reporting in this project. They described it as a graph-structured
knowledge base that stores factual information in form of relationships be-
tween entities. What stems from this definition is the fact that the items stored are
expressed as relational facts. Thus, in accordance with the definition given in Sec-
tion 2.1, a Knowledge Graph could be described as an ontology, due to its structure
based on interrelations between entities. Indeed, when a Knowledge Graph meets
formal properties, it is an ontology [23]. Ontologies, in fact, were born to capture
very complex relationships between classes and individuals than generic Knowledge
Graphs[24]. Thus, formal specifications are needed to generate an ontology.
The presented research was born from the aim to exploit the concept of Knowledge
Graph with formal properties, already available in the Web.

2.4 Wikidata

Wikidata is a free and open knowledge base that can be read and edited by
both humans and machines and acts as central storage for the structured data of its
Wikimedia sister projects including Wikipedia, Wikivoyage, Wiktionary, Wikisource,
and others [4]. Wikidata was first introduced in October 2012 with the objective to
overcome Wikipedia’s shortcomings (the most significant one being the absence of
a direct access to most of the data) creating new ways for Wikipedia to manage its
information on a global scale [130]. The uniqueness of Wikidata approach is marked
by several principles [4]:

• be free and open to anyone in the world for storing and editing information,

• be collaborative in data and data schema management so that the whole com-
munity has the control over them,

• be multilingual accepting possible conflicts between information, i.e. mis-
matches between data that has been stored in different languages but that
refers to the same entity, and providing mechanisms to organize it correctly,

• store data which belongs to different primary sources or databases,

• collect structured data,

• assist Wikipedia by increasing the quality of information management and
easing the access to it,

• be in continuous evolution together with a growing community of editors.

Indeed, Wikidata key factor is the volunteer community’s reuse and integration of
external identifiers, i.e. unique attributes to identify entities, from existing databases
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and authority controls which enable applications to integrate Wikidata with infor-
mation from other sources that remain under the control of the original publisher.
Being an open knowledge base where each one can give a personal contribute, the
site has gathered data on more than 15 million entities, including over 34 million
statements and over 80 million labels and descriptions in more than 350 languages
[50]. The interconnection to external datasets from many different domains is the dis-
tinctive characteristic of the Linked Open Data paradigm and makes Wikidata part
of the Semantic Web, supporting integration of other Semantic Web data sources.
Furthermore, the collected information is exposed in various ways, mostly JSON1,
XML and several other formats, and it is available in the public domain. In order to
retrieve information from Wikidata pages, and consequently from Wikipedia, users
can leverage both on the so-called Qnodes as all the information is uniquely defined
by them.

A Qnode is the exclusive number (preceded by a "Q") that describes the page
of a particular item. Qnodes, in fact, are useful since Wikidata is a multi-lingual
site and items need not to be identified by a label in a specific language, but by
an opaque identifier, which is assigned automatically when the item is created and
which can not be changed later on. For instance Q42, which is correlated with the
URI http://www.wikidata.org/entity/Q42, represents the page about Douglas
Adams, the famous English writer and humorist. Figure 2.5 shows an example of
Q42 Wikidata page and the standard layout of the site.

As it is possible to see, every item page contains the following main parts [50]:

• a label: “Douglas Adams”,

• a short description: “English writer and humorist”,

• a list of aliases (e.g., “Douglas Noël Adams”),

• a set of properties which introduce a characteristic of the data (e.g. "educated
at") and have a P prefix instead of Q. Properties, when paired with values,
form a statement in Wikidata and they are described in dedicated pages
connected to items, resulting in a linked data structure. Each property has
a data type which defines the kind of values allowed in statements with that
property,

• a list of qualifiers which provide additional contextual information to enrich
a statement,

• a list of site links to pages about the item on Wikipedia and other projects.

1JavaScript Object Notation is a standardised text format for data interchange, easy for humans
to read and write, and for machines to parse and generate [39]
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Figure 2.5: Douglas Adams Page In Wikidata [4]

Many Wikidata projects have shown the need to represent statements and quali-
fiers trough the Knowledge Graph [24], as an effective tool to improve knowledge
extraction an analysis.

2.5 DBpedia: a free RDF repository

Synergistic research along different directions and extraction approaches which are
able to embrace diverse knowledge domains simultaneously have become a matter
of interest for developers and Web users. To accomplish such challenging tasks, in
fact, a rich corpus of diverse data is needed. The DBpedia project has been intro-
duced to answer this need and it focuses on converting Wikipedia content into
structured knowledge, so that Semantic Web techniques can be employed against
it [10]. Thus, the main objective of DBpedia is to extract structured information
from Wikipedia and to make this information available on the emerging Web of Data
[100], that is why it is also defined as “the Semantic Web mirror of Wikipedia” [1]. In
order to do so, DBpedia uses the Resource Description Framework (RDF) triples as
data model for representing retrieved information. Data is extracted from Wikipedia
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in a combined and linked cross-domain knowledge base and, then, published on the
Web. This process allows to disclose information in a structured and standardised
format. According to [10] the DBpedia datasets consist of 103 million RDF triples
with information of about 2.18 million things), while considering also other open
datasets, it reaches 2 billion triples [14]. All DBpedia information is the result of
multi-domain ontology which has been derived from Wikipedia as well as localized
versions of DBpedia in more than 100 languages. An example of DBpedia RDF
statements is reported in Figure 2.6, which includes the definition of a subject (i.e.
William Shakespeare) and its properties explained through predicates and objects.
This statement expresses the triple which regards William Shakespeare and it can
be also described through RDF graph model.

Figure 2.6: RDF Statements [100]

To avoid ambiguity among entities, every element in DBpedia is denoted by a URI-
based reference of the form http://dbpedia.org/resource/Name (or by a suffix like
dbr:Name), where Name is derived from the URL of the source, tieing the DBpedia
entity directly to a Wikipedia article [1]. The structure of the DBpedia knowledge
base is maintained by the users’ community, which creates mappings from Wikipedia
instances to the DBpedia ontology, enhancing the overall clearness and the infor-
mation structure [87].
To accomplish the goal of this project, the model, which will be described in Chap-
ter 5, leverages on DBpedia ontology Classes. Indeed, it is important to under-
line that the mapping schema in DBpedia ontology follows a specific structure to
call its classes: there is a URI to specify the page of the class, i.e. http://dbpe

dia.org/ontology/Class, and a suffix for the name of the class (for example dbo:

Place), so that the final URI for the Class containing all places is http://dbpe

dia.org/ontology/Place.
Furthermore, from Figure 2.7 it is possible to see the hierarchical architecture which
characterized DBpedia ontology, and its main classes, i.e. dbo:Place, dbo:Agent
and dbo:Species, which share a common root node identified in owl:Thing. The
complete list of DBpedia classes (320 in total [97]) can be found on the Web at
http://mappings.dbpedia.org/server/ontology/classes/.

At this stage, the question raises: how does DBpedia extract information from
Wikipedia?
Wikipedia articles consist mostly of free text, but also contain different types of
structured information, like infobox templates [10], as reported in Figure 2.8. The
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Figure 2.7: Snapshot Of The DBpedia Ontology [87]

DBpedia mapping strategies are based on retrieving data from those infoboxes and
the ontology is built though various extractors which translate different parts of
Wikipedia pages into RDF statements. According to Lehmann et al. [87] and [1]
there are four categories of DBpedia extractors:

1. Mapping-based Infobox Extraction: applies manually written mappings
to relate infoboxes (i.e. rdf:types) to terms in the DBpedia ontology, speci-
fying a datatype for each infobox property and, thus, improving the quality of
data extracted. DBpedia classes are extracted through this technique.

2. Raw Infobox Extraction: relies on not-explicit infobox extraction knowledge
and, subsequently, the quality of data is lower than with the first method,

3. Feature Extraction: applies a number of extractors that are specialized in
extracting a single feature from an article, such as geographic coordinates of a
place,

4. Statistical Extraction: uses machine learning extractors based on Natural
Language Processing methodologies to provide data that is based on statistical
measures.

Once items are extracted, DBpedia includes them into its structure and periodically
updates them.
Similarly to Wikidata, also in DBpedia the items are related by properties that are
divided into object and datatype properties as described in Section 2.4. Properties
are extracted through Raw Infobox Extraction and are expressed like classes, with

19



Preliminary Notions

Figure 2.8: Wikipedia Page Example: Los Angeles [5]

a URI and a suffix (dbp). An example is reported in Figure 2.7 where the property
of population is expressed with http://dbpedia.org/property/population and
dbp:population.

2.6 SPARQL: a way to access data on the Web

Both DBpedia and Wikidata are served via a public SPARQL endpoint1 which,
thanks to the documentation provided by [120] and [121], enables the access to DB-
pedia and Wikidata information from the Web. In particular, SPARQL is a recursive
acronym for "SPARQL Protocol and RDF Query Language" and it is used to ask
queries against RDF graphs [100], extracting the sets of triples. SPARQL works
properly thanks to the fact that both Wikidata and DBpedia can be represented by
a Knowledge Graph with formal properties. It is the tool that provides the correct
syntax for the user to retrieve data from the ontologies and it works likewise SQL
for tables of relational Databases.

1https://dbpedia.org/sparql and https://query.wikidata.org/
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According to [54], SPARQL general form is defined by:

• a PREFIX where the Namespaces2 are provided

• a SELECT section where the subject to return is specified

• a WHERE statement which defines the path in order to find the correct triple
pattern in the RDF graph

• several modifiers, such as ORDER BY and DISTINCT

A SPARQL interface is appropriate when the user knows in advance exactly what
information is needed. Moreover, to protect the service from overload, limits on
query cost and result size are in place [10]. In this research SPARL queries have
been used to retrieve information from Wikidata and DBpedia.

2.7 Elasticsearch: a fast and reliable data search engine

The users’ main attitude in the Web is that of searching and exploring, particularly
when the research process is comfortable, smart and fast. That is the reason why
every business in the market strives to better satisfy customers with giving exactly
what the customer is seeking [101]. Elasticsearch represents a solution to this problem
as a distributed, scalable and real-time open search engine which works both
with full-text information and for real-time analytics of structured data [62]. It was
first developed by Shay Banon in 2010 to format, store and retrieve data in a place
called Index which can be compared to a table in the relational database world,
but where data is prepared for fast and efficient searching [83]. Furthermore, the
main entity in the Elasticsearch platform is named document that in analogy to a
chart-based dataset is the row of a column, but without the constraint of having a
fixed structure because single documents are atomic and isolated.
Elasticsearch uses the concept of relevance and creates a Search Index to sort the
resulting document set without the need of up-front schema definition [101]. This
process is referred to as scoring and it is based on the calculation of a score which is
directly proportional to the query match in the research phase. Thus, each document
retrieved is associated with a score, i.e. a positive floating number, which indicates
the level of relevance of that document with respect to the user research. Relevance
is, eventually, computed through a Practical Scoring Function described in [48].

2A namespace is a group of related elements that have a unique name or identifier each[38]
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Figure 2.9: Wrap Up Of The Technologies

In conclusion of this preliminary section, we report a schema of the covered topics,
distinguishing between technologies already existing for the World Wide Web and
the new ones specifically for the use of Semantics. As it is possible to notice from
Figure 2.9, there are some tools (which stand in between, or for which the line is
blurred) that represent the technologies in development for the Semantic Web. This
new paradigm, in fact, is the place where existing Web technologies are used or even
improved to extract meaning from data.
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Chapter 3

State Of The Art

This third Chapter is dedicated to the review of the literature in the Data Integration
field, which encompasses traditional Data Integration and Web Data Integra-
tion approaches using ontologies and unstructured data. In addition, a focus
on companies challenges in this environment has been pursued, considering the im-
pact of Big Data in management procedures. Then, a section is devoted to
show More Related Work, i.e. researches performed on the same datasets or
regarding entity linkages approaches and columns’ parsing methodologies.
The elucidations shown should be considered taking into account also that the project
has the aim to address these two main tasks:

• map information stored in Los Angeles datasets to entities already existing in
the ontologies, i.e. face the Candidates Generation problem through entity
linking,

• extract the ontology Class of the whole dataset according to the information
analysed in its columns, i.e. address the Class Identification issue.

3.1 Traditional Data Integration

Data can reside in different databases or change throughout time, thus, it has become
fundamental to find an effective way to combine it. Data Integration was born to
accomplish this task. The goal of an integrating system, in fact, is that of offering a
uniform access to a set of autonomous and heterogeneous data sources [44].
In order to fuse the data from multiple sources, resolving the instance-level ambigu-
ities and inconsistencies between two different sources is crucial. Traditional Data
Integration addresses these challenges of semantic ambiguity, instance representation
ambiguity, and data inconsistency by using a pipelined architecture, which includes
three major steps [45]:

1. Schema Alignment: heterogeneity in schema means that in the sources to
be integrated there are attributes which share the same semantics and others
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which do not [45] [112]. In this first phase, a data integration system has the
objective to solve those inconsistencies, by applying different strategies to align
source schemas [17][44].

2. Record Linkage: once the schemas are aligned, the following step consists
in deciding which records refer to the same entity and which refer to different
ones.

Pairing every group of records from databases is for sure infeasible, particularly
when the volume is significant as it is explained in Section 3.2. As in Schema
Alignment, also for Record Linkage many approaches have been adopted to
establish which records refer to the same entity [69][20]. The most important
one according to the objective of this research is: Pairwise Matching which
consists in any process of comparing entities in pairs to make a local decision
of whether or not they refer to the same entity [72][55]. As stated in [45], there
are several approaches to pursue Pairwise Matching during the Record Linkage
phase. Some of them are elucidated in the following paragraph.

The first technique is rule-based and applies domain knowledge to make the
final statement above the records compared. This approach can be very useful
in complex matching scenarios, but it requires significant knowledge about data
[72][51]. Furthermore, Fellegi and Sunter [55] proposed a classification-based
technique based on training machine learning algorithms in order to classify
whether a pair of records is a match or a not-match. As in the previous case,
also here knowledge is required but with a focus on the number of examples to
accurately train the classifier [116]. The third approach proposed for Pairwise
Matching is a distance-based technique characterized by the computation of
distance metrics to measure the dissimilarity between corresponding attribute
values. Particularly, Elmagarmid et al. [117] elucidated the different methods
to calculate the distance among values according to their nature, i.e. strings or
numeric attributes. While these approaches require careful parameter tuning,
they enjoy the advantage of being potentially reused for a large variety of entity
domains as the knowledge domain needed is minimal. In Chapter 4 we will
explain which distance metrics have been applied in this research project and
why.

3. Data Fusion: the final step to address in Data Integration is that of deter-
mining the true value for each data item, which can be for example a cell in
a dataset. Thus, Data Fusion step aims to understand which value to use in
the integrated data when the sources provide conflicting values. Many times,
in fact, information in different datasets can show conflicting values due to
mistyping, sharing or out-of-date data [45] and this arises issues during inte-
gration. Several techniques have been introduced as solutions to Data Fusion
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problem. There are, for example, traditional approaches to Data Fusion, which
are typically rule-based, i.e. leveraging on rules to select the final value for that
data item. Examples can be using the observed value from the most recently
updated source or taking the average numerical values. However, when the
amount of information is significant, these techniques still appear to be inef-
fective [22].

3.2 Big Data Challenges for Data Integration

Big Data embodies the paradigm of modern time as everyone nowadays is over-
whelmed by information and is not fully aware of the power and challenge behind it.
Moreover, Big Data not only refers to the unceasing proliferation of data, but also to
the extraordinary diversity of data types, delivered at various speeds and frequencies
[115]. This boils down to the definition of Big Data challenges along six different
dimensions:

1. According to [79], volume refers to the tremendous amount of data existing that
is difficult to be handled using the traditional systems, for example nowadays
social networking sites alone are producing data in the order of terabytes.
Figure 3.1 shows an overview of the social media usage based on monthly active
users of the most active social media platforms in each country by territory.

Figure 3.1: Social Media Overview January 2019 [73]

2. Velocity refers to the frequency of data generation or the frequency of data
delivery [115], which has reached a pace never seen before.

3. Variety indicates that Big Data is not of single category as it includes not only
data structured in tables or other traditional ways, but also semi-structured
information from various resources like web Pages, social media sites, e-mail,
documents, sensor devices data and so on. The level of heterogeneity of this
kind of information requires more sophisticated data processing capabilities.
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4. Value shows the way Big Data impact society with new opportunities and dis-
ruptive changes which contribute to a significant generation of new benefits
across many domains. For instance, by adopting analytic-advanced technolo-
gies, organizations can leverage on Big Data to develop innovative insights,
products, and services and enhance their profit, business growth, and compet-
itive advantage [67].

5. As stated in [45], Big Data veracity relies on the fact that data sources are of
widely differing qualities, with significant differences in the coverage, accuracy,
and timeliness of data provided.

6. Finally, Variability addresses the challenge to maintain data loads and avoid
flows inconsistencies with the continuous increase of information generated.

In accordance with the objectives of this research work, we focused on the chal-
lenges in the Big Data environment with regard to the second component of Data
Integration, i.e. Record Linkage. According to [82], the increase in information vol-
ume has caused record linkage timing to dilate, reaching hours or even days. Many
approaches have been adopted to address this issue, including the MapReduce pro-
gramming model introduced by [81] and multiple blocking functions explained by
[105]. The main results obtained in the first case consists in a reduction of com-
puting time for Record Linkage thanks to a more even distributed workload across
tasks, while Papadakis et al. [105] achieved a better efficiency and higher Recall (see
Section 6.2).
Moreover, fast information updates which characterized Big Data have arisen the
need of performing incremental record linkage approaches. This issue has been faced
by Gruenheid et al. [65] introducing two incremental algorithms which apply correla-
tion clustering on subsets of records and find the optimal solution. The experiments
conclusion about incremental record linkage highlighted a significant improvement
in efficiency, without sacrificing linkage quality.
On another hand, many projects have been developed in order to address the variety
challenge which often culminates in text snippets to be linked with more structured
records. One novel approach, for example, is a supervised learning technique which
find the record from structured data that has the highest probability of match to the
given unstructured text snippet. The matching function is also able to penalize mis-
matches and learn the relative importance among attributes, through the generation
of a similarity feature vector. The results of this research study, proposed by Kannan
et al. [78], show that the quality of matching improves when the weights of the fea-
tures are learned and not fixed equally. In addition, their approach manifested great
scalability with product offers, where they limited the matching to product specifica-
tions in the same category and select the candidates with at least one high- weighted
feature. This methodology is highlighted here because a very similar approach has
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been applied in this research work.
Furthermore, erroneous record linkage can be the result of out-of-date attribute val-
ues. To address the Big Data veracity challenge, Li et al. [88] proposed a model
which is able to analyse entity evolution over time and identify obsolete records;
while Chiang et al. [37] developed a probabilistic models and faster algorithms,
including also clustering methods, to perform temporal record linkage. From the
former studies, the results obtained show that performing linkage only on the base
of high similarity of one of the words in the input leads to mistakes, however this
is not applicable in records that refer to the same real-world entity which, in fact,
observe continuity. In addition, Li et al. [88] discovered that applying approaches
regarding very similar values and penalizing situations with low similarity between
them, is not necessarily appropriate for temporal record linkage.

3.3 Data Integration In The Semantic Web

In this paragraph we have the aim to analyse the different approaches of using
ontologies to solve Data Integration tasks and how their knowledge is reused in those
situations. Ontologies, in fact, have been extensively used in data integration systems
because they provide an explicit and machine-understandable conceptualization of
a domain [40]. According to [131] there are three main ways to exploit knowledge
from ontologies:

1. Single ontology approach where a shared global ontology is used to provide a
uniform interface to the user for relate source schemas. Of course, this requires
the sources to have the similar schemas and the same level of granularity. A
typical example of a system using this approach is SIMS [8].

2. Multiple ontology approach where local distinct ontologies describe a data
source and, then, are mapped to each other. The OBSERVER system [96] is
an example of this approach.

