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The	Dark	Ages	Of	OpenMP
Big	Brother	Had	To	Know	Everything

And	in	advance,	(right)	before	execution
For	example,	the	loop	length,	number	of	

parallel	sections,	etc
Gets	hard	with	more	dynamic	problems	like	
processing	linked	lists,	divide	and	conquer,	

recursion
A	solution	was	ugly.	At	best
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Tasking	Comes	To	The	Rescue	!

And	we	will	show	you	how	it	all	works
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BUT	!

No	formal	terminology,	definitions,	etc
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A	task	is	a	chunk	of	independent	
work

You	guarantee	different	tasks	can	be	
executed	simultaneously
#pragma	omp task
{“this	is	my	task”}
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The	run	time	system	decides	on	the	
scheduling	of	the	tasks

At	certain	points	(implicit	and	explicit),	
tasks	are	guaranteed	to	be	completed
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For	those	who	love	to	study	the	fine	
print,	the	following	advice:

RTFM!
And	this	is	what	it	looks	like:
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RTFM!

Recognize	The	Fabulous	Masters
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The	Tasking	Concept	In	OpenMP
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Who	Does	What	And	When	?
You

Use	a	pragma	to	specify	where	the	tasks	are
(The	assumption	is	that	all	tasks	can	be	executed	independently)

• When	a	thread	encounters	a	task	construct,	a	new	task	is	generated

• The	moment	of	execution	of	the	task	is	up	to	the	runtime	system

• Execution	can	either	be	immediate	or	delayed
• Completion	of	a	task	can	be	enforced	through	task	synchronization

The	OpenMP	runtime	system
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Tasking	Explained	By	
Ways	Of	One	Example
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A	Simple	Plan

Write	a	program	that	prints	either	“A	race	car”	or	
“A	car	race”	and	maximize	the	parallelism

Your	Task	for	Today:
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Tasking	Example/1

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

printf("A ");
printf("race ");
printf("car ");

printf("\n");
return(0);

}

$ cc -fast hello.c
$ ./a.out
A race car
$

What will this program print ?
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#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

#pragma omp parallel
{

printf("A ");
printf("race ");
printf("car ");

} // End of parallel region

printf("\n");
return(0);

} What will this program print 
using 2 threads ?

Tasking	Example/2
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$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$ ./a.out
A race car A race car

Note	that	this	program	could	(for	example)	also	print
“A	A	race	race	car	car”	or	
“A	race	A	car	race	car”,	or
“A	race	A	race	car	car”,	or

.....
But	I	have	not	observed	this	(yet)

Tasking	Example/3
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#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

#pragma omp parallel
{

#pragma omp single
{

printf("A ");
printf("race ");
printf("car ");

}
} // End of parallel region

printf("\n");
return(0);

}

What will this program print 
using 2 threads ?

Tasking	Example/4
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$ cc -xopenmp –fast hello.c
$ export OMP_NUM_THREADS=2
$ ./a.out
A race car

But of course now only 1 thread 
executes .......

Tasking	Example/5
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int main(int argc, char *argv[]) {

#pragma omp parallel
{

#pragma omp single
{

printf(“A “);
#pragma omp task
{printf("race ");}

#pragma omp task
{printf("car ");}

}
} // End of parallel region

printf("\n");
return(0);

}

What will this program print 
using 2 threads ?

Tasking	Example/6
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$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$ ./a.out
A race car
$ ./a.out
A race car
$ ./a.out
A car race
$

Tasks can be executed in 
arbitrary order

Tasking	Example/7
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Another	Simple	Plan

Have	the	sentence	end	with	“is	fun	to	watch”
(hint:	use	a	print	statement)

You	did	well	and	quickly,	so	here	is	a	final	task	to	do
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int main(int argc, char *argv[]) {

#pragma omp parallel
{

#pragma omp single
{

printf(“A “);
#pragma omp task
{printf("race ");}

#pragma omp task
{printf("car ");}

printf(“is fun to watch “);
}

} // End of parallel region

printf("\n");
return(0);

}

What will this program print 
using 2 threads ?

