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17. UNIVERSAL ENVELOPING ALGEBRAS

Recall that, for an associative algebra A with unity (1), a Lie algebra structure on A
is given by the Lie bracket [ab] = ab — ba. Let L(A) denote this Lie algebra. Then £
is a functor which converts associative algebras into Lie algebras. Every Lie algebra L
has a universal enveloping algebra /(L) which is an associative algebra with unity. The
functor U is “adjoint” to the functor £. The universal enveloping algebra is defined by
category theory. The Poincaré-Birkoff-Witt Theorem gives a concrete description of the
elements of the elements of ¢(L) and how they are multiplied. There is also a very close
relationship with the multiplication rule in the associated Lie group.

17.1. Functors. I won’t go through the general definition of categories and functors
since we will be working with specific functors not general functors. I will just use vector
spaces over a field F, Lie algebras and associative algebras (always with unity) as the
main examples.

Definition 17.1.1. A functor from the category of vector spaces to the category of
associative algebras both over F'is defined to be a rule F which assigns to each F-vector
space V' an associative algebra F(V') over F' and to each linear map f : V. — W, an
F-algebra homomorphism f, : (V) — F(W) so that two conditions are satisfied:

(1) (idy ). = idz,

Recall that an F'-algebra is an algebra which is also a vector space over F' so that mul-
tiplication if F-bilinear. An F-algebra homomorphism is a ring homomorphism which is
also F-linear. We say that the homomorphism is unital if it takes 1 to 1.

In short: a functor takes objects to objects and morphisms to morphism and satisfies
the two conditions listed above.

Example 17.1.2. The mapping A — L(A) is a functor from associative algebras to Lie
algebras. For this functor, f, = f for all F-algebra homomorphisms f : A — B. The
reason that this works is elementary:

fla,b] = f(ab—ba) = f(a)f(b) = f(b)f(a) = [f(a), f(D)]
We say that f, is f considered as a homomorphism of Lie algebras £(A) — L(B). The
two conditions are obviously satisfied and this defines a functor.

Example 17.1.3. The forgetful functor F takes an associative algebra (or Lie algebra)
A to the underlying vector space. F is defined on morphisms by f, = f. Since F-algebra
homomorphisms are F-linear by definition, this defines a functor.

Exercise 17.1.4. Show that the following diagram commutes.

L

AssAlg LieAlg

A

Vect
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17.2. Tensor and symmetric algebras. These are two important algebras associated
to any vector space. They are both graded algebras.

Definition 17.2.1. A graded algebra over F is an algebra A together with a direct sum
decomposition:

A=A'pAlp A%
so that A’A7 C A", If A has unity (1) it should be in A°. Elements in A" are called
homogeneous of degree n.

Example 17.2.2. The polynomial ring P = F[Xi,---,X,] is a graded ring with P*
being generated by degree k£ monomials. The noncommutative polynomial ring ) =
F{(Xy,---,X,) is also a graded ring with Q* being generated by all words of length k
in the letters Xi,---,X,. An example of a graded Lie algebra is the standard Borel
subalgebra B of any semisimple Lie algebra L. Then B° = H is the CSA and B is the
direct sum of all Bg where (3 has height k.

Exercise 17.2.3. Show that P* has dimension ("*}~"). For example, for n = 2, dim P* =
k + 1 with basis elements z'y*~ for i = 0, --- , k. Q¥ has dimension n*.
Definition 17.2.4. Given a vector space V', the tensor algebra T (V') is defined to be the

vector space
TV)=FoVoVeVoeVeaVeVe. .-

with multiplication defined by tensor product (over F'). This is an associative graded
algebra with 7%(V) = V®* the k-fold tensor product of V with itself. Note that, in
degree 1, we have T(V) = V.

If V=F"then 7(F")~ F(Xy,---,X,). For example, V ® V is n® dimensional with
basis given by e; ® e;. The tensor algebra has the following universal property.

Proposition 17.2.5. Any linear map ¢ from a vector space V' to an associative algebra
A with unity extends uniquely to a unital algebra homomorphism v : T (V) — A:

VvV —>T(V)
Vo ialw
A

Proof. 1 is must be given by (1) =1, ¥(v; ® 12 @ - - - @ vg) = w(v1)p(va) - - - p(vg). O
This proposition means that 7 (V) is the universal associative algebra with unity gen-

erated by V.

Definition 17.2.6. The symmetric algebra S(V') generated by V' is defined to be the
quotient of 7 (V') by the ideal generated by all elements of the form z ® y — y ® x. This

makes S(V') into a commutative graded algebra with unity. Since the relations are in
degree 2, the degree 1 part is still the same: S'(V) =T4(V)=V.

For example, when V' = F" we have S(F") = F[Xy, -, X,,].
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Proposition 17.2.7. Any linear map ¢ from a vector space V to a commutative algebra
A with unity extends uniquely to a unital algebra homomorphism ¢ : S(V) — A:

vV —>8(V)
vo la!w
A

17.3. Universal enveloping algebra. Following tradition, we define this by its desired
universal property.

Definition 17.3.1. For any (possibly infinite dimensional) Lie algebra L, the universal
enveloping algebra of L is defined to be any pair (U, i) where U is an associative algebra
with unity and ¢ : L — L(U) is a Lie algebra homomorphism with the property that, for
any other associative algebra with unity A and any Lie algebra homomorphism ¢ : L —
L(A) there is a unique unital algebra homomorphism 1 : U — A so that the following
diagram commutes where v, = 1) considered as a homomorphism of Lie algebras.