3. Hybrid ontology approach where, at first, for each source schema a local
ontology is built and, consequently, that is mapped to a global shared ontology
so that new sources can be easily added with no need for modifying existing
mappings. The framework described in [40] provides an example of this.

Moreover, from the literature it is possible to identify five different uses of ontologies
in Data Integration [40]:

1. Metadata Representation which consists in using a single language to ex-
plicitly represent metadata by a local ontology

2. Global Conceptualization where a global ontology provides a conceptual
view over the schematically-heterogeneous source schemas
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3. Support for High-level Queries where a query is formulated without spe-
cific knowledge by the user and, then, it is rewritten into queries over sources,
based on the semantic mappings between the global and local ontologies

4. Declarative Mediation in which hybrid peer-to-peer query processing system
uses a global ontology as a declarative mediator for query rewriting between
peers

5. Mapping Support where an ontology built for synonyms can be used to
improve automation in mapping process

In conclusion, one of the key approaches to have unified and transparent access to
data is the OBDA/OBDI (Ontology Based Data Access And Integration) model
proposed by [110] and [34] where an extension level is built on the specifications (i.e.
the triples in the ontology) to represent the data at the source with the structure of
the schema in the ontology. Figure 3.2 provides a graphic description of the structure
of the model.

Figure 3.2: OBDI/OBDA Specification And System
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3.4 The Voice Of Companies

Today, the discovery of Big Data opportunities for companies forces deep changes
into most businesses, especially those that depend on mass consumers or related fields
that produce an enormous quantity of information [115]. In many cases, in fact, that
information is decentralized in different databases or, even worse, in heterogeneous
formats. Combining data from multiple sources is fundamental for enterprises to
obtain a competitive advantage and find opportunities for improvement.
Moreover, the Web represents the largest data source to exploit as it contains millions
of databases with a wide range of information. Leveraging this incredible collection
of data raises significant challenges [44]:

• Schema Heterogeneity on a much larger scale as information on the Web
are countless and belong to independent authors,

• Data Extraction from tables embedded in Web pages is challenging because
information is usually uncleaned and even contradictory,

• Disparate Resources makes it difficult to establish the right level of coordi-
nation among companies,

• Adding new information for greater context and more source material re-
quires a lengthy manual process when data comes from the Web.

Thus, Data Integration represents one of the most serious issue for companies de-
velopment. According to [35] most of semi-structured and unstructured data is not
actually owned by organizations and being able to combine it with information col-
lated by companies can generate greater opportunities than just trying to bring all
data into one warehouse. In addition, due to the advent of Big Data, organiza-
tions are now awash in data and in many cases, they do not know what data exists
within the organization and when they search for information which is not available
it usually gets recreated from other sources.
Modern Data Integration solutions are emerging to face these challenges and offer
a simplified and secure method of data collection, both from external datasets and
from the Web, that easily scales with any business needs. Examples of these projects
can be found in Amazon Redshift, Snowflake, Google BigQuery, Azure, or a number
of other options [7].
In conclusion, Data Integration challenges stem also from the way companies access
to data and how fast it can be accessed when real-time responsiveness and continuous
availability is required. For real-time data management, in fact, clients need to re-
think their data architecture, seeking for a more flexible and intelligent infrastructure
[129].
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3.5 More Related Work

In this final section of the State Of The Art, we decided to describe the projects
most related to the one developed in this research. Particularly, a first paragraph is
dedicated to the work by Knoblock et al. [80] , a second paragraph to the Semantic
Annotation of Documents by [29] , and a last paragraph to a Domain-Independent
Approach for Semantic Labeling by [109].

3.5.1 Automatic Spatio-temporal Indexing to Integrate and Ana-
lyze the Data of an Organization

In this research project they started from the idea that the data available, which
belongs to the same datasets of the current work, has a strong spatial and temporal
component. Thus, the objective of the research was that of determining a spatio-
temporal index for each record through the development of an automatic algorithm
trained to identify the fields that contain temporal or spatial information and then
normalize it into standard formats. In order to identify temporal or spatial informa-
tion the previously-developed (see Section 3.5.3) DSL approach for semantic labeling
was used. DSL extracts a set of similarity features, such as Jaccard similarity [103]
between the attributes name, TF-IDF cosine similarity [92] for overlapping values
occurrences, Distribution similarity [77] and Histogram similarity [90], between un-
seen and sample data for each attribute and, subsequently, uses a trained Logistic
Regression model to classify whether a new attribute is similar to an indexed type
according to a probability threshold. In addition, a data normalization step was
applied where an unsupervised method for automatic data cleaning was developed
to standardized information formats. Finally, the last phase consisted into storing
all of the data across all of the original sources in ElasticSearch, using a common
format for representing all the data, so that information could become available for
retrieval. The main results show that out of 177 datasets, only 23 were incorrectly
mapped to the wrong spatial extent, while 154 were correctly mapped to the right
temporal extent.

3.5.2 Semantic Annotation of Documents Based on Wikipedia Con-
cepts

The main task of this research project consisted into identifying concepts from a
selected ontology (Wikipedia was treated as such) that are relevant to a certain doc-
ument or that are referred to it, as well as selecting specific passages in the document
where the concepts are mentioned. This specific type of semantic annotation is called
wikification. The main steps of wikification includesthe identification of phrases in
the input document that refer to a Wikipedia concept, the determination of which
concept a phrase refers to and the selection of relevant concepts. The approach de-
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scribed by [84] was applied to detect whether a phrase of an input document refers
to a Wikipedia concept making use of Wikipedia hyperlinks. In addition, they faced
the disambiguation problem by applying a global approach (disambiguate all the
mentions as a group) to the set of concepts. This approach, in particular, includes
the generation of a mention-concept graph [29] which collects all the semantic-related
concepts (when a concept is relevant to a given document, the concept that is related
semantically to the former is more likely to be relevant to that document, comparing
to another concept not semantic-related) through an iterative process. Once all the
concepts are accumulated, the model selects the concept with the highest pagerank
as the most relevant one; thus, the one that explains the whole input document.
The results of this research are very satisfactory, reaching a classification accuracy
of 96.2%.

3.5.3 Semantic Labeling: A Domain-Independent Approach

In this project work the main objective was that of annotating source attributes
with classes and properties of ontologies, i.e. apply semantic labeling, especially
to situations where sources were already mapped to a common ontology and new
sources needed to be mapped using the same ontology. The overall approach builds
a feature vector f [k ] representing the similarity between two attribute according to
the metric k, and trains a classifier to label each foj as True/False. If the label of
foj is True, the semantic type of the unlabeled attribute is the semantic type that
was recorded for an initial one. From that, it is possible to conclude the semantic
type of unlabeled attribute. The main classifiers evaluated were Logistic Regression
and Random Forests [31]. The results of the Domain-independent Semantic Labeler
(DSL) show that training the classifier from the same domain, which provides more
information about the characteristic of data, slightly improves the accuracy of the
classifier.
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Chapter 4

Methods And Materials

In this research project the approach adopted to investigate the problem and achieve
the objectives is based on experimental-driven developments which have led to con-
tinuous optimizations and discoveries, contributing to the definition of a final model.
In particular, each step has been fundamental to determine the improvements of
the following ones. As we will explain in Chapter 5, the final model design includes
various approaches that the user can follow in order to automatically extract the con-
tent from a dataset in the form of a category. In this Chapter we elucidate the basis
on which the project has been developed, i.e. the methodology used for comparing
available data with knowledge stored in ontologies, which consists in the Candidates
Generation phase, the tools applied throughout the research and the reasons behind
it. In conclusion, a section is devoted to illustrate the materials used as it regards
the technicalities.

4.1 Column Entity Annotation for Candidates Genera-
tion

As a first step, we focused on the comparison between the information in the datasets
with respect to ontologies’ knowledge. This process includes the application of Sim-
ilarity Measures between entities in the different sources. We provide here the
definition of the Similarity Measure [61]:

Definition 1. A Similarity Measure is a function s : E × F → R that takes a
pair of items (e ∈ E and f ∈ F respectively) and returns a scalar r ∈ R measuring
their similarity. E and F represents two different data sources, while the function s
can be expressed through a distance metric.

Leveraging on similarity measures was fundamental to address the Candidates
Generation problem, defined as:

Definition 2. Given a word w expressing a concept in the first data source E, the
model, which is for instance a system or a program, searches in the second data
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source F and, using a similarity measure s, generates a set of relevant words called
Candidates wi

′, where i is the number of Candidates, that are closest to w. Can-
didates generation can be applied in situations with more than one word or even for
entire phrases.

Candidates Generation process has the aim of finding the exact match between the
information taken as input and the available resources in knowledge bases. A gener-
ation of good and valuable candidates was the essential cornerstone of the project.
Thus, we introduced an approach, called Column Entity Annotation (CEA) and
defined by [123], that is based on parsing the cells in a single column of a dataset
using a significant distance-based approach. The Column Entity Annotation model
takes as input the cell of a column and compares it with information stored in the
ontologies described in Section 2.4. To extract data from knowledge bases, the CEA
leverages on the execution of queries in SPARQL (see Section 2.6) and on the compu-
tation of distance metrics between the label searched and the results obtained from
the queries. As reported in Section 3.1, in fact, when the knowledge about data is
low, distance-based methods are preferred, especially considering the opportunity to
reuse them for a large variety of entity domains. Indeed, in this project the data
available is heterogeneous with respect to its schema, format and domain, and there
is not knowledge about its content. Section 4.4.2 illustrates an example of a dataset
on which we ran the experimentations.
The choice of adopting CEA approach was carried out by the fact that it reached a
very good result in terms of quality of candidates generation with a Recall (defined
in Section 6.2) equals to 0.91. Another element which led to the adoption of this
model consists in the relationship between its performance and the characteristics of
the input data, in terms of the quantity of given entities. CEA performances, in fact,
did not improve significantly when considering more than 100 rows as input data,
each row containing from one to five words depending on the nature of the column.
Having fewer input data but still obtaining good results is the key to develop efficient
model. That is why also in this project, trials have been made mostly with datasets
of 100 rows each.
Moreover, when applying the CEA model we evaluated different similarity measures
for Candidates Generation:

• Levenshtein Distance is a methodology for measuring string edit distance,
as well as the simplest one. It is defined as follows [58]:

Definition 3. Levenshtein Distance (LD) is a measure of the similarity be-
tween two strings, which we will refer to as the source string (s) and the target
string (t). The distance is the minimum number of characters deletions, inser-
tions, or substitutions required to transform s into t.

For example: if s is "test" and t is "tent", then LD(s, t) = 1, because one
substitution (change "s" to "n") is sufficient to transform s into t.
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The higher the LD, the greater the difference between the strings, thus the
less a candidate is relevant in the comparison with the input data (a row of a
column). Usually, applications of LD are in spelling correction and that is why
this metric has been selected for this project. Considering the ontology as a
vocabulary, in fact, the objective of candidate generation is to find the closest
word, which likely culminates in matching exactly with the input word, from
that vocabulary. For the accuracy of the results, we applied the Normalized
Levenshtein Distance, which is computed as LD divided by the length of
the longest string in the input.

• Term Frequency, Inverse Document Frequency (TF-IDF) described by
[92] is considered one of the best feature extraction techniques as it is easy to
compute and it represents a basic metric to extract the most descriptive terms
in a document [127].

Definition 4. Term Frequency, also known as TF, measures the number of
times (n) the i-term occurs in the j-document.

TFi,j = ni,j (4.1)

Definition 5. Inverse Document Frequency, also known as IDF, weighs up the
effects of less frequently occurring terms in a document by applying the formula:

IDFi = 1 + log
D

|d : ti ∈ d|
(4.2)

where D is the set of documents and d is the number of documents with the
i-term t in it.

Definition 6. TF-IDF is the multiplication for each i-term of Term Frequency
with its Inverse Document Frequency on each j-document.

TFIDFi = IDFi × TFi,j (4.3)

The TF-IDF metric is directly proportioned to the number of times a word
appears due to the TF, but it is decreased by the number of documents that
contain the word (IDF), which helps account for the fact that some words are
more common in general (e.g. “the” or “a”); thus, they do not affect the results
and this is relevant according to the input data reported in the Appendix.
In the CEA context, an adaptation of the TF-IDF was applied, described as
follows [123]:

– TF of a given semantic feature is the number of cells for which the first
candidate has this feature,
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– DF is defined as the number of total occurrences in all candidates of that
feature.

• Jaro Similarity belongs to the group of edit distances, together with Lev-
enhstein Distance, which are used to measure the similarity between two strings.The
higher the Jaro Distance for two strings, the more similar the strings. Accord-
ing to [2], the definition is the following one:

Definition 7. The Jaro Similarity simj of two given strings s1 and s2 is defined
as:

simj =

{
0 if m = 0
1
3

(
m
|s1| +

m
|s2| +

m−t
m

)
otherwise

(4.4)

Where:

– |si| is the length of the string

– m is the number of matching characters

– t is half the number of transpositions

Two characters from s1 and s2 respectively, are considered matching only if
they are the same.

In this research project we adopted a variant of Jaro Distance which gives more
favourable ratings to strings that match from the beginning for a set prefix
length l. This alternative is called Jaro-Winkler Similarity and is a string
edit distance that was developed in the area of record linkage to best suit short
strings such as names, and to detect typos [89]. The adoption of this similarity
has been led by the interest in how the model would answer in situations where
the input string as a whole does not have the same importance, i.e. the first
group of characters is more relevant than the last ones in the string.

Definition 8. Jaro–Winkler similarity uses a prefix scale p and a set prefix
length l. Given two strings s1 and s2, their Jaro–Winkler similarity simw is:

simw = simj + lp(1− simj) (4.5)

Where:

– simj is the Jaro similarity for strings s1 and s2

– l is the length of common prefix at the start of the string up to a maximum
of four characters
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– p is a constant scaling factor for how much the score is adjusted upwards
for having common prefixes (the standard value for this constant is 0.1)

The Jaro-Winkler distance dw is defined as

dw = 1 - simw (4.6)

4.2 Warm Up: Wikidata and DBpedia

Figure 4.1: Wikidata and DBpedia [74]

This section is dedicated to explaining the choice behind using both Wikidata and
DBpedia for accomplishing the objectives of the research project. The Candidates
Generation phase, in fact, includes the Wikidata ontology together with DBpedia,
but the final output is expressed through DBpedia URIs. The reasons that pushed
us to make this decision were several. First of all, the goals of the project suggest
to apply a KG-agnostic implementation, which means to not narrow it down with a
specific ontology and a peculiar schema to use as reference. Thus, instead of using
one single ontology, we leverage on two knowledge bases to enhance the performances
of the model. Moreover, Wikidata represents the best choice in terms of looking for
knowledge as it is considered the central data management platform of Wikipedia
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[75]. Wikidata is also expanding continuously due to a direct editing interface where
people can create, update or fix facts instantly, while DBpedia is a static, read-only
dataset that is updated periodically. On another hand, DBpedia structure is to be
preferred to the one of Wikidata, especially to define the final class, as it is better
organized and more understandable. Just think about DBpedia URIs compared
with Wikidata Qnodes. In addition, DBpedia starts with RDFS as a base data
model which is universally recognised while Wikidata has its own data model. In
conclusion, Wikidata categories have been judged as not suitable for the goal of this
research, as Chapter 6 illustrate; thus, we leveraged on Wikidata broad knowledge,
on one hand, and optimize the results with DBpedia structure.

4.3 OpenStreetMap

This final section of methodologies is devoted to introduce OpenStreetMap which is a
collaborative project to create a free editable map of the world [3]. It is an open data
platform which emphasizes local knowledge, as contains information about items on
the basis of their location.

In this data, OpenStreetMap provides also the definition of a Class to which the
item belongs and specify a Type for each Class. For this reason it has been included
in the project as a final optimization step. Indeed, the data taken as input belongs
to a circumcised space, which is the city of Los Angeles.

The request is made through the OpenStreetMap API and the answer looks like the
example reported below:

' place_id ' : 182029085 ,
' l a t ' : '34 .11821875 ' ,
' lon ' : '−118.30029332196601 ' ,
' display_name ' : ' Gr i f f i t h Observatory , 2800 , East Observatory
Road , Thai Town, Hollywood , Los Angeles , Los Angeles County ,
Ca l i f o rn i a , 90027 , United Sta t e s o f America ' ,
' c l a s s ' : ' tourism ' ,
' type ' : 'museum '

As it is possible to notice, the item searched in OpenStreetMap is the Los Angeles
famous Griffith Observatory, which is characterized by an identifier (’place_id’),
spatial coordinates (’lon’ and ’lat’), its full name (’display_name’), a generic category
(’class’) and a more specific one (’type’), which is what has been considered for
this research study. In this way OpenStreetMap enables the user to exploit the
information stored in the dataset and give useful insights for category discovery, as
Chapter 6 elucidates.
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4.4 Materials

In this section we briefly survey the tools used to develop the whole project.

4.4.1 Python

The Python language has been chosen for this research as it was designed to be highly
extensible and able to be used for different tasks, rather than just data cleaning or
data mining. Moreover, this design of a small core language with a large standard
library and an easily extensible interpreter was preferred to a more complex and
probably more sophisticated programming language like Java. In addition, Python
is meant to be a highly readable language, which is very useful in this case as the
model is designed to be improved and managed by a final user. Indeed, Python
is designed to have an uncluttered visual layout, frequently using English keywords
where other languages use punctuation. In conclusion, the existing methodologies
applied in the starting phases of the model have already been developed in Python
language, so it turned to be useless and time-wasting to use a different programming
language.

4.4.2 Dataset Description

The project has been carried out with the collaboration of the city of Los Ange-
les to provide better access to the data that they already maintain. The datasets
used for the definition of the model, in fact, belong to Los Angeles, which has pub-
lished a great deal of their city datasets as open data available in two repositories:
https://data.lacity.org and http://geohub.lacity.org. In these two reposi-
tories there are about 1,100 datasets totally that contain detailed information about
everything related to the city from business licenses to which trees are planted in
each park. For the purpose of this research, we focused on the datasets which were
labeled as more understandable and meaningful, such as Listing of Active Busi-
nesses, Restaurants and Department of Recreation and Parks Facilities. This kind
of datasets, in fact, resulted to be more suitable for the trials during the model de-
velopment. Thus, 41 datasets were selected for the research, of which we reported
an example in the attachments.
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Model Design

This chapter is focused on the explanation of the final model, including all the tools
implemented in every step and the developments made. The improvements applied in
each phase have been the outcome of the analysis of the results obtained throughout
the work, in accordance with a learning by doing approach. For the purpose of this
research, all the experiments have been done on a single column, taking the Class
identified for that column as representative for the whole dataset, however working on
multiple columns simultaneously should not be discarded as a possible improvement.
The main phases of the project are described as follows:

• a Warm Up Phase to find a strategy to address the problem of identifying
the best column of a dataset to use as input data,

• a First Phase, where we investigated a first approach to solve the Candidates
Generation problem and exploit Wikidata ontology for the identification of the
Class,

• a Second Phase, where a more sophisticated model has been introduced to
optimize both Candidates Generation phase and Class identification task, tak-
ing into account also DBpedia knowledge base,

• a Final Phase that is focused on the development of the final model which
encompasses the approaches previously investigated, considering the improve-
ments applied for the identification of the column Class.

