
OpenMP
Application Programming

Interface

Version 6.0 November 2024

Copyright ©1997-2024 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document appear. Notice is
given that copying is by permission of the OpenMP Architecture Review Board.

This page intentionally left blank in published version.

Contents

I Definitions 1

1 Overview of the OpenMP API 2
1.1 Scope . 2
1.2 Execution Model . 2
1.3 Memory Model . 7

1.3.1 Structure of the OpenMP Memory Model 7
1.3.2 Device Data Environments . 8
1.3.3 Memory Management . 9
1.3.4 The Flush Operation . 10
1.3.5 Flush Synchronization and Happens-Before Order 11
1.3.6 OpenMP Memory Consistency . 13

1.4 Tool Interfaces . 14
1.4.1 OMPT . 14
1.4.2 OMPD . 15

1.5 OpenMP Compliance . 15
1.6 Normative References . 16
1.7 Organization of this Document . 17

2 Glossary 19

3 Internal Control Variables 115
3.1 ICV Descriptions . 115
3.2 ICV Initialization . 118
3.3 Modifying and Retrieving ICV Values . 121
3.4 How the Per-Data Environment ICVs Work 124
3.5 ICV Override Relationships . 125

Contents i

4 Environment Variables 127
4.1 Parallel Region Environment Variables . 128

4.1.1 Abstract Name Values . 128
4.1.2 OMP_DYNAMIC . 128
4.1.3 OMP_NUM_THREADS . 129
4.1.4 OMP_THREAD_LIMIT . 130
4.1.5 OMP_MAX_ACTIVE_LEVELS . 130
4.1.6 OMP_PLACES . 130
4.1.7 OMP_PROC_BIND . 132

4.2 Teams Environment Variables . 133
4.2.1 OMP_NUM_TEAMS . 133
4.2.2 OMP_TEAMS_THREAD_LIMIT . 134

4.3 Program Execution Environment Variables 134
4.3.1 OMP_SCHEDULE . 134
4.3.2 OMP_STACKSIZE . 135
4.3.3 OMP_WAIT_POLICY . 135
4.3.4 OMP_DISPLAY_AFFINITY . 136
4.3.5 OMP_AFFINITY_FORMAT . 137
4.3.6 OMP_CANCELLATION . 139
4.3.7 OMP_AVAILABLE_DEVICES . 139
4.3.8 OMP_DEFAULT_DEVICE . 140
4.3.9 OMP_TARGET_OFFLOAD . 141
4.3.10 OMP_THREADS_RESERVE . 141
4.3.11 OMP_MAX_TASK_PRIORITY . 143

4.4 Memory Allocation Environment Variables 143
4.4.1 OMP_ALLOCATOR . 143

4.5 OMPT Environment Variables . 144
4.5.1 OMP_TOOL . 144
4.5.2 OMP_TOOL_LIBRARIES . 145
4.5.3 OMP_TOOL_VERBOSE_INIT . 145

4.6 OMPD Environment Variables . 146
4.6.1 OMP_DEBUG . 146

4.7 OMP_DISPLAY_ENV . 147

ii OpenMP API – Version 6.0 November 2024

5 Directive and Construct Syntax 148
5.1 Directive Format . 150

5.1.1 Free Source Form Directives . 156
5.1.2 Fixed Source Form Directives . 157

5.2 Clause Format . 157
5.2.1 OpenMP Argument Lists . 162
5.2.2 Reserved Locators . 164
5.2.3 OpenMP Operations . 165
5.2.4 Array Shaping . 165
5.2.5 Array Sections . 166
5.2.6 iterator Modifier . 169

5.3 Conditional Compilation . 171
5.3.1 Free Source Form Conditional Compilation Sentinel 172
5.3.2 Fixed Source Form Conditional Compilation Sentinels 173

5.4 directive-name-modifier Modifier . 173
5.5 if Clause . 179
5.6 init Clause . 180
5.7 destroy Clause . 182

6 Base Language Formats and Restrictions 183
6.1 OpenMP Types and Identifiers . 183
6.2 OpenMP Stylized Expressions . 185
6.3 Structured Blocks . 186

6.3.1 OpenMP Allocator Structured Blocks . 187
6.3.2 OpenMP Function Dispatch Structured Blocks 187
6.3.3 OpenMP Atomic Structured Blocks . 188

6.4 Loop Concepts . 195
6.4.1 Canonical Loop Nest Form . 196
6.4.2 Canonical Loop Sequence Form . 202
6.4.3 OpenMP Loop-Iteration Spaces and Vectors 203
6.4.4 Consistent Loop Schedules . 205
6.4.5 collapse Clause . 205
6.4.6 ordered Clause . 206
6.4.7 looprange Clause . 207

Contents iii

II Directives and Clauses 209

7 Data Environment 210
7.1 Data-Sharing Attribute Rules . 210

7.1.1 Variables Referenced in a Construct . 210
7.1.2 Variables Referenced in a Region but not in a Construct 214

7.2 saved Modifier . 215
7.3 threadprivate Directive . 215
7.4 List Item Privatization . 219
7.5 Data-Sharing Attribute Clauses . 222

7.5.1 default Clause . 223
7.5.2 shared Clause . 224
7.5.3 private Clause . 225
7.5.4 firstprivate Clause . 227
7.5.5 lastprivate Clause . 229
7.5.6 linear Clause . 232
7.5.7 is_device_ptr Clause . 235
7.5.8 use_device_ptr Clause . 236
7.5.9 has_device_addr Clause . 237
7.5.10 use_device_addr Clause . 238

7.6 Reduction and Induction Clauses and Directives 239
7.6.1 OpenMP Reduction and Induction Identifiers 239
7.6.2 OpenMP Reduction and Induction Expressions 240
7.6.3 Implicitly Declared OpenMP Reduction Identifiers 244
7.6.4 Implicitly Declared OpenMP Induction Identifiers 246
7.6.5 Properties Common to Reduction and induction Clauses 247
7.6.6 Properties Common to All Reduction Clauses 249
7.6.7 Reduction Scoping Clauses . 250
7.6.8 Reduction Participating Clauses . 251
7.6.9 reduction-identifier Modifier . 251
7.6.10 reduction Clause . 252
7.6.11 task_reduction Clause . 255
7.6.12 in_reduction Clause . 256
7.6.13 induction Clause . 257

iv OpenMP API – Version 6.0 November 2024

7.6.14 declare_reduction Directive . 260
7.6.15 combiner Clause . 262
7.6.16 initializer Clause . 262
7.6.17 declare_induction Directive . 263
7.6.18 inductor Clause . 265
7.6.19 collector Clause . 266

7.7 scan Directive . 266
7.7.1 inclusive Clause . 269
7.7.2 exclusive Clause . 269
7.7.3 init_complete Clause . 270

7.8 Data Copying Clauses . 270
7.8.1 copyin Clause . 271
7.8.2 copyprivate Clause . 272

7.9 Data-Mapping Control . 274
7.9.1 map-type Modifier . 274
7.9.2 Map Type Decay . 275
7.9.3 Implicit Data-Mapping Attribute Rules . 276
7.9.4 Mapper Identifiers and mapper Modifiers 278
7.9.5 ref-modifier Modifier . 279
7.9.6 map Clause . 279
7.9.7 enter Clause . 289
7.9.8 link Clause . 290
7.9.9 defaultmap Clause . 291
7.9.10 declare_mapper Directive . 293

7.10 Data-Motion Clauses . 295
7.10.1 to Clause . 297
7.10.2 from Clause . 298

7.11 uniform Clause . 299
7.12 aligned Clause . 300
7.13 groupprivate Directive . 301
7.14 local Clause . 303

8 Memory Management 304
8.1 Memory Spaces . 304

Contents v

8.2 Memory Allocators . 305
8.3 align Clause . 309
8.4 allocator Clause . 310
8.5 allocate Directive . 310
8.6 allocate Clause . 312
8.7 allocators Construct . 315
8.8 uses_allocators Clause . 315

9 Variant Directives 318
9.1 OpenMP Contexts . 318
9.2 Context Selectors . 320
9.3 Matching and Scoring Context Selectors . 323
9.4 Metadirectives . 324

9.4.1 when Clause . 325
9.4.2 otherwise Clause . 326
9.4.3 metadirective . 327
9.4.4 begin metadirective . 327

9.5 Semantic Requirement Set . 328
9.6 Declare Variant Directives . 328

9.6.1 match Clause . 330
9.6.2 adjust_args Clause . 331
9.6.3 append_args Clause . 333
9.6.4 declare_variant Directive . 334
9.6.5 begin declare_variant Directive 336

9.7 dispatch Construct . 337
9.7.1 interop Clause . 339
9.7.2 novariants Clause . 340
9.7.3 nocontext Clause . 340

9.8 declare_simd Directive . 341
9.8.1 branch Clauses . 343

9.9 Declare Target Directives . 345
9.9.1 declare_target Directive . 346
9.9.2 begin declare_target Directive . 349
9.9.3 indirect Clause . 350

vi OpenMP API – Version 6.0 November 2024

10 Informational and Utility Directives 352
10.1 error Directive . 352
10.2 at Clause . 353
10.3 message Clause . 353
10.4 severity Clause . 354
10.5 requires Directive . 355

10.5.1 requirement Clauses . 356
10.6 Assumption Directives . 362

10.6.1 assumption Clauses . 363
10.6.2 assumes Directive . 368
10.6.3 assume Directive . 369
10.6.4 begin assumes Directive . 369

10.7 nothing Directive . 369

11 Loop-Transforming Constructs 371
11.1 apply Clause . 372
11.2 sizes Clause . 374
11.3 fuse Construct . 374
11.4 interchange Construct . 375

11.4.1 permutation Clause . 376
11.5 reverse Construct . 377
11.6 split Construct . 377

11.6.1 counts Clause . 378
11.7 stripe Construct . 379
11.8 tile Construct . 380
11.9 unroll Construct . 381

11.9.1 full Clause . 382
11.9.2 partial Clause . 383

12 Parallelism Generation and Control 384
12.1 parallel Construct . 384

12.1.1 Determining the Number of Threads for a parallel Region 388
12.1.2 num_threads Clause . 388
12.1.3 Controlling OpenMP Thread Affinity . 389

Contents vii

12.1.4 proc_bind Clause . 392
12.1.5 safesync Clause . 393

12.2 teams Construct . 394
12.2.1 num_teams Clause . 397

12.3 order Clause . 397
12.4 simd Construct . 399

12.4.1 nontemporal Clause . 400
12.4.2 safelen Clause . 401
12.4.3 simdlen Clause . 401

12.5 masked Construct . 402
12.5.1 filter Clause . 403

13 Work-Distribution Constructs 404
13.1 single Construct . 405
13.2 scope Construct . 406
13.3 sections Construct . 407

13.3.1 section Directive . 408
13.4 workshare Construct . 409
13.5 workdistribute Construct . 412
13.6 Worksharing-Loop Constructs . 414

13.6.1 for Construct . 416
13.6.2 do Construct . 417
13.6.3 schedule Clause . 418

13.7 distribute Construct . 420
13.7.1 dist_schedule Clause . 422

13.8 loop Construct . 423
13.8.1 bind Clause . 424

14 Tasking Constructs 426
14.1 task Construct . 426
14.2 taskloop Construct . 429

14.2.1 grainsize Clause . 432
14.2.2 num_tasks Clause . 433
14.2.3 task_iteration Directive . 434

viii OpenMP API – Version 6.0 November 2024

14.3 taskgraph Construct . 435
14.3.1 graph_id Clause . 438
14.3.2 graph_reset Clause . 438

14.4 untied Clause . 439
14.5 mergeable Clause . 440
14.6 replayable Clause . 440
14.7 final Clause . 441
14.8 threadset Clause . 442
14.9 priority Clause . 443
14.10 affinity Clause . 444
14.11 detach Clause . 445
14.12 taskyield Construct . 446
14.13 Initial Task . 446
14.14 Task Scheduling . 447

15 Device Directives and Clauses 450
15.1 device_type Clause . 450
15.2 device Clause . 451
15.3 thread_limit Clause . 452
15.4 Device Initialization . 453
15.5 target_enter_data Construct . 454
15.6 target_exit_data Construct . 456
15.7 target_data Construct . 458
15.8 target Construct . 460
15.9 target_update Construct . 465

16 Interoperability 468
16.1 interop Construct . 468

16.1.1 OpenMP Foreign Runtime Identifiers . 469
16.1.2 use Clause . 469
16.1.3 prefer-type Modifier . 470

17 Synchronization Constructs and Clauses 472
17.1 hint Clause . 472
17.2 critical Construct . 473

Contents ix

17.3 Barriers . 475
17.3.1 barrier Construct . 475
17.3.2 Implicit Barriers . 476
17.3.3 Implementation-Specific Barriers . 477

17.4 taskgroup Construct . 478
17.5 taskwait Construct . 479
17.6 nowait Clause . 481
17.7 nogroup Clause . 483
17.8 OpenMP Memory Ordering . 484

17.8.1 memory-order Clauses . 484
17.8.2 atomic Clauses . 488
17.8.3 extended-atomic Clauses . 490
17.8.4 memscope Clause . 493
17.8.5 atomic Construct . 494
17.8.6 flush Construct . 498
17.8.7 Implicit Flushes . 500

17.9 OpenMP Dependences . 504
17.9.1 task-dependence-type Modifier . 504
17.9.2 Depend Objects . 505
17.9.3 depobj Construct . 505
17.9.4 update Clause . 506
17.9.5 depend Clause . 507
17.9.6 transparent Clause . 510
17.9.7 doacross Clause . 511

17.10 ordered Construct . 513
17.10.1 Stand-alone ordered Construct . 514
17.10.2 Block-associated ordered Construct . 515
17.10.3 parallelization-level Clauses . 517

18 Cancellation Constructs 519
18.1 cancel-directive-name Clauses . 519
18.2 cancel Construct . 520
18.3 cancellation_point Construct . 524

x OpenMP API – Version 6.0 November 2024

19 Composition of Constructs 525
19.1 Compound Directive Names . 525
19.2 Clauses on Compound Constructs . 528
19.3 Compound Construct Semantics . 531

III Runtime Library Routines 532

20 Runtime Library Definitions 533
20.1 Predefined Identifiers . 534
20.2 Routine Bindings . 535
20.3 Routine Argument Properties . 535
20.4 General OpenMP Types . 536

20.4.1 OpenMP intptr Type . 536
20.4.2 OpenMP uintptr Type . 536

20.5 OpenMP Parallel Region Support Types . 536
20.5.1 OpenMP sched Type . 536

20.6 OpenMP Tasking Support Types . 538
20.6.1 OpenMP event_handle Type . 538

20.7 OpenMP Interoperability Support Types . 538
20.7.1 OpenMP interop Type . 538
20.7.2 OpenMP interop_fr Type . 539
20.7.3 OpenMP interop_property Type . 540
20.7.4 OpenMP interop_rc Type . 541

20.8 OpenMP Memory Management Types . 544
20.8.1 OpenMP allocator_handle Type . 544
20.8.2 OpenMP alloctrait Type . 545
20.8.3 OpenMP alloctrait_key Type . 547
20.8.4 OpenMP alloctrait_value Type . 550
20.8.5 OpenMP alloctrait_val Type . 552
20.8.6 OpenMP mempartition Type . 553
20.8.7 OpenMP mempartitioner Type . 553
20.8.8 OpenMP mempartitioner_lifetime Type 554
20.8.9 OpenMP mempartitioner_compute_proc Type 554

Contents xi

20.8.10 OpenMP mempartitioner_release_proc Type 556
20.8.11 OpenMP memspace_handle Type . 557

20.9 OpenMP Synchronization Types . 558
20.9.1 OpenMP depend Type . 558
20.9.2 OpenMP impex Type . 558
20.9.3 OpenMP lock Type . 559
20.9.4 OpenMP nest_lock Type . 560
20.9.5 OpenMP sync_hint Type . 560

20.10 OpenMP Affinity Support Types . 562
20.10.1 OpenMP proc_bind Type . 562

20.11 OpenMP Resource Relinquishing Types . 563
20.11.1 OpenMP pause_resource Type . 563

20.12 OpenMP Tool Types . 565
20.12.1 OpenMP control_tool Type . 565
20.12.2 OpenMP control_tool_result Type 566

21 Parallel Region Support Routines 568
21.1 omp_set_num_threads Routine . 568
21.2 omp_get_num_threads Routine . 569
21.3 omp_get_thread_num Routine . 569
21.4 omp_get_max_threads Routine . 570
21.5 omp_get_thread_limit Routine . 570
21.6 omp_in_parallel Routine . 571
21.7 omp_set_dynamic Routine . 572
21.8 omp_get_dynamic Routine . 572
21.9 omp_set_schedule Routine . 573
21.10 omp_get_schedule Routine . 574
21.11 omp_get_supported_active_levels Routine 575
21.12 omp_set_max_active_levels Routine 575
21.13 omp_get_max_active_levels Routine 576
21.14 omp_get_level Routine . 577
21.15 omp_get_ancestor_thread_num Routine 577
21.16 omp_get_team_size Routine . 578
21.17 omp_get_active_level Routine . 579

xii OpenMP API – Version 6.0 November 2024

22 Teams Region Routines 581
22.1 omp_get_num_teams Routine . 581
22.2 omp_set_num_teams Routine . 582
22.3 omp_get_team_num Routine . 582
22.4 omp_get_max_teams Routine . 583
22.5 omp_get_teams_thread_limit Routine 584
22.6 omp_set_teams_thread_limit Routine 584

23 Tasking Support Routines 586
23.1 Tasking Routines . 586

23.1.1 omp_get_max_task_priority Routine 586
23.1.2 omp_in_explicit_task Routine . 587
23.1.3 omp_in_final Routine . 587
23.1.4 omp_is_free_agent Routine . 588
23.1.5 omp_ancestor_is_free_agent Routine 588

23.2 Event Routine . 589
23.2.1 omp_fulfill_event Routine . 589

24 Device Information Routines 592
24.1 omp_set_default_device Routine . 592
24.2 omp_get_default_device Routine . 593
24.3 omp_get_num_devices Routine . 593
24.4 omp_get_device_num Routine . 594
24.5 omp_get_num_procs Routine . 594
24.6 omp_get_max_progress_width Routine 595
24.7 omp_get_device_from_uid Routine 596
24.8 omp_get_uid_from_device Routine 596
24.9 omp_is_initial_device Routine . 597
24.10 omp_get_initial_device Routine . 598
24.11 omp_get_device_num_teams Routine 599
24.12 omp_set_device_num_teams Routine 599
24.13 omp_get_device_teams_thread_limit Routine 601
24.14 omp_set_device_teams_thread_limit Routine 601

Contents xiii

25 Device Memory Routines 603
25.1 Asynchronous Device Memory Routines . 604
25.2 Device Memory Information Routines . 604

25.2.1 omp_target_is_present Routine . 604
25.2.2 omp_target_is_accessible Routine 605
25.2.3 omp_get_mapped_ptr Routine . 606

25.3 omp_target_alloc Routine . 606
25.4 omp_target_free Routine . 608
25.5 omp_target_associate_ptr Routine 609
25.6 omp_target_disassociate_ptr Routine 611
25.7 Memory Copying Routines . 612

25.7.1 omp_target_memcpy Routine . 613
25.7.2 omp_target_memcpy_rect Routine 614
25.7.3 omp_target_memcpy_async Routine 615
25.7.4 omp_target_memcpy_rect_async Routine 617

25.8 Memory Setting Routines . 618
25.8.1 omp_target_memset Routine . 619
25.8.2 omp_target_memset_async Routine 620

26 Interoperability Routines 622
26.1 omp_get_num_interop_properties Routine 623
26.2 omp_get_interop_int Routine . 623
26.3 omp_get_interop_ptr Routine . 624
26.4 omp_get_interop_str Routine . 625
26.5 omp_get_interop_name Routine . 626
26.6 omp_get_interop_type_desc Routine 627
26.7 omp_get_interop_rc_desc Routine 628

