
OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas1

Sorting	Things	Out

Ruud	van	der	Pas
Distinguished Engineer
SPARC	Microelectronics

Santa	Clara,	CA,	USA
SC’16	Talk	at OpenMP	Booth
Tuesday,	November	15,	2016

(with	tasks)

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas2

The	Dark	Ages	Of	OpenMP
Big	Brother	Had	To	Know	Everything

And	in	advance,	(right)	before	execution
For	example,	the	loop	length,	number	of	

parallel	sections,	etc
Gets	hard	with	more	dynamic	problems	like	
processing	linked	lists,	divide	and	conquer,	

recursion
A	solution	was	ugly.	At	best

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas3

Tasking	Comes	To	The	Rescue	!

And	we	will	show	you	how	it	all	works

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas4

BUT	!

No	formal	terminology,	definitions,	etc

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas5

A	task	is	a	chunk	of	independent	
work

You	guarantee	different	tasks	can	be	
executed	simultaneously
#pragma	omp task
{“this	is	my	task”}

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas6

The	run	time	system	decides	on	the	
scheduling	of	the	tasks

At	certain	points	(implicit	and	explicit),	
tasks	are	guaranteed	to	be	completed

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas7

For	those	who	love	to	study	the	fine	
print,	the	following	advice:

RTFM!
And	this	is	what	it	looks	like:

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas8

RTFM!

Recognize	The	Fabulous	Masters

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas9

Thread

Generate	
tasks

Thread

Thread

Thread

Thread

Ex
ec
ut
e	
ta
sk
s

The	Tasking	Concept	In	OpenMP

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas10

Who	Does	What	And	When	?
You

Use	a	pragma	to	specify	where	the	tasks	are
(The	assumption	is	that	all	tasks	can	be	executed	independently)

• When	a	thread	encounters	a	task	construct,	a	new	task	is	generated

• The	moment	of	execution	of	the	task	is	up	to	the	runtime	system

• Execution	can	either	be	immediate	or	delayed
• Completion	of	a	task	can	be	enforced	through	task	synchronization

The	OpenMP	runtime	system

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas11

Tasking	Explained	By	
Ways	Of	One	Example

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas12

A	Simple	Plan

Write	a	program	that	prints	either	“A	race	car”	or	
“A	car	race”	and	maximize	the	parallelism

Your	Task	for	Today:

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas13

Tasking	Example/1

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

printf("A ");
printf("race ");
printf("car ");

printf("\n");
return(0);

}

$ cc -fast hello.c
$./a.out
A race car
$

What will this program print ?

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas14

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

#pragma omp parallel
{

printf("A ");
printf("race ");
printf("car ");

} // End of parallel region

printf("\n");
return(0);

} What will this program print
using 2 threads ?

Tasking	Example/2

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas15

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out
A race car A race car

Note	that	this	program	could	(for	example)	also	print
“A	A	race	race	car	car”	or	
“A	race	A	car	race	car”,	or
“A	race	A	race	car	car”,	or

.....
But	I	have	not	observed	this	(yet)

Tasking	Example/3

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas16

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

#pragma omp parallel
{

#pragma omp single
{

printf("A ");
printf("race ");
printf("car ");

}
} // End of parallel region

printf("\n");
return(0);

}

What will this program print
using 2 threads ?

Tasking	Example/4

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas17

$ cc -xopenmp –fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out
A race car

But of course now only 1 thread
executes

Tasking	Example/5

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas18

int main(int argc, char *argv[]) {

#pragma omp parallel
{

#pragma omp single
{

printf(“A “);
#pragma omp task
{printf("race ");}

#pragma omp task
{printf("car ");}

}
} // End of parallel region

printf("\n");
return(0);

}

What will this program print
using 2 threads ?

Tasking	Example/6

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas19

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out
A race car
$./a.out
A race car
$./a.out
A car race
$

Tasks can be executed in
arbitrary order

Tasking	Example/7

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas20

Another	Simple	Plan

Have	the	sentence	end	with	“is	fun	to	watch”
(hint:	use	a	print	statement)

You	did	well	and	quickly,	so	here	is	a	final	task	to	do

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas21

int main(int argc, char *argv[]) {

#pragma omp parallel
{

#pragma omp single
{

printf(“A “);
#pragma omp task
{printf("race ");}

#pragma omp task
{printf("car ");}

printf(“is fun to watch “);
}

} // End of parallel region

printf("\n");
return(0);

}

What will this program print
using 2 threads ?

Tasking	Example/8

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas22

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out

A is fun to watch race car
$./a.out

A is fun to watch race car
$./a.out

A is fun to watch car race
$

Tasks are executed at a task
execution point

Tasking	Example/9

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas23

int main(int argc, char *argv[]) {

#pragma omp parallel
{

#pragma omp single
{

printf(“A “);
#pragma omp task

{printf("car ");}
#pragma omp task

{printf("race ");}
#pragma omp taskwait
printf(“is fun to watch “);

}
} // End of parallel region

printf("\n");return(0);
}

What will this program
print using 2 threads ?