We tried to summarise the steps pursued in Figure 5.1 in order to give the reader
an overall idea of the whole process. As it is possible to see, every approach we
evaluated takes as input the column selected during the Warm Up phase and gives
as output the identified class for every dataset. This methodology takes shape in the
final model represented in Figure 5.6.
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INPUT

First Phase
Wikidata Classes

Second Phase

OUTPUT

First Model

CTA Model DBpedia Classes

Last Phase

Frequency 
Model

CEA Model

CTA Model

CEA Model

OpenStreetMap 
Model

DBpedia Classes

Figure 5.1: Flowchart Of Different Methodologies Used During The Research Study

5.1 Warm Up Phase: address the Column Selection prob-
lem

The majority of the Los Angeles city data is expressed in table form, i.e. a chart
where the columns represent the attributes and the rows their respective values.
As it is possible to notice from the Appendix, the available datasets do not have
a standard format and contain information of every kind, such as strings, integers,
times and dates. For the purpose of this research, the most useful column to select
should be the one which most describes the content of the dataset, such as the one
with names or general descriptions of the items represented. Thus, the objective of
this Warm Up phase consists in finding a strategy to face the Column Selection issue
and extracting the most useful column from each dataset. For the usability of the
model, the column selection should be made autonomously by the algorithm in order
to decrease the time to access information in the datasets. A heuristic approach has
been pursued to address this problem, starting from the observation of the datasets
and discarding columns showing certain characteristics, such as containing numbers,
symbols, email addresses and so on. Los Angeles city datasets, in fact, are variegate
and very different one another; thus, many aspects have been taken into account
and others have been discarded during Column Selection phase. We described the
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criteria for evaluating the usability of a column in Section 6.1 as they were chosen
on the bases of the trials made on the datasets when attempting to filter and isolate
one relevant column. More sophisticated approach could be implemented to retrieve
the most explanatory column in a dataset. However, the focus of the project has
been more intense on the other phases. In addition, the variety of available datasets
embodies a situation which suggest to be realistic as datasets and data formats are
not similar.

5.2 First Phase: Candidates Generation and Class Iden-
tification in Wikidata

In the first phase of the project we investigated a starting approach for Candidate
Generation and Class Identification problems, considering Wikidata as reference on-
tology and taken as input the column selected during the Warm Up Phase. To
perform Candidates Generation, the first step has consisted of pursuing the entity
linking task to map table cells of a column to entities in Wikidata Knowledge Base.
To do so, a very simple approach has been followed: for each cell that must be anno-
tated, the algorithm takes that cell as input, searches through Wikidata API for the
given row string and obtain up to 100 candidates based on the instance’s content.
The candidates represent Wikidata entities which are retrieved through a SPARQL
query request to Wikidata API. For the nature of the ontology, the ultimate result
is a list of qnodes candidates for each label, as shown in Table 5.1.

BRANCH NAME QNODES
Sylmar Q7660594, Q3829489, Q2839471. . .
Woodland Hills Q482390, Q2891280, Q38477. . .
Harbor City Q61678450, Q8569060, Q846103. . .
Angeles Mesa Q493378, Q4820395, Q489311. . .
Benjamin Franklin Q817496, Q575822, Q458029. . .
Sunland - Tujunga Q61678251, Q8102934, Q85762. . .
Northridge Q1026939, Q857602, Q852301. . .
Fairfax Q501785, Q6567309, Q74720. . .
Chatsworth Q1068289, Q8585002, Q837205. . .

Table 5.1: Example of Qnodes candidates for a list of Library Branches in Los Angeles

Once the candidates have been generated, the next step has been to identify a first
approach to pick the corresponding classes to which candidates belong in accordance
with Wikidata structure and hierarchy.
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items Q13220204 Q13360155 Q13410400 Q1496967 Q15642541
Autauga 1.0 1.0 1.0 5.0 5.0
Baldwin 2.0 2.0 2.0 3.0 3.0
Barbour 2.0 2.0 1.0 2.0 2.0
Bullock 1.0 1.0 1.0 1.0 1.0
Calhoun 2.0 2.0 1.0 4.0 4.0
Chambers 2.0 2.0 1.0 2.0 2.0
Cherokee 2.0 2.0 0.0 3.0 3.0

Table 5.2: Example Of Class Selection In Wikidata

To address the Class Identification problem, we retrieved the class from each instance
though queries in Wikidata and built a comprehensive table to select the correct
class, leveraging on the definition of transitive closure in a graph [5]:

Definition 9. If X is a set of items in a directed graph and xRy means "there is
a direct relationship R between item x and item y" (x,y ∈ X), then the transitive
closure of R on X is the relation R+ such that xR+y means "it is possible to go
from item x to item y in one or more steps via the relation R".

An example of the comprehensive table built by the model is reported in Table 5.2.
As it is possible to notice, each row represents the input string, i.e. the cell of the
selected column in the dataset, while the columns are the union of the transitive
closure of the SubClassOf relationship over all the classes in Wikidata generated
from the queries execution. The table is built such that all classes that are a Su-
perClasseOf any class in the closure have been included. In order to face the Class
Identification problem, we leveraged on the concept of disambiguation, which def-
inition is reported here [108]:

Definition 10. A class is said to disambiguate a label well if it is related to one and
only one candidate of that label.

In this case, after having evaluated the transitive closure and having generated the
comprehensive table, the class that best disambiguates the greatest number of
labels is identified and, then, is selected to categorize the dataset. In the model above
we leveraged on the fact that all the labels in a column must belong to some common
Wikidata class. Thus, the generation of classes does not reach a unmanageable
volume.
In case shown in Table 5.2 for example, value 1.0 in the first row and first col-
umn means that only one candidate for item named “Autauga” is SubClassOf type
Q13220204. Moreover, Q13410400 seems to be the class that disambiguates the ma-
jority of labels, i.e. rows in the table, and, thus, the class that best describes the
content of that column. As the results obtained were not satisfying (see Section 6.2),
a more sophisticated approach has been applied for Class Identification task, i.e. the
Column Type Annotation (CTA) model. This model, which is described in the
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following section, introduces the exploitation of the DBpedia ontology due to the
fact that Wikidata has revealed to be useful for the identification of the candidates,
but too inaccurate for the recognition of meaningful classes.

5.3 Second Phase: a top-down approach for Class Iden-
tification in DBpedia

The second phase of the project has been devoted to investigate Column Type
Annotation (CTA) model performance for Class Identification in DBpedia. CTA
model has been introduced before by [123]. The choice of applying this methodology
has been dictated by two main factors:

• CTA leverages on the Column Entity Annotation model (CEA), introduced
in Section 4.1, for addressing the problem of Candidates Generation. Indeed,
the candidates generated by CEA model are the input for the CTA approach.
Integrating CEA with CTA is beneficial because CEA approach obtained good
results in terms of accuracy as described in Section 4.1. Thus, this innovative
approach to Candidates Generation has been pursued with the aim to increase
the quality of the results.

• CTA algorithm is able to query information both in Wikidata and DBpedia,
encompassing the knowledge of two different ontologies.

Figure 5.2: Overview Of CEA Approach [123]

5.3.1 Column Entities Annotation

Since we included this approach in the final model, we provide a deep description of
CEA here, reporting as a first step an overview of this approach in Figure 5.2.
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ForCandidates Generation, the CEA model builds two Elasticsearch Indexes with
the aim to increase the quality of the entities, leveraging on Elasticsearch scoring
system based on relevance:

• Wikidata Elasticsearch Index, used to retrieve multilingual labels, aliases
and descriptions with a focus on different fields, according to the input entities
and the structure of Wikidata pages. The candidates generated are, then,
combined with the ones obtained with the standard approach described in
Section 5.2 with SPARQL queries in Wikidata API,

• DBpedia Elasticsearch Index, to collect candidates from DBpedia and,
immediatly, mapping them from URIs to their corresponding Wikidata qnodes.

Moreover, the model generates another query in order to face the abbreviations
problem, i.e. that situation when rows contain abbreviated words which result to be
hard to understand and to match.
Finally, CEA applies a method called Tokenization to improve its performance in
Candidates Generation phase.

Definition 11. Tokenization is the act of breaking up a sequence of strings into
pieces such as words, keywords, phrases, symbols and other elements called tokens
[122].

In our case, tokenization was used only with words and not with symbols or other
elements, and was fundamental to apply the distance measures for Candidates Se-
lection, shown in Section 4.1.
Thus, the model creates one last query to tokenize the strings taken as input.
Once Candidates Generation phase is concluded, for each Qnode we have the Elastic-
search Score (ES) from Wikidata or DBpedia and the number of the query it comes
from (4 queries are generated totally by CEA model). Table 5.3 shows an example
of how the results look like.

Query Qnode ES
4 Q10901384 73.49035
4 Q973020 69.01582
4 Q18614770 66.73978
3 Q19817567 57.05981
3 Q37256951 56.374943
2 Q18224405 51.187073
2 Q539581 51.14039

Table 5.3: Example Of Candidates Generation In CEA Model

Furthermore, to proceed in the investigation of the Class, we needed a strategy to
select one single candidate for each row. In order to do so, it has been fundamental
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to combine and sort the candidates generated. To face this problem, we leveraged
on the CEA model and the concept of Normalized Reciprocal Rank, which is
defined as follows [5]:

Definition 12. Considering rank position, K, of the first relevant results retrieved,

ReciprocalRank =
1

K

while Normalized Reciprocal Rank is the mean Reciprocal Rank across multiple queries:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

Indeed, after having generated the candidates from all the queries, the CEA model
uses Normalized Reciprocal Rank as scoring system to sort them.
Once candidates have been sorted, the last step to achieve before addressing Class
Identification problem was represented by Candidate Selection, i.e. obtaining one
single candidate for each entity of the input data.
For the Candidate Selection phase, we leveraged again on the CEA model. In
particular, this approach applies several techinques for Candidates Selection as de-
scribed by [123]:

• Top 1 Candidate: select the top-scoring candidate from the candidate genera-
tion module, thus the one with the highest ES score;

• Heuristic Linear Combination: define a feature engineering methodology that
combines different scores to produce an aggregated result. As it is shown in
Figure 5.2, in fact, before candidate selection phase, there is an intermedi-
ate step called features generation where the list of candidates is used to
compile a uniform-length feature vector v that contains the set of classes and
properties that describe them. Once the feature vector is compiled, the scores
are computed on the basis of:

– Lexical Features: which is the lexical similarity between the original
query string tokenized and the labels in the Knowledge Graph. Leven-
shtein Distance, introduced in Section 4.1, is used to measure this param-
eter;

– Semantic Features: which is the semantic coherence among cells in
a column. To express it, the modified TFIDF, shown in Section 4.1,
is computed for each candidate using the feature vector v and the first
candidate generated in the previous phase.
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Figure 5.3: Lexical and Semantic Features

In the Heuristic Linear Combination approach the calculation of the final score
for each candidates is made through a simple multiplication between Leven-
shtein Distance and TFIDF. As in the first approach, also in this case the
top-scoring candidate is selected.

For this project, we applied the Heuristic Linear Combination approach as it revealed
to be more precise and complete than the first one (results shew F1-score and Preci-
sion equals to 0.826 and 0.852 respectively). Moreover, this methodology helped us
in addressing the problems of coverage and selectivity of the features. Sometimes, in
fact, features generated during the process were not equally informative. A feature
has good coverage if for every cell there is a candidate for which it has value 1; while
a feature is selective if few candidates possess it.
In conclusion, for the utilization of this approach, Qnodes candidates where mapped
into their respective DBpedia URIs. The Python code which performs this task is
shown in the attachments.

5.3.2 Column Type Annotation

After the candidates have been selected, we entered in the second phase of the
project, which was the most important one as its main objective was to identify the
class that best characterized the input column, i.e. address the Class Identification
problem. As a starting point, we tried a first approach for the Class Identification
and investigated its performance. This model is called Column Type Annotation
and has been described the first time by Thawani et al. [123]. Figure 5.4 shows how
the CTA proceeds in the identification of the class following a top-down approach
in the hierarchy of DBpedia Knowledge Graph. The algorithm, indeed, starts from
the highest level in the ontology graph, i.e. level 0 represented by owl:Thing, and
calculates the percentage of candidates taken as input that belong to different classes
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dbo:Workdbo:Placedbo:Agent

dbo:Person

dbo:Artist

dbo:Architectural
Structure

dbo:Settlment

dbo:Artwork

dbo:Painting

dbo:Park

dbo:Territory

dbo:City dbo:CityDistrict dbo:Village

0% 2,8%97,2% > T

1,7% 98,3% > T 0%

68,0% > T 11,4% 0%

0% 25,1% < T 33,3% < T

dbo:Region

dbo:Thing

dbo:Populated
Place

T = 0,508

Figure 5.4: Overview Of CTA Approach [123]

along the graph. The CTA builds a query to retrieve the class for each candidate.
In Figure 5.4 it is possible to see that, for example, on level 1 the percentage of cells
under dbo:Diploma, dbo:Agent and dbo:Place classes are respectively 0%, 2.8%
and 97.2%. As long as the percentage obtained is greater than a certain threshold
T, the algorithm records that class in its search path and descends to another level.
When the percentage is not above T anymore, the research stops and the algorithm
gives as output the path below the root. In the example reported in Figure 5.4,
the final output would be: dbo:Place → dbo:PopulatedPlace → dbo:Settlement

and, therefore, Settlement would be the final class of the column selected and the
category to which the dataset belongs.

In a first-round trial, an assessment of the CTA model performance has been pursued
in order to understand whether the threshold percentage T, set equal to 0.508 for
the algorithm to perform better[123], affects the accuracy of the Class Identification.
Specifically, we applied two different values: 0.508 as initial value and 0.1. The
choice of not increasing the value has been taken in accordance with the goal of this
initial experiment, i.e. obtaining a response by the algorithm. Indeed, increasing the
threshold would have negatively affected the possibility to have valuable results as a
higher percentage of cells belonging to the same class would have been imposed to
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the model in producing an output. From the results obtained, the initial threshold
(T = 0.508) has been selected as the most precise and effective one, as it is possible
to see from Table 6.5.

A second evaluation has been pursued to select the best methodology for strings
comparison, considering two different perspectives: on one hand, the type of mea-
sures selected for semantic labeling; on another hand, the way to combine it with
TFIDF similarity. In particular, four different scenarios have been investigated:

• Multiplication between Levenshtein Distance and TFIDF, considered like AS-
IS configuration of the model

• Weighted Average between Levenshtein Distance and TFIDF, considering the
former less important (w1 = 0.4) than the latter (w2 = 0.6)

• Multiplication between Jaro-Winkler Similarity and TFIDF

• Weighted Average between Jaro-Winkler Similarity and TFIDF, considering
the former less important (w1 = 0.4) than the latter (w2 = 0.6)

TF-IDF has been considered more relevant in the calculation of the Weighted Average
with Levenshtein Distance since there were some words in the entities that should
have been taken into account more by the model compared to others. In particular,
we report an example of TFIDF approach in Candidate Selection phase in Tables
5.4 and 5.5.

LABEL CANDIDATES

Withney
High School

dbr: Withney High School
dbo: Agent
dbo: Organisation
dbo: EducationalInstitution

dbr: High School
dbo: Agent
dbo: Organisation
dbo: EducationalInstitution

LA
Elementary School

dbr: LA Elementary School
dbo: Agent
dbo: Organisation
dbo: EducationalInstitution

dbr: Elementary School
dbo: Agent
dbo: Organisation
dbo: EducationalInstitution

Lutheran
Church School

dbr: Lutheran Church
dbo: Agent
dbo: Organisation
dbo: ReligiousOrganisation

dbr: Lutheran Church School
dbo: Agent
dbo: Organisation
dbo: EducationalInstitution

Sepulveda
Elementary School

dbr: Sepulveda Elemetary School
dbo: Agent
dbo: Organisation
dbo: EducationalInstitution

Table 5.4: Semantic Feature Extraction
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Semantic Feature dbo:Agent dbo:Organization dbo:Educational
Institution

dbo:Religious
Organisation

Term Frequency
(TF) 4 4 3 1

Document
Frequency

(DF)
7 7 6 1

Inverse
Document
Frequency

(IDF)

0,05 0,18 0,18 0,65

TFIDF 0,25 0,72 0,72 0,65 TFIDF
Score

v1 (dbr:Lutheran
Church) 1 1 0 1 1,62

v2 (dbr:Lutheran
Church
School)

1 1 1 0 1,69

Table 5.5: TFIDF Approach To Candidate Selection

While the former shows the extraction of semantic features in the candidates from
a dataset about schools, the latter reports the calculation of the TFIDF according
to the approach described in Section 4.1. The candidates are generated with the
hierarchy of classes they belong to and for each class the TFIDF is computed. As it
is possible to see, thanks to the computation of the final TFIDF, the best score is the
one identifying the answer which is actually correct, as Lutheran Church candidate
is wrong and misleading; thus, having a lower TFIDF Score.
The results of the different approaches are shown in Table 6.6 from Chapter 6. As it
is possible to see, CTA model worked best in its initial condition. In the attachments,
we report the CTA model programming code.

5.4 Final Phase: the development of the Final Model

Once investigated the performance of Column Type Annotation and Column Entity
Annotation models, another much simpler but effective approach has been evaluated
to achieve better results in Class Identification issue. This last approach considers
the Frequency of appearance of every class queried in the column of candidates.
While the previously analyzed CTA method can be defined as a top-down approach,
the Frequency Model consists in a bottom-up solution as it retrieves the class
for each cell according to the lowest level in the DBpedia classes graph and picks
the most frequent one. In Figure 5.5 we show an example of the application of the
Frequency model, where the class selected is dbo:Museum with 47% of rows in the
input column belonging to that class.
The evaluation of this approach, also considering the four different configurations
introduced in Section 5.3.2, has brought positive results to the project, highlighting a
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dbo:Thing

dbo:Workdbo:Placedbo:Agent

dbo:Person

dbo:Artist

dbo:Architectural
Structure

dbo:Building

dbo:Museum

dbo:Artwork

dbo:Painting

dbo:Park

47%
21% 32%

Figure 5.5: Overview Of Frequency Approach

good response in the case of Jaro-Winkler similarity. However, for the improvement of
Class Identification performance the Levenshtein distance was preferred for semantic
comparison, as elucidated in Chapter 6.

Since the results were still not satisfying for an optimized Class Identification, a final
model has been designed and validated, integrating both the CTA and Frequency
methodologies. We built the final design so that, when the candidates are properly
selected, the model applies at first the Frequency approach and if a class is not
available for the column, the algorithm tries with the CTA approach. When a class
is not shown in the output, it means, in both cases, that the algorithm failed in
identified the class. As it is described in Figure 5.5, if the CTA too is not able to
detect the class (worst-case scenario), an alternative solution is applied, exploiting
the data contained in the datasets.

Indeed, with the aim to enhance the contribution of the model in extracting infor-
mation from a dataset, we tested an additional approach leveraging on the help of
OpenStreetMap Website. In this perspective, the exploitation of the informa-
tion available in OpenStreetMap about the city of Los Angeles could give back at
least a hint on the content of the dataset. We included in the algorithm, in fact,
the possibility to extract the location column from the dataset, quering the entities
collected in OpenStreetMap and retrieve the category. This approach turned out to
improve the final results by unveiling new insights for each dataset. Also in this case
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the most frequent class extracted from OpenStreet Map has been considered as the
one categorizing the whole dataset.
Figure 5.6 summarizes the flowchart of the final design of the model. As it is possible
to notice, the model starts by selecting the column to parse. Then, it applies the
Frequency model and check if there is an outcome. If the result shows no class, the
algorithm applies the CTA model and parses again the column to find the class. If
still an outcome is not provided, the model goes back to the input dataset, isolate
the column with locations, if it exists, and exploits OpenStreetMap knowledge for
extracting the class of the column. In every step, if the algorithm finds a class, it
will stop.

STOP

STOP

STOP STOP

Input Column Selection

 

FREQUENCY 

MODEL

cl
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Figure 5.6: Flowchart Of The Final Model
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The results of the application of this final approach are reported in Chapter 6, while
the code is described in the attachments. Here we present the most important part
of the final model code.