27 Memory Management Routines 630
27.1 Memory Space Retrieving Routines . 630

27.1.1 omp_get_devices_memspace Routine 631
27.1.2 omp_get_device_memspace Routine 632
27.1.3 omp_get_devices_and_host_memspace Routine 632
27.1.4 omp_get_device_and_host_memspace Routine 633

xiv OpenMP API – Version 6.0 November 2024

27.1.5 omp_get_devices_all_memspace Routine 634
27.2 omp_get_memspace_num_resources Routine 634
27.3 omp_get_memspace_pagesize Routine 635
27.4 omp_get_submemspace Routine . 636
27.5 OpenMP Memory Partitioning Routines . 637

27.5.1 omp_init_mempartitioner Routine 638
27.5.2 omp_destroy_mempartitioner Routine 639
27.5.3 omp_init_mempartition Routine . 640
27.5.4 omp_destroy_mempartition Routine 641
27.5.5 omp_mempartition_set_part Routine 642
27.5.6 omp_mempartition_get_user_data Routine 643

27.6 omp_init_allocator Routine . 644
27.7 omp_destroy_allocator Routine . 646
27.8 Memory Allocator Retrieving Routines . 647

27.8.1 omp_get_devices_allocator Routine 647
27.8.2 omp_get_device_allocator Routine 648
27.8.3 omp_get_devices_and_host_allocator Routine 649
27.8.4 omp_get_device_and_host_allocator Routine 650
27.8.5 omp_get_devices_all_allocator Routine 651

27.9 omp_set_default_allocator Routine 652
27.10 omp_get_default_allocator Routine 653
27.11 Memory Allocating Routines . 654

27.11.1 omp_alloc Routine . 656
27.11.2 omp_aligned_alloc Routine . 657
27.11.3 omp_calloc Routine . 658
27.11.4 omp_aligned_calloc Routine . 659
27.11.5 omp_realloc Routine . 660

27.12 omp_free Routine . 661

28 Lock Routines 663
28.1 Lock Initializing Routines . 664

28.1.1 omp_init_lock Routine . 664
28.1.2 omp_init_nest_lock Routine . 665
28.1.3 omp_init_lock_with_hint Routine 666

Contents xv

28.1.4 omp_init_nest_lock_with_hint Routine 667
28.2 Lock Destroying Routines . 668

28.2.1 omp_destroy_lock Routine . 668
28.2.2 omp_destroy_nest_lock Routine . 669

28.3 Lock Acquiring Routines . 670
28.3.1 omp_set_lock Routine . 670
28.3.2 omp_set_nest_lock Routine . 671

28.4 Lock Releasing Routines . 672
28.4.1 omp_unset_lock Routine . 673
28.4.2 omp_unset_nest_lock Routine . 674

28.5 Lock Testing Routines . 675
28.5.1 omp_test_lock Routine . 675
28.5.2 omp_test_nest_lock Routine . 676

29 Thread Affinity Routines 678
29.1 omp_get_proc_bind Routine . 678
29.2 omp_get_num_places Routine . 679
29.3 omp_get_place_num_procs Routine 679
29.4 omp_get_place_proc_ids Routine . 680
29.5 omp_get_place_num Routine . 681
29.6 omp_get_partition_num_places Routine 681
29.7 omp_get_partition_place_nums Routine 682
29.8 omp_set_affinity_format Routine 683
29.9 omp_get_affinity_format Routine 684
29.10 omp_display_affinity Routine . 685
29.11 omp_capture_affinity Routine . 686

30 Execution Control Routines 688
30.1 omp_get_cancellation Routine . 688
30.2 Resource Relinquishing Routines . 689

30.2.1 omp_pause_resource Routine . 689
30.2.2 omp_pause_resource_all Routine 690

30.3 Timing Routines . 691
30.3.1 omp_get_wtime Routine . 691

xvi OpenMP API – Version 6.0 November 2024

30.3.2 omp_get_wtick Routine . 691
30.4 omp_display_env Routine . 692

31 Tool Support Routines 694
31.1 omp_control_tool Routine . 694

IV OMPT 696

32 OMPT Overview 697
32.1 OMPT Interfaces Definitions . 697
32.2 Activating a First-Party Tool . 697

32.2.1 ompt_start_tool Procedure . 697
32.2.2 Determining Whether to Initialize a First-Party Tool 699
32.2.3 Initializing a First-Party Tool . 700
32.2.4 Monitoring Activity on the Host with OMPT 703
32.2.5 Tracing Activity on Target Devices . 704

32.3 Finalizing a First-Party Tool . 707

33 OMPT Data Types 708
33.1 OMPT Predefined Identifiers . 708
33.2 OMPT any_record_ompt Type . 708
33.3 OMPT buffer Type . 710
33.4 OMPT buffer_cursor Type . 710
33.5 OMPT callback Type . 711
33.6 OMPT callbacks Type . 711
33.7 OMPT cancel_flag Type . 714
33.8 OMPT data Type . 714
33.9 OMPT dependence Type . 715
33.10 OMPT dependence_type Type . 716
33.11 OMPT device Type . 717
33.12 OMPT device_time Type . 717
33.13 OMPT dispatch Type . 717
33.14 OMPT dispatch_chunk Type . 718
33.15 OMPT frame Type . 719

Contents xvii

33.16 OMPT frame_flag Type . 720
33.17 OMPT hwid Type . 721
33.18 OMPT id Type . 721
33.19 OMPT interface_fn Type . 722
33.20 OMPT mutex Type . 722
33.21 OMPT native_mon_flag Type . 723
33.22 OMPT parallel_flag Type . 724
33.23 OMPT record Type . 725
33.24 OMPT record_abstract Type . 725
33.25 OMPT record_native Type . 727
33.26 OMPT record_ompt Type . 727
33.27 OMPT scope_endpoint Type . 728
33.28 OMPT set_result Type . 729
33.29 OMPT severity Type . 730
33.30 OMPT start_tool_result Type . 731
33.31 OMPT state Type . 731
33.32 OMPT subvolume Type . 734
33.33 OMPT sync_region Type . 735
33.34 OMPT target Type . 736
33.35 OMPT target_data_op Type . 736
33.36 OMPT target_map_flag Type . 738
33.37 OMPT task_flag Type . 739
33.38 OMPT task_status Type . 740
33.39 OMPT thread Type . 741
33.40 OMPT wait_id Type . 742
33.41 OMPT work Type . 743

34 General Callbacks and Trace Records 744
34.1 Initialization and Finalization Callbacks . 745

34.1.1 initialize Callback . 745
34.1.2 finalize Callback . 746
34.1.3 thread_begin Callback . 746
34.1.4 thread_end Callback . 747

34.2 error Callback . 748

xviii OpenMP API – Version 6.0 November 2024

34.3 Parallelism Generation Callback Signatures 748
34.3.1 parallel_begin Callback . 749
34.3.2 parallel_end Callback . 750
34.3.3 masked Callback . 751

34.4 Work Distribution Callback Signatures . 752
34.4.1 work Callback . 752
34.4.2 dispatch Callback . 753

34.5 Tasking Callback Signatures . 755
34.5.1 task_create Callback . 755
34.5.2 task_schedule Callback . 756
34.5.3 implicit_task Callback . 757

34.6 cancel Callback . 759
34.7 Synchronization Callback Signatures . 760

34.7.1 dependences Callback . 760
34.7.2 task_dependence Callback . 761
34.7.3 OMPT sync_region Type . 762
34.7.4 sync_region Callback . 763
34.7.5 sync_region_wait Callback . 763
34.7.6 reduction Callback . 764
34.7.7 OMPT mutex_acquire Type . 764
34.7.8 mutex_acquire Callback . 766
34.7.9 lock_init Callback . 766
34.7.10 OMPT mutex Type . 766
34.7.11 lock_destroy Callback . 767
34.7.12 mutex_acquired Callback . 768
34.7.13 mutex_released Callback . 768
34.7.14 nest_lock Callback . 769
34.7.15 flush Callback . 769

34.8 control_tool Callback . 770

35 Device Callbacks and Tracing 772
35.1 device_initialize Callback . 772
35.2 device_finalize Callback . 773
35.3 device_load Callback . 774

Contents xix

35.4 device_unload Callback . 775
35.5 buffer_request Callback . 775
35.6 buffer_complete Callback . 776
35.7 target_data_op_emi Callback . 777
35.8 target_emi Callback . 780
35.9 target_map_emi Callback . 782
35.10 target_submit_emi Callback . 784

36 General Entry Points 786
36.1 function_lookup Entry Point . 786
36.2 enumerate_states Entry Point . 787
36.3 enumerate_mutex_impls Entry Point 788
36.4 set_callback Entry Point . 789
36.5 get_callback Entry Point . 790
36.6 get_thread_data Entry Point . 791
36.7 get_num_procs Entry Point . 791
36.8 get_num_places Entry Point . 792
36.9 get_place_proc_ids Entry Point . 792
36.10 get_place_num Entry Point . 793
36.11 get_partition_place_nums Entry Point 793
36.12 get_proc_id Entry Point . 794
36.13 get_state Entry Point . 795
36.14 get_parallel_info Entry Point . 795
36.15 get_task_info Entry Point . 797
36.16 get_task_memory Entry Point . 799
36.17 get_target_info Entry Point . 800
36.18 get_num_devices Entry Point . 800
36.19 get_unique_id Entry Point . 801
36.20 finalize_tool Entry Point . 801

37 Device Tracing Entry Points 803
37.1 get_device_num_procs Entry Point . 803
37.2 get_device_time Entry Point . 804
37.3 translate_time Entry Point . 804

xx OpenMP API – Version 6.0 November 2024

37.4 set_trace_ompt Entry Point . 805
37.5 set_trace_native Entry Point . 806
37.6 get_buffer_limits Entry Point . 807
37.7 start_trace Entry Point . 808
37.8 pause_trace Entry Point . 809
37.9 flush_trace Entry Point . 809
37.10 stop_trace Entry Point . 810
37.11 advance_buffer_cursor Entry Point 810
37.12 get_record_type Entry Point . 811
37.13 get_record_ompt Entry Point . 812
37.14 get_record_native Entry Point . 813
37.15 get_record_abstract Entry Point . 814

V OMPD 815

38 OMPD Overview 816
38.1 OMPD Interfaces Definitions . 817
38.2 Thread and Signal Safety . 817
38.3 Activating a Third-Party Tool . 817

38.3.1 Enabling Runtime Support for OMPD . 817
38.3.2 ompd_dll_locations . 817
38.3.3 ompd_dll_locations_valid Breakpoint 818

39 OMPD Data Types 819
39.1 OMPD addr Type . 819
39.2 OMPD address Type . 819
39.3 OMPD address_space_context Type 820
39.4 OMPD callbacks Type . 820
39.5 OMPD device Type . 822
39.6 OMPD device_type_sizes Type . 823
39.7 OMPD frame_info Type . 823
39.8 OMPD icv_id Type . 824
39.9 OMPD rc Type . 825
39.10 OMPD seg Type . 826

Contents xxi

39.11 OMPD scope Type . 827
39.12 OMPD size Type . 827
39.13 OMPD team_generator Type . 828
39.14 OMPD thread_context Type . 829
39.15 OMPD thread_id Type . 829
39.16 OMPD wait_id Type . 830
39.17 OMPD word Type . 830
39.18 OMPD Handle Types . 831

39.18.1 OMPD address_space_handle Type 831
39.18.2 OMPD parallel_handle Type . 831
39.18.3 OMPD task_handle Type . 832
39.18.4 OMPD thread_handle Type . 832

40 OMPD Callback Interface 833
40.1 Memory Management of OMPD Library . 833

40.1.1 alloc_memory Callback . 834
40.1.2 free_memory Callback . 834

40.2 Accessing Program or Runtime Memory . 835
40.2.1 symbol_addr_lookup Callback . 835
40.2.2 OMPD memory_read Type . 837
40.2.3 write_memory Callback . 839

40.3 Context Management and Navigation . 840
40.3.1 get_thread_context_for_thread_id Callback 840
40.3.2 sizeof_type Callback . 841

40.4 Device Translating Callbacks . 842
40.4.1 OMPD device_host Type . 842
40.4.2 device_to_host Callback . 843
40.4.3 host_to_device Callback . 843

40.5 print_string Callback . 844

41 OMPD Routines 845
41.1 OMPD Library Initialization and Finalization 845

41.1.1 ompd_initialize Routine . 845
41.1.2 ompd_get_api_version Routine . 846

xxii OpenMP API – Version 6.0 November 2024

41.1.3 ompd_get_version_string Routine 847
41.1.4 ompd_finalize Routine . 848

41.2 Process Initialization and Finalization . 848
41.2.1 ompd_process_initialize Routine 848
41.2.2 ompd_device_initialize Routine 849
41.2.3 ompd_get_device_thread_id_kinds Routine 851

41.3 Address Space Information . 852
41.3.1 ompd_get_omp_version Routine . 852
41.3.2 ompd_get_omp_version_string Routine 852

41.4 Thread Handle Routines . 853
41.4.1 ompd_get_thread_in_parallel Routine 853
41.4.2 ompd_get_thread_handle Routine 854
41.4.3 ompd_get_thread_id Routine . 855
41.4.4 ompd_get_device_from_thread Routine 856

41.5 Parallel Region Handle Routines . 857
41.5.1 ompd_get_curr_parallel_handle Routine 857
41.5.2 ompd_get_enclosing_parallel_handle Routine 858
41.5.3 ompd_get_task_parallel_handle Routine 859

41.6 Task Handle Routines . 860
41.6.1 ompd_get_curr_task_handle Routine 860
41.6.2 ompd_get_generating_task_handle Routine 861
41.6.3 ompd_get_scheduling_task_handle Routine 862
41.6.4 ompd_get_task_in_parallel Routine 862
41.6.5 ompd_get_task_function Routine 863
41.6.6 ompd_get_task_frame Routine . 864

41.7 Handle Comparing Routines . 865
41.7.1 ompd_parallel_handle_compare Routine 865
41.7.2 ompd_task_handle_compare Routine 866
41.7.3 ompd_thread_handle_compare Routine 867

41.8 Handle Releasing Routines . 867
41.8.1 ompd_rel_address_space_handle Routine 867
41.8.2 ompd_rel_parallel_handle Routine 868
41.8.3 ompd_rel_task_handle Routine . 868

Contents xxiii

41.8.4 ompd_rel_thread_handle Routine 869
41.9 Querying Thread States . 869

41.9.1 ompd_enumerate_states Routine . 869
41.9.2 ompd_get_state Routine . 871

41.10 Display Control Variables . 872
41.10.1 ompd_get_display_control_vars Routine 872
41.10.2 ompd_rel_display_control_vars Routine 873

41.11 Accessing Scope-Specific Information . 873
41.11.1 ompd_enumerate_icvs Routine . 873
41.11.2 ompd_get_icv_from_scope Routine 875
41.11.3 ompd_get_icv_string_from_scope Routine 876
41.11.4 ompd_get_tool_data Routine . 877

42 OMPD Breakpoint Symbol Names 878
42.1 ompd_bp_thread_begin Breakpoint . 878
42.2 ompd_bp_thread_end Breakpoint . 878
42.3 ompd_bp_device_begin Breakpoint . 879
42.4 ompd_bp_device_end Breakpoint . 879
42.5 ompd_bp_parallel_begin Breakpoint 879
42.6 ompd_bp_parallel_end Breakpoint . 880
42.7 ompd_bp_teams_begin Breakpoint . 881
42.8 ompd_bp_teams_end Breakpoint . 881
42.9 ompd_bp_task_begin Breakpoint . 882
42.10 ompd_bp_task_end Breakpoint . 882
42.11 ompd_bp_target_begin Breakpoint . 882
42.12 ompd_bp_target_end Breakpoint . 883

VI Appendices 884

A OpenMP Implementation-Defined Behaviors 885

B Features History 896
B.1 Deprecated Features . 896
B.2 Version 5.2 to 6.0 Differences . 896

xxiv OpenMP API – Version 6.0 November 2024

B.3 Version 5.1 to 5.2 Differences . 903
B.4 Version 5.0 to 5.1 Differences . 905
B.5 Version 4.5 to 5.0 Differences . 908
B.6 Version 4.0 to 4.5 Differences . 912
B.7 Version 3.1 to 4.0 Differences . 913
B.8 Version 3.0 to 3.1 Differences . 914
B.9 Version 2.5 to 3.0 Differences . 915

C Nesting of Regions 917

D Conforming Compound Directive Names 919

Index 923

Contents xxv

List of Figures

32.1 First-Party Tool Activation Flow Chart . 699

xxvi OpenMP API – Version 6.0 November 2024

List of Tables

3.1 ICV Scopes and Descriptions . 115
3.2 ICV Initial Values . 118
3.3 Ways to Modify and to Retrieve ICV Values . 121
3.4 ICV Override Relationships . 125

4.1 Predefined Place-list Abstract Names . 128
4.2 Available Field Types for Formatting OpenMP Thread Affinity Information 137
4.3 Reservation Types for OMP_THREADS_RESERVE 142

5.1 Syntactic Properties for Clauses, Arguments and Modifiers 159

7.1 Implicitly Declared C/C++ Reduction Identifiers 244
7.2 Implicitly Declared Fortran Reduction Identifiers 245
7.3 Implicitly Declared C/C++ Induction Identifiers 246
7.4 Implicitly Declared Fortran Induction Identifiers 246
7.5 Map-Type Decay of Map Type Combinations . 276

8.1 Predefined Memory Spaces . 304
8.2 Allocator Traits . 305
8.3 Predefined Allocators . 308

12.1 Affinity-related Symbols used in this Section . 390

13.1 work OMPT types for Worksharing-Loop . 415

14.1 task_create Callback Flags Evaluation . 427

20.1 Routine Argument Properties . 535
20.2 Required Values of the interop_property OpenMP Type 542
20.3 Required Values for the interop_rc OpenMP Type 543
20.4 Allowed Key-Values for alloctrait OpenMP Type 546
20.5 Standard Tool Control Commands . 566

32.1 OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures . 702
32.2 Callbacks for which set_callback Must Return ompt_set_always 703
32.3 OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures . . 705

List of Tables xxvii

35.1 Association of dev1 and dev2 arguments for target data operations 779

39.1 Mapping of Scope Type and OMPD Handles . 828

xxviii OpenMP API – Version 6.0 November 2024

Part I1

Definitions2

1

1 Overview of the OpenMP API1

The collection of compiler directives, library routines, environment variables, and tool support that2
this document describes collectively define the specification of the OpenMP Application Program3
Interface (OpenMP API) for C, C++ and Fortran base programs. This specification provides a4
model for parallel programming that is portable across architectures from different vendors.5
Compilers from numerous vendors support the OpenMP API. More information about the OpenMP6
API can be found at the following web site: https://www.openmp.org.7

The directives, routines, environment variables, and tool support that this document defines allow8
users to create, to manage, to debug and to analyze parallel programs while permitting portability.9
The directives extend the C, C++ and Fortran base languages with single program multiple data10
(SPMD) constructs, tasking constructs, device constructs, work-distribution constructs, and11
synchronization constructs, and they provide support for sharing, mapping and privatizing data.12
The functionality to control the runtime environment is provided by routines and environment13
variables. Compilers that support the OpenMP API often include command line options to enable14
or to disable interpretation of some or all OpenMP directives.15