Tasking	Example/8
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$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$ ./a.out

A is fun to watch race car
$ ./a.out

A is fun to watch race car
$ ./a.out

A is fun to watch car race
$

Tasks are executed at a task 
execution point

Tasking	Example/9
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int main(int argc, char *argv[]) {

#pragma omp parallel
{

#pragma omp single
{

printf(“A “);
#pragma omp task

{printf("car ");}
#pragma omp task

{printf("race ");}
#pragma omp taskwait
printf(“is fun to watch “);

}
} // End of parallel region

printf("\n");return(0);
}

What will this program 
print using 2 threads ?

Tasking	Example/10
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$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$ ./a.out
$ 
A car race is fun to watch 
$ ./a.out
A car race is fun to watch
$ ./a.out
A race car is fun to watch
$

Tasks are executed first now

Tasking	Example/11
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Sorting	Things	Out
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The	Quicksort	Algorithm
A	Commonly	Used	Algorithm	Used	For	Sorting

Uses	a	divide	and	conquer	strategy
Main	steps:

Split	the	array	through	a	pivot,	such	that

All	elements	to	the	left	are	smaller

All	elements	to	the	right	are	equal,	or	greater

Repeat	for	left	and	right	part	until	done
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A	Simple	Example/1

8 5 7 3 9 initial	values

8 5 7 3 9 choose	pivot, keep	index

8 5 7 3 9 swap	pivot	and	last	element

8 5 9 3 7 scan	array,	swap	if	smaller

8 5 9 3 7 5	<	7 =>	move	to	position	0

5 8 9 3 7 3	<	7 =>	move	to	position	1

5 3 9 8 7 continue,	but nothing found
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A	Simple	Example/2

5 3 9 8 7 restore	pivot

5 3 7 8 9 pivot	is	in	final	position

5 3

7

8 9

repeat	for	
left	branch

repeat	for	
right	branch

OpenMP	task	 OpenMP	task	
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The	Recursive	Sequential	Code
1 void Quicksort(int64_t *a, int64_t lo, int64_t hi)
2 {
3   if ( lo < hi ) {
4     int64_t p = partitionArray(a, lo, hi);
5
6     (void) Quicksort(a, lo, p - 1); // Left branch
7
8     (void) Quicksort(a, p + 1, hi); // Right branch
9   }

10 }
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And	Now	With	Tasks
1 void Quicksort(int64_t *a, int64_t lo, int64_t hi)
2 {
3   if ( lo < hi ) {
4    int64_t p = partitionArray(a, lo, hi);
5
6    #pragma omp task shared(a) firstprivate(lo,p)
7     {(void) Quicksort(a, lo, p - 1);} // Left branch
8
9    #pragma omp task shared(a) firstprivate(hi,p)

10 {(void) Quicksort(a, p + 1, hi);} // Right branch
11
12 #pragma omp taskwait
13 }
12 }
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Including	The	Driver	Part
1 #pragma omp parallel default(none) shared(a,nelements)
2 {
3   #pragma omp single nowait
4      { (void) Quicksort(a, 0, nelements-1); }
5 } // End of parallel region

1 void Quicksort(int64_t *a, int64_t lo, int64_t hi)
2 {
3   if ( lo < hi ) {
4    int64_t p = partitionArray(a, lo, hi);
5
6    #pragma omp task default(none) firstprivate(a,lo,p)
7     {(void) Quicksort(a, lo, p - 1);} // Left branch
8
9    #pragma omp task default(none) firstprivate(a,hi,p)

10 {(void) Quicksort(a, p + 1, hi);} // Right branch
11 }
12 }
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Fine	Tuning	The	Algorithm
When	the	array	section	gets	too	small,	it	is	
better	to	switch	to	the	sequential	algorithm	
May	also	consider	the	use	of	the	if-clause	plus	

the	mergeable and	final	clauses

Some	experimentation	is	recommended	;-)
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A	Performance	Example	*
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Summary
Big	Brother	Does	Not	Need	To	Know	Everything

For	certain	types	of	algorithms

Tasking	is	ideally	suitable

Optimal	performance	may	require	some	fine	
tuning

But	.......	Remember:
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RTFM!

Recognize	The	Fabulous	Masters
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Thank You And ..... Stay Tuned !
ruud.vanderpas@oracle.com