#wikify_column : t h i s i s a func t i on used to implement
#a l l the f e a t u r e s o f the f i n a l model

def wikify_column ( s e l f , i_df , column , c a s e_s en s i t i v e=True ,
debug=False ) :

#the a l gor i thm c o l l e c t s in the l i s t c a l l e d
#raw_labe l s a l l t he inpu t data , i . e . a column
#of the da t a s e t p r e v i o u s l y s e l e c t e d
raw_labels = l i s t ( )
i f isinstance ( column , str ) :

raw_labels = l i s t ( i_df [ column ] . unique ( ) )
e l i f isinstance ( column , int ) :

raw_labels = l i s t ( i_df . i l o c [ : , column ] . unique ( ) )

#the a l gor i thm cr ea t e s a dataframe where the
#input data i s c l eaned from Nul l v a l u e s
_new_i_list = [ ]
for l a b e l in raw_labels :

_new_i_list . append ({ ' l a b e l ' : l abe l ,
' _clean_label ' : s e l f . c l e an_labe l s ( l a b e l )} )

df = pd . DataFrame (_new_i_list )

#the a l gor i thm s t a r t s the Candidates
#Generation phase by running the qu e r i e s and
#c o l l e c t i n g the cand ida t e s from them
df [ '_candidates ' ] =
df [ ' _clean_label ' ] .map(lambda x : s e l f . run_query (x ) )
df [ ' _candidates_l i s t ' ] =
df [ '_candidates ' ] .map(lambda x :
s e l f . c reate_l i s t_from_candidate_str ing (x ) [ 0 ] )
df [ ' _candidates_freq ' ] =
df [ '_candidates ' ] .map(lambda x :
s e l f . c reate_l i s t_from_candidate_str ing (x ) [ 1 ] )
s e l f . aqs = s e l f . query_average_scores ( df )
al l_qnodes = s e l f . get_candidates_qnodes_set ( df )
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#cand ida te s in DBpedia are transformed in to
#t h e i r r e s p e c t i v e Wikidata Qnodes and a l l t he
#cand ida t s are added to the dataframe in a
#ded i ca t ed column
qnode_to_labels_dict =
s e l f . create_qnode_to_labels_dict ( l i s t ( a l l_qnodes ) )
qnode_dburi_map =
s e l f . create_qnode_to_dburi_map ( qnode_to_labels_dict )
qnode_typeof_map =
s e l f . create_qnode_to_type_dict ( qnode_to_labels_dict )

#the a l gor i thm proce s s e s the cand ida t e s by
#app l y ing TFIDF and Levenshte in d i s t ance
t f i d f = TFIDF( qnode_to_labels_dict )
df = s e l f . l e v_s im i l a r i t y . add_lev_feature ( df ,
qnode_to_labels_dict , c a s e_s en s i t i v e )

#the a l gor i thm s e l e c t s the b e s t cand ida te f o r
#each row/ l a b e l and c r ea t e s a column with the
#most r e l e v an t cand ida t e s c a l l e d ' answer '
cs = Cand idateSe l ec t i on (qnode_dburi_map , s e l f . aqs ,
qnode_typeof_map )
df = cs . s e l e c t_h igh_prec i s i on_re su l t s ( df )
df_high_prec i s ion = df . l o c [ df [ ' answer ' ] . no tnu l l ( ) ]
l abe l_ l ev_s im i l a r i t y_d i c t = s e l f . c r ea t e_ lev_s imi l a r i ty_d i c t
( l i s t ( zip ( df . _clean_label , d f . l ev_feature ) ) , c s )

#the a l gor i thm t r a n s l a t e s the s e l e c t e d
#cand ida te s from Wikidata Qnodes to t h e i r
#r e s p e c t i v e DBpedia URIs in order to c r ea t e
#an another column named ' answer_dburi '
hp_qnodes = df_high_prec is ion [ ' answer ' ] . t o l i s t ( )
df [ ' answer_Qnode ' ] = df [ ' _clean_label ' ] .map
(lambda x : t f id f_answer . get ( x ) )
df [ ' answer_dburi ' ] = df [ ' answer_Qnode ' ] .map
(lambda x : s e l f . get_dburi_for_qnode (x , qnode_dburi_map ) )

#the a l gor i thm take s the l i s t o f DBpedia URIs
#s e l e c t e d and a p p l i e s the Frequency Model
c ta_c la s s = cta . process_frequency_match ( df [ ' answer_Qnode ' ] .
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t o l i s t ( ) )

#i f Frequency Model does not produce an
#output , i . e . i s not a b l e to address the
#Column I d e n t i f i c a t i o n problem , the a l gor i thm
#t r i e s the CTA
i f c ta_c la s s == "" or c ta_c la s s == "{}" :

c ta_c la s s = cta . p roce s s ( hp_qnodes )
df [ ' c ta_c la s s ' ] = cta_c la s s . s p l i t ( ' ␣ ' ) [−1]
answer_dict = s e l f . create_answer_dict ( df )
i_df [ ' {}_cta_class ' . format ( column ) ] =
i_df [ column ] .map(lambda x : answer_dict [ x ] [ 0 ] )
i_df [ ' {}_answer_Qnode ' . format ( column ) ] =
i_df [ column ] .map(lambda x : answer_dict [ x ] [ 1 ] )
i_df [ ' {}_answer_dburi ' . format ( column ) ] =
i_df [ column ] .map(lambda x : answer_dict [ x ] [ 2 ] )
return i_df

In case CTA is not able to produce a class, the algorithm select the Location column
and applies OpenStreetMap retrieval. For this last step the code is reported in the
Appendix together with the entire piece of code that carries out tasks explained
above.
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Experiments And Evaluations

In this Chapter we show the experiments undertaken for the development of the
model and its validation. The first section is devoted to the Preprocessing phase
where datasets are explored and prepared for the trials. In the second part of this
Chapter we report the Results of the experiments, including all the assumptions
made during the analysis. Finally, a last section is devoted to the Qualitative
Analysis of the results, encompassing comments above the functioning of the model,
its developments and how issues have been faced throughout the project.

6.1 Preprocessing

The Preprocessing phase has been characterized by a deep observation of the datasets
in order to investigate data formats and columns features. As shown in the attach-
ments, in fact, datasets of city of Los Angeles are of different types and contents,
from the trees in the street, to the name of restaurants, or businesses. From this
investigation, we found out that three main problems needed to be addressed before
the development of the model:

1. available data needed to be cleaned from irregularities (such as symbols) or
null values,

2. we needed a strategy to select the most explanatory column from a dataset,

3. we needed another strategy to isolate the column with spatial information from
a dataset.

As it regards the first issue, several actions have been pursued in order to clean data,
such as:

• removal of null values as misleading for the investigation of column class;

• removal of rows with numbers or very special symbols (e.g. $ or #);
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• standardization of the capitalization in the columns in order to have informa-
tion written in lowercase. This was made because having cells with uppercase
strings led to inaccurate results, especially in the information retrieval phase
in Wikidata.

Furthermore, we carried out a second data cleaning phase in order to address the
Column Selection problem, i.e. to isolate the most useful column for the class in-
vestigation. In particular, from the observation of the datasets, we collected some
criteria for a column to be excluded from the analysis. Such characteristics do not
claim to be universal but have allowed us to make the right selection in the majority
of the datasets available for this study (equal to 90.2%). The criteria identified for
the exclusion of the "useless" columns are the following:

• Containing all equal values

• Including numbers for the majority of the rows (i.e. more than 50% of rows
are integer or float type)

• Containing specific symbols for the majority of the rows (i.e. more than 50%
of rows have symbols)

• Containing underlined text

• Containing e-mail addresses

• Including any information related to time (i.e. dates)

PARK NAME
Laurel Canyon Park
Westminster Park
Whitnall Park
Silver Lake Park
Peck Park
North Hollywood Park

DISTRICT # CONTACT
13 (323) 663-7758
4 (323) 663-2555
7 (310) 549-4953
5 (818) 899-2200
13 (818) 291-9980
10 (818) 995-1170

Table 6.1: Example Of Useless Columns (District # and Contact) And A Useful Column (Park
Name) In A Dataset About Parks In Los Angeles

Thus, after having applied these criteria, we were able to exclude the least explana-
tory columns from datasets and isolate the most useful one. Table 6.1 reports an
example of a correct isolation of the most useful column compared to other two in a
dataset about parks in Los Angeles.
Once selected the column, information is ready to be processed by the model for
class evaluation. We excluded the possibility to parse more than one column of the
same dataset as we focused on a simpler case study considering the difficulty of the
task.
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Finally, we addressed the problem of isolating the column containing location and
spatial information from each dataset using the same heuristic approach for the
Column Isolation problem. Indeed, we introduced one last criteria in the final model,
i.e. selecting the column containing location information (such as address, city,
zipcode, longitude and latitude) from each dataset. This step occurs in case there is
no output given from Frequency and CTA models, and the algorithm tries to access
OpenStreetMap knowledge, as explained in Section 5.4.
Once made these evaluations on data, we focused on the main task of the research,
which was identifying the class for each dataset.

6.2 Results

In this section we present the main results that show the improvements of the model
in pursuing the objective of the project. At first, we report an explanation about the
metrics used in this evaluation phase. In order to measure the validity of the results,
we leveraged on the most immediate evaluation metric: the Accuracy, which is
defined as follows [128]:

Definition 13. Accuracy measures the ability of the method being evaluated to make
the correct prediction.

It is a frequently-used criterion to assess the performance of a model and it can also
be interpreted in different ways according to the field of application. In our case, we
applied the following formula for measuring accuracy:

Accuracyi =
ni

D
(6.1)

Where:

• n was the number of correct classes detected by the methodology i applied

• D was the total number of datasets evaluated (D = 41).

In addition, during the experimentation phase, we established a distinction between
permissive and restrictive accuracy. This distinction was driven by the fact that
in the model output there could be more or less precise answers. As it is possible
to see from Table 6.2, in fact, the class detected by the model can be exactly the
expected class (highlighted in green) or one of its supersub classes (highlighted in
yellow). Thus, we introduced the permissive accuracy to include in the computation
of ni the number of answers which are more approximate (yellow cells) together
with the less approximate ones (green cells), and the restrictive accuracy which
considered only the latter.
In this research, we considered the accuracy to vary between 0 (the model was
completely unable to pursue the task) and 1 (the model was completely able to
pursue the task).
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DATASET MODEL OUTPUT EXPECTED CLASS
Affordable Housing {} Building
Animals Mammal Animal
Apparel Organisation Organisation
LA Florists Work Organisation

Table 6.2: Example Of Results

Moreover, as secondary metric to assess the correctness of the model, we leveraged
on the F1-score. The computation of this metric has been dictated by the need to
strengthen the evaluation of the model and to use a more comprehensive measure.
To define F1-score we need to introduce the Confusion Matrix [128], which is
reported in Table 6.3.

Predicted as Positive Predicted as Negative
Are positive TP FN
Are negative FP TN

Table 6.3: Confusion Matrix [128]

Confusion Matrix shows the number of True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN) instances that are used
to compare the predictions of method with the ground truth. TP represents the
number of instances that were predicted as positive and were indeed positive, whereas
FP is the number of instances incorrectly predicted as positive. TN and FN have
a corresponding meaning for the negative class. We applied these definitions to
describe Precision and Recall in our experiments:

Precision =
TP

TP + FN
Recall =

TP

TP + FN
(6.2)

While the former is the fraction of relevant instances among all the retrieved in-
stances, the latter represents the fraction of relevant instances retrieved over the
total amount of relevant instances [33]. Thus, F1-score, indeed, encompasses the
concepts of both Precision and Recall and it is theoretically defined with this
formula [128]:

F1 = β · precision · recall
precision+ recall

(6.3)

Where β is a positive real number, β ∈ [0,∞].
When F1-score is equal to 0 all the predictions are incorrect, when it is equal to 1,
instead, all the predictions are correct.
For this research study we considered β to be equal to 2 following the standard value,
while for F1-score we applied an adaptation, considering several assumptions:

• the TP were counted as the number of both less and more approximate answers,
i.e. both green and yellow highlighted cells have been considered, as a more
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selective metric has been embodied by the restrictive accuracy;

• for FP we counted the number of incorrect classes, i.e. the red highlighted;

• for FN we considered the number of empty cells, thus the situation when the
model is not able to detect a class.

Once defined the metrics and the assumptions taken during the experiments, we
now report the results from the First Phase of the project, where we investigated a
starting approach taking into account only Wikidata. Table 6.4 shows the results on
15 datsets from the city of Los Angeles.

D = 15 First Phase Model
TP 0
FP 4
FN 11
PRECISION 0
RECALL 0
F1 SCORE 0
ACCURACY 0

Table 6.4: First Phase Model Results

As it is possible to notice, no positive results have been obtained on the datasets
tested in this phase. The classes identified by the model, in fact, appeared to be
meaningless and suggested the inapplicability of Wikidata ontology mapping, as
too broad and generic for the purpose of the project. Thus, we applied several
improvements:

• introduce DBpedia for Candidates Generation and Class Identification tasks
to enlarge the available knowledge base,

• improve the Candidates Generation phase considering other metrics for entity
linkage,

• optimize the Class Identification phase with more sophisticated approaches.

The application of these improvements has meant to include both the CEA and
the CTA models described by [123] in our approach as reported in Chapter 5. In
addition, we increased the number of datasets (indicates as D) for the trials from 15
to 41. Since the scope of this research study consisted in categorizing datsets, we
focused on testing the performance of CTA model.
In the first experiment we evaluated the CTA model comparing the actual accep-
tance threshold T for rows to belong to the same class with a lower one. We used as
similarity measures the Levenshtein Distance and the TFIDF, and their multiplica-
tion for candidates selection. As Table 6.5 shows, in fact, the model was run on the
41 datasets considering the as-is configuration (T = 0.508) and the modification
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(T = 0,1). On one hand, an increase in F1-score is observed (0,5456) with a lower
threshold, probably caused by a betterment in the Recall; on another hand, the as-is
CTA configuration resulted to be more accurate in general. Indeed, even though
there is no difference in the value of permissive accuracy (0,36585), restrictive accu-
racy is higher when the threshold is higher (0,31707). What emerged from this results
was that probably the CTA with a lower threshold was more capable in identifying
classes, but not as accurate as the CTA considering a higher threshold.

Thus, the configuration considered more appropriate for the research was the Column
Type Annotation with a threshold equal to 0,508. Moreover, from the experiments
ran so far, it was possible also to see that the objective was not trivial and obtaining
meaningful classes claimed the development of a very robust and smart model.

D = 41 CTA (0,1 th) CTA (0,508 th)
TP 15 15
FP 22 9
FN 3 17
PRECISION 0,40541 0,625
RECALL 0,83333 0,46875
F1 SCORE 0,54546 0,53571
RESTRICTIVE ACCURACY 0,29268 0,31707
PERMISSIVE ACCURACY 0,36585 0,36585

Table 6.5: CTA Model first trial performance

Once established the best threshold for the CTA functioning, an evaluation was
made on the different metrics to apply during Candidates Generation phase. Con-
sidering the four different configurations described in Section 5.3.2, we evaluated the
performances of CTA related to them.

D = 41 Lev-Mult Lev-WA Jar-Mult Jar-WA
TP 15 14 5 6
FP 9 9 3 3
FN 17 18 33 32
PRECISION 0,625 0,60869 0,625 0,66667
RECALL 0,46875 0,4375 0,13158 0,15789
F1 SCORE 0,53571 0,50909 0,21739 0,25532
RESTRICTIVE ACCURACY 0,31707 0,29268 0,09756 0,14634
PERMISSIVE ACCURACY 0,36585 0,34146 0,12195 0,12195

Table 6.6: CTA Model second trial performance: four configurations in comparison

Table 6.6 shows the results of the experiments ran on 41 datasets according to the
distance measures chosen. The first two columns are devoted to the Levenshtein
Distance multiplied, at first, with the TFIDF and, then, combined with it through
the Weighted Average. The last two columns are dedicated to the application of the
Jaro-Winkler similarity.
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From these results it is clear that the CTA model performed better if associated with
the Levenshtein Distance multiplied by the TFIDF for the Candidates Generation
phase. Using Jaro-Winker, in fact, has decreased the performance significantly, re-
strictive and permissive accuracy have worsen by 69,2% and 66,7% respectively. As
this model seemed not enough accurate, the Frequency approach was applied. For
this set of experiments we combined CEA model for Candidates Generation phase
with the Frequency Model and, then, evaluated the latter performances for Class
Identification. Table 6.7 reports the results obtained, considering the four configu-
rations previously defined (see Section 5.3.2).
As it is possible to notice, the results obtained with the Frequency model, much sim-
pler but effective, are better than those from previous approaches. In particular, the
Frequency model, combined with the CEA for the evaluation of candidates, seemed
to be able to handle all the different configurations of metrics and still achieving sig-
nificant results (for permissive accuracy all the values are above 50%). Thus, from
these results it appeared clear that the Frequency approach is more effective than
the CTA.

D = 41 Lev-Mult Lev-WA Jar-Mult Jar-WA
TP 22 21 23 22
FP 14 19 17 17
FN 5 1 1 2
PRECISION 0,61111 0,525 0,575 0,56410
RECALL 0,81481 0,95455 0,95833 0,91667
F1 SCORE 0,69841 0,67742 0,71875 0,69841
RESTRICTIVE ACCURACY 0,39024 0,36585 0,4146 0,41463
PERMISSIVE ACCURACY 0,53658 0,512195 0,56098 0,53658

Table 6.7: Frequency Model first trial performance: four configurations in comparison

With the aim to enhance the performance, we evaluated the integration between the
CTA and the Frequency Model to develop a unique model, as described in Chapter 5.
During this experimentation, the question arose spontaneously: which combination
of measure is the best one to apply in this case of an integrated model? Table 6.7, in
fact, suggests to pick the Jaro-Winkler multiplied by the TFIDF, while Table 6.6 re-
sults recommend using the Levenshtein. Although Frequency model obtained better
results than the CTA in the overall, we considered inconvenient to use Jaro-Winkler
as the CTA model worsened significantly and we wanted to avoid this situation as
integrating it with the Frequency model would have turned out to be useless. Thus,
the choice made regarding the configuration suggested the Levenshtein Distance as
Similarity Measure to apply during Candidates Generation phase. The average ac-
curacy between CTA and Frequency models, in fact, was higher using Levenshtein
than in the case of Jaro-Winkler (average computed as the sum of the permissive
accuracy of Frequency and CTA divided by 2 in each case).
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We carried out another experiment for testing the integrated model in 41 datasets.
Table 6.8 shows that the development of the integrated model between CTA and
Frequency provides good results in terms of Accuracy but no improvements regarding
the F1-score. The reason of this phenomenon may have consisted in a higher number
of corrected classes identified by the integrated model, but still not enough to balance
those cases where the class was not even identified. In addition, restrictive accuracy
has slightly improved with the integrated model, even though the final value reached
was not significantly high (0,41463). Thus, this was a sign that there were classes
which still appeared to be hard to be identified by the model. Overall, the values
of Precision and Recall seemed to be more balanced than the previous cases, where
Recall tended to be much higher. An explanation for this phenomenon might stem
from the fact that previous approaches were able to categorize less datasets.

D = 41 CTA + Frequency Final Model
TP 23 33
FP 7 8
FN 11 0
PRECISION 0,76667 0,80487
RECALL 0,67647 1
F1 SCORE 0,69841 0,89189
RESTRICTIVE ACCURACY 0,41463 0,56098
PERMISSIVE ACCURACY 0,56098 0,80487

Table 6.8: Final Model performance with and without OpenStreetMap support

The final turning point of the research project is also shown in Table 6.8, where,
together with the results of Frequency model integrated with CTA, we reported the
outcome of the trials on the final model which encompassed the retrieval of the class
from OpenStreetMap. Being many datasets characterized by columns with location,
in fact, we decided to exploit that information in favour of the project objectives.
Thus, when the model is not able to detect the class from the column selected, it
goes back to the dataset, isolate the column with locations data and search for that
in OpenStreetMap, as explained in Chapter 5.
As it is possible to notice, this final improvement has optimized the results and
enhanced the correctness of the model. At first, we have no cases where a class is
not identified in the 41 datasets used for the experiments and that is why the recall is
equal to 1. Moreover, both F1-score and permissive accuracy appear to have higher
values, both over 80%. The exploitation of OpenStreetMap knowledge has benefited
the performance of the model as the restrictive accuracy has reached significant value
too (0,56098%). Thus, we considered this final results as satisfactory for the research
study.
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Figure 6.1: Accuracy Improvements

Finally, in Figure 6.1 we report the evolution of both permissive and restrictive
accuracy throughout the experiments. The most important improvements adopted
in the model have been the inclusion of the Frequency model and the OpenStreetMap
approach, as the slope of the line (both for permissive and restrictive accuracy) is
more pronounced.
In conclusion, there is still room for developments, especially in cases with very
sophisticated datasets or other situations that are evaluated in the next section. In
the attachments we inclyde the table with the final model results.