1.1 Scope16

The OpenMP API covers only user-directed parallelization, wherein the programmer explicitly17
specifies the actions to be taken by the compiler and runtime system in order to execute the program18
in parallel. OpenMP-compliant implementations are not required to check for data dependences,19
data conflicts, data races, or deadlocks. Compliant implementations also are not required to check20
for any code sequences that cause a program to be classified as a non-conforming program.21
Application developers are responsible for correctly using the OpenMP API to produce a22
conforming program. The OpenMP API does not cover compiler-generated automatic23
parallelization.24

1.2 Execution Model25

A compliant implementation must follow the abstract execution model that the supported base26
language and OpenMP specification define, as observable from the results of user code in a27
conforming program. These results do not include output from external monitoring tools or tools28
that use the OpenMP tool interfaces (i.e., OMPT and OMPD), which may reflect deviations from29

2 OpenMP API – Version 6.0 November 2024

the execution model such as the unprescribed use of additional native threads, SIMD instruction,1
alternate loop transformations, or other target devices to facilitate parallel execution of the program.2

The OpenMP API includes several directives. Some directives allow customization of base3
language declarations while other directives specify details of program execution. Such executable4
directives may be lexically associated with base language code. Each executable directive and any5
such associated base language code forms a construct. An OpenMP program executes regions,6
which consist of all code encountered by native threads.7

Some regions are implicit but many are explicit regions, which correspond to a specific instance of8
a construct or routine. Execution is composed of nested regions since a given region may encounter9
additional constructs and routines. References to regions, particularly explicit regions or nested10
regions, that correspond to a specific type of construct or routine usually include the name of that11
construct or routine to identify the type of region that results.12

With the OpenMP API, multiple threads execute tasks defined implicitly or explicitly by OpenMP13
directives and their associated user code, if any. An implementation may use multiple devices for a14
given execution of an OpenMP program. Concurrent execution of threads may result in different15
numeric results because of changes in the association of numeric operations.16

Each device executes a set of one or more contention groups. Each contention group consists of a17
set of tasks that an associated set of threads, an OpenMP thread pool, executes. The lifetime of the18
OpenMP thread pool is the same as that of the contention group. The threads that are associated19
with each contention group are distinct from threads associated with any other contention group.20
Threads cannot migrate to execute tasks of a different contention group.21

Each OpenMP thread pool has an initial thread, which may be the thread that starts execution of a22
region that is not nested within any other region, or which may be the thread that starts execution of23
the structured block associated with a target or teams construct. Each initial thread executes24
sequentially; the code that it encounters is part of an implicit task region, called an initial task25
region, that is generated by the implicit parallel region that surrounds all code executed by the26
initial thread. The other threads in the OpenMP thread pool associated with a contention group are27
unassigned threads. An implicit task is assigned to each of those threads. When a task encounters a28
parallel construct, some of the unassigned threads become assigned threads that are assigned to29
the team of that parallel region.30

The thread that executes the implicit parallel region that surrounds the whole program executes on31
the host device. An implementation may support other devices besides the host device. If32
supported, these devices are available to the host device for offloading code and data. Each device33
has its own contention groups.34

A task that encounters a target construct generates a new target task; its region encloses the35
target region. The target task is complete after the target region completes execution. When36
a target task executes, an initial thread executes the enclosed target region. The initial thread37
executes sequentially, as if the target region is part of an initial task region that an implicit38
parallel region generates. The initial thread may execute on the requested target device, if it is39
available. If the target device does not exist or the implementation does not support it, all target40

CHAPTER 1. OVERVIEW OF THE OPENMP API 3

regions associated with that device execute on the host device. Otherwise, the implementation1
ensures that the target region executes as if it were executed in the data environment of the target2
device unless an if clause is present and the if clause expression evaluates to false.3

The teams construct creates a league of teams, where each team is an initial team that comprises4
an initial thread that executes the teams region and that executes a distinct contention group from5
those of initial threads. Each initial thread executes sequentially, as if the code encountered is part6
of an initial task region that is generated by an implicit parallel region associated with each team.7
Whether the initial threads concurrently execute the teams region is unspecified, and a program8
that relies on their concurrent execution for the purposes of synchronization may deadlock.9

Any thread that encounters a parallel construct becomes the primary thread of the new team10
that consists of itself and zero or more additional unassigned threads that are then assigned to that11
team as team-worker threads. Those threads remain assigned threads for the lifetime of that team.12
A set of implicit tasks, one per thread, is generated. The code inside the parallel construct13
defines the code for each implicit task. A different thread in the team is assigned to each implicit14
task, which is tied, that is, only that assigned thread ever executes it. The task region of the task15
being executed by the encountering thread is suspended, and each member of the new team16
executes its implicit task. The primary thread is the parent thread of any thread that executes a task17
that is bound to the parallel region. An implicit barrier occurs at the end of the parallel region.18
Only the primary thread resumes execution beyond the end of that region, resuming the suspended19
task region. The other threads again become unassigned threads. A single program can specify any20
number of parallel constructs.21

parallel regions may be arbitrarily nested inside each other. If nested parallelism is disabled, or22
is not supported by the OpenMP implementation, then the new team that is formed by a thread that23
encounters a parallel construct inside a parallel region will consist only of the24
encountering thread. However, if nested parallelism is supported and enabled, then the new team25
can consist of more than one thread. A parallel construct may include a proc_bind clause to26
specify the places to use for the threads in the team within the parallel region.27

When any team encounters a partitioned worksharing construct, the work inside the construct is28
divided into work partitions, each of which is executed by one member of the team, instead of the29
work being executed redundantly by each thread. An implicit barrier occurs at the end of any region30
that corresponds to a worksharing construct for which the nowait clause is not specified.31
Redundant execution of code by every thread in the team resumes after the end of the worksharing32
construct. Regions that correspond to team-executed constructs, including all worksharing regions33
and barrier regions, are executed by the current team such that all threads in the team execute the34
team-executed regions in the same order.35

When a loop construct is encountered, the logical iterations of the collapsed loops, which are the36
affected loops as specified by the collapse clause, are executed in the context of its encountering37
threads, as determined according to its binding region. If the loop region binds to a teams38
region, the region is encountered by the set of primary thread that execute the teams region. If the39
loop region binds to a parallel region, the region is encountered by the team that execute the40
parallel region. Otherwise, the region is encountered by a single thread. If the loop region41

4 OpenMP API – Version 6.0 November 2024

binds to a teams region, the encountering threads may continue execution after the loop region1
without waiting for all iterations to complete; the iterations are guaranteed to complete before the2
end of the teams region. Otherwise, all iterations must complete before the encountering threads3
continue execution after the loop region. All threads that encounter the loop construct may4
participate in the execution of the iterations. Only one thread may execute any given iteration.5

When any thread encounters a simd construct, the iterations of the loop associated with the6
construct may be executed concurrently using the SIMD lanes that are available to the thread.7

When any thread encounters a task-generating construct, one or more explicit tasks are generated.8
Explicitly generated tasks are scheduled onto threads of the binding thread set of the task, subject to9
the availability of the threads to execute work. Thus, execution of the new task could be immediate,10
or deferred until later according to task scheduling constraints and thread availability. Completion11
of all explicit tasks bound to a given parallel region is guaranteed before the primary thread leaves12
the implicit barrier at the end of the region. Completion of a subset of all explicit tasks bound to a13
given parallel region may be specified through the use of task synchronization constructs.14
Completion of all explicit tasks bound to an implicit parallel region is guaranteed when the15
associated initial task completes. The initial task on the host device that begins a typical OpenMP16
program is guaranteed to end by the time that the program exits.17

Threads are allowed to suspend the current task region at a task scheduling point in order to execute18
a different task. Thus, each task consists of a set of one or more subtasks that each correspond to19
the portion of the task region between any two consecutive task scheduling points that the task20
encounters. If the task region of a tied task is suspended, the initially assigned thread later resumes21
execution of the next subtask of the suspended task region. If the task region of an untied task is22
suspended, any thread in the binding thread set of the task may resume execution of its next subtask.23

OpenMP threads are logical execution entities that are mapped to native threads for actual24
execution. OpenMP does not dictate the details of the implementation of native threads and, instead,25
specifies requirements on the thread state of OpenMP threads. As long as those requirements are26
met, a compliant implementation may map the same OpenMP thread differently (i.e., to different27
native threads) for different portions of its execution (e.g., for the execution of different subtasks).28
Similarly, while the lifetime of an OpenMP thread and its OpenMP thread pool is identical to that29
of the associated contention group, OpenMP does not specify the lifetime of any native threads to30
which it is mapped. Native threads may be created at any time and may be terminated at any time.31

The cancel construct can alter the previously described flow of execution in a region. The effect32
of the cancel construct depends on the cancel-directive-name that is specified on it. If a task33
encounters a cancel construct with a taskgroup clause, then the explicit task activates34
cancellation and continues execution at the end of its task region, which implies completion of35
that task. Any other task in that taskgroup that has begun executing completes execution unless36
it encounters a cancellation point, including one that corresponds to a cancellation point37
construct, in which case it continues execution at the end of its explicit task region, which implies38
its completion. Other tasks in that taskgroup region that have not begun execution are aborted,39
which implies their completion.40

CHAPTER 1. OVERVIEW OF THE OPENMP API 5

If a task encounters a cancel construct with any other cancel-directive-name clause, it activates1
cancellation of the innermost enclosing region of the type specified and the thread continues2
execution at the end of that region. Tasks check if cancellation has been activated for their region at3
cancellation points and, if so, also resume execution at the end of the canceled region.4

If cancellation has been activated, regardless of the cancel-directive-name clauses, threads that are5
waiting inside a barrier other than an implicit barrier at the end of the canceled region exit the6
barrier and resume execution at the end of the canceled region. This action can occur before the7
other threads reach that barrier.8

OpenMP specifies circumstances that cause error termination. If compile-time error termination is9
specified, the effect is as if the program encounters an error directive on which a severity10
clause specifies a sev-level argument of fatal and an at clause specifies an action-time argument11
of compilation. If runtime error termination is specified, the effect is as if the program12
encounters an error directive on which a severity clause specifies a sev-level argument of13
fatal and an at clause specifies an action-time argument of execution.14

A construct that creates a data environment creates it at the time that the construct is encountered.15
The description of a construct defines whether it creates a data environment. Synchronization16
constructs and routines are available in the OpenMP API to coordinate tasks and their data17
accesses. In addition, routines and environment variables are available to control or to query the18
runtime environment of OpenMP programs. The scope of OpenMP synchronization mechanisms19
may be limited to the contention group of the encountering task. Except where explicitly specified,20
any effect of the mechanisms between contention groups is implementation defined. Section 1.321
details the OpenMP memory model, including the effect of these features.22

The OpenMP specification makes no guarantee that input or output to the same file is synchronous23
when executed in parallel. In this case, the programmer is responsible for synchronizing input and24
output processing with the assistance of synchronization constructs or routines.25

Each native thread that enables the execution of a task by an OpenMP thread executes on a26
hardware thread. A hardware thread executes a stream of instructions defined by a given task27
region, so that only one OpenMP thread may execute on a hardware thread at a time. A set of28
consecutive hardware threads may form a progress unit. Hardware threads execute distinct streams29
of instructions unless they are part of the same progress unit. Threads that execute in the same30
progress unit may execute from a common stream of instructions, with serialized execution of31
diverging code paths that occur due to conditional statements. A program that relies on concurrent32
execution of such diverging code paths for the purposes of synchronization may deadlock.33

All concurrency semantics defined by the base language with respect to base language threads34
apply to OpenMP threads, unless otherwise specified. An OpenMP thread makes progress when it35
performs a flush operation, performs input or output processing, terminates, or makes progress as36
defined by the base language. OpenMP threads will eventually make progress in the absence of37
dependence cycles, unless otherwise specified by the base language. A dependence cycle may be38
implicitly introduced between synchronizing threads where concurrent execution is not guaranteed.39
Threads may therefore not make progress if the program includes synchronizing threads that40

6 OpenMP API – Version 6.0 November 2024

descend from different initial teams formed by a teams construct or if the program includes1
synchronizing divergent threads from the same team that execute on the same progress unit. The2
generation and execution of explicit tasks by threads in the current team does not prevent any of the3
threads from making progress if executing the explicit tasks as included tasks would ensure that4
they make progress.5

Each device is identified by a device number. The device number for the host device is the value of6
the total number of non-host devices, while each non-host device has a unique device number that7
is greater than or equal to zero and less than the device number for the host device. Additionally,8
the predefined identifier omp_initial_device can be used as an alias for the host device and9
the predefined identifier omp_invalid_device can be used to specify an invalid device10
number. A conforming device number is either a non-negative integer that is less than or equal to11
the value returned by omp_get_num_devices or equal to omp_initial_device or12
omp_invalid_device.13

A signal handler may only execute directives and routines that have the async-signal-safe property.14

1.3 Memory Model15

1.3.1 Structure of the OpenMP Memory Model16

The OpenMP API provides a relaxed-consistency, shared-memory model. All OpenMP threads17
have access to a place to store and to retrieve variables, called the memory. A given storage18
location in the memory may be associated with one or more devices, such that only threads on19
associated devices have access to it. In addition, each thread is allowed to have its own temporary20
view of the memory. The temporary view of memory for each thread is not a required part of the21
OpenMP memory model, but can represent any kind of intervening structure, such as machine22
registers, cache, or other local storage, between the thread and the memory. The temporary view of23
memory allows the thread to cache variables and thereby to avoid going to memory for every24
reference to a variable. Each thread also has access to another type of memory that must not be25
accessed by other threads, called threadprivate memory.26

A directive that accepts data-sharing attribute clauses determines two kinds of access to variables27
used in the associated structured block of the directive: shared variables and private variables. Each28
variable referenced in the structured block has an original variable, which is the variable by the29
same name that exists in the OpenMP program immediately outside the construct. Each reference30
to a shared variable in the structured block becomes a reference to the original variable. For each31
private variable referenced in the structured block, a new version of the original variable (of the32
same type and size) is created in memory for each task or SIMD lane that executes code associated33
with the directive. Creation of the new version does not alter the value of the original variable.34
However, attempts to access the original variable from within the region that corresponds to the35
directive result in unspecified behavior; see Section 7.5.3 for additional details. References to a36
private variable in the structured block refer to the private version of the original variable for the37
current task or SIMD lane. The relationship between the value of the value of the original variable38

CHAPTER 1. OVERVIEW OF THE OPENMP API 7

and the initial or final value of the private version depends on the exact clause that specifies it.1
Details of this issue, as well as other issues with privatization, are provided in Chapter 7.2

The minimum size at which a memory update may also read and write back adjacent variables that3
are part of an aggregate variable is implementation defined but is no larger than the base language4
requires.5

A single access to a variable may be implemented with multiple load or store instructions and, thus,6
is not guaranteed to be an atomic operation with respect to other accesses to the same variable.7
Accesses to variables smaller than the implementation defined minimum size or to C or C++8
bit-fields may be implemented by reading, modifying, and rewriting a larger unit of memory, and9
may thus interfere with updates of variables or fields in the same unit of memory.10

Two memory operations are considered unordered if the order in which they must complete, as seen11
by their affected threads, is not specified by the memory consistency guarantees listed in12
Section 1.3.6. If multiple threads write to the same memory unit (defined consistently with the13
above access considerations) then a data race occurs if the writes are unordered. Similarly, if at14
least one thread reads from a memory unit and at least one thread writes to that same memory unit15
then a data race occurs if the read and write are unordered. If a data race occurs then the result of16
the OpenMP program is unspecified behavior.17

A private variable in a task region that subsequently generates an inner nested parallel region is18
permitted to be made shared for implicit tasks in the inner parallel region. A private variable in19
a task region can also be shared by an explicit task region generated during its execution. However,20
the programmer must use synchronization that ensures that the lifetime of the variable does not end21
before completion of the explicit task region sharing it. Any other access by one task to the private22
variables of another task results in unspecified behavior.23

A storage location in memory that is associated with a given device has a device address that may24
be dereferenced by a thread executing on that device, but it may not be generally accessible from25
other devices. A different device may obtain a device pointer that refers to this device address. The26
manner in which an OpenMP program can obtain the referenced device address from a device27
pointer, outside of mechanisms specified by OpenMP, is implementation defined. Unless otherwise28
specified, the atomic scope of a storage location is all threads on the current device.29

1.3.2 Device Data Environments30

When an OpenMP program begins, an implicit target_data region for each device surrounds31
the whole program. Each device has a device data environment that is defined by its implicit32
target_data region. Any declare target directives and directives that accept data-mapping33
attribute clauses determine how an original storage block in a data environment is mapped to a34
corresponding storage block in a device data environment. Additionally, if a variable with static35
storage duration has original storage that is accessible on a device, and the variable is not a36
device-local variable, it may be treated as if its storage is mapped with a persistent self map in the37
implicit target_data region of the device; whether this happens is implementation defined.38

8 OpenMP API – Version 6.0 November 2024

When an original storage block is mapped to a device data environment and a corresponding1
storage block is not present in the device data environment, a new corresponding storage block (of2
the same type and size as the original storage block) is created in the device data environment.3
Conversely, the original storage block becomes the corresponding storage block of the new storage4
block in the device data environment of the device that performs a mapping operation.5

The corresponding storage block in the device data environment may share storage with the original6
storage block. Writes to the corresponding storage block may alter the value of the original storage7
block. Section 1.3.6 discusses the impact of this possibility on memory consistency. When a task8
executes in the context of a device data environment, references to the original storage block refer9
to the corresponding storage block in the device data environment. If an original storage block is10
not currently mapped and a corresponding storage block does not exist in the device data11
environment then accesses to the original storage block result in unspecified behavior unless the12
unified_shared_memory clause is specified on a requires directive for the compilation13
unit.14

The relationship between the value of the original storage block and the initial or final value of the15
corresponding storage block depends on the map-type. Details of this issue, as well as other issues16
with mapping a variable, are provided in Section 7.9.6.17

The original storage block in a data environment and a corresponding storage block in a device data18
environment may share storage. Without intervening synchronization data races can occur.19

If a storage block has a corresponding storage block with which it does not share storage, a write to20
a storage location designated by the storage block causes the value at the corresponding storage21
block to become undefined.22

1.3.3 Memory Management23

The host device, and other devices that an implementation may support, have attached storage24
resources where variables are stored. These resources can have different traits. A memory space in25
an OpenMP program represents a set of these storage resources. Memory spaces are defined26
according to a set of traits, and a single resource may be exposed as multiple memory spaces with27
different traits or may be part of multiple memory spaces. In any device, at least one memory space28
is guaranteed to exist.29

An OpenMP program can use a memory allocator to allocate memory in which to store variables.30
This memory will be allocated from the storage resources of the memory space associated with the31
memory allocator. Memory allocators are also used to deallocate previously allocated memory.32
When a memory allocator is not used to allocate memory, OpenMP does not prescribe the storage33
resource for the allocation; the memory for the variables may be allocated in any storage resource.34

CHAPTER 1. OVERVIEW OF THE OPENMP API 9

1.3.4 The Flush Operation1

The memory model has relaxed-consistency because the temporary view of memory of a thread is2
not required to be consistent with memory at all times. A value written to a variable can remain in3
that temporary view until it is forced to memory at a later time. Likewise, a read from a variable4
may retrieve the value from that temporary view, unless it is forced to read from memory. OpenMP5
flush operations are used to enforce consistency between the temporary view of memory of a thread6
and memory, or between the temporary views of multiple threads.7

A flush has an associated thread-set that constrains the threads for which it enforces memory8
consistency. Consistency is only guaranteed to be enforced between the view of memory of these9
threads. Unless otherwise specified, the thread-set of a flush only includes all threads on the current10
device.11