L—5 L(U)

N

L(A)

Example 17.3.2. One important example is the case when A = Endg (V) is the algebra
of F-linear endomorphisms of a vector space V. Then L(A) = gl(V) and ¢ : L — L(A) =
gl(V) is a representation of L making V' into an L-module. The algebra homomorphism
¢ : U — A= Endp(V) makes V into a module over the associative algebra U. Therefore,
a module over L is the same as a module over U.

Proposition 17.3.3. The universal enveloping algebra (U, i) of L is unique up to iso-
morphism if it exists.
Proof. 1f there is another pair (U’,4') then, by the universal property, there are algebra
homomorphisms ¢ : U — U’ and ¢’ : U — U so that ¢/ = 1,7 and i = .. But then
i =YLt = (P')4i. By uniqueness, we must have ¢/1) = idy. Similarly ¥’ = idy:. So,
U = U’ and 4,7 correspond under this isomorphism. d

The construction of U is easy when we consider the properties of an arbitrary Lie
algebra homomorphism

p:L— L(A)

Since ¢ is a linear mapping from L to A, it extends uniquely to a unital algebra homomor-

phism @ : 7 (L) — A. Taking into account that ¢ is also a Lie algebra homomorphism,
we see that, for any two elements x,y € L, we must have

p(lz,y]) = le(), e(y)] = f(@) f(y) = f)f(2) =Pz @y —y @ )
In other words, @ : 7 (L) — A has the elements

x®y—y®x—[$ay]
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in its kernel. Let J be the two-sided ideal in 7 (L) generated by all elements of this
form. Then J is in the kernel of % and we have an induced unital algebra homomorphism

W T(L))J — A.

Definition 17.3.4. U(L) is defined to be the quotient of 7 (L) by the ideal generated by
al r@y—y®@x —[z,y] for all x,y € L. Let i : L — U(L) be the inclusion map i(z) = .

Note that the relations imposed on U(L) are the minimal ones needed to insure that
i: L — LU(L)) is a Lie algebra homomorphism. The fact that (U(L),i) satisfies the
definition of a universal enveloping algebra is supposed to be obvious.

Exercise 17.3.5. Show that, for any associative algebra A, there is a canonical unital
algebra homomorphism U(L(A)) — A. When is this an isomorphism? What happens
when A is commutative?

In the special case that L is a graded Lie algebra, such as a standard Borel algebra,
7 (L) has another grading given by

> Ji=k
and the ideal J is generated by homogeneous elements. This makes U(L) into a graded

algebra. In general, there is no graded structure on U(L). However, there is a filtration
Ui (L) induced by the filtration

T(L) =T (L) TL)&® - & T"(L)

of T(L).
By a filtration of an algebra A we mean a sequence of vector subspaces

AgC A CAC---

so that A = |J Ay and so that A;A, C A; . The associated graded algebra is defined by
GF(A) = A/ Ay with multiplication GIGF — G7** induced by the filtered multiplication
on A. We let G(L) denote the associated graded algebra of U(L).

Example 17.3.6. Suppose that L is abelian. Then U(L) is 7 (L) modulo the ideal
generated by x ® y — y ® x since [z, y] = 0. But this means U (L) is the symmetric algebra
S(L). If dim L = n then, in filtration k, we have U, (L) = S,(L) which is equivalent to the
vector space of polynomials of degree < k in n variables, or equivalently, homogeneous
polynomials of degree equal to k in n + 1 variables. Thus

dim Uy, (L) = dim Sp(F™) = dim S*(F"*') = <” Z k)

In this example, U (L) = G(L) = S(L).
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17.4. Poincaré-Birkov-Witt. The PBW Theorem gives a detailed description of the
structure of the universal enveloping algebra U(L). It gives a formula for a vector space
basis and how they are multiplied. One of the amazing features of the theorem is that it
says that the dimension of U (L) depends only on the dimension of L. I.e., the dimension

is always ("Zk) For each k > 0 consider the composition:

Pt THL) = L% — Ti(L) - Up(L) — G*(L) = Up(L) /U—1(L)

Lemma 17.4.1. ¢ = Y. ¢* : T(L) — G(L) is a graded algebra epimorphism which
induced a graded algebra epimorphism S(L) — G(L).

Proof. The morphism ¢ is multiplicative by definition. So, it is an algebra epimorphism.
Elements of the form x ® y —y ® x € T*(L) are sent to [z,y] € U;(L) which is zero in
G*(L). Therefore, there is an induced algebra epimorphism S(L) — G(L). O

Theorem 17.4.2 (PBW). The natural graded epimorphism S(L) — G(L) is always an
1somorphism.

Corollary 17.4.3 (PBW basis). If x1, -+ ,x, is a vector space basis for L then a vector
space basis for Uy (L) is given by all monomials of length < k of the form

Lj1Zjg * " Ty
where j1 < jo < j3 < -+ < jp plus 1 (given by the empty word). In particular, i : L —
U(L) is a monomorphism.

Proof. Monomials as above (with nondecreasing indices) of length equal to k form a basis
for S¥(L) and therefore give a basis for Uy, (L) modulo Uj,_;. O

Corollary 17.4.4. If H is any subalgebra of L then the inclusion H — L extends to a
monomorphism U(H) — U(L). Furthermore U(L) is a free U(H )-modules.

Proof. Extend an ordered basis of H to an ordered basis for L and use PBW bases. [

We will skip the proof of the PBW Theorem in the lectures. So, you need to read
the proof. There is a purely algebraic proof in the book. Here I will give a proof using
combinatorial group theory.