6.3 Qualitative Analysis

The identification of the class of a dataset is not an easy task, especially when
the variables involved are many. In this case, the challenge has started from the
Column Selection phase, has gone through the Candidates Generation step and has
culminated in the Class Identification for the dataset. At first, the results obtained
were not satisfying as the model could not produce useful results for the majority of
the datasets. However, with the inclusion of several improvements and integrating
all the components in a unique approach, the final result has reached acceptable and
significant results. In addition, it is possible to justify the performance of the model
since its purpose is not to propose a competitive classifier, but to lay the foundations
for the exploitation of Open Linked Data and information available in the Web,
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as a starting point for further implementation. Many other projects identified in
the literature have shown interest in related fields, leveraging on other approaches,
such as machine learning classification techniques [109]. However, in that case, for
example, a significant number of labeled datasets were used to train the algorithm,
while in our case the approach to datasets is totally blind.
Moreover, the amount of information needed for this project was not huge in terms
of rows in datasets. Experiments, in fact, have been ran on 100 rows datasets as we
noticed no difference in parsing a large number of rows, i.e. the model was able to
give an output even with fewer rows. This is very important for the objectives of the
research as the time to access information is usually limited, especially in contexts
like enterprises. Indeed, the analysis of such small amount of rows takes less than
50 seconds, which means that, spent the time, the user could have a response about
datasets, which sometimes are populated by millions of rows. In conclusion, this
represents a key advantage in the effective identification of the category of a dataset.
On another hand, the model has been developed to analyse a single column and
it is not able to take as input multiple columns. Working on a single column can
be limiting, especially in those cases where the column selected is useless, i.e. it
does not show meaningful entities. Indeed, this can represent a weak point as the
methodology proposed is heuristic-based. Nevertheless, the objectives of the research
project were more focused in categorizing the datasets in an efficient and effective
way, thus more time has been spent on that. The datasets available, in fact, show
various formats which appear to be exemplifying of a real situation and facing the
column isolation with a heuristic seemed to be the most suitable solution for the
project.
Another interesting point to notice is that the choice of DBpedia ontology seemed to
be suitable for the reasearch goal. DBpedia ontology mapping, in fact, turned out
to be neither too restricted nor too generic. The way categories and hierarchies are
expressed proved to be useful and, above all, human understandable. Indeed, this
is a fundamental aspect to take into account as the model has been developed with
the aim to send it to a final user.
Furthermore, the selection of another measure for calculating the distances in the
candidates selection phase has raised a weak point of the CTA model. Its perfor-
mance, in fact, have deteriorated for more than the 60% between one trial and the
other. One of the possible reason why that happened stems from the fact that the
CTA model applies a threshold which has to be respected and this may have pre-
vented in the identification of the class. Combining this model with the Frequency
one has been the best way to integrate a top-down with a bottom-up approach, even
though the result model by itself is not always correct in the extraction of the column
in the dataset, that is why the support of OpenStreetMap has been introduced.
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Conclusions And Future Work

This conclusive Chapter has the aim to disclose significant evaluations on the research
project and on future possible developments. In this paper we presented a novel
approach to categorize datasets on the basis of a single column analysis and of the
exploitation of Linked Open Data and Web ontologies. The methodology was simple,
performance-driven, and embraces high interpretability. Several heuristic appraoches
were developed to emulate the human discovery process when exposed to brand new
information and to make the algorithm smart. In particular, the final model achieved
a good reasoning capacity by integrating different appraoches on the basis of the data
taken as input. Extensive experiments have shown that the method improved with
the integration of the Frequency and with the consideration of the location, while
qualitative analysis indicated that the model selection of the column ability was still
limited.
One of the strength point of the final model was the capability to exploit knowledge
bases and identify classes with an accuracy significantly high. In order to further
improve the performances, several actions can be considered:

• according to [92] it is useful to normalize the TFIDF, as TF is often very high,
while in this approach TFIDF was not normalized,

• as described in literature, many others approaches for record linkage could be
applied and test, such as classification-based [55] or ruled-base [72],

• include other ontologies in the extraction of classes. A limit to the model,
in fact, could be the absence of a class in the reference knowledge base. For
example, DBpedia has no information about anything related with money,

• define a more sophisticated approach for Frequency model which is able to take
into account also second or third most frequent class.

In addition, a more advanced methodology for column selection may be the subject
of further research, especially the ones related with machine learning techniques.
Examples of these opportunities are described by [109]. The fact that the model
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parses one column at a time, in fact, represents a limitation as additional columns
can disclose important insights about the whole datasets. It would be also very in-
teresting to study a way to integrate results obtained by different columns. In this
perspective, the CPA model introduced by [123] could be supportive. Moreover, for
the selection of location columns, the approach proposed by [80] could be considered
for automatically identifying column with spatial information. All these method-
ologies could also affect positively the processing time, enhancing the value of the
model.
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Appendix

.1 Programming Documentation

The project has been developed in the following GitHub directory

https://github.com/usc-isi-i2/wikidata-wikifier.

.1.1 Column Selection

import pandas as pd
import numpy as np
import re

df = pd . read_csv ( "" )
df = pd . DataFrame ( df )
col_to_erase = [ ]
col_to_save = [ ]

# DROP COLUMNS WITH FLOAT OR INTEGERS
d f_f l oa t = df . s e l ec t_dtypes ( exc lude=object )
d f_f loat_co l = l i s t ( d f_f l oa t . columns . va lue s )
col_to_erase . extend ( df_f loat_co l )

# DROP LOCATION COLUMNS

def is_word_in_text (word , t ex t ) :
pattern = r " (^ | [^\w] ) { } ( [ ^ \w] | \ $ ) " . format (word )
pattern = re . compile ( pattern , re .IGNORECASE)
matches = re . s earch ( pattern , t ex t )
return bool ( matches )

for c o l in df . columns . va lue s :
l o c a t i o n_ l i s t = [ 'Telephone ' , 'TELEPHONE ' , ' te l ephone ' ,
"CITY" , " c i t y " , "City " , "LOCATION" ,
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" l o c a t i o n " , " Locat ion " , "ZIP" ,
" z ip " , "Zip" , "ADDRESS" , "Address " ,
" address " , "DATE" , "Date" , " date " ]
c = co l
for l o c in l o c a t i o n_ l i s t :

i f is_word_in_text ( loc , c o l ) i s True :
col_to_erase . append ( c )

# DROP COLUMNS WITH DATE OR TIME
for c o l in df . columns :

i f df [ c o l ] . dtype == ' ob j e c t ' :
try :

d f [ c o l ] = pd . to_datetime ( df [ c o l ] )
except ValueError :

continue
i f not df [ c o l ] . dtype == ' ob j e c t ' :

col_to_erase . append ( c o l )
else :

break

# DROP COLUMNS WITH HYPERLINKS, EMAILS OR GEO COORDINATES
for c o l in df . columns :

pat t e rn s = [ "http " , "@" , " " ]
for j in range ( len ( df ) ) :

for pattern in pat t e rn s :
try :

i f re . s earch ( pattern , str ( df [ c o l ] [ j ] ) ) :
col_to_erase . append ( c o l )

except ValueError :
break

col_to_erase = l i s t ( dict . fromkeys ( col_to_erase ) )
i n i t i a l = l i s t ( df . columns . va lue s )
a lmost_f ina l_co l = [ x for x in i n i t i a l i f x not in col_to_erase ]
col_to_save = l i s t ( dict . fromkeys ( col_to_save ) )
col_to_erase = l i s t ( dict . fromkeys ( col_to_erase ) )

#OBTAIN THE FINAL COLUMN
i n i t i a l = l i s t ( df . columns . va lue s )
a lmost_f ina l_co l = [ x for x in i n i t i a l i f x not in col_to_erase ]
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f i n a l_co l = [ x for x in a lmost_f ina l_co l i f x in col_to_save ]
d f_ f i na l = df [ f i n a l_co l ]
th = int ( len ( d f_ f i na l )/2)
d f_ f i na l . dropna ( ax i s =1, thresh = th )

.1.2 CTA Model

#COMPUTE THE LEVENSHTEIN DISTANCE
#from s im i l a r i t y . norma l i z ed_levensh te in import Normal izedLevenshte in
from s im i l a r i t y . j a r ow ink l e r import JaroWinkler
l a b e l_ f i e l d s = [ 'wd_labels ' , ' wd_aliases ' , ' person_abbr ' ,
' db_anchor_texts ' ]

class AddLevenshte inS imi lar i ty ( object ) :
def __init__( s e l f ) :

s e l f . l e v = JaroWinkler ( )

def lev_mapper ( s e l f , l abe l , wikidata_json , c a s e_s en s i t i v e=True ) :
qnode = wikidata_json [ ' id ' ]
max_lev = −1
max_label = None
labe l_lower = l a b e l . lower ( )
for l a b e l_ f i e l d in l a b e l_ f i e l d s :

_labe l s = wikidata_json . get ( l a b e l_ f i e l d )
for l in _labe l s :

i f c a s e_sen s i t i v e :
l e v_s im i l a r i t y = s e l f . l e v . s im i l a r i t y ( l abe l , l )

else :
l e v_s im i l a r i t y = s e l f . l e v . s im i l a r i t y ( label_lower ,
l . lower ( ) )

i f l e v_s im i l a r i t y > max_lev :
max_lev = l e v_s im i l a r i t y
max_label = l

i f ' db_labels ' in wikidata_json and
' en ' in wikidata_json [ ' db_labels ' ] :

en_labe l s = wikidata_json [ ' db_labels ' ] [ ' en ' ]
i f not isinstance ( en_labels , l i s t ) :

en_labe l s = [ en_labe l s ]
for l in en_labe l s :

i f c a s e_sen s i t i v e :
l e v_s im i l a r i t y = s e l f . l e v . s im i l a r i t y ( l abe l , l )
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else :
l e v_s im i l a r i t y = s e l f . l e v . s im i l a r i t y
( label_lower , l . lower ( ) )

i f l e v_s im i l a r i t y > max_lev :
max_lev = l e v_s im i l a r i t y
max_label = l

anchors = wikidata_json . get ( ' db_anchor_texts ' , [ ] )
i f not isinstance ( anchors , l i s t ) :

anchors = [ anchors ]
for anchor in anchors :

i f c a s e_sen s i t i v e :
l e v_s im i l a r i t y = s e l f . l e v . s im i l a r i t y ( l abe l , anchor )

else :
l e v_s im i l a r i t y = s e l f . l e v . s im i l a r i t y
( label_lower , anchor . lower ( ) )

i f l e v_s im i l a r i t y > max_lev :
max_lev = l e v_s im i l a r i t y
max_label = anchor

i f max_label i s not None :
return ( qnode , max_lev , max_label )

return (None , None , None )

@staticmethod
def candidates_from_candidate_str ing ( cand idate_str ing ) :

qnode_set = set ( )
db_group_set = set ( )
i f cand idate_str ing i s not None
and isinstance ( candidate_str ing , str ) :

c_tuples = candidate_str ing . s p l i t ( '@ ' )
for c_tuple in c_tuples :

i f c_tuple i s not None
and isinstance ( c_tuple , str ) and c_tuple != 'nan ' :

try :
v a l s = c_tuple . s p l i t ( ' : ' )
i f va l s [ 0 ] != ' 5 ' :

qnode_set . add ( va l s [ 1 ] )
else :

_ = va l s [ 1 ] . s p l i t ( ' $ ' )
db_group_set . add (_[ 0 ] )
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i f len (_) > 1 :
qnode_set . add (_[ 1 ] )

except :
print ( c_tuple )

return l i s t ( qnode_set ) , l i s t ( db_group_set )

def compute_lev ( s e l f , label_cand_str ,
wikidata_index_dict , c a s e_s en s i t i v e ) :

c l ean_labe l = label_cand_str [ 0 ]
cand idate_str ing = label_cand_str [ 1 ]
qnodes , db_groups =
s e l f . candidates_from_candidate_str ing ( cand idate_str ing )
wik idata_jsons = [ wikidata_index_dict [ qnode ] for qnode
in qnodes i f qnode in wikidata_index_dict ]

r e s u l t s = [ ]
for wikidata_json in wikidata_jsons :

r = s e l f . lev_mapper ( c lean_labe l , wikidata_json ,
c a s e_s en s i t i v e=ca s e_sen s i t i v e )

i f r [ 0 ] i s not None :
r e s u l t s . append ( ' {} :{} ' . format ( r [ 0 ] , r [ 1 ] ) )

return '@ ' . j o i n ( r e s u l t s )

def add_lev_feature ( s e l f , df , wikidata_index_dict , c a s e_s en s i t i v e ) :
df [ '_dummy ' ] = l i s t ( zip ( df . _clean_label , d f . _candidates ) )
df [ ' l ev_feature ' ] = df [ '_dummy ' ] .map(

lambda x : s e l f . compute_lev (x , wikidata_index_dict ,
c a s e_s en s i t i v e ) )

return df

#COMPUTE TFIDF
class TFIDF( object ) :

def __init__( s e l f , qnodes_dict ) :
s e l f . qnodes_dict = qnodes_dict
s e l f . propert ies_classes_map =
s e l f . c reate_al l_propert ies_classes_map ( )

@staticmethod
def get_propert ies_classes_for_qnode ( qnode_dict ) :
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p rope r t i e s_c l a s s e s_se t = set ( )
wd_properties = qnode_dict . get ( 'wd_properties ' , [ ] )
p r ope r t i e s_c l a s s e s_se t . update ( wd_properties )

wd_prop_vals = qnode_dict . get ( 'wd_prop_vals ' , [ ] )
for wd_prop_val in wd_prop_vals :

_ = wd_prop_val . s p l i t ( '# ' )
_p = _[ 0 ]
_v = _[ 1 ]
i f _p == 'P31 ' :

p r ope r t i e s_c l a s s e s_se t . add (_v)
dbpedia_instances = qnode_dict . get ( ' db_instance_types ' , [ ] )
for dbpedia_instance in dbpedia_instances :

i f dbpedia_instance .
s t a r t sw i t h ( ' http :// dbpedia . org / onto logy / ' ) :

p r ope r t i e s_c l a s s e s_se t . add ( dbpedia_instance )
return prope r t i e s_c l a s s e s_se t

def create_al l_propert ies_classes_map ( s e l f ) :
p r ope r t i e s_c l a s s e s_se t = set ( )
for qnode in s e l f . qnodes_dict :

v = s e l f . qnodes_dict [ qnode ]
p r ope r t i e s_c l a s s e s_se t . update
( s e l f . get_propert ies_classes_for_qnode (v ) )

return {p : idx for idx , p in enumerate( p r ope r t i e s_c l a s s e s_se t )}

def create_feature_vector_dict ( s e l f , l abe l_candidates_tuples ) :
# crea t e s input f o r t f i d f computation
f eature_vector_dict = {}
_p_c_len = len ( s e l f . propert ies_classes_map )
for l abe l_candidates_tuple in l abe l_candidates_tuple s :

l a b e l = labe l_candidates_tuple [ 0 ]
cand idate s = labe l_candidates_tuple [ 1 ]

f eature_vector_dict [ l a b e l ] = {}
for candidate in cand idate s :

f ea ture_vector = [ 0 ] ∗ _p_c_len
i f candidate in s e l f . qnodes_dict :

p rop_c la s s_l i s t = s e l f .
get_propert ies_classes_for_qnode
( s e l f . qnodes_dict [ candidate ] )
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for _p_c in prop_c la s s_l i s t :
i f _p_c in s e l f . propert ies_classes_map :

f ea ture_vector
[ s e l f . propert ies_classes_map [_p_c ] ] = 1

feature_vector_dict [ l a b e l ] [ candidate ] = feature_vector
return f eature_vector_dict

def compute_tf idf ( s e l f , labe l_candidates_tuples ,
l abe l_ l ev_s imi l a r i ty_d i c t , h igh_prec i s ion_candidates=None , ) :

cand idate s = s e l f . c reate_feature_vector_dict
( labe l_candidates_tuples )
feature_count = len ( s e l f . propert ies_classes_map )
t f i d f_va l u e s = [{ ' t f ' : 0 , ' df ' : 0 , ' i d f ' : 0} for _
in range ( feature_count ) ]
corpus_num = sum( len ( qs ) for _, qs in cand idate s . i tems ( ) )

# compute t f
for f_idx in range ( feature_count ) :

for e in cand idate s :
for q , v in cand idate s [ e ] . i tems ( ) :

i f high_prec i s ion_candidates :
i f q == high_prec i s ion_candidates . get ( e ) :

i f v [ f_idx ] == 1 :
t f i d f_va l u e s [ f_idx ] [ ' t f ' ] += 1

else :
t f i d f_va l u e s [ f_idx ] [ ' t f ' ] += 1

# compute d f
for f_idx in range ( feature_count ) :

for e in cand idate s :
for q , v in cand idate s [ e ] . i tems ( ) :

i f v [ f_idx ] == 1 :
t f i d f_va l u e s [ f_idx ] [ ' df ' ] += 1

# compute i d f
for f_idx in range ( len ( t f i d f_va l u e s ) ) :

i f t f i d f_va l u e s [ f_idx ] [ ' df ' ] == 0 :
t f i d f_va l u e s [ f_idx ] [ ' i d f ' ] = 0

else :
t f i d f_va l u e s [ f_idx ] [ ' i d f ' ] =
math . l og ( f loat ( corpus_num) / t f i d f_va l u e s [ f_idx ]
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[ ' df ' ] , 10)

# compute f i n a l score
r e t = {}
for e in cand idate s :

r e t [ e ] = {}
for q , v in cand idate s [ e ] . i tems ( ) :

r e t [ e ] [ q ] = 0
for f_idx in range ( feature_count ) :

r e t [ e ] [ q ] += t f i d f_va l u e s [ f_idx ] [ ' t f ' ] ∗
t f i d f_va l u e s [ f_idx ] [ ' i d f ' ] ∗ v [ f_idx ]

l ev_ret = {}
for l a b e l in r e t :

_dict = r e t [ l a b e l ]
_lev_s imi la r i ty_dict = labe l_ l ev_s im i l a r i t y_d i c t . get ( l abe l ,
None )

i f _lev_s imi la r i ty_dict :
for qnode , t f i d f_ s c o r e in _dict . i tems ( ) :

_lev_score =
f loat ( _lev_s imi la r i ty_dict . get ( qnode , 0 . 0 ) )

_dict [ qnode ] = _lev_score ∗ t f i d f_ s c o r e
lev_ret [ l a b e l ] = _dict

answer_dict = {}
for l a b e l in l ev_ret :

_dict = lev_ret [ l a b e l ]
max_v = −1
max_q = None
for k , v in _dict . i tems ( ) :

i f v > max_v :
max_v = v
max_q = k

answer_dict [ l a b e l ] = max_q
return answer_dict

.1.3 Column Type Annotation

import j s on
from SPARQLWrapper import SPARQLWrapper , JSON
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#URILIST : l i s t s o f the answers , thus the DPbedia u r i s
#fo r each in s t ance /row
#CLASSURI: c l a s s to which the s i n g l e in s tance ur i b e l ong s
#CLASSLIST: l i s t o f super c l a s s e s −−> the ones d i r e c t l y
#co r r e l a t e d wi th Thing

class CTA( object ) :
def __init__( s e l f , dburi_typeof ) :

s e l f . dburi_typeof = dburi_typeof
func t i on that i d e n t i f i e s the class from the u r i o f each
in s t ance and check i f i t be long to s up e r c l a s s e s

s e l f . supe r_c la s s e s =
pd . read_csv ( ' w i k i f i e r / caches / SuperClasses . csv ' ,

header=None ) [ 0 ] . t o l i s t ( )
s e l f . db_classes =
j son . load (open( ' w i k i f i e r / caches /DBClasses . j s on ' ) )
s e l f . db_classes_c losure =
j son . load (open( ' w i k i f i e r / caches /DBClassesClosure . j son ' ) )
s e l f . sparq ldb = SPARQLWrapper( "http :// dbpedia . org / spa rq l " )

def i s_instance_of ( s e l f , u r i ) :
s e l f . sparq ldb . setQuery (

select distinct ?x where
{{ <{}> <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type>
?x .
?x <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type>
<http ://www.w3 . org /2002/07/ owl#Class> .}}