If a flush is a strong flush, it enforces consistency between the temporary view of a thread and12
memory. A strong flush is applied to a set of variable called the flush-set. A strong flush restricts13
how an implementation may reorder memory operations. Implementations must not reorder the14
code for a memory operation for a given variable, or the code for a flush for the variable, with15
respect to a strong flush that refers to the same variable.16

If a thread has performed a write to its temporary view of a shared variable since its last strong17
flush of that variable then, when it executes another strong flush of the variable, the strong flush18
does not complete until the value of the variable has been written to the variable in memory. If a19
thread performs multiple writes to the same variable between two strong flushes of that variable,20
the strong flush ensures that the value of the last write is written to the variable in memory. A21
strong flush of a variable executed by a thread also causes its temporary view of the variable to be22
discarded, so that if its next memory operation for that variable is a read, then the thread will read23
from memory and capture the value in its temporary view. When a thread executes a strong flush,24
no later memory operation by that thread for a variable in the flush-set of that strong flush is25
allowed to start until the strong flush completes. The completion of a strong flush executed by a26
thread is defined as the point at which all writes to the flush-set performed by the thread before the27
strong flush are visible in memory to all other threads, and at which the temporary view of the28
flush-set of that thread is discarded.29

A strong flush provides a guarantee of consistency between the temporary view of a thread and30
memory. Therefore, a strong flush can be used to guarantee that a value written to a variable by one31
thread may be read by a second thread. To accomplish this, the programmer must ensure that the32
second thread has not written to the variable since its last strong flush of the variable, and that the33
following sequence of events are completed in this specific order:34

1. The value is written to the variable by the first thread;35

2. The variable is flushed, with a strong flush, by the first thread;36

3. The variable is flushed, with a strong flush, by the second thread; and37

4. The value is read from the variable by the second thread.38

10 OpenMP API – Version 6.0 November 2024

If a flush is a release flush or acquire flush, it can enforce consistency between the views of memory1
of two synchronizing threads. A release flush guarantees that any prior operation that writes or2
reads a shared variable will appear to be completed before any operation that writes or reads the3
same shared variable and follows an acquire flush with which the release flush synchronizes (see4
Section 1.3.5 for more details on flush synchronization). A release flush will propagate the values5
of all shared variables in its temporary view to memory prior to the thread performing any6
subsequent atomic operation that may establish a synchronization. An acquire flush will discard7
any value of a shared variable in its temporary view to which the thread has not written since last8
performing a release flush, and it will load any value of a shared variable propagated by a release9
flush that synchronizes with it (according to the synchronizes-with relation) into its temporary view10
so that it may be subsequently read. Therefore, release flushes and acquire flushes may also be used11
to guarantee that a value written to a variable by one thread may be read by a second thread. To12
accomplish this, the programmer must ensure that the second thread has not written to the variable13
since its last acquire flush, and that the following sequence of events happen in this specific order:14

1. The value is written to the variable by the first thread;15

2. The first thread performs a release flush;16

3. The second thread performs an acquire flush; and17

4. The value is read from the variable by the second thread.18

19

Note – OpenMP synchronization operations, described in Chapter 17 and in Chapter 28, are20
recommended for enforcing this order. Synchronization through variables is possible but is not21
recommended because the proper timing of flushes is difficult.22

23

The flush properties that define whether a flush is a strong flush, a release flush, or an acquire flush24
are not mutually disjoint. A flush may be a strong flush and a release flush; it may be a strong flush25
and an acquire flush; it may be a release flush and an acquire flush; or it may be all three.26

1.3.5 Flush Synchronization and Happens-Before Order27

OpenMP supports thread synchronization with the use of release flushes and acquire flushes. For28
any such synchronization, a release flush is the source of the synchronization and an acquire flush is29
the sink of the synchronization, such that the release flush synchronizes with the acquire flush.30

A release flush has one or more associated release sequences that define the set of modifications31
that may be used to establish a synchronization. A release sequence starts with an atomic operation32
that follows the release flush and modifies a shared variable and additionally includes any33
read-modify-write atomic operations that read a value taken from some modification in the release34
sequence. The following rules determine the atomic operation that starts an associated release35
sequence.36

CHAPTER 1. OVERVIEW OF THE OPENMP API 11

• If a release flush is performed on entry to an atomic operation, that atomic operation starts its1
release sequence.2

• If a release flush is performed in an implicit flush region, an atomic operation that is provided3
by the implementation and that modifies an internal synchronization variable starts its release4
sequence.5

• If a release flush is performed by an explicit flush region, any atomic operation that6
modifies a shared variable and follows the flush region in the program order of its thread7
starts an associated release sequence.8

An acquire flush is associated with one or more prior atomic operations that read a shared variable9
and that may be used to establish a synchronization. The following rules determine the associated10
atomic operation that may establish a synchronization.11

• If an acquire flush is performed on exit from an atomic operation, that atomic operation is its12
associated atomic operation.13

• If an acquire flush is performed in an implicit flush region, an atomic operation that is14
provided by the implementation and that reads an internal synchronization variable is its15
associated atomic operation.16

• If an acquire flush is performed by an explicit flush region, any atomic operation that reads17
a shared variable and precedes the flush region in the program order of its thread is an18
associated atomic operation.19

The atomic scope of the internal synchronization variable that is used in implicit flush regions is the20
intersection of the thread-sets of the synchronizing flushes.21

A release flush synchronizes with an acquire flush if the following conditions are satisfied:22

• An atomic operation associated with the acquire flush reads a value written by a modification23
from a release sequence associated with the release flush; and24

• The thread that performs each flush is in both of their respective thread-sets.25

An operation X simply happens before an operation Y, that is, X precedes Y in simply26
happens-before order, if any of the following conditions are satisfied:27

1. X and Y are performed by the same thread, and X precedes Y in the program order of the28
thread;29

2. X synchronizes with Y according to the flush synchronization conditions explained above or30
according to the definition of the synchronizes with relation in the base language, if such a31
definition exists; or32

3. Another operation, Z, exists such that X simply happens before Z and Z simply happens33
before Y.34

An operation X happens before an operation Y if any of the following conditions are satisfied:35

12 OpenMP API – Version 6.0 November 2024

1. X happens before Y, as defined in the base language if such a definition exists; or1

2. X simply happens before Y.2

A variable with an initial value is treated as if the value is stored to the variable by an operation that3
happens before all operations that access or modify the variable in the program.4

1.3.6 OpenMP Memory Consistency5

The following rules guarantee an observable completion order for a given pair of memory6
operations in race-free programs, as seen by all affected threads. If both memory operations are7
strong flushes, the affected threads are all threads in both of their respective thread-sets. If exactly8
one of the memory operations is a strong flush, the affected threads are all threads in its thread-set.9
Otherwise, the affected threads are all threads.10

• If two operations performed by different threads are sequentially consistent atomic operations11
or they are strong flushes that flush the same variable, then they must be completed as if in12
some sequential order, seen by all affected threads.13

• If two operations performed by the same thread are sequentially consistent atomic operations14
or they access, modify, or, with a strong flush, flush the same variable, then they must be15
completed as if in the program order of that thread, as seen by all affected threads.16

• If two operations are performed by different threads and one happens before the other, then17
they must be completed as if in that happens-before order, as seen by all affected threads, if:18

– both operations access or modify the same variable;19

– both operations are strong flushes that flush the same variable; or20

– both operations are sequentially consistent atomic operations.21

• Any two atomic operations from different atomic regions must be completed as if in the22
same order as the strong flushes implied in their regions, as seen by all affected threads.23

The flush operation can be specified using the flush directive, and is also implied at various24
locations in an OpenMP program; see Section 17.8.6 for details.25

26

Note – Since flushes by themselves cannot prevent data races, explicit flushes are only useful in27
combination with non-sequentially consistent atomic constructs.28

29

OpenMP programs that:30

• Do not use non-sequentially consistent atomic constructs;31

• Do not rely on the accuracy of a false result from omp_test_lock and32
omp_test_nest_lock; and33

CHAPTER 1. OVERVIEW OF THE OPENMP API 13

• Correctly avoid data races as required in Section 1.3.1,1

behave as though operations on shared variables were simply interleaved in an order consistent with2
the order in which they are performed by each thread. The relaxed consistency model is invisible3
for such programs, and any explicit flushes in such programs are redundant.4

1.4 Tool Interfaces5

The OpenMP API includes two tool interfaces, OMPT and OMPD, to enable development of6
high-quality, portable, tools that support monitoring, performance, or correctness analysis and7
debugging of OpenMP programs developed using any implementation of the OpenMP API. An8
implementation of the OpenMP API may differ from the abstract execution model described by its9
specification. The ability of tools that use OMPT or OMPD to observe such differences does not10
constrain implementations of the OpenMP API in any way.11

1.4.1 OMPT12

The OMPT interface, which is intended for first-party tools, provides the following:13

• A mechanism to initialize a first-party tool;14

• Routines that enable a tool to determine the capabilities of an OpenMP implementation;15

• Routines that enable a tool to examine OpenMP state information associated with a thread;16

• Mechanisms that enable a tool to map implementation-level calling contexts back to their17
source-level representations;18

• A callback interface that enables a tool to receive notification of OpenMP events;19

• A tracing interface that enables a tool to trace activity on target devices; and20

• A runtime library routine that an OpenMP program can use to control a tool.21

OpenMP implementations may differ with respect to the thread states that they support, the mutual22
exclusion implementations that they employ, and the events for which tool callbacks are invoked.23
For some events, OpenMP implementations must guarantee that a registered callback will be24
invoked for each occurrence of the event. For other events, OpenMP implementations are permitted25
to invoke a registered callback for some or no occurrences of the event; for such events, however,26
OpenMP implementations are encouraged to invoke tool callbacks on as many occurrences of the27
event as is practical. Section 32.2.4 specifies the subset of OMPT callbacks that an OpenMP28
implementation must support for a minimal implementation of the OMPT interface.29

With the exception of the omp_control_tool routine for tool control, all other routines in the30
OMPT interface are intended for use only by tools. For that reason, OMPT includes a Fortran31
binding only for omp_control_tool; all other OMPT functionality is supported with C syntax32
only.33

14 OpenMP API – Version 6.0 November 2024

1.4.2 OMPD1

The OMPD interface is intended for third-party tools, which run as separate processes. An2
OpenMP implementation must provide an OMPD library that can be dynamically loaded and used3
by a third-party tool. A third-party tool, such as a debugger, uses the OMPD library to access4
OpenMP state of a program that has begun execution. OMPD defines the following:5

• An interface that an OMPD library exports, which a tool can use to access OpenMP state of a6
program that has begun execution;7

• A callback interface that a tool provides to the OMPD library so that the library can use it to8
access the OpenMP state of a program that has begun execution; and9

• A small number of symbols that must be defined by an OpenMP implementation to help the10
tool find the correct OMPD library to use for that OpenMP implementation and to facilitate11
notification of events.12

Chapter 38, Chapter 39, Chapter 40, Chapter 41, and Chapter 42 describe OMPD in detail.13

1.5 OpenMP Compliance14

The OpenMP API defines constructs that operate in the context of the base language that is15
supported by an implementation. If the implementation of the base language does not support a16
language construct that appears in this document, a compliant implementation is not required to17
support it, with the exception that for Fortran, the implementation must allow case insensitivity for18
directive and routine names, and it must allow identifiers of more than six characters. An19
implementation of the OpenMP API is compliant if and only if it compiles and executes all other20
conforming programs, and supports the tool interfaces, according to the syntax and semantics laid21
out in Chapters 1 through 42. All appendices as well as text designated as a note or comment (see22
Section 1.7) are for information purposes only and are not part of the specification.23

All library, intrinsic and built-in procedures provided by the base language must be thread-safe24
procedures in a compliant implementation. In addition, the implementation of the base language25
must also be thread-safe. For example, ALLOCATE and DEALLOCATE statements must be26
thread-safe in Fortran. Unsynchronized concurrent use of such procedures by different threads must27
produce correct results (although not necessarily the same as serial execution results, as in the case28
of random number generation procedures).29

Starting with Fortran 90, variables with explicit initialization have the SAVE attribute implicitly.30
This is not the case in Fortran 77. However, a compliant OpenMP Fortran implementation must31
give such a variable the SAVE attribute, regardless of the underlying base language version.32

Appendix A lists certain aspects of the OpenMP API that are implementation defined. A compliant33
implementation must define and document its behavior for each of the items in Appendix A.34

CHAPTER 1. OVERVIEW OF THE OPENMP API 15

1.6 Normative References1

• ISO/IEC 9899:1990, Information Technology - Programming Languages - C.2
This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.3

• ISO/IEC 9899:1999, Information Technology - Programming Languages - C.4
This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.5

• ISO/IEC 9899:2011, Information Technology - Programming Languages - C.6
This OpenMP API specification refers to ISO/IEC 9899:2011 as C11.7

• ISO/IEC 9899:2018, Information Technology - Programming Languages - C.8
This OpenMP API specification refers to ISO/IEC 9899:2018 as C18.9

• ISO/IEC 9899:2024, Information Technology - Programming Languages - C.10
This OpenMP API specification refers to ISO/IEC 9899:2024 as C23.11

• ISO/IEC 14882:1998, Information Technology - Programming Languages - C++.12
This OpenMP API specification refers to ISO/IEC 14882:1998 as C++98.13

• ISO/IEC 14882:2011, Information Technology - Programming Languages - C++.14
This OpenMP API specification refers to ISO/IEC 14882:2011 as C++11.15

• ISO/IEC 14882:2014, Information Technology - Programming Languages - C++.16
This OpenMP API specification refers to ISO/IEC 14882:2014 as C++14.17

• ISO/IEC 14882:2017, Information Technology - Programming Languages - C++.18
This OpenMP API specification refers to ISO/IEC 14882:2017 as C++17.19

• ISO/IEC 14882:2020, Information Technology - Programming Languages - C++.20
This OpenMP API specification refers to ISO/IEC 14882:2020 as C++20.21

• ISO/IEC 14882:2024, Information Technology - Programming Languages - C++.22
This OpenMP API specification refers to ISO/IEC 14882:2024 as C++23.23

• ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.24
This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.25

• ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.26
This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.27

• ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran.28
This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.29

• ISO/IEC 1539-1:2004, Information Technology - Programming Languages - Fortran.30
This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003.31

• ISO/IEC 1539-1:2010, Information Technology - Programming Languages - Fortran.32
This OpenMP API specification refers to ISO/IEC 1539-1:2010 as Fortran 2008.33

16 OpenMP API – Version 6.0 November 2024

• ISO/IEC 1539-1:2018, Information Technology - Programming Languages - Fortran.1
This OpenMP API specification refers to ISO/IEC 1539-1:2018 as Fortran 2018.2

• ISO/IEC 1539-1:2023, Information Technology - Programming Languages - Fortran.3
This OpenMP API specification refers to ISO/IEC 1539-1:2023 as Fortran 2023.4

• Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to the5
base language supported by the implementation.6

1.7 Organization of this Document7

The remainder of this document is structured as normative chapters that define the directives,8
including their syntax and semantics, the routines and the tool interfaces that comprise the OpenMP9
API. The document also includes appendices that facilitate maintaining a compliant10
implementation of the API.11

Some sections of this document only apply to programs written in a certain base language. Text that12
applies only to programs for which the base language is C or C++ is shown as follows:13

C / C++
C/C++ specific text...14

C / C++
Text that applies only to programs for which the base language is C only is shown as follows:15

C
C specific text...16

C
Text that applies only to programs for which the base language is C++ only is shown as follows:17

C++
C++ specific text...18

C++
Text that applies only to programs for which the base language is Fortran is shown as follows:19

Fortran
Fortran specific text...20

Fortran
Text that applies only to programs for which the base language is Fortran or C++ is shown as21
follows:22

Fortran / C++
Fortran/C++ specific text...23

Fortran / C++

CHAPTER 1. OVERVIEW OF THE OPENMP API 17

Where an entire page consists of base language specific text, a marker is shown at the top of the1
page. For Fortran-specific text, the marker is:2

Fortran (cont.)

For C/C++-specific text, the marker is:3

C/C++ (cont.)

Some text is for information only, and is not part of the normative specification. Such text is4
designated as a note or comment, like this:5

6

Note – Non-normative text...7
8

COMMENT: Non-normative text...9

18 OpenMP API – Version 6.0 November 2024

2 Glossary1

A | B | C | D | E | F | G | H | I | L | M | N | O | P | R | S | T | U | V | W | Z2

A3

abstract name4

A conceptual abstract name or a numeric abstract name. 128, 34, 77, 128, 131, 134, 886, 8975

accessible device6

The host device or any non-host device accessible for execution. 119, 139–141, 3607

accessible storage8

A storage block that may be accessed by a given thread. 285, 6069

acquire flush10

A flush that has the acquire flush property. 10, 11, 12, 92, 101, 496, 499, 501–50411

acquire flush property12

A flush with the acquire flush property orders memory operations that follow the flush after13
memory operations performed by a different thread that synchronizes with it. 19, 52, 49914

active level15

An active parallel region that encloses a given region at some point in the execution of an16
OpenMP program. The number of active levels is the number of active parallel regions that17
encloses the given region. 19, 75, 100, 129, 130, 133, 576, 886, 892, 91118

active parallel region19

A parallel region comprised of implicit tasks that are being executed by a team to which20
multiple threads are assigned. 19, 105, 115, 116, 132, 216, 217, 571, 576, 577, 579, 580,21
885, 888, 915, 91622

active target region23

A target region that is executed on a device other than the device that encountered the24
target construct. 12425

address range26

The addresses of a contiguous set of storage locations. 51, 70, 99, 60627

CHAPTER 2. GLOSSARY 19

address space1

A collection of logical, virtual, or physical memory address ranges that contain code, stack,2
and/or data. Address ranges within an address space need not be contiguous. An address3
space consists of one or more segments. 20, 52, 80, 95, 109, 145, 146, 359, 606, 699, 700,4
820, 831, 836, 838, 839, 841–843, 846, 849, 850, 852, 853, 855, 870, 872, 8745

address space context6

A tool context that refers to an address space within an OpenMP process. 8207

address space handle8

A handle that refers to an address space within an OpenMP process. 828, 849–851, 857, 8689

affected iteration10

A logical iteration of the affected loops of a loop-nest-associated directive. 60, 94, 97, 38211

affected loop12

A loop from a canonical loop nest, or a DO CONCURRENT loop in Fortran, that is affected by13
a given loop-nest-associated directive. 203, 4, 20, 62, 67, 68, 108, 113, 154, 203–205, 211,14
212, 226, 230, 231, 233, 234, 253, 259, 267, 268, 371, 372, 378–381, 424, 91015

affected loop nest16

The subset of canonical loop nests of an associated loop sequence that are selected by the17
looprange clause. 207, 35, 92, 205, 371, 37518

aggregate variable19

A variable, such as an array or structure, composed of other variables. For Fortran, a variable20
of character type is considered an aggregate variable. 8, 20, 40, 112, 164, 217, 223, 292, 445,21
88522

aligned-memory-allocating routine23

A memory-management routine that has the aligned-memory-allocating-routine property.24
654, 655, 657, 65925

aligned-memory-allocating-routine property26

The property that a memory-allocating routine ensures the allocated memory is aligned with27
respect to an alignment argument. 654, 20, 657, 65928

all-constituents property29

The property that a clause applies to all leaf constructs that permit it when the clause appears30
on a compound directive. 159, 160, 52831

