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A Motivating OpenMP Example
#pragma omp declare target 
#pragma omp declare simd simdlen(16)
uint32_t mandel(fcomplex c)
{   // Computes number of iterations(count variable) that it takes

// for parameter c to be known to be outside mandelbrot set
uint32_t count = 1; fcomplex z = c;
for (int32_t i = 0; i < max_iter; i += 1) {

z = z * z + c;
int t = cabsf(z) < 2.0f;
count += t;
if (!t) { break;}

}
return count;

}

#pragam omp target device(0) map(to:in_vals) map(from:count)
#pragma omp parallel for schedule(guided)        
for (int32_t y = 0; y < ImageHeight; ++y) {

#pragma omp simd safelen(16)
for(int32_t x = 0; x < ImageWidth; ++x) {

count[y][x] = mandel(in_vals[y][x]);
}

}



Device Model
• OpenMP supports accelerators and coprocessors

• Device model:

– One host

– Multiple accelerators/coprocessors of the same 
kind
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OpenMP Data Environment Examples
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#pragma omp target map(to:b[0:count])) map(to:c,d) map(from:a[0:count])

{

#pragma omp parallel for

for (i=0; i<count; i++) {

a[i] = b[i] * c + d;

}

}

#pragma omp target data device(0) map(alloc:tmp[0:N]) map(to:input[:N)) 
map(from:result)

{

#pragma omp target device(0) 

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

do_some_other_stuff_on_host();

#pragma omp target device(0) 

#pragma omp parallel for reduction(+:result)

for (i=0; i<N; i++)

result += final_computation(tmp[i], i)

}



Execution Model

• The target construct transfers the control flow to the target device

– The transfer clauses control direction of data flow

– Array notation is used to describe array length

• The target data construct creates a scoped device data environment

– The transfer clauses control direction of data flow

– Device data environment is valid through the lifetime of the target data region

• Use target update to request data transfers from within a target data region
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Host Device

#pragma target …
{...}

alloc(…)

1

from(…)

4

to(…)

2

pA

3
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Offloading: RTM-Stencil Example  
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#pragma omp declare target
void do_row(float, float, int);
#pragma omp end declare target 

void team_distribute_stencil(int sweeps) {
for (int t=0; t<sweeps; ++t) {

// Target region starts with 68 teams of threads, each team has 4 threads
#pragma omp target device(0) map(tofrom: V[:])
#pragma omp teams firstprivate(t) num_teams(68) thread_limit(4)
{   // The k loop is blocked by hand, and each block handed to a team

int p = omp_get_num_teams();
int ib = (N-2+p-1)/p;
#pragma omp distribute 
for (int k=1; k<N-1; k+=ib) {

int u = std::min(k+ib,N-1);
#pragma omp parallel for 
for( int i=k; i<u; ++i) do_row(V[1-(t&1)], V[t&1], i);

}
}

}
}
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Intel® Xeon Phi™ OMP 4.5 Offload in 17.0 Compiler
OpenMP 4.5 “if” clause changes –

if ( [ directive-name-modifier : ] scalar-expression )

OpenMP 4.5 Device pointer -

• #pragma omp target data …  use_device_ptr(list) ..

• #pragma omp target …  is_device_ptr(list) ..

OpenMP 4.5 Deferred Map 

#pragma omp declare target clause[ [,] clause] ... ] new-line

where clause is one of the following:

[to] ( extended-list )

link ( list )

Streams additions - #pragma offload
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OpenMP 4.5 Combined Constructs –

#pragma omp target parallel

#pragma omp target parallel for

#pragma omp target parallel for simd

#pragma omp target simd

OpenMP 4.5 Clause changes–

#pragma omp target 

private ( list )

firstprivate ( list )

defaultmap ( tofrom : scalar )

is_device_ptr ( list )

#pragma omp target data

use_device_ptr ( list )



Intel® Xeon Phi™ Processor 
Programming Models

Coprocessor (KNC and KNL)
1. Native programming
– Intel® Xeon Phi™ coprocessor as a 

standalone machine

2. MPI + OpenMP
– Intel® Xeon Phi™ coprocessor as 

computing node

3. Compiler Offload 
– Intel® Xeon Phi™ coprocessor as 

offload target
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Server (KNL)
1. Native programming
• Intel® Xeon Phi™ server is a 

standalone machine

2. MPI + OpenMP
• Intel® Xeon Phi™ server is a 

computing node

3. Compiler Offload
• Migration path for compiler 

offload users
• Uses fabric instead of PCIe as 

transportation (OOF)



SCIF

MPIMPI

Offload Over Fabric - OOF
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Offloading to Intel® Xeon Phi™ coprocessors Offloading to Intel® Xeon Phi™ x200 (KNL) Server nodes

Common code for both cases. MPI ranks use pragmas to offload highly parallel tasks to Intel® Xeon Phi™ nodes
Configured by set of environmental variables (discussed on following slides)

- host boundaries

SCIF SCIF Fabric Fabric Fabric



OOF Application Configuration

Xeon1Xeon0 Xeon2

MPI

• OFFLOAD_NODES have the same value on all Intel® Xeon™ servers
• OFFLOAD_DEVICES restricts the offload process to use only the “devices” specified as the 

value of the variable

MPI Rank 0

OFFLOAD_NODES:
phi0[KNL,OFI],
phi1[KNL,OFI],
phi2[KNL,OFI],
phi3[KNL,OFI],
phi4[KNL,OFI],
phi5[KNL,OFI]

OFFLOAD_DEVICES:

0, 1
OFFLOAD_DEVICES:

2, 3
OFFLOAD_DEVICES:

4, 5

MPI Rank 1

OFFLOAD_NODES:
phi0[KNL,OFI],
phi1[KNL,OFI],
phi2[KNL,OFI],
phi3[KNL,OFI],
phi4[KNL,OFI],
phi5[KNL,OFI]

MPI Rank 2

OFFLOAD_NODES:
phi0[KNL,OFI],
phi1[KNL,OFI],
phi2[KNL,OFI],
phi3[KNL,OFI],
phi4[KNL,OFI],
phi5[KNL,OFI]



• Compilation using 17.0 Compiler:
• Offloading to Intel® Xeon Phi™ x100 (KNC): 

• icc –offload-arch=mic …

• Offloading to Intel® Xeon Phi™ x200 (KNL): 
• icc –offload-arch=mic-avx512 …
• For OOF, additionally specify the KNL devices using OFFLOAD_NODES:
• export OFFLOAD_NODES="machine1, machine2, 10.2.100.5” OR
• export OFFLOAD_NODES="machine3[x200,OFI]" OR …

• Programs written for KNL OOF and PCI-card offload will run 
unchanged
• Offload program initiated from a Xeon node

Offload Compile/Run Using 17.0



OMP4.5: Unstructured Data Mapping Example

double A[N]; 
foo() 
{ 

…
#pragma omp target enter data map(to : A) 

device_work1(A); // A is used here
} 
bar() 
{ 

…
#pragma omp target exit data map(from: A) 

device_work3(A); // A is updated here
} 
try1() 
{ 

foo(); 
#pragma omp target 

device_work2(A); 
bar(); 

} 



OMP4.5: nowait clause on target 
#define N 1000000 //N must be even

void init(int n, float *v1, float *v2);

int main() {

int i, n=N;     int chunk=1000;    float v1[N],v2[N],vxv[N];

init(n, v1,v2);

#pragma omp parallel

{

#pragma omp master

#pragma omp target teams distribute parallel for nowait \

map(to: v1[0:n/2]) \

map(to: v2[0:n/2]) \

map(from: vxv[0:n/2])

for(i=0; i<n/2; i++){ vxv[i] = v1[i]*v2[i]; } // Computation on target

#pragma omp for schedule(dynamic,chunk)

for(i=n/2; i<n; i++){ vxv[i] = v1[i]*v2[i]; }  // Simultaneous execution on host

// Implicit barrier here ensures both host and target computations are done

}

printf(" vxv[0] vxv[n-1] %f %f\n", vxv[0], vxv[n-1]);

return 0;

}

• Product of two vectors (arrays), v1 and v2, is formed. One half of the operations is 
performed on the device, and the last half on the host, concurrently



OMP vs Intel-pragma-offload : Performance Comparison 

• Performance within 2-3% of each other – very close
• Compiler implementation maps both to similar IR
• Same runtime used for both
• Data collected on Intel® Xeon Phi™ x100 (KNC)
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• SeisSol Gordon Bell Nomination paper in SC14:  Petascale high order dynamic rupture 
earthquake simulations on heterogeneous supercomputers (Alexander Heinecke 
et. al.)
– Breakthrough research project that is furthering understanding of earthquakes by using numerical 

simulation of the propagation of seismic waves helps to understand complicated wave phenomena

• “Finally, we discuss how offloading computations to Xeon Phi is incorporated into SeisSol. Adding 
support for accelerators or coprocessors often requires major code changes. These changes are essential 
for performance reasons as functions (such as the wave propagation solvers) need to be rewritten 
matching specific languages or libraries for the targeted device. In contrast, we used the Intel Language 
Extensions for Offloading (LEO), which include pragma directives for (a)synchronous data transfers and 
program execution on the Xeon Phi device. Down to the matrix kernels covered in Sec. III-C, there is no 
need to re-implement the time, volume or flux kernel. Their CPU implementation, including an OpenMP
parallelization, can be directly called inside the code section annotated for offload. Furthermore, we 
captured all interactions with the coprocessor and the launch of compute tasks shown in Fig. 4 in 
separated static functions. These functions are called from SeisSol’s time marching loop ensuring a 
smooth integration into SeisSol’s code base …”

• http://insidehpc.com/2014/11/seismic-code-modernization-yields-petascale-performance-gordon-bell-
award-nomination/

KNC Used for Gordon Bell Submission

http://insidehpc.com/2014/11/seismic-code-modernization-yields-petascale-performance-gordon-bell-award-nomination/
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OMP4.5: Asynchronous target with Tasks
#pragma omp declare target

extern void init(float *, float *, int);
#pragma omp end declare target

extern void foo();      extern void output(float *, int);

void vec_mult(float *p, int N, int dev)
{
float *v1, *v2;     int i;

#pragma omp task shared(v1, v2) depend(out: v1, v2)
#pragma omp target device(dev) map(v1, v2)
{

// check whether on device dev
if (omp_is_initial_device())  abort();    // initial_device means host

v1 = malloc(N*sizeof(float));
v2 = malloc(N*sizeof(float));
init(v1, v2, N);

}

foo(); // execute other work asynchronously on host

#pragma omp task shared(v1, v2, p) depend(in: v1, v2)
#pragma omp target device(dev) map(to: v1, v2) map(from: p[0:N])
{

// check whether on device dev
if (omp_is_initial_device()) abort();

#pragma omp parallel for
for (i=0; i<N; i++)

p[i] = v1[i] * v2[i];

free(v1); free(v2);
}

#pragma omp taskwait

output(p, N);
}



Terminology
• Device:

an implementation-defined (logical) execution unit
• League:

the set of threads teams created by a teams construct
• Contention group:

threads of a team in a league and their descendant threads
• Device data environment:

Data environment as defined by target data or target constructs
• Mapped variable:

An original variable in a (host) data environment with a corresponding variable in a device data 
environment

• Mapable type:
A type that is amenable for mapped variables.
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