. format ( u r i ) )
s e l f . sparq ldb . setReturnFormat (JSON)
r e s u l t s = s e l f . sparq ldb . query ( ) . convert ( )
i n s t an c e s = set ( )
for r e s u l t in r e s u l t s [ " r e s u l t s " ] [ " b ind ings " ] :

dbp = r e s u l t [ 'x ' ] [ ' value ' ]
i n s t an c e s . add (dbp)

return i n s t an c e s

def eva luate_c la s s_c lo sure ( s e l f , u r i l i s t , c l a s s u r i ) :
matches = 0
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c l a s s u r i c l o s u r e = set ( )
i f c l a s s u r i in s e l f . db_classes_c losure :

c l a s s u r i c l o s u r e = set ( s e l f . db_classes_c losure [ c l a s s u r i ] )
v a l i d u r i = [ ]
for u r i in u r i l i s t :

i f u r i in s e l f . dburi_typeof :
i n s t an c e s = s e l f . dburi_typeof [ u r i ]

else :
i n s t an c e s = s e l f . i s_instance_of ( u r i )
s e l f . dburi_typeof [ u r i ] = l i s t ( i n s t an c e s )

for i n s t anc e in i n s t an c e s :
i f i n s t anc e in c l a s s u r i c l o s u r e :

v a l i d u r i . append ( u r i )
matches += 1
break

s co r e = matches / len ( u r i l i s t )
return [ s core , v a l i d u r i ]

def f i nd_c l a s s ( s e l f , u r i l i s t , c l a s s l i s t , currentans , ans_l i s t ,
th r e sho ld ) :

an s_ l i s t . append ( cur rentans )
i f len ( c l a s s l i s t ) == 0 :

return #r i t o rna None

max_score = −1
max_validuri = [ ]
max_class = ' '
for s up e r c l a s s in c l a s s l i s t :

[ score , v a l i d u r i ] = s e l f . eva luate_c la s s_c lo sure ( u r i l i s t ,
s up e r c l a s s )
i f max_score < sco r e :

max_score = sco r e
max_validuri = v a l i d u r i
max_class = sup e r c l a s s

i f max_score >= thre sho ld :
s ub c l a s s e s = s e l f . db_classes [ max_class ]
s e l f . f i nd_c l a s s ( max_validuri , subc l a s s e s ,
max_class , ans_l i s t , th r e sho ld )
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return
def proce s s ( s e l f , df , th r e sho ld =0.508 , c l a s s_ l e v e l =0):

u r i l i s t = df [ ' answer ' ] . t o l i s t ( )
i f len ( u r i l i s t ) == 0 :

return ""
ans_ l i s t = [ ]
s e l f . f i nd_c l a s s ( u r i l i s t , s e l f . super_c las ses , ' ' ,
ans_l i s t , th r e sho ld )
an s_ l i s t = ans_ l i s t [ 1 : ]
i f len ( an s_ l i s t ) <= c l a s s_ l e v e l :

return ""
return "␣" . j o i n ( an s_ l i s t )

#CANDIDATE GENERATION AND SELECTION
class Cand idateSe l ec t i on ( object ) :

def __init__( s e l f , qnode_to_dburi_map , aqs , qnode_typeof_map ) :
s e l f . qnode_to_dburi_map = qnode_to_dburi_map
s e l f . aqs = aqs
s e l f . qnode_typeof_map = qnode_typeof_map
s e l f . country_dict =
j son . load (open( ' w i k i f i e r / caches /country_qnode_dict . j son ' ) )
s e l f . s t a t e s_d i c t =
j son . load (open( ' w i k i f i e r / caches /us_states_qnode_dict . j son ' ) )
s e l f . pe r son_c la s s e s =
j son . load (open( ' w i k i f i e r / caches / dbpedia_person_classes . j son ' ) )
s e l f . p l a c e s_c l a s s e s =
j son . load (open( ' w i k i f i e r / caches / dbpedia_place_classes . j son ' ) )
s e l f . normal ized_lev = Normal izedLevenshte in ( )
db_classes = j son . load (open( ' w i k i f i e r / caches / db_classes . j son ' ) )
s e l f . db_classes_parent =
s e l f . c reate_class_parent_hierarchy ( db_classes )

def so r t_lev_feature s ( s e l f , lev_feature_s , th r e sho ld =0.9) :
qnode_dict = {}
try :

qnodes_lev = sorted ( [ z . s p l i t ( ' : ' ) for z
in l ev_feature_s . s p l i t ( '@ ' ) ] , key=i t emge t t e r ( 1 ) ,
r e v e r s e=True )

# mette in ord ine i d a t i
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qnodes_lev = l i s t ( f i l t e r (lambda x :
f loat ( x [ 1 ] ) >= thresho ld , qnodes_lev ) )
for idx in range ( len ( qnodes_lev ) ) :

qnode = qnodes_lev [ idx ] [ 0 ]
l e v s c o r e = qnodes_lev [ idx ] [ 1 ]
qnode_dict [ qnode ] = l e v s c o r e

except :
return {}

return qnode_dict

def top_ranked ( s e l f , df_tuple ) :
chosencand = None
maxscore = 0
sorted_candidates = df_tuple [ 0 ]
l ev_candidates = df_tuple [ 1 ]
candidates_with_one = l i s t ( )

for candidate in l ev_candidates :
i f l ev_candidates [ candidate ] == ' 1 .0 ' :

candidates_with_one . append ( candidate )

i f len ( candidates_with_one ) == 1 :
return candidates_with_one [ 0 ] , 1

i f len ( candidates_with_one ) > 1 :
return None , 2

for candidate in sorted_candidates :
i f candidate in l ev_candidates :

s c o r e = f loat ( l ev_candidates [ candidate ] ) +
sorted_candidates [ candidate ] [ 1 ]
i f s co r e > maxscore :

chosencand = candidate
maxscore = sco r e

return ( chosencand , 3) i f chosencand i s not None
else (None , 4)

def sort_qnodes ( s e l f , qnode_string ) :
sorted_qnodes = l i s t ( )
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i f qnode_string i s not None and isinstance ( qnode_string , str )
and
qnode_string . s t r i p ( ) != ' ' :

q_scores = qnode_string . s p l i t ( '@ ' )
for q_score in q_scores :

i f q_score != 'nan ' :
q_score_spl i t = q_score . s p l i t ( ' : ' )
s c o r e = q_score_spl i t [ 2 ]
id = str ( q_score_spl i t [ 0 ] )
qnode = q_score_spl i t [ 1 ]

i f id == ' 42 ' or id == ' 10 ' :
sorted_qnodes . append ( ( qnode ,
f loat ( s c o r e ) ∗∗ 0 . 2 5 ) )

else :
sorted_qnodes . append (

( qnode ,
s e l f . aqs [ id ] [ ' lambda ' ] ∗ ( f loat ( s c o r e ) /
s e l f . aqs [ id ] [ ' avg ' ] ) ) )

r e s u l t s = l i s t ( )
for sorted_qnode in sorted_qnodes :

db_uri = s e l f . qnode_to_dburi_map . get ( sorted_qnode [ 0 ] , None )
r e s u l t s . append ( ( sorted_qnode [ 0 ] , db_uri , sorted_qnode [ 1 ] ) )

r e s u l t s . s o r t ( key=i t emge t t e r ( 2 ) , r e v e r s e=True )
_dict = {}
for r e s u l t in r e s u l t s :

_dict [ r e s u l t [ 0 ] ] = [ r e s u l t [ 1 ] , r e s u l t [ 2 ] ]

return _dict

def sort_qnodes_2 ( s e l f , qnode_string ) :
r e su l t_d i c t = dict ( )
r e su l t_d i c t [ 'wd ' ] = l i s t ( )
r e su l t_d i c t [ ' es ' ] = l i s t ( )
i f qnode_string i s not None and
isinstance ( qnode_string , str ) and qnode_string . s t r i p ( ) != ' ' :

q_scores = qnode_string . s p l i t ( '@ ' )
for q_score in q_scores :
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i f q_score != 'nan ' :
q_score_spl i t = q_score . s p l i t ( ' : ' )
s c o r e = q_score_spl i t [ 2 ]
id = str ( q_score_spl i t [ 0 ] )
qnode = q_score_spl i t [ 1 ]

i f id == ' 42 ' or id == ' 10 ' :
i f id == ' 42 ' :

r e s u l t_d i c t [ 'wd ' ] . append ( ( qnode ,
f loat ( s c o r e ) ∗∗ 0 . 2 5 ) )

else :
r e s u l t_d i c t [ ' es ' ] . append ( ( qnode ,
f loat ( s c o r e ) ∗∗ 0 . 2 5 ) )

else :
r e su l t_d i c t [ ' es ' ] . append ( ( qnode ,
s e l f . aqs [ id ] [ ' lambda ' ] ( f loat ( s c o r e ) /
s e l f . aqs [ id ] [ ' avg ' ] ) ) )

wd_list = r e su l t_d i c t [ 'wd ' ]
_new_wd_list = l i s t ( )
for q_s in wd_list :

qnode = q_s [ 0 ]
_new_wd_list . append ( ( qnode , f loat (q_s [ 1 ] ) ) )

r e su l t_d i c t [ 'wd ' ] = sorted (_new_wd_list , key=i t emge t t e r ( 1 ) ,
r e v e r s e=True )
e s_ l i s t = r e su l t_d i c t [ ' es ' ]
_new_es_list = l i s t ( )
for q_s in e s_ l i s t :

qnode = q_s [ 0 ]
_new_es_list . append ( ( qnode , f loat (q_s [ 1 ] ) ) )

r e su l t_d i c t [ ' es ' ] = sorted (_new_es_list , key=i t emge t t e r ( 1 ) ,
r e v e r s e=True )
return r e su l t_d i c t

def l e v_s im i l a r i t y ( s e l f , l abe l , db_uris , th r e sho ld =0.9) :
max_score = −1.0
best_match = None
for db_uri in db_uris :

dburi_part = db_uri . s p l i t ( ' / ' ) [−1]
dburi_part = dburi_part . r ep l a c e ( '_ ' , ' ␣ ' )
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s im i l a r i t y = s e l f . normal ized_lev . s im i l a r i t y ( l abe l ,
dburi_part )
i f s im i l a r i t y > max_score :

max_score = s im i l a r i t y
best_match = db_uri

i f max_score >= thre sho ld :
return best_match

return None

def choose_candidate_with_cta ( s e l f , df_tuple ) :
sorted_lev = df_tuple [ 0 ]
sorted_candidates = df_tuple [ 1 ]
c ta_c la s s = df_tuple [ 2 ]
answer = df_tuple [ 3 ]
l a b e l = df_tuple [ 4 ]
wiki_candidates = sorted_candidates [ 'wd ' ]
es_candidates = sorted_candidates [ ' es ' ]
sorted_lev_tuples = l i s t ( )
for k , v in sorted_lev . i tems ( ) :

sorted_lev_tuples . append ( ( k , v ) )
i f not isinstance ( answer , f loat ) and answer i s not None
and answer . s t r i p ( ) != ' ' and answer != 'nan ' :

return answer , 'high_p ' , ' uniq '
i f c ta_c la s s i s None or c ta_c la s s . s t r i p ( ) == ' ' or
c ta_c la s s in s e l f . p l a c e s_c l a s s e s :

i f l a b e l in s e l f . s t a t e s_d i c t :
return s e l f . s t a t e s_d i c t [ l a b e l ] , ' s ta t e_d ic t ' , ' uniq '

i f l a b e l in s e l f . country_dict :
return s e l f . country_dict [ l a b e l ] , ' country_dict ' , ' uniq '

lev_cands = sorted ( sorted_lev_tuples , key=i t emge t t e r ( 1 ) ,
r e v e r s e=True )
lev_cands_groups = i t e r t o o l s . groupby ( lev_cands ,
i t emge t t e r ( 1 ) )
for k , v in lev_cands_groups :

_l_s = [ ( x [ 0 ] , x [ 1 ] ) for x in v ]
_l = [ x [ 0 ] for x in _l_s ]
lev_sim = s e l f . l e v_s im i l a r i t y ( l abe l , _l )
i f lev_sim :

return lev_sim , ' l abe l_lev_ur i_noc lass ' ,
j s on . dumps(_l_s )

95



Appendix

for wiki_c in wiki_candidates :
i f wiki_c [ 0 ] in _l :
return wiki_c [ 0 ] , ' wiki_noc lass ' , j s on . dumps(_l_s )

for es_c in es_candidates :
i f es_c [ 0 ] in _l :
return es_c [ 0 ] , ' es_noc lass ' , j s on . dumps(_l_s )

return None , ' nova l iddbur i ' , ' nojoy '

cta_class_cands = l i s t ( )

for qnode , s c o r e in sorted_lev . i tems ( ) :
qnode_c las s_l i s t = s e l f . qnode_typeof_map . get ( qnode )

i f qnode_c las s_l i s t :
i f c ta_c la s s in qnode_c las s_l i s t :

cta_class_cands . append ( ( qnode , score , l a b e l ) )

i f len ( cta_class_cands ) == 1 :
return cta_class_cands [ 0 ] [ 0 ] , ' unambiguous␣ l ev ' , ' uniq '

i f len ( cta_class_cands ) > 1 :
cta_class_cands = sorted ( cta_class_cands ,
key=i t emge t t e r ( 1 ) , r e v e r s e=True )
cta_cands_groups = i t e r t o o l s . groupby ( cta_class_cands ,
i t emge t t e r ( 1 ) )
for k , v in cta_cands_groups :

i f c ta_c la s s in s e l f . pe r son_c la s s e s and False :
return None , ' person ' , ' ambiguous '

else :
_l_s = [ ( x [ 0 ] , x [ 1 ] ) for x in v ]

_l = [ x [ 0 ] for x in _l_s ]

lev_sim = s e l f . l e v_s im i l a r i t y ( l abe l , _l )

for wiki_c in wiki_candidates :
i f wiki_c [ 0 ] in _l :

return wiki_c [ 0 ] , ' wik i ' , j s on . dumps(_l_s )
for es_c in es_candidates :

i f es_c [ 0 ] in _l :
return es_c [ 0 ] , ' es ' , j s on . dumps(_l_s )

i f lev_sim :

96



Appendix

return lev_sim , ' l abe l_lev_ur i ' , j s on . dumps(_l_s )
i f len ( cta_class_cands ) == 0 :

return s e l f . choose_candidate_with_cta (
( sorted_lev , sorted_candidates ,
s e l f . db_classes_parent . get ( c ta_c la s s ) , answer , l a b e l ) )

return None , 33 , ' empty '

@staticmethod
def create_class_parent_hierarchy ( db_classes ) :

dbc lasses_parent = dict ( )
for db_class , c h i l d r en in db_classes . i tems ( ) :

for ch i l d in ch i l d r en :
dbc lasses_parent [ c h i l d ] = db_class

return dbc lasses_parent

def s e l e c t_h igh_prec i s i on_re su l t s ( s e l f , d f ) :
d f [ ' sorted_lev ' ] =
df [ ' l ev_feature ' ] .map(lambda x : s e l f . s o r t_lev_feature s ( x ) )
df [ ' sorted_qnodes ' ] =
df [ '_candidates ' ] .map(lambda x : s e l f . sort_qnodes ( x ) )
df [ '_dummy_2 ' ] = l i s t ( zip ( df . sorted_qnodes , df . sorted_lev ) )
df [ ' top_ranked ' ] =
df [ '_dummy_2 ' ] .map(lambda x : s e l f . top_ranked (x ) )
df [ ' answer ' ] = df [ ' top_ranked ' ] .map(lambda x : x [ 0 ] )
df [ ' high_conf idence ' ] = df [ ' top_ranked ' ] .map(lambda x : x [ 1 ] )
return df

def se lect_candidates_hard ( s e l f , d f ) :
d f [ ' sorted_lev_2 ' ] = df [ ' l ev_feature ' ] .map(lambda x :
s e l f . s o r t_lev_feature s (x , th r e sho ld =0.3))
df [ ' sorted_qnodes_2 ' ] =
df [ '_candidates ' ] .map(lambda x : s e l f . sort_qnodes_2 (x ) )
df [ '_dummy_3 ' ] = l i s t ( zip ( df . sorted_lev_2 , df . sorted_qnodes_2 ,
df . cta_class , df . answer , df . _clean_label ) )
df [ ' answer2 ' ] =
df [ '_dummy_3 ' ] .map(lambda x : s e l f . choose_candidate_with_cta (x ) )
df [ ' answer_Qnode ' ] = df [ ' answer2 ' ] .map(lambda x : x [ 0 ] )
df [ ' f i n a l_con f i d enc e ' ] = df [ ' answer2 ' ] .map(lambda x : x [ 1 ] )
df [ ' db_classes ' ] =
df [ ' answer_Qnode ' ] .map(lambda x : s e l f . qnode_typeof_map . get ( x ) )
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df [ ' lev_group ' ] = df [ ' answer2 ' ] .map(lambda x : x [ 2 ] )
return df

#PROCESS CANDIDATES AND OBTAIN THE CLASS FOR THE CANDIDATES SELECTED
class Wik i f i e r ( object ) :

def __init__( s e l f ) :
c on f i g = j son . load (open( ' w i k i f i e r / c on f i g . j son ' ) )
s e l f . a s c i i i i i i = set ( s t r i n g . p r i n t ab l e )
s e l f . es_url = con f i g [ ' es_url ' ]
s e l f . es_index = con f i g [ ' es_index ' ]
s e l f . dbpedia_label_index = con f i g [ ' dbpedia_labels_index ' ]
# average query score
s e l f . aqs = None
s e l f . es_doc = con f i g [ ' es_doc ' ]
s e l f . es_search_url = ' {}/{}/{}/_search ' . format ( s e l f . es_url ,
s e l f . es_index , s e l f . es_doc )
s e l f . dbpedia_label_search_url = ' {}/{}/{}/_search '
. format ( s e l f . es_url , s e l f . dbpedia_label_index , s e l f . es_doc )
s e l f . names_es_index = con f i g [ ' names_es_index ' ]
s e l f . names_es_doc = con f i g [ 'names_es_doc ' ]
s e l f . names_es_search_url = ' {}/{}/{}/_search '
. format ( s e l f . es_url , s e l f . names_es_index , s e l f . names_es_doc )
s e l f . wikidata_dbpedia_joined_index =
con f i g [ 'wikidata_dbpedia_joined_index ' ]
s e l f . wikidata_dbpedia_joined_doc =
con f i g [ 'wikidata_dbpedia_joined_doc ' ]
s e l f . wiki_dbpedia_joined_search_url = ' {}/{}/{}/_search '
. format ( s e l f . es_url , s e l f . wikidata_dbpedia_joined_index ,
s e l f . wikidata_dbpedia_joined_doc )
s e l f . query_1 =
json . load (open( ' w i k i f i e r / qu e r i e s /wiki_query_1 . j son ' ) )
s e l f . query_2 =
json . load (open( ' w i k i f i e r / qu e r i e s /wiki_query_2 . j son ' ) )
s e l f . query_more_like_this =
j son . load (open( ' w i k i f i e r / qu e r i e s /wiki_query_more_like_this . j s on ' ) )
s e l f . query_dbpedia_labels =
j son . load (open( ' w i k i f i e r / qu e r i e s /wiki_query_dbpedia_labels . j s on ' ) )
s e l f . s e en_labe l s = dict ( )
s e l f . l e v_s im i l a r i t y = AddLevenshte inS imi lar i ty ( )
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@staticmethod
def c l ean_labe l s ( l a b e l ) :

i f not isinstance ( l abe l , str ) :
return l a b e l

c l ean_labe l = f t f y . f ix_encoding ( l a b e l )
c l ean_labe l = f t f y . f i x_text ( c l ean_labe l )
c l ean_labe l = re . sub ( r ' [ [ ] . ∗ [ ] ] ' , ' ␣ ' , c l ean_labe l )
c l ean_labe l = re . sub ( r ' [ ( ] . ∗ [ ) ] ' , ' ␣ ' , c l ean_labe l )
c l ean_labe l = c l ean_labe l . r ep l a c e ( ' \\ ' , ' ␣ ' )
c l ean_labe l = c l ean_labe l . r ep l a c e ( ' / ' , ' ␣ ' )
c l ean_labe l = c l ean_labe l . r ep l a c e ( "\"" , ' ␣ ' )
c l ean_labe l = c l ean_labe l . r ep l a c e ( " ! " , ' ␣ ' )
c l ean_labe l = c l ean_labe l . r ep l a c e ( "−−>" , ' ' )
c l ean_labe l = c l ean_labe l . r ep l a c e ( ">" , ' ␣ ' )
c l ean_labe l = c l ean_labe l . r ep l a c e ( "<" , ' ␣ ' )
c l ean_labe l = c l ean_labe l . r ep l a c e ( "−" , ' ␣ ' )
c l ean_labe l = c l ean_labe l . r ep l a c e ( "^" , ' ␣ ' )
c l ean_labe l = c l ean_labe l . r ep l a c e ( " : " , ' ␣ ' )
c l ean_labe l = c l ean_labe l . r ep l a c e ( "+" , ' ␣ ' )
return c l ean_labe l