20 OpenMP API – Version 6.0 November 2024

all-contention-group-tasks binding property1

The binding property that the binding task set is all tasks in the contention group. 534,2
664–671, 673–6763

all-data-environments clause4

A clause that has the all-data-environments property. 73, 236, 2385

all-data-environments property6

The property that a data-sharing attribute clause affects any data environment for which it is7
specified, including minimal data environments. 21, 236, 238, 2578

all-device-tasks binding property9

The binding property that the binding task set is all tasks on a specified device. 69010

all-device-threads binding property11

The binding property that the binding thread set is all threads on the current device. The12
effect of executing a construct or a routine with this property is not related to any specific13
region that corresponds to any other construct or routine. 534, 586, 594, 630–636, 638–644,14
646–651, 679, 680, 791, 79215

allocator16

A memory allocator. 21, 143, 144, 305–312, 315, 316, 358, 463, 545, 547, 555, 558,17
638–640, 645, 647, 652–655, 662, 888, 899, 900, 904, 90518

allocator structured block19

A context-specific structured block that may be associated with an allocators directive.20
187, 31521

allocator trait22

A trait of an allocator. 144, 305, 307, 308, 311, 313, 547, 549, 552, 638, 645, 888, 899, 900,23
91024

all-privatizing property25

The property that a clause, when it appears on a combined construct or a composite26
construct, applies to all constituent constructs to which it applies for which a data-sharing27
attribute clause may create a private copy of the same list item. 159, 312, 52828

all tasks29

All tasks participating in the OpenMP program or in a specified limiting context. 21, 28, 251,30
301, 306, 535, 69031

all-tasks binding property32

The binding property that the binding task set is all tasks. 690, 689, 69033

CHAPTER 2. GLOSSARY 21

all threads1

All OpenMP threads participating in the OpenMP program. A specific usage of the term may2
be explicitly limited to a limiting context, such as all threads on a given device or an OpenMP3
thread pool. 8, 13, 21, 22, 28, 231, 494, 535, 630, 691, 791–7934

all-threads binding property5

The binding property that the binding thread set is all threads. The effect of executing a6
construct or a routine with this property is not related to any specific region that corresponds7
to any other construct or routine. 5348

ancestor thread9

For a given thread, its parent thread or one of the ancestor threads of its parent thread. 22,10
578, 579, 589, 902, 91611

antecedent task12

A task that must complete before its dependent tasks can be executed. 507, 42, 51, 59, 86,13
103, 503, 507, 509, 76214

argument list15

A list that is used as an argument of a directive, clause, or modifier. 158, 46, 47, 51, 63, 65,16
80, 83, 86, 87, 108, 112, 159, 162, 163, 210, 218, 219, 269, 27017

array base18

The base array of a given array section or array element, if it exists; otherwise, the base19
pointer of the array section or array element.20

COMMENT: For the array section (*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n],21
where identifiers pi have a pointer type declaration and identifiers xi have an array22
type declaration, the array base is: (*p0).x0[k1].p1->p2[k2].x1[k3].x2.23

More examples for C/C++:24

• The array base for x[i] and for x[i:n] is x, if x is an array or pointer.25

• The array base for x[5][i] and for x[5][i:n] is x, if x is a pointer to an array or26
x is 2-dimensional array.27

• The array base for y[5][i] and for y[5][i:n] is y[5], if y is an array of pointers28
or y is a pointer to a pointer.29

Examples for Fortran:30

• The array base for x(i) and for x(i:j) is x.31

22, 167, 168, 237, 239, 247, 277, 281, 28232

22 OpenMP API – Version 6.0 November 2024

array element1

A single member of an array as defined by the base language. 23, 241, 247, 259, 269, 270,2
276, 281, 286, 295, 2963

array item4

An array, an array section, or an array element. 5295

array section6

A designated subset of the elements of an array that is specified using a subscript notation7
that can select more than one array element. 22–24, 26, 27, 36, 37, 39, 74, 97, 112, 114, 140,8
163, 166–168, 221, 236–239, 241, 243, 244, 247, 259, 269, 270, 280, 281, 283, 286, 288,9
294, 295, 395, 444, 508, 509, 529, 898, 906, 909, 911, 912, 91410

array shaping11

A mechanism that reinterprets the region of memory to which an expression that has a type12
of pointer to T as an n-dimensional array of type T. 95, 90913

assignable OpenMP type instance14

An instance of an OpenMP type to which an assignment can be performed. 183, 18315

assigned list item16

A list item to which assignment is performed as the result of a data-motion clause. 296, 29817

assigned thread18

A thread that has been assigned an implicit task of a parallel region. 3, 4, 87, 104, 106, 390,19
391, 414, 56920

assigning map type21

A map-type for which the mapping operations may include an assignment operation. 27522

associated device23

The associated device of a memory allocator is the device that is specified when the memory24
allocator is created. If the associated memory space is a predefined memory space, the25
associated device is the current device. 7, 2326

associated loop nest27

The associated canonical loop nest, or DO CONCURRENT loop in Fortran, of a28
loop-nest-associated directive. 67, 68, 203, 206, 207, 371, 37429

associated loop sequence30

The associated canonical loop sequence of a loop-sequence-associated directive. 20, 207, 37131

CHAPTER 2. GLOSSARY 23

associated memory space1

The associated memory space of a memory allocator is the memory space that is specified2
when the memory allocator is created. 23, 24, 71, 305, 3083

assumed-size array4

For C/C++, an array section for which the length is absent and the size of the dimensions is5
not known. For Fortran, an assumed-size array in the base language. 24, 71, 114, 166, 168,6
198, 212, 213, 222, 236, 238, 275, 280, 281, 286, 287, 535, 899, 9157

assumption directive8

A directive that provides invariants that specify additional information about the expected9
properties of the program that can optionally be used for optimization. 24, 362, 365, 904, 90610

assumption scope11

The scope for which the invariants specified by an assumption directive must hold. 362–36912

asynchronous device routine13

A routine that has the asynchronous-device routine property. 505, 603, 604, 616, 618, 62114

asynchronous-device routine property15

The property of a device routine that it performs its operation asynchronously. 24, 604, 615,16
617, 62017

async signal safe18

The guarantee that interruption by signal delivery will not interfere with a set of operations.19
An async signal safe runtime entry point is safe to call from a signal handler. 24, 744, 777,20
78621

async-signal-safe entry point22

An entry point that has the async-signal-safe property. 78623

async-signal-safe property24

The property of a routine or entry point that it is async signal safe. 7, 24, 786, 791–795, 797,25
799–80126

atomic captured update27

An atomic update operation that is specified by an atomic construct on which the28
capture clause is present. 111, 193, 491, 495, 91429

atomic conditional update30

An atomic update operation that is specified by an atomic construct on which the31
compare clause is present. 34, 35, 191, 491, 492, 495–497, 90732

24 OpenMP API – Version 6.0 November 2024

atomic operation1

An operation that is specified by an atomic construct or is implicitly performed by the2
OpenMP implementation and that atomically accesses and/or modifies a specific storage3
location. 8, 11–13, 25, 89, 92, 95, 283, 284, 308, 472, 496, 497, 502, 9074

atomic read5

An atomic operation that is specified by an atomic construct on which the read clause is6
present. 89, 190, 488, 4957

atomic scope8

The set of threads that may concurrently access or modify a given storage location with9
atomic operations, where at least one of the operations modifies the storage location. 8, 12,10
308, 49411

atomic structured block12

A context-specific structured block that may be associated with an atomic directive. 188,13
30, 89, 111, 114, 188, 193, 494–496, 89814

atomic update15

An atomic operation that is specified by an atomic construct on which the update clause16
is present. 24, 89, 111, 190, 489, 491, 495–497, 91417

atomic write18

An atomic operation that is specified by an atomic construct on which the write clause is19
present. 114, 190, 490, 49520

attached pointer21

A pointer variable or referring pointer in a device data environment that, as a result of a22
mapping operation, points to a given data entity that also exists in the device data23
environment. 85, 284, 287, 288, 296, 46324

attach-ineligible25

An attribute of a pointer for which pointer attachment may not be performed. 28226

automatic storage duration27

For C/C++, the lifetime of a variable or object with automatic storage duration, as defined by28
the base language. For Fortran, the lifetime of a variable, including implied-do, FORALL,29
and DO CONCURRENT indices, that is neither a variable that has static storage duration nor a30
dummy argument without the VALUE attribute. For referencing variables, this refers to the31
lifetime of the referring pointer unless explicitly specified otherwise. 211, 214, 22032

CHAPTER 2. GLOSSARY 25

available device1

An available non-host device or, where explicitly specified, the host device. 139, 141, 319,2
634, 652, 6903

available non-host device4

A non-host device that can be used for the current OpenMP program execution. 26, 1395

B6

barrier7

A point in the execution of a program encountered by a team, beyond which no thread in the8
team may execute until all threads in the team have reached the barrier and all explicit tasks9
generated for execution by the team have executed to completion. If cancellation has been10
requested, threads may proceed to the end of the canceled region even if some threads in the11
team have not reached the barrier. 4, 6, 26, 50, 58, 273, 385, 402, 404–407, 409, 414, 448,12
475–477, 482, 496, 500–502, 521, 590, 689, 704, 733, 763, 764, 902, 91713

base address14

If a data entity has a base pointer, the address of the first storage location of the implicit array15
of its base pointer; otherwise, if the data entity has a referenced pointee, the address of the16
first storage location of its referenced pointee; otherwise, if the data entity has a base17
variable, the address of the first storage location of its base variable; otherwise, the address of18
the first storage location of the data entity. 51, 236, 239, 281, 61019

base array20

For C/C++, a containing array of a given lvalue expression or array section that does not21
appear in the expression of any of its other containing arrays. For Fortran, a containing array22
of a given variable or array section that does not appear in the designator of any of its other23
containing arrays.24

COMMENT: For the array section (*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n],25
where identifiers pi have a pointer type declaration and identifiers xi have an array26
type declaration, the base array is: (*p0).x0[k1].p1->p2[k2].x1[k3].x2.27

22, 26, 52928

base function29

A procedure that is declared and defined in the base language. 41, 54, 92, 113, 322, 328–333,30
335, 336, 88931

base language32

A programming language that serves as the foundation of the OpenMP specification.33
Section 1.6 lists the current base languages for the OpenMP API. 2, 3, 6, 8, 12, 13, 15, 17,34
18, 23–27, 29, 38, 39, 41, 42, 46, 48, 51, 53, 54, 56, 81, 86–88, 93, 94, 98, 100, 101, 109,35

26 OpenMP API – Version 6.0 November 2024

148, 151–153, 155, 156, 162–164, 166, 167, 169, 183–185, 189, 195, 196, 201, 203, 215,1
221, 239, 240, 242, 247, 249, 259, 261, 264, 278, 281, 293, 294, 308, 309, 311, 315, 316,2
331, 335, 337, 362, 411, 495, 516, 533, 535, 564, 885, 904, 905, 9093

base language thread4

A thread of execution that defines a single flow of control within the program and that may5
execute concurrently with other base language threads, as specified by the base language. 6,6
277

base pointer8

For C/C++, an lvalue pointer expression that is used by a given lvalue expression or array9
section to refer indirectly to its storage, where the lvalue expression or array section is part of10
the implicit array for that lvalue pointer expression. For Fortran, a data pointer that appears11
last in the designator for a given variable or array section, where the variable or array section12
is part of the pointer target for that data pointer.13

COMMENT: For the array section (*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n],14
where identifiers pi have a pointer type declaration and identifiers xi have an array15
type declaration, the base pointer is: (*p0).x0[k1].p1->p2.16

22, 26–28, 38, 74, 211, 212, 239, 259, 282–287, 328, 436, 437, 461, 462, 528, 52917

base program18

A program written in a base language. 2, 8019

base referencing variable20

For C++, a referencing variable that is used by a given lvalue expression or array section to21
refer indirectly to its storage, where the lvalue expression or array section is part of the22
referenced pointee of the referencing variable. For Fortran, a referencing variable that23
appears last in the designator for a given variable or array section, where the variable or array24
section is part of the referenced pointee of the referencing variable. 212, 46125

base variable26

For a given data entity that is a variable or array section, a variable denoted by a base27
language identifier that is either the data entity or is a containing array or containing structure28
of the data entity.29

COMMENT:30

Examples for C/C++:31

• The data entities x, x[i], x[:n], x[i].y[j] and x[i].y[:n], where x and y have32
array type declarations, all have the base variable x.33

• The lvalue expressions and array sections p[i], p[:n], p[i].y[j] and p[i].y[:n],34
where p has a pointer type and p[i].y has an array type, has a base pointer p35

CHAPTER 2. GLOSSARY 27

but does not have a base variable.1

Examples for Fortran:2

• The data objects x, x(i), x(:n), x(i)%y(j) and x(i)%y(:n), where x and y are3
arrays, all have the base variable x.4

• The data objects p(i), p(:n), p(i)%y(j) and p(i)%y(:n), where p is a pointer5
and p(i)%y is an array, has a base pointer p but does not have a base variable.6

• For the associated pointer p, p is both its base variable and base pointer.7

26–28, 217, 276, 287, 436, 437, 462, 463, 528, 5298

binding implicit task9

The implicit task of the current team assigned to the encountering thread. 28, 57, 124, 389,10
652–65411

binding-implicit-task binding property12

The binding property that the binding task set is the binding implicit task. 652, 65313

binding property14

A property of a construct or a routine that determines the binding region, binding task set15
and/or binding thread set. 21, 22, 28, 49, 54, 53516

binding region17

The enclosing region that determines the execution context and limits the scope of the effects18
of the bound region is called the binding region. The binding region is not defined for regions19
for which the binding thread set is all threads or the encountering thread, nor is it defined for20
regions for which the binding task set is all tasks. 4, 28, 82, 205, 412, 423, 425, 475, 513,21
514, 516, 520, 524, 535, 683, 685, 880, 881, 883, 893, 91822

binding task set23

The set of tasks that are affected by, or provide the context for, the execution of a region. The24
binding task set for a given region can be all tasks, the current team tasks, all tasks in the25
contention group, all tasks of the current team that are generated in the region, the binding26
implicit task, or the generating task. 21, 28, 54, 121, 338, 435, 454, 456, 458, 461, 465, 468,27
478, 482, 535, 603, 652, 653, 690, 786, 880–88328

binding thread set29

The set of threads that are affected by, or provide the context for, the execution of a region.30
The binding thread set for a given region can be all threads on a specified set of devices, all31
threads that are executing tasks in a contention group, all primary threads that are executing32
the initial tasks of an enclosing teams region, the current team, or the encountering thread.33
5, 21, 22, 28, 49, 82, 84, 92, 107, 113, 205, 229, 231, 384, 394, 398, 399, 402, 404–407, 409,34

28 OpenMP API – Version 6.0 November 2024

412–414, 420, 423–426, 429, 430, 435, 439, 446, 473, 475, 479, 482, 494–496, 498, 505,1
514, 515, 520, 521, 524, 535, 630, 683, 685, 786, 791–793, 893, 901, 9022

block-associated directive3

A directive for which its associated base language code is a structured block. 153, 37, 82,4
151–155, 186, 315, 337, 369, 384, 394, 402, 405–407, 409, 412, 426, 435, 458, 460, 473,5
478, 494, 5156

bounds-independent loop7

For a structured block sequence, an enclosed canonical loop nest where none of its loops8
have loop bounds that depend on the execution of a preceding executable statement in the9
sequence. 20210

C11

callback12

A tool callback. xxvii, 14, 15, 29, 33, 45, 46, 72–74, 77–79, 81, 83, 85, 91, 101, 110, 250,13
286, 346, 352, 386, 395, 403, 405–409, 411, 413, 415, 421, 427, 431, 446, 447, 449, 453,14
455, 457, 459, 462, 466, 474–478, 480, 497, 500, 509, 513, 515, 516, 522, 590, 603, 604,15
607, 609–611, 613–616, 618–621, 664–669, 671–675, 677, 695, 697, 698, 700, 701,16
703–707, 720, 725, 730, 731, 737, 744–781, 783–787, 789, 790, 802, 803, 805–808, 810,17
812, 816, 817, 821, 822, 826, 833–844, 846, 848, 851, 853, 870, 872, 874, 876, 894–896,18
903, 90819

callback dispatch20

The processing of a registered callback when an associated event occurs, in a manner21
consistent with the return code provided when a first-party tool registered the callback. 29,22
729, 80723

callback registration24

A process that makes a tool callback available to an OpenMP implementation to enable25
callback dispatch. 91, 700, 701, 70326

canceled taskgroup set27

A taskgroup set that has been canceled. 521, 52128

cancellable construct29

A construct that has the cancellable property. 519, 520, 52430

cancellable property31

The property that a construct may be subject to cancellation. 519, 29, 384, 407, 416, 417, 47832

CHAPTER 2. GLOSSARY 29

cancellation1

An action that cancels (that is, aborts) a region and causes the execution of implicit tasks or2
explicit tasks to proceed to the end of the canceled region. 521, 5, 6, 26, 29, 30, 139, 404,3
475, 476, 501, 504, 519–524, 688, 759, 9134

cancellation point5

A point at which implicit tasks and explicit tasks check if cancellation has been activated. If6
cancellation has been activated, they perform the cancellation. 520, 5, 6, 111, 116, 139, 449,7
475, 476, 501, 504, 521–524, 7418

candidate9

A replacement candidate. 324, 32910

canonical frame address11

An address associated with a procedure frame on a call stack that was the value of the stack12
pointer immediately prior to calling the procedure for which the frame represents the13
invocation. 72114

canonical loop nest15

A loop nest that complies with the rules and restrictions defined in Section 6.4.1. 196, 20, 23,16
29, 30, 54, 66–68, 76, 153, 197, 201–203, 206, 207, 230, 267, 370, 371, 374, 375, 379, 380,17
382, 419, 531, 901, 90918

canonical loop sequence19

A sequence of canonical loop nests that complies with the rules and restrictions defined in20
Section 6.4.2. 202, 23, 54, 67, 68, 153, 197, 203, 208, 371, 372, 378, 898, 90021

capture structured block22

An atomic structured block that may be associated with an atomic directive that expresses23
capture semantics. 192, 19224

C/C++-only property25

The property that an OpenMP feature is only supported in C/C++. 536, 708–711, 714–732,26
734–743, 745–753, 755–757, 759–764, 766–770, 772–777, 780, 782, 784, 786–795, 797,27
799–801, 803–814, 819, 820, 822–83228

C/C++ pointer property29

The property that a routine argument has a pointer type in C/C++ but is an array in Fortran.30
535, 554, 556, 574, 638–642, 644, 664–671, 673–676, 69431

child task32

A task is a child task of its generating task region. The region of a child task is not part of its33
generating task region, unless the child task is an included task. 30, 42, 51, 59, 96, 103, 108,34

30 OpenMP API – Version 6.0 November 2024

479, 502, 507, 508, 511, 5591

chunk2

A contiguous non-empty subset of the collapsed iterations of a loop-collapsing construct. 94,3
134, 414, 418, 419, 421, 422, 429, 531, 574, 719, 754, 8944

class type5

For C++, the type of any variable declared with one of the class, struct, or union6
keywords. 217, 220, 222, 228–231, 244, 249, 254, 258, 271–274, 285, 287, 4637

clause8

A mechanism to specify customized directive behavior. xxvii, 4–6, 8, 9, 20–22, 24, 25,9
31–33, 35, 39–50, 52, 54, 55, 57, 61, 68–71, 73, 76, 77, 79–82, 86, 87, 90–95, 101, 103, 109,10
110, 116, 119, 122, 124–127, 129, 132, 143, 148–153, 157–165, 168–171, 174, 179, 181,11
182, 203, 204, 206–208, 210–217, 220–231, 233–240, 244, 247–249, 251–254, 256–296,12
298–301, 303, 304, 309–319, 321, 322, 324–367, 370–376, 378–380, 382, 383, 385,13
387–389, 393–399, 401–407, 409, 414, 418–427, 429, 430, 432–445, 450–459, 461–464,14
466, 468–472, 474, 479–502, 504–519, 521–523, 528–531, 534, 535, 561, 568, 570, 583,15
586, 590, 599, 600, 604, 607, 608, 610, 645, 646, 652, 653, 655, 678, 715, 716, 741, 748,16
760, 761, 783, 888–891, 897–902, 904–907, 909–914, 916–91817

clause set18

A set of clauses for which restrictions on their use or other properties of their use on a given19
directive are specified. 160, 31, 33, 50, 92, 110, 160, 161, 210, 356, 363, 43020

clause group21

A clause set for which restrictions or properties related to their use on all directives are22
specified. 157, 160, 343, 356, 363, 484, 488, 490, 517, 519, 90023

clause-list trait24

A trait that is defined with properties that match the clauses that may be specified for a given25
directive. 318, 319, 32126

closely nested construct27

A construct nested inside another construct with no other construct nested between them.28
411, 413, 425, 522, 52429

closely nested region30

A region nested inside another region with no parallel region nested between them. 84, 257,31
404, 425, 522, 524, 91532