Tasking	Example/10

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas24

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out
$
A car race is fun to watch
$./a.out
A car race is fun to watch
$./a.out
A race car is fun to watch
$

Tasks are executed first now

Tasking	Example/11

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas25

Sorting	Things	Out

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas26

The	Quicksort	Algorithm
A	Commonly	Used	Algorithm	Used	For	Sorting

Uses	a	divide	and	conquer	strategy
Main	steps:

Split	the	array	through	a	pivot,	such	that

All	elements	to	the	left	are	smaller

All	elements	to	the	right	are	equal,	or	greater

Repeat	for	left	and	right	part	until	done

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas27

A	Simple	Example/1

8 5 7 3 9 initial	values

8 5 7 3 9 choose	pivot, keep	index

8 5 7 3 9 swap	pivot	and	last	element

8 5 9 3 7 scan	array,	swap	if	smaller

8 5 9 3 7 5	<	7 =>	move	to	position	0

5 8 9 3 7 3	<	7 =>	move	to	position	1

5 3 9 8 7 continue,	but nothing found

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas28

A	Simple	Example/2

5 3 9 8 7 restore	pivot

5 3 7 8 9 pivot	is	in	final	position

5 3

7

8 9

repeat	for	
left	branch

repeat	for	
right	branch

OpenMP	task	 OpenMP	task	

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas29

The	Recursive	Sequential	Code
1 void Quicksort(int64_t *a, int64_t lo, int64_t hi)
2 {
3 if (lo < hi) {
4 int64_t p = partitionArray(a, lo, hi);
5
6 (void) Quicksort(a, lo, p - 1); // Left branch
7
8 (void) Quicksort(a, p + 1, hi); // Right branch
9 }

10 }

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas30

And	Now	With	Tasks
1 void Quicksort(int64_t *a, int64_t lo, int64_t hi)
2 {
3 if (lo < hi) {
4 int64_t p = partitionArray(a, lo, hi);
5
6 #pragma omp task shared(a) firstprivate(lo,p)
7 {(void) Quicksort(a, lo, p - 1);} // Left branch
8
9 #pragma omp task shared(a) firstprivate(hi,p)

10 {(void) Quicksort(a, p + 1, hi);} // Right branch
11
12 #pragma omp taskwait
13 }
12 }

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas31

Including	The	Driver	Part
1 #pragma omp parallel default(none) shared(a,nelements)
2 {
3 #pragma omp single nowait
4 { (void) Quicksort(a, 0, nelements-1); }
5 } // End of parallel region

1 void Quicksort(int64_t *a, int64_t lo, int64_t hi)
2 {
3 if (lo < hi) {
4 int64_t p = partitionArray(a, lo, hi);
5
6 #pragma omp task default(none) firstprivate(a,lo,p)
7 {(void) Quicksort(a, lo, p - 1);} // Left branch
8
9 #pragma omp task default(none) firstprivate(a,hi,p)

10 {(void) Quicksort(a, p + 1, hi);} // Right branch
11 }
12 }

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas32

Fine	Tuning	The	Algorithm
When	the	array	section	gets	too	small,	it	is	
better	to	switch	to	the	sequential	algorithm	
May	also	consider	the	use	of	the	if-clause	plus	

the	mergeable and	final	clauses

Some	experimentation	is	recommended	;-)

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas33

A	Performance	Example	*

30.4	

15.0	

7.6	
4.1	

2.1	 1.4	 0.9	 0.7	
0	
5	
10	
15	
20	
25	
30	
35	
40	
45	

0	

5	

10	

15	

20	

25	

30	

1	 2	 4	 8	 16	 32	 64	 128	

Sp
ee
d	
up

	o
ve
r	s
in
gl
e	
th
re
ad

	

El
ap

se
d	
>m

e	
(s
ec
on

ds
)	

Number	of	OpenMP	threads	

Performance	of	the	OpenMP	quicksort	algorithm	
(40M	elements)	

Elapsed	>me	(s)	 Speed	up	

*) SPARC M7-8 server @ 4.1 GHz

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas34

Summary
Big	Brother	Does	Not	Need	To	Know	Everything

For	certain	types	of	algorithms

Tasking	is	ideally	suitable

Optimal	performance	may	require	some	fine	
tuning

But	Remember:

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas35

RTFM!

Recognize	The	Fabulous	Masters

OpenMP	Booth	– Sorting Things	Out	With Tasks
Ruud	van	der	Pas36

Thank You And Stay Tuned !
ruud.vanderpas@oracle.com