@staticmethod
def create_query ( t_query , search_term ) :

t_query [ ' query ' ] [ ' bool ' ] [ ' should ' ] [ 0 ] [ ' query_str ing ' ] [ ' query ' ]
= search_term
t_query [ ' query ' ] [ ' bool ' ] [ ' should ' ] [ 1 ] [ 'multi_match ' ] [ ' query ' ]
= search_term
i f len ( search_term . s p l i t ( ' ␣ ' ) ) == 1 :

t_query [ ' s i z e ' ] = 100
else :

t_query [ ' s i z e ' ] = 20
return t_query

def search_es_names ( s e l f , name ) :
query = {

"query" : {
" funct ion_score " : {

"query" : {
" bool " : {

"must" : [
{
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"multi_match" : {
"query" : name ,
" type" : " phrase " ,
" f i e l d s " : [

"abbr_name"
] ,
" s l op " : 2

}
}

] }
}

}
} ,
" s i z e " : 50

}
response = reque s t s . post ( s e l f . names_es_search_url , j s on=query )
i f re sponse . status_code == 200 :

h i t s = response . j son ( ) [ ' h i t s ' ] [ ' h i t s ' ]
r e s u l t s = [

' {} : {} : {} ' . format ( ' 3 ' , x [ '_id ' ] , x [ '_score ' ] )
for x
in
h i t s ]

return r e s u l t s i f len ( r e s u l t s ) > 0 else None
else :

print ( re sponse . t ex t )
return None

def search_es_second ( s e l f , search_term ) :
search_term_tokens = search_term . s p l i t ( ' ␣ ' )
query_type = "phrase "
s l op = 0
i f len ( search_term_tokens ) <= 3 :

s l op = 2
i f len ( search_term_tokens ) > 3 :

query_type = "phrase "
s l op = 10

query = s e l f . query_2
query [ ' query ' ] [ ' funct ion_score ' ] [ ' query ' ] [ ' bool ' ]
[ 'must ' ] [ 0 ] [ 'multi_match ' ] [ ' query ' ] = search_term
query [ ' query ' ] [ ' funct ion_score ' ] [ ' query ' ] [ ' bool ' ]
[ 'must ' ] [ 0 ] [ 'multi_match ' ] [ ' type ' ] = query_type
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query [ ' query ' ] [ ' funct ion_score ' ] [ ' query ' ] [ ' bool ' ]
[ 'must ' ] [ 0 ] [ 'multi_match ' ] [ ' s l op ' ] = s l op

# return the top matched QNode us ing ES
re sponse = s e l f . search_es ( query , query_id= ' 2 ' )
i f re sponse i s not None :

return re sponse
e l i f len ( search_term_tokens ) > 3 :

for i in range (0 , −4, −1):
t_search_term = ' ␣ ' . j o i n ( search_term_tokens [ : i ] )

query [ ' query ' ] [ ' funct ion_score ' ] [ ' query ' ] [ ' bool ' ]
[ 'must ' ] [ 0 ] [ 'multi_match ' ] [ ' query ' ] = t_search_term
response = s e l f . search_es ( query , query_id= ' 2 ' )
i f re sponse i s not None :

return re sponse
else :

continue
return None

def search_es_more_like_this ( s e l f , search_term , query_id= ' 4 ' ) :
search_term_tokens = search_term . s p l i t ( ' ␣ ' )
min_term_freq = 1
tokens_length = len ( search_term_tokens )
max_query_terms = tokens_length
minimum_should_match = tokens_length − 1
query = s e l f . query_more_like_this
query [ ' query ' ] [ ' more_like_this ' ] [ ' l i k e ' ] = search_term
query [ ' query ' ] [ ' more_like_this ' ] [ 'min_term_freq ' ] =
min_term_freq
query [ ' query ' ] [ ' more_like_this ' ] [ 'max_query_terms ' ] =
max_query_terms

for i in range (minimum_should_match , 0 , −1):
query [ ' query ' ] [ ' more_like_this ' ] [ 'minimum_should_match ' ] = i
re sponse = s e l f . search_es ( query , query_id=query_id )
i f re sponse i s not None :

return re sponse
else :

continue
return None
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def run_query ( s e l f , search_term ) :
print ( search_term )
try :

r e sponse = l i s t ( )
t_query = s e l f . create_query ( s e l f . query_1 , search_term )
response_1 = s e l f . search_es ( t_query )
i f response_1 i s None :

t_query = s e l f . create_query ( s e l f . query_1 , search_term
. lower ( ) )
response_1 = s e l f . search_es ( t_query )

i f response_1 i s None :
s ea r ch_asc i i = ' ' . j o i n ( f i l t e r (lambda x :
x in s e l f . a s c i i i i i i , search_term ) )
t_query = s e l f . create_query ( s e l f . query_1 , s ea r ch_asc i i )
response_1 = s e l f . search_es ( t_query )

i f response_1 i s not None :
re sponse . extend ( response_1 )
# Relaxed query
response_2 = s e l f . search_es_second ( search_term )
i f response_2 i s not None :

re sponse . extend ( response_2 )

# Query on ab b r e v i a t e d names
response_3 = s e l f . search_es_names ( search_term )
i f response_3 i s not None :

re sponse . extend ( response_3 )
response_4 = s e l f . search_es_more_like_this ( search_term )
i f response_4 i s not None :

re sponse . extend ( response_4 )
return '@ ' . j o i n ( [ r for r in re sponse i f r . s t r i p ( ) != ' ' ] )

except Exception as e :
t raceback . print_exc ( )
raise e

def search_es ( s e l f , query , query_id= ' 1 ' ) :
# return the top matched QNode us ing ES
re sponse = reque s t s . post ( s e l f . es_search_url , j s on=query )

i f re sponse . status_code == 200 :
h i t s = response . j son ( ) [ ' h i t s ' ] [ ' h i t s ' ]
r e s u l t s = [
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' {} : {} : {} ' . format ( query_id , x [ '_id ' ] , x [ '_score ' ] )
for x in h i t s ]

return r e s u l t s i f len ( r e s u l t s ) > 0 else None
return None

def search_es_dbpedia ( s e l f , query , query_id= ' 5 ' ) :
# return the top matched QNode us ing ES
re sponse = reque s t s . post ( s e l f . dbpedia_label_search_url ,
j s on=query )
i f re sponse . status_code == 200 :

h i t s = response . j son ( ) [ ' h i t s ' ] [ ' h i t s ' ]
r e s u l t s = [ ' {} : {} : {} ' . format ( query_id ,
s e l f . format_dbpedia_labels_index_results ( x ) , x [ '_score ' ] )
for x in h i t s ]
for h i t in h i t s :

id = h i t [ '_id ' ]
_d = h i t [ "_source" ]
_d[ ' id ' ] = id
s e l f . dbur i_to_labels_dict [ id ] = _d

return r e s u l t s i f len ( r e s u l t s ) > 0 else None
return None

@staticmethod
def format_dbpedia_labels_index_results ( doc ) :

_source = doc [ '_source ' ]
_id = doc [ '_id ' ]
i f ' qnode ' in _source :

return ' {}${} ' . format (_id , _source [ ' qnode ' ] )
return _id

@staticmethod
def query_average_scores ( df ) :

s c o r e s = dict ( )
lambdas = {

' 1 ' : 1 . 0 ,
' 2 ' : 1 . 0 ,
' 3 ' : 1 . 0 ,
' 4 ' : 1 . 0 ,
' 5 ' : 1 . 0 ,
' 10 ' : 1 ,
' 42 ' : 2 . 0
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}
qnodes = df [ '_candidates ' ]
for qnode_string in qnodes :

try :
i f qnode_string i s not None and
isinstance ( qnode_string , str ) and
qnode_string . s t r i p ( ) != ' ' :

q_scores = qnode_string . s p l i t ( '@ ' )
for q_score in q_scores :

i f q_score != 'nan ' :
q_score = q_score . r ep l a c e ( 'Category : ' , ' ' )
q_score = q_score . r ep l a c e ( 'Wikidata : ' , ' ' )
q_score_spl i t = q_score . s p l i t ( ' : ' )
s c o r e = q_score_spl i t [ 2 ]
id = str ( q_score_spl i t [ 0 ] )
i f id not in s c o r e s :

s c o r e s [ id ] = {
' count ' : 0 ,
' cumulat ive ' : 0 . 0 ,
' lambda ' : lambdas [ id ]

}
s c o r e s [ id ] [ ' count ' ] += 1
s c o r e s [ id ] [ ' cumulat ive ' ] += f loat ( s c o r e )

except Exception as e :
print ( e )
print ( qnode_string )
raise Exception ( e )

for k in s c o r e s :
s c o r e s [ k ] [ ' avg ' ] =
f loat ( s c o r e s [ k ] [ ' cumulat ive ' ] / s c o r e s [ k ] [ ' count ' ] )

return s c o r e s

def get_candidates_qnodes_set ( s e l f , d f ) :
qnode_set = set ( )
cand idate_st r ings = df [ '_candidates ' ] . va lue s
for cand idate_str ing in cand idate_st r ings :

qnode_set . update
( s e l f . c reate_l i s t_from_candidate_str ing ( cand idate_str ing ) )

return qnode_set
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@staticmethod
def create_l i s t_from_candidate_str ing ( cand idate_str ing ) :

qnode_set = set ( )
i f cand idate_str ing i s not None and
isinstance ( candidate_str ing , str ) :

c_tuples = candidate_str ing . s p l i t ( '@ ' )
for c_tuple in c_tuples :

i f c_tuple i s not None and isinstance ( c_tuple , str )
and c_tuple != 'nan ' :

try :
v a l s = c_tuple . s p l i t ( ' : ' )
i f va l s [ 0 ] != ' 5 ' :

qnode_set . add ( va l s [ 1 ] )
else :

_ = va l s [ 1 ] . s p l i t ( ' $ ' )
i f len (_) > 1 :

qnode_set . add (_[ 1 ] )
except :

print ( c_tuple )
return l i s t ( qnode_set )

def create_qnode_to_labels_dict ( s e l f , qnodes ) :
qnode_to_labels_dict = dict ( )
i f not isinstance ( qnodes , l i s t ) :

qnodes = [ qnodes ]
while ( len ( qnodes ) > 0 ) :

batch = qnodes [ : 1 0 0 ]
qnodes = qnodes [ 1 0 0 : ]
query = {

"query" : {
" i d s " : {

" va lues " : batch
}

} ,
" s i z e " : len ( batch )

}

response = reque s t s . post ( s e l f . wiki_dbpedia_joined_search_url ,
j s on=query )
i f re sponse . status_code == 200 :
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es_docs = response . j son ( ) [ ' h i t s ' ] [ ' h i t s ' ]
for es_doc in es_docs :

qnode_to_labels_dict [ es_doc [ '_id ' ] ] =
es_doc [ '_source ' ]

return qnode_to_labels_dict

@staticmethod
def create_qnode_to_type_dict ( qnode_to_labels_dict ) :

qnode_to_type_map = dict ( )
for qnode in qnode_to_labels_dict :

dbpedia_instance_types =
qnode_to_labels_dict [ qnode ] [ ' db_instance_types ' ]
qnode_to_type_map [ qnode ] = l i s t ( set ( dbpedia_instance_types ) )

return qnode_to_type_map

@staticmethod
def create_qnode_to_dburi_map ( qnode_to_labels_dict ) :

qnode_to_dburi_map = {}
for qnode in qnode_to_labels_dict :

dbpedia_urls = qnode_to_labels_dict [ qnode ] [ ' dbpedia_urls ' ]
i f len ( dbpedia_urls ) > 0 :

for dbpedia_url in dbpedia_urls :
i f dbpedia_url . s t a r t sw i t h
( ' http :// dbpedia . org / r e s ou r c e ' ) :
qnode_to_dburi_map [ qnode ] = dbpedia_url

i f qnode not in qnode_to_dburi_map :
qnode_to_dburi_map [ qnode ] = dbpedia_urls [ 0 ]

else :
qnode_to_dburi_map [ qnode ] = None

return qnode_to_dburi_map

@staticmethod
def create_high_prec i s ion_t f id f_input ( label_hp_candidate_tuples ) :

_ = {}
for label_hp_candidate_tuple in label_hp_candidate_tuples :

l a b e l = label_hp_candidate_tuple [ 0 ]
candidate = label_hp_candidate_tuple [ 1 ]
_[ l a b e l ] = candidate

return _

def get_dburi_for_qnode ( s e l f , qnode , qnode_dburi_map ) :
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i f qnode i s None :
return None

i f qnode_dburi_map . get ( qnode ) i s not None :
return qnode_dburi_map [ qnode ]

_qdict = s e l f . create_qnode_to_labels_dict ( qnode )
return s e l f . create_qnode_to_dburi_map ( _qdict ) [ qnode ]

@staticmethod
def c r ea t e_ lev_s imi l a r i ty_d i c t ( labe l_lev_tuples ,
cand idate_se l ec t i on_objec t ) :

i f not l abe l_lev_tup le s :
return {}

l abe l_ l ev_s im i l a r i t y_d i c t = {}
for l abe l_lev_tuple in l abe l_lev_tup le s :

i f l abe l_lev_tuple :
l a b e l = labe l_lev_tuple [ 0 ]
lv_qnodes_string = labe l_lev_tuple [ 1 ]
_l_dict = cand idate_se l e c t i on_objec t
. so r t_lev_feature s ( lv_qnodes_string , th r e sho ld =0.0)
l abe l_ l ev_s im i l a r i t y_d i c t [ l a b e l ] = _l_dict

return l abe l_ l ev_s im i l a r i t y_d i c t

@staticmethod
def create_answer_dict ( df ) :

answers = l i s t ( zip ( df . l abe l , d f . cta_class ,
df . answer_Qnode , df . answer_dburi ) )
_dict = {}
for answer in answers :

_dict [ answer [ 0 ] ] = ( answer [ 1 ] , answer [ 2 ] , answer [ 3 ] )
return _dict

def wikify_column ( s e l f , i_df , column , c a s e_s en s i t i v e=True ) :
raw_labels = l i s t ( )
i f isinstance ( column , str ) :

# acces s by column name
raw_labels = l i s t ( i_df [ column ] . unique ( ) )

e l i f isinstance ( column , int ) :
raw_labels = l i s t ( i_df . i l o c [ : , column ] . unique ( ) )

_new_i_list = [ ]
for l a b e l in raw_labels :
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_new_i_list . append ({ ' l a b e l ' : l abe l ,
' _clean_label ' : s e l f . c l e an_labe l s ( l a b e l )} )

df = pd . DataFrame (_new_i_list )

# f ind the cand ida t e s
df [ '_candidates ' ] = df [ ' _clean_label ' ] .map(lambda x :
s e l f . run_query (x ) )
df [ ' _candidates_l i s t ' ] = df [ '_candidates ' ] .map(lambda x :
s e l f . c reate_l i s t_from_candidate_str ing (x ) )
s e l f . aqs = s e l f . query_average_scores ( df )
al l_qnodes = s e l f . get_candidates_qnodes_set ( df )
qnode_to_labels_dict =
s e l f . create_qnode_to_labels_dict ( l i s t ( a l l_qnodes ) )
qnode_dburi_map =
s e l f . create_qnode_to_dburi_map ( qnode_to_labels_dict )
qnode_typeof_map =
s e l f . create_qnode_to_type_dict ( qnode_to_labels_dict )
cta = CTA(qnode_typeof_map )
t f i d f = TFIDF( qnode_to_labels_dict )
df = s e l f . l e v_s im i l a r i t y . add_lev_feature ( df ,
qnode_to_labels_dict , c a s e_s en s i t i v e )
cs = Cand idateSe l ec t i on (qnode_dburi_map ,
s e l f . aqs , qnode_typeof_map )
df = cs . s e l e c t_h igh_prec i s i on_re su l t s ( df )
df_high_prec i s ion = df . l o c [ df [ ' answer ' ] . no tnu l l ( ) ]
l abe l_ l ev_s im i l a r i t y_d i c t =
s e l f . c r ea t e_ lev_s imi l a r i ty_d i c t (
l i s t ( zip ( df . _clean_label , d f . l ev_feature ) ) , c s )
label_hp_candidate_tuples =
l i s t ( zip ( df_high_prec is ion . _clean_label ,
d f_high_prec i s ion . answer ) )
h igh_prec i s ion_candidates =
s e l f . c reate_high_prec i s ion_t f id f_input ( label_hp_candidate_tuples )
labe l_candidates_tuple s =
l i s t ( zip ( df . _clean_label , d f . _candidates_l i s t ) )
t f id f_answer = t f i d f . compute_tf idf ( labe l_candidates_tuples ,
l abe l_ l ev_s imi l a r i ty_d i c t ,

h igh_prec i s ion_candidates=high_prec i s ion_candidates )
c ta_c la s s = cta . p roce s s ( df_high_prec i s ion )
df [ ' c ta_c la s s ' ] = cta_c la s s . s p l i t ( ' ␣ ' ) [−1]
df [ ' answer_Qnode ' ] = df [ ' _clean_label ' ] .map(lambda x :
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t f id f_answer . get ( x ) )
df [ ' answer_dburi ' ] = df [ ' answer_Qnode ' ] .map(lambda x :
s e l f . get_dburi_for_qnode (x , qnode_dburi_map ) )
answer_dict = s e l f . create_answer_dict ( df )
i_df [ ' {}_cta_class ' . format ( column ) ] = i_df [ column ]
.map(lambda x : answer_dict [ x ] [ 0 ] )
i_df [ ' {}_answer_Qnode '
. format ( column ) ] = i_df [ column ] .
map(lambda x : answer_dict [ x ] [ 1 ] )
i_df [ ' {}_answer_dburi ' . format ( column ) ] = i_df [ column ] .
map(lambda x : answer_dict [ x ] [ 2 ] )
return i_df

def wik i f y ( s e l f , i_df , columns , format=None , c a s e_s en s i t i v e=True ) :
i f not isinstance ( columns , l i s t ) :

columns = [ columns ]
for column in columns :

i_df = s e l f . wikify_column ( i_df , column ,
c a s e_sen s i t i v e=ca s e_s en s i t i v e )

i f format and format . lower ( ) == ' i swc ' :
_o = l i s t ( )
for index , row in i_df . i t e r r ows ( ) :

for column in columns :
_o . append ({ ' column ' : column , ' r ' : index ,
'q ' : row [ ' {}_answer_Qnode ' . format ( column ) ] } )

return pd . DataFrame ( data=_o)
i f format and format . lower ( ) == ' w i k i f i e r ' :