CHAPTER 2. GLOSSARY 31

code block1

A contiguous region of memory that contains code of an OpenMP program to be executed on2
a device. 4533

collapsed iteration space4

The logical iteration space of the collapsed loops of a loop-collapsing construct. 204, 264,5
267, 401, 415, 418, 421, 4226

collapsed iteration7

A logical iteration of the collapsed loops of a loop-collapsing construct. 31, 32, 35, 60, 67,8
94, 113, 205, 220, 233, 234, 244, 258, 267, 268, 398, 399, 402, 404, 414, 418–423, 429, 502,9
516, 531, 753, 75410

collapsed logical iteration11

A collapsed iteration. 204, 22012

collapsed loop13

For a loop-collapsing construct, a loop that is affected by the collapse clause. 4, 32, 67,14
104, 204, 205, 220, 233, 264, 400, 414, 419, 420, 423, 424, 433, 434, 516, 888, 90115

collective step expression16

An expression in terms of a step expression and a collector that eliminates recursive17
calculation in an induction operation. 60, 32, 24418

collector19

A binary operator used to eliminate recursion in an induction operation. 60, 32, 26620

collector expression21

An OpenMP stylized expression that evaluates to the value of the collective step expression22
of a collapsed iteration. 244, 60, 244, 246, 264, 26623

combined construct24

A construct that is a shortcut for specifying one construct immediately nested inside a leaf25
construct. 530, 21, 32, 34, 526, 911, 91226

combined directive27

A compound directive that is used to form a combined construct. 32, 34, 52528

combined-directive name29

The name of a combined directive. 52530

combiner31

A binary operator used by a reduction operation. 249, 90, 183, 252, 25332

32 OpenMP API – Version 6.0 November 2024

combiner expression1

An OpenMP stylized expression that specifies how a reduction combines partial results into a2
single value. 240, 90, 240, 241, 248, 251, 260–262, 267, 8963

common-field property4

The property that a field has a name that is used in more than one OpenMP type, or in more5
than one OMPD type, or in more than one OMPT type. 726, 7276

common-type-callback property7

The property that a callback has a type that at least one other callback has. 763, 764,8
766–768, 838, 8439

compatible context selector10

A context selector that matches the OpenMP context in which a directive is encountered.11
323, 323–325, 32912

compatible map type13

A map-type that is consistent with the data-motion attribute of a given data-motion clause.14
295, 29815

compatible property16

The property that a clause, an argument, a modifier, or a clause set does not have the17
exclusive property. 15918

compilation unit19

For C/C++, a translation unit. For Fortran, a program unit. 9, 44, 154, 218, 219, 289, 302,20
311, 312, 314, 352, 355–357, 361, 368, 463, 608, 645, 646, 65521

compile-time error termination22

Error termination that is performed during compilation. 6, 356, 389, 89023

complete tile24

A tile that has
∏

k sk logical iterations, where sk are the list items of the sizes clause on25
the construct. 381, 8426

complex modifier27

A modifier that may take at least one argument when it is specified. 158, 33, 158, 161, 16928

complex property29

The property that a modifier is a complex modifier. 180, 47030

CHAPTER 2. GLOSSARY 33

compliant implementation1

An implementation of the OpenMP specification that compiles and executes any conforming2
program as defined by the specification. A compliant implementation may exhibit3
unspecified behavior when compiling or executing a non-conforming program. 15, 2, 5, 15,4
17, 34, 42, 57, 110, 135, 136, 148, 419, 496, 533, 663, 697, 787, 816, 817, 8915

composite construct6

A construct that is a shortcut for composing a series or nesting of multiple constructs, but that7
does not have the semantics of a combined construct. 21, 267, 275, 531, 899, 9028

composite directive9

A directive that is composed of two (or more) directives but does not have identical10
semantics to specifying one of the directives immediately nested inside the other. A11
composite directive either adds semantics not included in the directives from which it is12
composed or provides an effective nesting of one directive inside the other that would13
otherwise be non-conforming. If the composite directive adds semantics not included in its14
constituent directives, the effects of the constituent directives may occur either as a nesting of15
the directives or as a sequence of the directives. 34, 458, 526, 52716

composite-directive name17

The directive name of a composite directive. 525, 526, 52718

compound construct19

A construct that corresponds to a compound directive. 34, 61, 79, 82, 96, 174, 179, 254, 318,20
516, 527–531, 898, 913, 918, 91921

compound directive22

A combined directive or a composite directive. 20, 32, 34, 35, 64, 160, 525, 52823

compound-directive name24

The directive name of a compound directive. 525, 46, 525, 527, 902, 91925

compound target construct26

A compound construct for which target is a constituent construct. 276, 277, 52927

conceptual abstract name28

An abstract name that refers to an implementation defined abstraction that is relevant to the29
execution model described by this specification. 128, 19, 77, 85, 12830

conditional-update-capture structured block31

An update structured block that may be associated with an atomic directive that expresses32
an atomic conditional update operation with capture semantics. 192, 192, 193, 49733

34 OpenMP API – Version 6.0 November 2024

conditional-update structured block1

An update structured block that may be associated with an atomic directive that expresses2
an atomic conditional update operation. 191, 191, 192, 4973

conforming device number4

A device number that may be used in a conforming program. 7, 141, 305, 321, 322, 452, 547,5
592, 599–603, 631, 647, 6906

conforming program7

An OpenMP program that follows all rules and restrictions of the OpenMP specification. 2,8
15, 34, 35, 76, 79, 110, 324, 371, 4199

C-only property10

The property that an OpenMP feature is only supported in C. 697, 712, 820, 825, 827, 828,11
834, 835, 837–849, 851–869, 871–873, 875–87712

consistent schedules13

The loop schedules of two affected loop nests are consistent if for each assignment of a thread14
to a collapsed iteration that results from the schedule of one loop nest, the behavior is as if15
the same thread is assigned to the corresponding collapsed iteration of the other loop nest.16
205, 35, 205, 40417

constant property18

The property that an expression, including one that is used as the argument of a clause, a19
modifier or a routine, is a compile-time constant. 161, 53, 93, 151, 160, 162, 163, 181–183,20
204, 206, 207, 270, 304, 309, 311, 313, 317, 321, 322, 343, 344, 350, 354, 357–362,21
365–367, 373, 376, 379, 382, 383, 401, 439, 440, 443, 484–492, 517–519, 534, 90022

constituent construct23

For a given construct, a construct that corresponds to one of the constituent directives of the24
executable directive. 21, 34, 79, 96, 174, 179, 254, 363, 515, 527–529, 90225

constituent directive26

For a given directive and its set of leaf directives, a leaf directive in the set or a compound27
directive that is a shortcut for composing two or more members of that set for which the28
directive names are consecutively listed. 34, 35, 160, 174, 275, 458, 459, 528, 531, 89829

constituent-directive name30

The directive name of a constituent directive. 525, 525, 531, 91931

construct32

An executable directive, its paired end directive (if any), and the associated structured block33
(if any), not including the code in any called procedures. That is, the lexical extent of an34

CHAPTER 2. GLOSSARY 35

executable directive. 2–7, 15, 19, 21, 22, 24, 25, 28, 29, 31–37, 40, 42, 43, 45, 46, 48–59, 61,1
63, 64, 68, 69, 74–77, 79, 81–84, 86, 87, 90–97, 99–101, 103–107, 110, 111, 113, 114, 116,2
117, 120, 122, 124, 125, 132–134, 139, 149, 150, 152, 155, 156, 161, 164, 169, 171, 174,3
179, 181–183, 192, 193, 201, 204, 205, 207, 210–214, 216, 217, 219–231, 233, 235–238,4
240, 248, 250–254, 257, 259, 264, 267, 268, 273–277, 280–287, 292, 295, 309, 310, 313,5
315–318, 328, 332, 334, 338–342, 357–359, 363, 364, 366, 373, 375, 377–382, 384–386,6
388, 394–399, 402–413, 416–427, 429–431, 433–437, 439–445, 449–459, 461–466, 468,7
469, 472–476, 478–480, 482–506, 508, 509, 511–517, 519–525, 527–531, 561, 583–585,8
601–603, 692, 698, 705, 706, 719, 725, 733, 734, 741, 745, 748, 753, 757–761, 770, 772,9
783, 828, 829, 880, 881, 889–891, 898–902, 904–907, 909–91910

construct selector set11

A selector set that may match the construct trait set. 321, 318, 321–323, 329, 33012

construct trait set13

The trait set that, at a given point in an OpenMP program, consists of all enclosing constructs14
up to an enclosing target construct. 318, 36, 37, 318, 319, 321, 323, 34115

containing array16

For C/C++, a non-subscripted array (a containing array) to which a series of zero or more17
array subscript operators and, when specified, dot (i.e., ’.’) operators are applied to yield a18
given lvalue expression or array section for which storage is contained by the array. For19
Fortran, an array (a containing array) without the POINTER attribute and without a subscript20
list to which a series of zero or more array subscript selectors and, when specified,21
component selectors are applied to yield a given variable or array section for which storage is22
contained by the array.23

COMMENT: An array is a containing array of itself. For the array section24
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a pointer25
type declaration and identifiers xi have an array type declaration, the containing26
arrays are: (*p0).x0[k1].p1->p2[k2].x1 and (*p0).x0[k1].p1->p2[k2].x1[k3].x2.27

26, 27, 36, 165, 283, 28628

containing structure29

For C/C++, a structure to which a series of zero or more . (dot) operators and/or array30
subscript operators are applied to yield a given lvalue expression or array section for which31
storage is contained by the structure. For Fortran, a structure to which a series of zero or32
more component selectors and/or array subscript selectors are applied to yield a given33
variable or array section for which storage is contained by the structure.34

COMMENT: A structure is a containing structure of itself. For C/C++, a structure35
pointer p to which the -> operator applies is equivalent to the application of a .36
(dot) operator to (*p) for the purposes of determining containing structures.37

36 OpenMP API – Version 6.0 November 2024

For the array section (*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers1
pi have a pointer type declaration and identifiers xi have an array type declaration,2
the containing structures are: *(*p0).x0[k1].p1, (*(*p0).x0[k1].p1).p2[k2] and3
(*(*p0).x0[k1].p1).p2[k2].x1[k3]4

27, 36, 37, 212, 279, 282, 283, 286, 2875

contention group6

All implicit tasks and their descendent tasks that are generated in an implicit parallel region,7
R, and in all nested regions for which R is the innermost enclosing implicit parallel region.8
3–6, 21, 28, 64, 81, 94, 100, 116, 117, 130, 134, 141, 301, 306, 360, 387, 393, 453, 473, 494,9
534, 535, 571, 584, 585, 601, 602, 663, 891, 899, 90710

context-matching construct11

A construct that has the context-matching property. 32112

context-matching property13

The property that a directive adds a trait of the same name to the construct trait set of the14
current OpenMP context. 37, 337, 384, 394, 399, 416, 417, 46015

context selector16

The specification of traits that a directive variant or function variant requires in the current17
OpenMP context in order for that variant to be selected. 320, 33, 48, 98, 320–325, 328, 329,18
331, 335–337, 355, 889, 90619

context-specific structured block20

Structured blocks that conform to specific syntactic forms and restrictions that are required21
for certain block-associated directives. 186, 21, 25, 54, 187, 18822

core23

A physically indivisible hardware execution unit on a device onto which one or more24
hardware threads may be mapped via distinct execution contexts. 63, 76, 98, 128, 72625

corresponding list item26

For a privatization clause, a new list item that derives from an original list item. For a27
data-mapping attribute clause, a list item in a device data environment that corresponds to an28
original list item. 68, 69, 231, 238, 239, 273, 280, 282–289, 295, 296, 298, 316, 346, 361,29
461, 466, 610, 89930

corresponding pointer31

For a given pointer variable or a given referring pointer, the corresponding variable or handle32
that exists in a device data environment. 82, 284, 287, 28833

CHAPTER 2. GLOSSARY 37

corresponding pointer initialization1

For a given data entity that has a base pointer or referring pointer, an assignment to the base2
pointer or referring pointer such that any lexical reference to the data entity or a subobject of3
the data entity in a target region refers to its corresponding data entity or subobject in the4
device data environment. 284, 4615

corresponding storage6

For a given storage block, its corresponding storage block. For a given mapped variable, the7
corresponding storage of its original storage block. 38, 70, 84, 95, 236, 275, 281, 282,8
284–287, 296, 463, 605, 739, 8919

corresponding storage block10

A storage block that contains the storage of one or more variables in a device data11
environment that corresponds to mapped variables in an original storage block. 8, 9, 38, 69,12
283, 28413

C pointer14

For C/C++, a base language pointer variable. For Fortran, a variable of type C_PTR. 45, 111,15
23616

current device17

The device on which the current task is executing. 8, 10, 21, 23, 45, 57, 72, 102, 145, 319,18
435, 451, 535, 577, 580, 583, 630, 647, 654, 655, 683–685, 789, 80019

current task20

For a given thread, the task corresponding to the task region that it is executing. 38, 49, 57,21
280, 305, 332, 478, 479, 568, 570–573, 576, 577, 580, 589, 592, 593, 598, 67822

current task region23

The region that corresponds to the current task. 5, 104, 399, 427, 446, 475, 479, 520, 521,24
86025

current team26

All threads in the team executing the innermost enclosing parallel region. 28, 82, 94, 104,27
106, 117, 214, 399, 402, 403, 405–407, 409, 414, 435, 442, 446, 475, 478, 479, 514, 515,28
520, 524, 579, 590, 73329

current team tasks30

All tasks encountered by the corresponding team. The implicit tasks constituting the parallel31
region and any descendent tasks encountered during the execution of these implicit tasks are32
included in this set of tasks. 28, 30633

38 OpenMP API – Version 6.0 November 2024

D1

data-copying property2

The property that a clause copies a list item from one data environment to other data3
environments. 271, 2724

data entity5

For C/C++, a data object that is referenced by a given lvalue expression or array section. For6
Fortran, a data entity as defined by the base language. 25–27, 38–40, 44, 55, 56, 58, 60, 87,7
90, 96, 106, 111, 3288

data environment9

The variables associated with the execution of a given region. 4, 6, 8, 9, 21, 39, 40, 43, 48,10
57, 70, 73, 76, 82, 102, 115–117, 121, 124, 125, 210, 236, 257, 273, 280, 295, 426, 429, 436,11
445, 454, 456, 461, 466, 603, 799, 904, 91412

data-environment attribute13

A data-sharing attribute or a data-mapping attribute. 39, 21014

data-environment attribute clause15

A clause that explicitly determines the data-environment attributes of the list items in its list16
argument. 210, 39, 215, 292, 347, 401, 436, 437, 44517

data-environment attribute property18

The property that a clause is a data-environment clause. 224, 225, 227, 229, 232, 235–238,19
252, 255–257, 279, 289, 290, 299, 300, 303, 31520

data-environment clause21

A clause that is a data-environment attribute clause or otherwise affects the data22
environment. 210, 39, 210, 44423

data-mapping attribute24

The relationship of a data entity in a given device data environment to the version of that25
entity in the enclosing data environment. 210, 39, 51, 58, 213, 276, 292, 91026

data-mapping attribute clause27

A clause that explicitly determines the data-mapping attributes of the list items in its list28
argument. 210, 8, 37, 40, 51, 76, 276, 289, 316, 454, 456, 461, 89829

data-mapping attribute property30

The property that a clause is a data-mapping clause. 279, 28931

CHAPTER 2. GLOSSARY 39

data-mapping clause1

A clause that is a data-mapping attribute clause or otherwise affects the data environment of2
the target device. 210, 39, 70, 2103

data-mapping construct4

A construct that has the data-mapping property. 48, 69, 212, 275, 283, 284, 4595

data-mapping property6

The property of a construct on which a data-mapping attribute clause may be specified. 40,7
454, 456, 458, 4608

data-motion attribute9

The data-movement relationship between a given device data environment and the version of10
that data entity in the enclosing data environment. 33, 29511

data-motion attribute property12

The property that a clause is a data-motion clause. 297, 29813

data-motion clause14

A clause that specifies data movement between a device set that is specified by the construct15
on which it appears. 23, 33, 40, 278, 293–296, 298, 466, 90616

data race17

A condition in which different threads access the same memory location such that the18
accesses are unordered and at least one of the accesses is a write. Data races produce19
unspecified behavior. 8, 2, 8, 9, 13, 14, 40, 225, 227, 231, 251, 259, 273, 284, 296, 308, 402,20
420, 49621

data-sharing attribute22

For a given data entity in a data environment, an attribute that determines the scope in which23
the entity is visible (i.e., its name provides access to its storage) and/or the lifetime of the24
entity. A variable that is part of an aggregate variable cannot have a particular data-sharing25
attribute independent of the other components, except for static data members of C++26
classes. 210, 39, 40, 44, 51, 52, 55, 56, 58, 60, 62–64, 86, 87, 90, 96, 106, 111, 210,27
212–214, 222, 224, 276, 292, 454, 456, 458, 461, 466, 528, 888, 91028

data-sharing attribute clause29

A clause that explicitly determines the data-sharing attributes of the list items in its list30
argument. 210, 7, 21, 41, 51, 82, 160, 210, 213, 219, 221–223, 225, 239, 313, 316, 424, 426,31
429, 461, 463, 530, 898, 91232

40 OpenMP API – Version 6.0 November 2024

data-sharing attribute property1

The property that a clause is a data-sharing clause. 224, 225, 227, 229, 232, 235–238, 252,2
255–257, 315, 4453

data-sharing clause4

A clause that is a data-sharing attribute clause. 210, 41, 210, 212, 2135

declaration-associated directive6

A declarative directive for which its associated base language code is a procedure7
declaration. 153, 152–155, 334, 341, 347, 348, 9008

declaration sequence9

For C/C++, a sequence of base language declarations, including definitions, that appear in the10
same scope. The sequence may include other directives that are associated with the11
declarations. 336, 349, 36912

declarative directive13

A directive that may only be placed in a declarative context and results in one or more14
declarations only; it is not associated with the immediate execution of any user code or15
implementation code. 41, 51, 60, 112, 152, 153, 155, 156, 161, 215, 260, 263, 293, 301, 310,16
334, 336, 341, 346, 349, 363, 450, 89717

declare target directive18

A declarative directive that has the declare-target property. 8, 69, 76, 212, 240, 276, 287,19
301, 318, 345–347, 349, 351, 356, 360, 361, 461, 463, 564, 889, 904, 91020

declare-target property21

The property that a directive applies to procedures and/or variables to ensure that they can be22
executed or accessed on a device. 41, 346, 34923

declare variant directive24

A declarative directive that declares a function variant for a given base function. 48, 318,25
328–330, 336, 338, 889, 906, 91026

default mapper27

The mapper that is used for a map clause for which the mapper modifier is not explicitly28
specified. 86, 27829

defined30

For variables, the property of having a valid value. For C, for the contents of variables, the31
property of having a valid value. For C++, for the contents of variables of POD (plain old32
data) type, the property of having a valid value. For variables of non-POD class type, the33
property of having been constructed but not subsequently destructed. For Fortran, for the34