_o = l i s t ( )
for index , row in i_df . i t e r r ows ( ) :

for column in columns :
_o . append ({ ' f ' : ' ' , ' c ' : ' ' , ' l ' : row [ column ] ,
'q ' : row [ ' {}_answer_Qnode ' . format ( column ) ] } )

return pd . DataFrame ( data=_o)
return i_df

#RUN CTA MODEL
class CTA( object ) :

def __init__( s e l f , dburi_typeof ) :
s e l f . dburi_typeof = dburi_typeof
s e l f . supe r_c la s s e s =
pd . read_csv ( ' w i k i f i e r / caches / SuperClasses . csv ' ,
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header=None ) [ 0 ] . t o l i s t ( )
s e l f . db_classes = j son . load (open
( ' w i k i f i e r / caches /DBClasses . j s on ' ) )
s e l f . db_classes_c losure = j son . load (open
( ' w i k i f i e r / caches /DBClassesClosure . j son ' ) )
s e l f . sparq ldb = SPARQLWrapper( "http :// dbpedia . org / spa rq l " )

def i s_instance_of ( s e l f , u r i ) :
s e l f . sparq ldb . setQuery (

select distinct ?x where {{ <{}>
<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type> ?x .
?x <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type>
<http ://www.w3 . org /2002/07/ owl#Class> .}}

. format ( u r i ) )
s e l f . sparq ldb . setReturnFormat (JSON)
r e s u l t s = s e l f . sparq ldb . query ( ) . convert ( )
i n s t an c e s = set ( )
for r e s u l t in r e s u l t s [ " r e s u l t s " ] [ " b ind ings " ] :

dbp = r e s u l t [ 'x ' ] [ ' value ' ]
i n s t an c e s . add (dbp)

return i n s t an c e s

def eva luate_c la s s_c lo sure ( s e l f , u r i l i s t , c l a s s u r i ) :
matches = 0
c l a s s u r i c l o s u r e = set ( )
i f c l a s s u r i in s e l f . db_classes_c losure :

c l a s s u r i c l o s u r e = set ( s e l f . db_classes_c losure [ c l a s s u r i ] )
v a l i d u r i = [ ]
for u r i in u r i l i s t :

i f u r i in s e l f . dburi_typeof :
i n s t an c e s = s e l f . dburi_typeof [ u r i ]

else :
i n s t an c e s = s e l f . i s_instance_of ( u r i )
s e l f . dburi_typeof [ u r i ] = l i s t ( i n s t an c e s )

for i n s t anc e in i n s t an c e s :
i f i n s t anc e in c l a s s u r i c l o s u r e :

v a l i d u r i . append ( u r i )
matches += 1
break

s co r e = matches / len ( u r i l i s t )
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return [ s core , v a l i d u r i ]

def f i nd_c l a s s ( s e l f , u r i l i s t , c l a s s l i s t , currentans , ans_l i s t ,
th r e sho ld ) :

an s_ l i s t . append ( cur rentans )
i f len ( c l a s s l i s t ) == 0 :

return

max_score = −1
max_validuri = [ ]
max_class = ' '
for s up e r c l a s s in c l a s s l i s t :

[ score , v a l i d u r i ] = s e l f . eva luate_c la s s_c lo sure ( u r i l i s t ,
s up e r c l a s s )
i f max_score < sco r e :

max_score = sco r e
max_validuri = v a l i d u r i
max_class = sup e r c l a s s

i f max_score >= thre sho ld :
s ub c l a s s e s = s e l f . db_classes [ max_class ]
s e l f . f i nd_c l a s s ( max_validuri , subc l a s s e s ,
max_class , ans_l i s t , th r e sho ld )
return

def proce s s ( s e l f , df , th r e sho ld =0.508 , c l a s s_ l e v e l =0):
u r i l i s t = df [ ' answer ' ] . t o l i s t ( )
i f len ( u r i l i s t ) == 0 :

return ""
ans_ l i s t = [ ]
s e l f . f i nd_c l a s s ( u r i l i s t , s e l f . super_c las ses , ' ' ,
ans_l i s t , th r e sho ld )
an s_ l i s t = ans_ l i s t [ 1 : ]
i f len ( an s_ l i s t ) <= c l a s s_ l e v e l :

return ""
return "␣" . j o i n ( an s_ l i s t )

.1.4 Frequency Model

datase t = pd . read_csv ( "" )
u r i s = datase t [ "answer_dburi " ] . t o l i s t ( )
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u r i s = pd . S e r i e s ( u r i s )
u r i s = u r i s . dropna ( )
#RETRIEVE CLASS FROM EACH INSTANCE
def i s_instance_of ( u r i ) :

sparq ldb = SPARQLWrapper( "http :// dbpedia . org / spa rq l " )
sparq ldb . setQuery (

select distinct ?x where {{ <{}>
<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type> ?x .
?x <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type>
<http ://www.w3 . org /2002/07/ owl#Class> .}} l imit 10)

. format ( u r i ) )
sparq ldb . setReturnFormat (JSON)
r e s u l t s = sparq ldb . query ( ) . convert ( )
i n s t an c e s = set ( )
for r e s u l t in r e s u l t s [ " r e s u l t s " ] [ " b ind ings " ] :

i n s t an c e s = r e s u l t [ 'x ' ] [ ' value ' ]
return i n s t an c e s

wik i_c la s s = [ ]
i n s t ance_c l a s s = [ ]
for u r i in u r i s :

i n s t ance_c l a s s = is_instance_of ( u r i )
w ik i_c la s s . append ( in s t ance_c l a s s )

#CALCULATE THE FREQUENCY FOR EACH CLASS
wik i_c la s s = pd . S e r i e s ( wik i_class , name= ' Class ' )
value_counts = wik i_c la s s . value_counts ( normal ize=True , dropna= False )
f requency =
pd . DataFrame ( value_counts . rename_axis ( ' Class ' )
. reset_index (name= 'Frequency ' ) )

.1.5 Weighted Average Calculation

#COMPUTATION OF DIFFERENT CONFIGURATIONS BETWEEN LEVENSHTEIN
#(OR JARO WINKLER) AND TFIDF
denominator = f loat ( _lev_score + t f i d f_ s c o r e )

i f denominator <= 0 . 0 0 1 :
_dict [ qnode ] = ( ( _lev_score ∗ 0 . 4 ) +
( t f i d f_ s c o r e ∗ 0 . 6 ) ) ∗ 100

else :
_dict [ qnode ] = ( ( _lev_score ∗ 0 . 4 ) +
( t f i d f_ s c o r e ∗ 0 . 6 ) ) / denominator
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.1.6 Final Model

#DEFINE BOTH METHODS
def proce s s ( s e l f , u r i l i s t , th r e sho ld =0.508 , c l a s s_ l e v e l =0):

i f len ( u r i l i s t ) == 0 :
return ""

ans_ l i s t = [ ]
s e l f . f i nd_c l a s s ( u r i l i s t , s e l f . super_c las ses , ' ' ,
ans_l i s t , th r e sho ld )
an s_ l i s t = ans_ l i s t [ 1 : ]
i f len ( an s_ l i s t ) <= c l a s s_ l e v e l :

return ""
return "␣" . j o i n ( an s_ l i s t )

def process_frequency_match ( s e l f , qnodes ) :
i f len ( qnodes ) == 0 :

return ""

c l a s s_ l i s t = l i s t ( )
for qnode in qnodes :

_ l i s t = [ x for x in s e l f . dburi_typeof . get ( qnode , [ ] )
i f x . s t a r t sw i t h ( ' http :// dbpedia . org ' ) ]
c l a s s_ l i s t . extend ( _ l i s t )

w ik i_c la s s = pd . S e r i e s ( l i s t ( c l a s s_ l i s t ) , name= ' Class ' )
value_counts = wik i_c la s s . value_counts ( normal ize=True ,
dropna=False )
f requency =
pd . DataFrame ( value_counts . rename_axis ( ' Class ' ) .
reset_index (name= 'Frequency ' ) )
print ( f requency [ 'Frequency ' ] . t o l i s t ( ) [ 0 ] )
return f r equency [ ' Class ' ] . t o l i s t ( ) [ 0 ]

#PROCESS INTEGRATED METHOD
def wikify_column ( s e l f , i_df , column , c a s e_s en s i t i v e=True , debug=False ) :

raw_labels = l i s t ( )
i f isinstance ( column , str ) :

# acces s by column name
raw_labels = l i s t ( i_df [ column ] . unique ( ) )

e l i f isinstance ( column , int ) :
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raw_labels = l i s t ( i_df . i l o c [ : , column ] . unique ( ) )

_new_i_list = [ ]
for l a b e l in raw_labels :

_new_i_list . append ({ ' l a b e l ' : l abe l , ' _clean_label ' :
s e l f . c l e an_labe l s ( l a b e l )} )

df = pd . DataFrame (_new_i_list )
# f ind the cand ida t e s
df [ '_candidates ' ] = df [ ' _clean_label ' ] .map(lambda x :
s e l f . run_query (x ) )
df [ ' _candidates_l i s t ' ] = df [ '_candidates ' ] .map(lambda x :
s e l f . c reate_l i s t_from_candidate_str ing (x ) [ 0 ] )
df [ ' _candidates_freq ' ] = df [ '_candidates ' ] .map(lambda x :
s e l f . c reate_l i s t_from_candidate_str ing (x ) [ 1 ] )
s e l f . aqs = s e l f . query_average_scores ( df )
al l_qnodes = s e l f . get_candidates_qnodes_set ( df )
qnode_to_labels_dict =
s e l f . create_qnode_to_labels_dict ( l i s t ( a l l_qnodes ) )
qnode_dburi_map =
s e l f . create_qnode_to_dburi_map ( qnode_to_labels_dict )
qnode_typeof_map =
s e l f . create_qnode_to_type_dict ( qnode_to_labels_dict )
cta = CTA(qnode_typeof_map )
t f i d f = TFIDF( qnode_to_labels_dict )
df = s e l f . l e v_s im i l a r i t y . add_lev_feature ( df ,
qnode_to_labels_dict , c a s e_s en s i t i v e )
cs = Cand idateSe l ec t i on (qnode_dburi_map , s e l f . aqs ,
qnode_typeof_map )
df = cs . s e l e c t_h igh_prec i s i on_re su l t s ( df )
df_high_prec i s ion = df . l o c [ df [ ' answer ' ] . no tnu l l ( ) ]
l abe l_ l ev_s im i l a r i t y_d i c t =
s e l f . c r ea t e_ lev_s imi l a r i ty_d i c t ( l i s t ( zip ( df . _clean_label ,
d f . l ev_feature ) ) , c s )
label_hp_candidate_tuples =
l i s t ( zip ( df_high_prec is ion . _clean_label ,
d f_high_prec i s ion . answer ) )
h igh_prec i s ion_candidates =
s e l f . c reate_high_prec i s ion_t f id f_input ( label_hp_candidate_tuples )
labe l_candidates_tuple s =
l i s t ( zip ( df . _clean_label , d f . _candidates_l i s t ) )
t f id f_answer =
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t f i d f . compute_tf idf ( labe l_candidates_tuples ,
l abe l_ l ev_s imi l a r i ty_d i c t ,
h igh_prec i s ion_candidates=high_prec i s ion_candidate )
hp_qnodes = df_high_prec i s ion [ ' answer ' ] . t o l i s t ( )
df [ ' answer_Qnode ' ] = df [ ' _clean_label ' ] .map(lambda x :
t f id f_answer . get ( x ) )
df [ ' answer_dburi ' ] = df [ ' answer_Qnode ' ] .map(lambda x :
s e l f . get_dburi_for_qnode (x , qnode_dburi_map ) )
#proces s Frequency Model
c ta_c la s s = cta . process_frequency_match
( df [ ' answer_Qnode ' ] . t o l i s t ( ) )
#i f Frequency Model doesn ' t produce an output , t r y the CTA
i f c ta_c la s s == "" or c ta_c la s s == "{}" :

c ta_c la s s = cta . p roce s s ( hp_qnodes )
df [ ' c ta_c la s s ' ] = cta_c la s s . s p l i t ( ' ␣ ' ) [−1]
answer_dict = s e l f . create_answer_dict ( df )
i_df [ ' {}_cta_class ' . format ( column ) ] = i_df [ column ] .map(lambda x :
answer_dict [ x ] [ 0 ] )
i_df [ ' {}_answer_Qnode ' . format ( column ) ] =
i_df [ column ] .map(lambda x : answer_dict [ x ] [ 1 ] )
i_df [ ' {}_answer_dburi ' . format ( column ) ] =
i_df [ column ] .map(lambda x : answer_dict [ x ] [ 2 ] )
return i_df

def wik i f y ( s e l f , i_df , columns , format=None , c a s e_s en s i t i v e=True ) :
i f not isinstance ( columns , l i s t ) :

columns = [ columns ]

for column in columns :
i_df = s e l f . wikify_column ( i_df , column ,
c a s e_sen s i t i v e=case_sens i t i v e , debug=True )

i f format and format . lower ( ) == ' i swc ' :
_o = l i s t ( )
for index , row in i_df . i t e r r ows ( ) :

for column in columns :
_o . append ({ ' column ' : column , ' r ' : index ,
'q ' : row [ ' {}_answer_Qnode ' . format ( column ) ] } )

return pd . DataFrame ( data=_o)
i f format and format . lower ( ) == ' w i k i f i e r ' :

_o = l i s t ( )
for index , row in i_df . i t e r r ows ( ) :
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for column in columns :
_o . append ({ ' f ' : ' ' , ' c ' : ' ' , ' l ' : row [ column ] ,
'q ' : row [ ' {}_answer_Qnode ' . format ( column ) ] } )

return pd . DataFrame ( data=_o)
return i_df

.1.7 OpenStreetMap Retrieval

#ACCESS TO OPENSTREETMAP WEBSITE
u r l = ' https : // nominatim . openstreetmap . org / search '
l s t_of_uniqs_class = dict ( )
lst_of_uniqs_type = dict ( )
empty dict to s t o r e unique l a b e l s
o f types ( key ) and t h e i r count ( va lue )
for c o l in df_new :

c lean_col = f t f y . f ix_encoding ( c o l )
c lean_col = f t f y . f i x_text ( c o l )
c lean_col = co l . r ep l a c e ( ' \n ' , ' ␣ ' )
payload = { 'q ' : c lean_col ,

' format ' : ' j s on ' ,
' county ' : 'Los␣Angeles ␣County ' ,
' country ' : 'United␣ Sta t e s ␣ o f ␣America ' ,
' ex t ra tag s ' : 1 ,
' l im i t ' : 10

}
resp = reque s t s . get ( u r l=ur l , params=payload )
data = json . l oads ( re sp . t ex t )
data = pd . DataFrame ( data )
i f ' c l a s s ' in data . columns . va lue s :

for itm in data [ ' c l a s s ' ] . t o l i s t ( ) :
i f itm not in l s t_of_uniqs_class : # as key

l s t_of_uniqs_class [ itm ] = 1
else :

l s t_of_uniqs_class [ itm ] += 1
i f ' type ' in data . columns . va lue s :

for itm in data [ ' type ' ] . t o l i s t ( ) :
i f itm not in lst_of_uniqs_type : # as key

lst_of_uniqs_type [ itm ] = 1
else :

lst_of_uniqs_type [ itm ] += 1
most_common_class = max( l s t_of_uniqs_class . i tems ( ) ,
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key=operator . i t emge t t e r ( 1 ) ) [ 0 ]
most_common_type = max( lst_of_uniqs_type . i tems ( ) )
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.2 Datasets Description and Example

The datasets used for this research are available, thanks to the city of Los Angeles, at:
https://data.lacity.org/. An example of dataset about Businesses is reported
below.

ACCOUNT # BUSINESS NAME STREET ADDRESS
0000019227-0001-6 CINCO IRON WORKS INC 890 ONTARIO BLVD
0000020289-0001-8 MCWHIRTER STEEL INC 42211 7TH STREET E
0000028383-0001-7 MILLERS FAB/WELD CORP 6100 INDUSTRIAL AVENUE
0000034550-0001-6 CMC STEEL FABRICATORS INC 12451 ARROW ROUTE
0000036594-0001-3 ANVIL STEEL CORPORATION 137 W 168TH STREET
0000039799-0001-4 MASTERCRAFT IRON CO INC 7463 VARNA AVENUE
0000045151-0001-1 VCS METAL WORKS INC 14756 KESWICK STREET
0000048318-0001-7 SANIE MANUFACTURING CO INC 2600 S YALE STREET
0000050435-0001-7 ALEX SANCHEZ 1868 AUTUMN LANE
0000057905-0001-8 R/B REINFORCING STEEL CORP 13581 5TH STREET

Table 1: Dataset Examples about Businesses in Los Angeles (part 1)

ZIP CODE LOCATION LOCATION DATE
91761-1835 890 ONTARIO 91761-1835 07/17/2003
93535-5400 42211 7TH 93535-5400 04/17/2000
92504-1120 6100 INDUSTRIAL 92504-1120 06/19/2000
91739-9601 12451 ARROW 91739-9601 01/01/1975
90248-2728 137 168TH 90248-2728 02/01/1975
91605-4011 7463 VARNA 91605-4011 01/01/1995
91405-1205 1161 OGDEN 90046-5332 07/22/2003
92704-5228 2600 YALE 92704-5228 07/01/1992
92084-3344 1868 AUTUMN 92084-3344 11/13/2002
91710-5166 13581 5TH 91710-5166 11/18/1995

Table 2: Dataset Examples about Businesses in Los Angeles (part 2)

In this case, for example, the useful column to select for the experiment would be
the BUSINESS NAME column. While, for OpenStreetMap retrieval, STREET
ADDRESS column would be isolated.
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.3 Integral Results

In this final section we report the results in detail of the final model output. As it
is possible to see, the first column contains all the datasets used for the experiments
(D=41). Then, there are two columns devoted to the answers of the final model,
highlighting the cases where it has been necessary to access OpenStreetMap (OSM).
The final column, instead, shows the target class; thus, the one expected from that
dataset. The results have been assessed as follows:

• green cell: the class has been correctly identified,

• red cell: the class has been wrongly identified,

• yellow cell: the sub or super class has been correctly identified, but not the
exact class,

• {}: the algorithm has not been able to detect a class for that dataset.
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DATASET CTA + FREQUENCY OSM CLASS
Affordable Housing {} place:house Building
Animals Mammal Animal
Apparel Organisation Organisation

Arts Ed Profile Organisation Educational
Institution

Auto Parts Lease Organisation Organisation
Care Organisation Hospital
City Lobbyists Organisation Company
City Projects and Agencies Organisation Company
Cultural Centers Theaters Venue Venue
Cultural Event Museum Event
Department of Recreation {} leisure:park Park

Education Facilities Organisation Educational
Institution

Elected Official Salary Settlement Profession

Events from LA Festival Social Event Social
Event

Foothill commercial Organisation Organisation

Fused Maps Library Educational
Institution

GA Bootcamp Organisation Organisation
Hospitals Hospital Hospital
Housing and City Services {} office:company Organization

Immigration Workshop {} amenity:library Educational
Institution

Invoices and Purchase Organisation Organisation
LA Active Businesses Organisation Organisation
LA City Departments Agent PublicService
LA City Events Settlement SocialEvent
LA Florists Work Organisation
LAcity.org Website Traffic Software Software
Law Firms Named Organisation Organisation

Library Branches {} place:house Educational
Institution

Multipurpose Centers {} place:house Venue
Museums Museum Museum
Music Released Musical Work Musical Work
Payroll by job classes Person Profession
Public Housing Sites {} natural: peak Garden
Registered Foreclosure Organisation Organisation
Renewable Projects Power Station Power Station
Restaurants Organisation Restaurant
Skateparks {} leisure:pitch ParkAttraction
Streets Name PopulatedPlace Street
Trees Plant Plant
Whats Happening in LA Organisation Event
Wilshire Organisation Organisation

Table 3: Final Model Results