CHAPTER 2. GLOSSARY 41

contents of variables, the property of having a valid value. For the allocation or association1
status of variables, the property of having a valid status.2

COMMENT: Programs that rely upon variables that are not defined are3
non-conforming programs.4

42, 109, 131, 146, 9165

delimited directive6

A directive for which the associated base language code is explicitly delimited by the use of a7
required paired end directive. 154, 152, 155, 327, 336, 349, 3698

dependence9

An ordering relation between two instances of executable code that must be enforced by a10
compliant implementation. 504, 42, 47, 103, 181, 435, 504–509, 512, 514, 515, 604, 715,11
756, 761, 76212

dependence-compatible task13

Two tasks between which a task dependence may be established. 507, 86, 103, 108, 504, 508,14
509, 511, 55915

dependent task16

A task that because of a task dependence cannot be executed until its antecedent tasks have17
completed. 507, 22, 100, 103, 448, 458, 480, 502–504, 507–509, 604, 741, 76218

depend object19

An OpenMP object that supplies user-computed dependences to depend clauses. 558, 181,20
435, 481, 505, 506, 508, 509, 604, 760, 761, 91121

deprecated22

For a construct, clause, or other feature, the property that it is normative in the current23
specification but is considered obsolescent and will be removed in the future. Deprecated24
features may not be fully specified. In general, a deprecated feature was fully specified in the25
version of the specification immediately prior to the one in which it is first deprecated. In26
most cases, a new feature replaces the deprecated feature. Unless otherwise specified,27
whether any modifications provided by the replacement feature apply to the deprecated28
feature is implementation defined. 42, 156, 157, 260, 533, 603, 710, 713, 737, 778, 781, 783,29
784, 885, 896, 903–905, 907, 909, 91130

descendent task31

A task that is the child task of a task region or of a region that corresponds to one of its32
descendent tasks. 37, 38, 42, 430, 448, 502, 52133

42 OpenMP API – Version 6.0 November 2024

detachable task1

An explicit task that only completes after an associated event variable that represents an2
allow-completion event is fulfilled and execution of the associated structured block has3
completed. 445, 426, 437, 502, 503, 538, 590, 9104

device5

An implementation-defined logical execution engine.6

COMMENT: A device could have one or more processors.7

3, 4, 7–9, 19, 21–23, 28, 32, 37, 38, 40, 41, 43–46, 48, 53, 56, 59, 71, 75, 76, 79, 83, 84, 98,8
100, 102, 103, 109, 115–117, 124, 127, 128, 139–141, 145, 181, 237, 274, 280, 289, 290,9
295, 296, 303, 306–308, 318, 319, 321, 323, 332, 345, 346, 359, 360, 436, 450, 453, 455,10
457, 461–463, 466, 494, 536, 564, 571, 590, 592, 594–597, 599–603, 605–607, 610–613,11
618, 619, 630–634, 645, 647–652, 654, 655, 683, 689, 690, 692, 704–706, 708, 710, 711,12
717, 722, 726, 744, 772–776, 778, 779, 785–787, 793, 800, 801, 803–810, 812–814, 819,13
822, 826, 833, 836, 842, 846, 850–853, 857, 879, 883, 885, 889, 891, 894, 897, 899, 900,14
902, 903, 906, 907, 909, 911–91315

device address16

An address of an object that may be referenced on a target device. 8, 8, 45, 62, 111, 235–238,17
328, 332, 359, 360, 607, 885, 906, 90918

device-affecting construct19

A construct that has the device-affecting property. 462, 600, 602, 91720

device-affecting property21

The property that a device construct can modify the state of the device data environment of a22
specified target device. 43, 454, 456, 458, 460, 46523

device-associated property24

The property of a clause that a device must be associated with the construct on which it25
appears. 235–23826

device construct27

A construct that has the device property. 2, 43–45, 56, 62, 102, 111, 141, 286, 355, 356, 451,28
736, 760, 781, 785, 908, 91329

device data environment30

The initial data environment associated with a device. 8, 8, 9, 25, 37–40, 43, 56, 68–72, 84,31
87, 111, 124, 210, 235–239, 257, 274, 275, 280–290, 295, 296, 332, 345, 361, 454, 456, 461,32
463, 464, 466, 599, 601, 602, 605, 607, 608, 610, 612, 618, 779, 885, 898, 90233

CHAPTER 2. GLOSSARY 43

device global requirement clause1

A requirement clause that has the device global requirement property. 3552

device global requirement property3

The property that a requirement clause indicates requirements for the behavior of device4
constructs that a program requires the implementation to support across all compilation units.5
44, 356, 358–3626

device-information property7

The property of a routine that it provides or modifies information about a specified device8
that supports use of the device in an OpenMP program. 592, 44, 592–599, 6019

device-information routine10

A routine that has the device-information property. 592, 59211

device-local attribute12

For a given device, a data-sharing attribute of a data entity that it has static storage duration13
and is visible only to tasks that execute on that device. 303, 44, 211, 21414

device-local variable15

A variable that has the device-local attribute with respect to a given device. 303, 8, 286, 345,16
361, 88517

device-memory-information routine18

A routine that has the device-memory-information routine property. 604, 60319

device-memory-information routine property20

The property of a device memory routine that it enables operations on memory that is21
associated with the specified devices but does not itself directly operate on that memory. 604,22
44, 604–60623

device memory routine24

A device routine that has the device memory routine property. 603, 44, 102, 564, 603, 604,25
779, 888, 91326

device memory routine property27

The property that a device routine operates on or otherwise enables operations on memory28
that is associated with the specified devices. 603, 44, 604–606, 608, 609, 611, 613–615, 617,29
619, 62030

device number31

A number that the OpenMP implementation assigns to a device or otherwise may be used in32
an OpenMP program to refer to a device. 7, 7, 35, 115, 116, 119, 120, 127, 139–141, 308,33

44 OpenMP API – Version 6.0 November 2024

451, 461, 542, 593, 594, 596, 598–602, 610, 612, 689, 692, 773–775, 779, 781, 800, 9021

device pointer2

An implementation defined handle that refers to a device address and is represented by a C3
pointer. 8, 63, 111, 235, 236, 328, 332, 359, 604, 606–608, 610–613, 654, 885, 9074

device procedure5

A procedure that can be executed on a target device, as part of a target region. 102, 291,6
345, 355, 356, 360, 3617

device property8

The property of a construct that it accepts the device clause. 43, 346, 349, 454, 456, 458,9
460, 465, 46810

device region11

A region that corresponds to a device construct. 715, 722, 744, 778, 781, 783, 78512

device routine13

An OpenMP API routine that may require access to one or more specified devices. 24, 44,14
14115

device selector set16

A selector set that may match the device trait set. 321, 321–32317

device-specific environment variable18

An alternative OpenMP environment variable that controls the behavior of the program only19
with respect to a particular device or set of devices. 119, 120, 127, 139, 90620

device-tracing callback21

A callback that has the device-tracing property. 77222

device-tracing entry point23

An entry point that has the device-tracing property. 772, 77324

device-tracing property25

The property that an entry point or callback is part of the OMPT tracing interface and, so, is26
used to control the collection of trace records on a device. 772, 45, 772–777, 780, 782, 78427

device trait set28

The trait set that consists of traits that define the characteristics of the device that the29
compiler determines will be the current device during program execution at a given point in30
the OpenMP program. 319, 45, 318, 31931

CHAPTER 2. GLOSSARY 45

device-translating callback1

A callback that has the device-translating property. 842, 843, 8442

device-translating property3

The property that a callback translates data between the formats used for the device on which4
the third-party tool and OMPD library run and the device on which the OpenMP program5
runs. 842, 46, 8436

directive7

A base language mechanism to specify OpenMP program behavior. 2, 3, 6–9, 13, 15, 17, 21,8
22, 24, 25, 29–31, 33–35, 37, 41, 42, 46–50, 54, 57, 60, 64, 68, 69, 73, 79, 80, 89, 91, 95,9
100, 103, 107, 109, 111, 112, 114, 116, 127, 143, 148–157, 159–166, 168, 171, 174, 182,10
183, 187, 188, 190–192, 198, 201–208, 210, 211, 213–215, 217–220, 222, 225, 230, 233,11
234, 247–249, 254, 257, 260, 261, 263–265, 267–270, 276, 278, 280, 283, 284, 289–294,12
300–304, 306, 307, 311–316, 318, 319, 321, 322, 324–328, 335–339, 341–343, 345,13
347–357, 359, 362, 363, 368–373, 379, 382, 385, 388, 389, 395, 399, 402, 409–411, 424,14
426, 429, 431, 434, 445, 451, 452, 454–458, 461, 463, 465, 466, 469, 470, 474, 481–483,15
488, 496, 500–503, 505, 519, 523, 524, 527, 535, 561, 564, 608, 645, 646, 652, 653, 655,16
663, 744, 748, 887–890, 896–902, 904–907, 909, 910, 912, 914, 915, 91717

directive name18

The name of a directive or a corresponding construct. 34, 35, 46, 47, 64, 150, 162, 173, 174,19
179, 180, 182, 206, 223, 225–227, 230, 232, 235–238, 252, 255, 256, 258, 262, 263, 265,20
266, 269–272, 280, 289–291, 297–300, 303, 309, 310, 313, 316, 325, 326, 330, 331, 333,21
339, 340, 344, 350, 353, 354, 357–367, 372, 374, 376, 378, 382, 383, 388, 392, 393, 397,22
398, 400–403, 418, 422, 425, 432, 433, 439–445, 450–452, 470, 472, 481, 483–489,23
491–493, 506, 507, 511, 512, 517–519, 525, 52724

directive-name list25

An argument list that consists of directive-name list items. 16226

directive-name list item27

A list item that is a directive name. 162, 4628

directive-name separator29

Characters used to separate the directive names of leaf constructs in a compound-directive30
name. A directive-name separator is either white space or, in Fortran, a plus sign (i.e., ’+’); a31
given instance of a compound-directive name must use the same character for all32
directive-name separators. 525, 46, 525–52733

directive specification34

The directive specifier and list of clauses that specify a given directive. 150, 47, 150, 16235

46 OpenMP API – Version 6.0 November 2024

directive-specification list1

An argument list that consists of directive-specification list items. 1622

directive-specification list item3

A list item that is a directive specification. 162, 47, 1644

directive specifier5

The directive name and, where permitted, the directive arguments that are specified for a6
given directive. 150, 467

directive variant8

A directive specification that can be used in a metadirective. 324, 37, 92, 324–327, 9109

divergent threads10

Two threads are divergent if one executes a diverging code path and the other does not due to11
a conditional statement. 7, 47, 36212

diverging code path13

For a given pair of threads, the region of a structured block sequence that is executed by only14
one of the threads. 6, 4715

doacross-affected loop16

For a worksharing-loop construct in which a stand-alone ordered directive is closely17
nested, a loop that is affected by its ordered clause. 48, 207, 371, 514, 90018

doacross dependence19

A dependence between executable code corresponding to stand-alone ordered regions20
from two doacross iterations: the sink iteration and the source iteration, where the source21
iteration precedes the sink iteration in the doacross iteration space. The doacross dependence22
is fulfilled when the executable code from the source iteration has completed. 504, 47, 98,23
512, 514, 71524

doacross iteration25

A logical iteration of a doacross loop nest. 47, 98, 503, 504, 512, 51426

doacross iteration space27

The logical iteration space of a doacross loop nest. 47, 51228

doacross logical iteration29

A doacross iteration. 51230

CHAPTER 2. GLOSSARY 47

doacross loop nest1

The doacross-affected loops of a worksharing-loop construct in which a stand-alone2
ordered construct is closely nested. 47, 512, 514, 912, 9133

dynamic context selector4

Any context selector that is not a static context selector. 3375

dynamic replacement candidate6

A replacement candidate that may be selected at runtime to replace a given metadirective.7
324, 324, 325, 3298

dynamic storage duration9

For C/C++, the lifetime of an object with dynamic storage duration, as defined by the base10
language. For Fortran, the lifetime of a data object that is dynamically allocated with the11
ALLOCATE statement or some other language mechanism. 211, 21412

dynamic trait set13

The trait set that consists of traits that define the dynamic properties of an OpenMP program14
at a given point in its execution. 319, 111, 318, 320, 32115

E16

effective context selector17

The resulting context selector that must be satisfied for a given function variant to be selected,18
as determined by the match clauses of all begin declare_variant directives that19
delimit a base language code region that encloses the declare variant directive. 336, 336, 33720

effective map clause set21

The set of all map clauses that apply to a data-mapping construct, including any implicit map22
clauses and map clauses applied by mappers. 283, 283, 28423

enclosing context24

For C/C++, the innermost scope enclosing a directive. For Fortran, the innermost scoping25
unit enclosing a directive. 48, 73, 82, 96, 213, 214, 252–254, 259, 261, 264, 273, 324, 340,26
341, 408, 410, 413, 421, 91027

enclosing data environment28

For a given directive, the data environment of its enclosing context. 39, 40, 52, 56, 63, 94,29
111, 436, 43730

encountering device31

For a given construct, the device on which the encountering task of the construct executes.32
236, 284, 295, 298, 463, 89133

48 OpenMP API – Version 6.0 November 2024

encountering task1

For a given region, the current task of the encountering thread. 6, 48, 49, 103, 295, 334, 339,2
352, 385, 394, 395, 414, 427, 431, 436, 442, 445, 462, 468, 476, 477, 480, 482, 520–522,3
535, 579, 587, 588, 670, 673–677, 706, 744, 759, 760, 781, 798, 799, 880, 8814

encountering-task binding property5

The binding property that the binding thread set is the encountering task. 5346

encountering thread7

For a given region, the thread that encounters the corresponding construct, structured block8
sequence, or routine. 4, 5, 28, 49, 59, 91, 252, 384, 389–391, 394, 403, 423, 425–427, 461,9
469, 499, 505, 535, 578, 579, 589, 594, 681, 683, 685–687, 689, 695, 725, 770, 786, 791,10
793–795, 798, 800, 90211

encountering-thread binding property12

The binding property that the binding thread set is the encountering thread. 53413

end-clause property14

The property that a clause may appear on an end directive. 150, 272, 48115

end directive16

For a given directive, a paired directive that lexically delimits the code associated with that17
directive. 150, 35, 42, 49, 150, 152, 153, 155, 156, 160, 187, 188, 192, 327, 336, 337, 349,18
350, 474, 904, 90519

ending address20

The address of the last storage location of a list item or, for a mapped variable, of its original21
list item. 51, 70, 28122

entry point23

A runtime entry point. 24, 45, 79, 700, 701, 703–706, 711, 720, 722, 729, 745, 772, 773,24
776, 786–814, 894, 895, 90325

enumeration26

A type or any variable of a type that consists of a specified set of named integer values. For27
C/C++, an enumeration type is specified with the enum specifier. For Fortran, an28
enumeration type is specified by either (1) a named integer constant that is used as the integer29
kind of a set of named integer constants that have unique values or (2) a C-interoperable30
enumeration definition. 49, 536, 539–541, 544, 547, 550, 554, 557–560, 562, 563, 565, 566,31
711, 714, 716, 717, 720, 722–725, 727–731, 735, 736, 738–741, 743, 789, 825, 827, 828, 87432

CHAPTER 2. GLOSSARY 49

environment variable1

Unless specifically stated otherwise, an OpenMP environment variable. 2, 6, 118, 119,2
127–137, 139–147, 692, 693, 872, 886, 887, 896, 897, 906, 908, 909, 912–9153

error termination4

A fatal action preformed in response to an error. 6, 33, 93, 389, 9005

event6

A point of interest in the execution of a thread or a task. 10, 11, 14, 15, 29, 43, 91, 102, 108,7
250, 286, 346, 352, 385, 386, 394, 395, 403, 405–411, 413–415, 421, 426, 427, 430, 431,8
437, 445–447, 449, 453, 455–457, 459, 462, 466, 474–478, 480, 496, 497, 500, 502, 503,9
509, 513, 515, 516, 521, 522, 538, 586, 589, 590, 603, 604, 607–616, 618–621, 664–669,10
671–677, 695, 697, 700, 703–705, 710, 726, 728–730, 741, 744, 746, 757–759, 761,11
763–765, 767, 771, 772, 776, 778, 781, 783, 784, 786, 789, 790, 796, 805, 806, 808, 812,12
813, 816, 878, 880, 881, 883, 894, 90213

exception-aborting directive14

A directive that has the exception-aborting property. 366, 88715

exception-aborting property16

For C++, the property of a directive that whether an exception that occurs in its associated17
region is caught or results in a runtime error termination is implementation defined. 50, 149,18
46019

exclusive property20

The property that a clause, an argument, or a modifier may not be specified when,21
(respectively), a different clause, argument or modifier is specified. When applied to a clause22
set, the property applies only to clauses within that set. 160, 33, 159–161, 232, 266, 313,23
343, 381, 405, 426, 429, 484, 488, 51924

exclusive scan computation25

A scan computation for which the value read does not include the updates performed in the26
same logical iteration. 270, 270, 90927

executable directive28

A directive in an executable context that results in implementation code or prescribes the29
manner in which any associated user code must execute. 3, 35, 36, 60, 64, 67, 68, 98, 100,30
112, 149, 152, 153, 155, 186, 198, 315, 324, 337, 352, 353, 374, 375, 377, 379–381, 384,31
394, 399, 402, 405–407, 409, 412, 416, 417, 420, 423, 426, 429, 435, 446, 454, 456, 458,32
460, 465, 468, 473, 475, 478, 479, 494, 498, 505, 514, 515, 520, 52433

explicit barrier34

A barrier that is specified by a barrier construct. 47535

50 OpenMP API – Version 6.0 November 2024

explicitly associated directive1

A declarative directive for which its associated base language declarations are explicitly2
specified in a variable list or extended list argument. 153, 152, 153, 155, 215, 301, 310, 3463

explicitly determined data-mapping attribute4

A data-mapping attribute that is determined due to the presence of a list item on a5
data-mapping attribute clause. 2746

explicitly determined data-sharing attribute7

A data-sharing attribute that is determined due to the presence of a list item on a data-sharing8
attribute clause. 213, 210, 213, 2249

explicit region10

A region that corresponds to either a construct of the same name or a library routine call that11
explicitly appears in the program. 3, 3, 99, 149, 413, 446, 689, 80212

explicit task13

A task that is not an implicit task. 5, 5, 7, 26, 30, 43, 51, 53, 83, 94, 103, 104, 116, 253, 254,14
385, 389, 426, 427, 429–431, 447, 475, 503, 524, 586, 689, 719, 756, 798, 864, 910, 913, 91615

explicit task region16

A region that corresponds to an explicit task. 8, 91, 225, 427, 527, 587, 90317

exporting task18

A task that permits one of its child tasks to be an antecedent task of a task for which it is a19
preceding dependence-compatible task. 511, 108, 427, 437, 508, 511, 55920

extended address range21

For a given original list item, the address range that starts from the minimum of its starting22
address and its base address and ends with maximum of its ending address and its base23
address. 280, 71, 28124

extended list25

An argument list that consists of extended list items. 162, 5126

extended list item27

A variable list item or the name of a procedure. 162, 51, 16428

extension trait29

A trait that is implementation defined. 319, 31830

CHAPTER 2. GLOSSARY 51

F1

finalized taskgraph record2

A taskgraph record in which all information required for a replay execution has been saved.3
436, 71, 4364

final task5

A task that generates included final tasks when it encounters task-generating constructs on6
which the final clause may be specified. 441, 52, 116, 427, 436, 437, 439, 441, 442, 445,7
588, 9158

first-party tool9

A tool that executes in the address space of the program that it is monitoring. 697, 14, 29, 78,10
144, 695, 697, 699, 903, 91111

firstprivate attribute12

For a given construct, a data-sharing attribute of a variable that implies the private attribute,13
and additionally the variable is initialized with the value of the variable that has the same14
name in the enclosing data environment of the construct. 227, 52, 211–214, 277, 292, 436,15
461, 904, 91216

firstprivate variable17

A private variable that has the firstprivate attribute with respect to a given construct. 430,18
437, 89119

flat-memory-copying property20

The property that a memory-copying routine copies a unidimensional, contiguous storage21
block. 612, 52, 613, 61522

flat-memory-copying routine23

A routine that has the flat-memory-copying property. 612, 612, 614, 61624

flush25

An operation that a thread performs to enforce consistency between its view of memory and26
the view of memory of any other threads. 6, 10–14, 19, 52, 58, 92, 99, 107, 404, 472, 494,27
499–501, 908, 91528

flush property29

A property that determines the manner in which a flush enforces memory consistency. Any30
flush has one or more of the following: the strong flush property, the release flush property,31
and the acquire flush property. 11, 90832

52 OpenMP API – Version 6.0 November 2024

flush-set1

The set of variables upon which a strong flush operates. 10, 102

foreign execution context3

A context that is instantiated from a foreign runtime environment in order to facilitate4
execution on a given device. 53, 181, 468, 469, 542, 9075

foreign runtime environment6

A runtime environment that exists outside the OpenMP runtime with which the OpenMP7
implementation may interoperate. 53, 62, 86, 468, 471, 539, 5428

foreign runtime identifier9

A base language string literal or a constant expression of integer OpenMP type that10
represents a foreign runtime environment. 183, 469, 471, 891, 90211

foreign task12

An instance of executable code that is executed in a foreign execution context. 181, 437, 469,13
89114

Fortran-only property15

The property that an OpenMP feature is only supported in Fortran. 53416

frame17

A storage area on the stack of a thread that is associated with a procedure invocation. A18
frame includes space for one or more saved registers and often also includes space for saved19
arguments, local variables, and padding for alignment. 30, 53, 719–721, 744, 798, 824, 864,20
86521

free-agent thread22

An unassigned thread on which an explicit task is scheduled for execution or a primary thread23
for an explicit parallel region that was a free-agent thread when it encountered the24
parallel construct. 53, 100, 107, 116, 132, 142, 143, 389, 390, 448, 588, 589, 734, 890,25
897, 90226

free property27

The property that a modifier can appear in any position in a modifier-specification-list. 15928

function29

A routine or procedure that returns a type that can be the right-hand side of a base language30
assignment operation. 155, 156, 163, 311, 332, 337, 569–572, 575–579, 581–584, 586–588,31
593–599, 601, 604–606, 609, 611, 613–615, 617, 619, 620, 623–628, 631–636, 642–644,32
647–651, 653, 656–660, 675, 676, 678, 679, 681, 684, 686, 688–691, 694, 697, 745, 770,33

CHAPTER 2. GLOSSARY 53

786–795, 797, 799–801, 803–806, 808–814, 834, 835, 837–849, 851–869, 871–873,1
875–8772

function dispatch3

A base function call for which variant substitution may be controlled. 1874

function-dispatch structured block5

A context-specific structured block that may be associated with a dispatch directive. 187,6
187, 188, 318, 331, 333, 337, 3387

function variant8

A definition of a procedure that may be used as an alternative to the base language definition.9
37, 41, 48, 92, 113, 318, 328–336, 338, 340, 468, 906, 91010

G11

generally-composable property12

The property of a loop-transforming construct that it may use directives other than13
loop-transforming directives in its apply clauses. 373, 377, 38114

generated loop15

A loop that is generated by a loop-transforming construct and is one of the resulting loops16
that replace the construct. 371, 55, 59, 77, 107, 197, 203, 205, 371–373, 375, 378, 379, 381,17
382, 431, 90018

generated loop nest19

A canonical loop nest that is generated by a loop-transforming construct. 371, 37220

generated loop sequence21

A canonical loop sequence that is generated by a loop-transforming construct. 37122

generated task23

The task that is generated as a result of the generating task encountering a task-generating24
construct. 5, 124, 213, 426, 427, 429, 430, 434, 439, 440, 442, 444, 468, 469, 479, 480, 482,25
508, 509, 511, 756, 760, 76126

generating task27

For a given region, the task for which execution by a thread generated the region. 28, 54, 55,28
124, 338, 427, 454, 456, 458, 461, 465, 468, 503, 603, 86129

generating-task binding property30

The binding property that the binding task set is the generating task. 603, 606, 608, 609, 611,31
613–615, 617, 619, 62032

54 OpenMP API – Version 6.0 November 2024

generating task region1

For a given region, the region that corresponds to its generating task. 30, 59, 109, 8612

global3

A program aspect such as a scope that covers the whole OpenMP program. 57, 115–117,4
119, 127, 311, 9125

grid loop6

The generated loops of a tile or stripe construct that iterate over cells of a grid7
superimposed over the logical iteration space, with spacing determined by the sizes clause.8
77, 379–381, 889, 9019

groupprivate attribute10

For a given group of tasks, a data-sharing attribute of a data entity that it has static storage11
duration and is visible only to those tasks. 301, 55, 211, 214, 301, 30312

groupprivate variable13

A variable that has the groupprivate attribute with respect to a given group of tasks. 301,14
286, 302, 303, 345, 347, 349, 413, 46115

H16

handle17

An opaque reference that uniquely identifies an abstraction. 20, 37, 45, 55, 74, 75, 79, 83, 91,18
95, 103, 113, 181, 287, 305, 306, 547, 630, 635–637, 645–647, 653, 655, 710, 711, 721, 795,19
820, 826, 827, 829, 831–834, 841, 849, 850, 852–855, 858–865, 867, 871, 875, 876, 885, 89520

handle-comparing property21

The property that a routine compares two handle arguments. 865, 55, 865–86722

handle-comparing routine23

A routine that has the handle-comparing property. 865, 865, 89524

handle property25

The property that a type is used to represent handles. 830, 56, 820, 829, 831, 83226

handle-releasing property27

The property that a routine releases a handle. 867, 55, 867–86928

handle-releasing routine29

A routine that has the handle-releasing property. 867, 86730

CHAPTER 2. GLOSSARY 55

handle type1

An OpenMP type, OMPD type, or OMPT type that has the handle property. 8302

happens before3

For an event A to happen before an event B, A must precede B in happens-before order. 12, 134

happens-before order5

An asymmetric relation that is consistent with simply happens-before order and, for C/C++,6
the “happens before” order defined by the base language. 13, 56, 307, 308, 360, 469, 9087

hard pause8

An instance of a resource-relinquishing routine that specifies that the OpenMP state is not9
required to persist. 564, 56410

hardware thread11

An indivisible hardware execution unit on which only one OpenMP thread can execute at a12
time. 6, 6, 37, 88, 128, 131, 534, 596, 72613

has-device-addr attribute14

For a given device construct, a data-sharing attribute of a data entity that refers to an object in15
a device data environment that is the same object to which the data entity of the same name16
in the enclosing data environment of the construct refers. 23717

host address18

An address of an object that may be referenced on the host device. 56, 360, 90719

host device20

The device on which the OpenMP program begins execution. 3–5, 7, 9, 19, 26, 56, 59, 76,21
100, 120, 127, 136, 138, 140, 141, 296, 307, 319, 359, 450, 454–457, 462, 463, 466, 564,22
582, 585, 594, 598–602, 605, 606, 610, 630, 633, 634, 647, 650, 651, 690, 692, 697, 701,23
703–706, 722, 791, 792, 803–805, 814, 828, 849–851, 857, 896, 91024

host pointer25

A pointer that refers to a host address. 359, 360, 605, 606, 610–612, 90726

I27

ICV28

An internal control variable. 115, 57, 61, 80, 84, 115, 118–122, 124–130, 132–137,29
139–146, 216, 310, 321, 338, 358, 388–391, 394, 397, 404, 415, 419, 426, 429, 436, 437,30
443, 451, 453, 454, 456, 461, 466, 501, 504, 520, 521, 537, 563, 568, 570–577, 580–588,31
592–595, 599–602, 652–654, 678–680, 682–688, 692, 693, 699, 700, 792, 794, 817, 824,32
829, 854, 863, 874–876, 890–892, 894, 896, 897, 902, 903, 906, 908, 914–91633

56 OpenMP API – Version 6.0 November 2024

ICV-defaulted clause1

A clause that has the ICV-defaulted property. 4372

ICV-defaulted property3

The property of a clause that if it is not explicitly specified on a directive then the behavior is4
as if it were specified with an argument that is the value of an ICV. 57, 310, 4515

ICV modifying property6

The property of a routine or clause that its effect includes modifying the value of an ICV.7
452, 568, 572, 573, 575, 582, 584, 592, 599, 601, 6838

ICV retrieving property9

The property of a routine that its effect includes returning the value of an ICV. 570, 572, 574,10
576, 577, 579, 581–584, 586–588, 593, 594, 599, 601, 678–682, 684, 68811

ICV scope12

A context that contains one copy of a given ICV and defines the extent in which the ICV13
controls program behavior; the ICV scope may be the OpenMP program (i.e., global), the14
current device, the binding implicit task, or the data environment of the current task. 115, 57,15
115, 119, 121, 124, 127, 436, 454, 456, 461, 46616

idle thread17

An unassigned thread that is not currently executing any task. 447, 73418

immediately nested construct19

A construct is an immediately nested construct of another construct if it is immediately nested20
within the other construct with no intervening statements or directives. 57, 101, 395, 90221

imperfectly nested loop22

A nested loop that is not a perfectly nested loop. 91023

implementation code24

Implicit code that is introduced by the OpenMP implementation. 41, 50, 91, 71925

implementation defined26

Behavior that must be documented by the implementation and is allowed to vary among27
different compliant implementations. An implementation is allowed to define it as28
unspecified behavior. 6, 8, 15, 34, 42, 45, 50, 51, 75, 88, 91, 100, 110, 118, 119, 125,29
128–131, 133–137, 139, 141, 142, 145, 146, 148, 149, 157, 204, 214, 217, 235, 237, 300,30
304–308, 319, 322, 324, 325, 329, 330, 335, 341, 345, 352, 354, 355, 380–383, 385, 387,31
389–392, 394, 397, 399, 405, 408, 415, 419, 420, 430, 437, 453, 463, 469, 471, 496,32
533–535, 539, 541, 545, 558, 562, 574–576, 597, 610, 612, 613, 623, 627, 663, 680, 683,33

CHAPTER 2. GLOSSARY 57

685–687, 693, 695, 697, 701, 703, 704, 719, 726, 730, 733, 764, 779, 788, 793–795, 817,1
844, 865, 870, 874, 885–895, 904, 908, 9142

implementation selector set3

A selector set that may match the implementation trait set. 321, 321, 3234

implementation trait set5

The trait set that consists of traits that describe the functionality supported by the OpenMP6
implementation at a given point in the OpenMP program. 319, 58, 318, 3197

implicit array8

For C/C++, the set of array elements of non-array type T that may be accessed by applying a9
sequence of [] operators to a given pointer that is either a pointer to type T or a pointer to a10
multidimensional array of elements of type T. For Fortran, the set of array elements for a11
given array pointer.12

COMMENT: For C/C++, the implicit array for pointer p with type T (*)[10]13
consists of all accessible elements p[i][j], for all i and j=0,1,...,9.14

26, 27, 28615

implicit barrier16

A barrier that is specified as part of the semantics of a construct other than the barrier17
construct. 4–6, 385, 406, 407, 409, 412, 420, 447, 476, 477, 482, 521, 73318

implicit flush19

A flush that is specified as part of the semantics of a construct or routine other than the20
flush construct. 12, 101, 502, 91121

implicitly determined data-mapping attribute22

A data-mapping attribute that applies to a data entity for which no data-mapping attribute is23
otherwise determined. 276, 274, 276, 285, 292, 73924

implicitly determined data-sharing attribute25

A data-sharing attribute that applies to a data entity for which no data-sharing attribute is26
otherwise determined. 213, 96, 210, 213, 214, 222–224, 276, 277, 292, 91227

implicit parallel region28

An inactive parallel region that is not generated from a parallel construct. Implicit29
parallel regions surround the whole OpenMP program, all target regions, and all teams30
regions. 3–5, 37, 58, 59, 61, 95, 132, 301, 389, 395, 425, 446, 447, 582, 585, 600, 602, 689,31
828, 91732

58 OpenMP API – Version 6.0 November 2024

implicit task1

A task generated by an implicit parallel region or generated when a parallel construct is2
encountered during execution. 3, 4, 8, 19, 23, 28, 30, 37, 38, 51, 59, 61, 81, 83, 87, 100, 104,3
105, 115–117, 124, 125, 214, 227, 252, 253, 270, 273, 384–386, 389–391, 404–415, 420,4
421, 501, 503, 524, 682, 719, 744, 758, 794, 798, 828, 862–8645

implicit task region6

A region that corresponds to an implicit task. 3, 125, 7587

importing task8

A task that permits a preceding dependence-compatible task to be an antecedent task of one9
of its child tasks. 511, 108, 427, 437, 507, 511, 55910

inactive parallel region11

A parallel region comprised of one implicit task and, thus, is being executed by a team12
comprised of only its primary thread. 58, 577, 57913

inactive target region14

A target region that is executed on the same device that encountered the target15
construct. 12416

included task17

A task for which execution is sequentially included in the generating task region. That is, an18
included task is an undeferred task and executed by the encountering thread. 7, 30, 52, 59,19
91, 426, 439, 441, 454, 456, 459, 461, 466, 468, 479, 482, 60320

inclusive scan computation21

A scan computation for which the value read includes the updates performed in the same22
logical iteration. 269, 269, 90923

index-set splitting24

The splitting of the logical iteration space into partitions that each are executed by a25
generated loop. 377, 90126

indirect device invocation27

An indirect call to the device version of a procedure on a device other than the host device,28
through a function pointer (C/C++), a pointer to a member function (C++), a dummy29
procedure (Fortran), or a procedure pointer (Fortran) that refers to the host version of the30
procedure. 350, 35131

induction32

A use of an induction operation. 60, 23933

CHAPTER 2. GLOSSARY 59

induction attribute1

For a given loop-nest-associated construct, a data-sharing attribute of a data entity that2
implies the private attribute and for which the value is updated according to an induction3
operation. 258, 644

induction expression5

A collector expression or an inductor expression. 240, 2406

induction identifier7

An OpenMP identifier that specifies an inductor OpenMP operation to use in an induction.8
239, 239, 240, 246–249, 259, 263, 2649

induction operation10

A recurrence operation that expresses the value of a variable as a function, the inductor,11
applied to its previous value and a step expression. For an induction operation performed in a12
loop on the induction variable x and a loop-invariant step expression s, xi = xi−1 ⊕ s, i > 0,13
where xi is the value of x at the start of collapsed iteration i, x0 is the value of x before any14
tasks enter the loop, and the binary operator ⊕ is the inductor. For some inductors, the15
induction operation can be expressed in a non-recursive closed form as16
xi = x0 ⊕ si = x0 ⊕ (s⊗ i) where si = s⊗ i. The expression si is the collective step17
expression of iteration i and the binary operator ⊗ is the collector. 32, 59, 60, 64, 98, 111,18
239, 243, 258, 266, 89819

induction variable20

A variable for which an induction operation determines its values. 60, 243, 26421

inductor22

A binary operator used by an induction operation. 60, 24323

inductor expression24

An OpenMP stylized expression that specifies how an induction operation determines a new25
value of an induction variable from its previous value and a step expression. 243, 60, 243,26
244, 246, 248, 258, 264, 26527

informational directive28

A directive that is neither declarative nor executable, but otherwise conveys user code29
properties to the compiler. 352, 112, 152, 355, 363, 368, 36930

initialization phase31

The portion of an affected iteration that includes all statements that initialize private variables32
prior to the input phase and scan phase of a scan computation. 267, 267, 268, 270, 89933

60 OpenMP API – Version 6.0 November 2024

initializer1

An OpenMP operation that uses an initializer expression. 249, 61, 90, 244, 245, 249, 2522

initializer expression3

An OpenMP stylized expression that determines the initializer for the private copies of list4
items in a reduction clause. 241, 61, 90, 242–244, 248, 251, 261, 263, 267, 3455

initial task6

An implicit task associated with an implicit parallel region. 4, 5, 28, 61, 95, 124, 125, 253,7
389, 394, 395, 413, 421, 446, 447, 453, 462, 503, 679, 705, 706, 719, 758, 785, 792, 798, 8838

initial task region9

A region that corresponds to an initial task. 3, 115, 116, 501, 503, 571, 577, 58010

initial team11

The team that comprises an initial thread executing an implicit parallel region. 4, 7, 105, 116,12
394, 420, 422, 581, 82913

initial thread14

The thread that executes an implicit parallel region. 3, 4, 61, 84, 87, 106, 132, 133, 135, 216,15
394, 395, 412, 420, 425, 446, 501, 503, 742, 886, 88816

innermost-leaf property17

The property that a clause applies to the innermost leaf construct that permits it when it18
appears on a compound construct. 159, 180, 225, 232, 235, 269, 270, 272, 445, 488–492,19
506, 517, 518, 52820

input map type21

The map type specified in a map clause specified on a construct to which map-type decay is22
applied to determine an output map type. 275, 70, 82, 109, 275, 27623

input phase24

The portion of a logical iteration that contains all computations that update a list item for25
which a scan computation is performed. 267, 60, 111, 267, 269, 27026

input place partition27

The place partition that is used to determine the place-partition-var and28
place-assignment-var ICVs and the place assignments of the implicit tasks of a parallel29
region. 389, 389–391, 39330

intent(in) property31

The property that a routine argument is an intent(in) dummy argument in Fortran. In32
C/C++, the memory pointed to by the argument is not written by the runtime but must be33

CHAPTER 2. GLOSSARY 61

readable. 535, 596, 597, 604–606, 609, 611, 613, 614, 616, 617, 623–628, 631–636,1
638–642, 644, 646, 648–652, 683, 685, 686, 692, 698, 726, 734, 748–752, 755, 759, 760,2
762, 765, 766, 769, 770, 772, 774, 777, 780, 782, 786, 835, 837, 839, 840, 842, 844, 845, 8543

intent(out) property4

The property that a routine argument is an intent(out) dummy argument in Fortran. In5
C/C++, the memory pointed to by the argument is not read by the runtime but must be6
writeable. 535, 623–625, 638, 640, 642, 684, 686, 787, 788, 847, 853, 870, 872, 873, 8767

internal control variable8

A conceptual variable that specifies runtime behavior of a set of threads or tasks in an9
OpenMP program. 115, 56, 88510

interoperability object11

An OpenMP object of interop OpenMP type, which is an opaque type. These objects12
represent information that supports interaction with foreign runtime environments. 539, 62,13
181, 328, 334, 339, 468–471, 539, 543, 622, 629, 892, 902, 90714

interoperability property15

A property associated with an interoperability object. 468, 62, 541, 622–625, 627, 62816

interoperability-property-retrieving property17

The property that a routine retrieves an interoperability property from an interoperability18
object. 622, 62, 623–62519

interoperability-property-retrieving routine20

A routine that has the interoperability-property-retrieving property. 622, 622, 624–62621

interoperability routine22

A routine that has the interoperability-routine property. 622, 468, 541, 543, 622, 62923

interoperability-routine property24

The property that a routine provides a mechanism to inspect the properties associated with an25
interoperability object. 622, 62, 623–62826

intervening code27

For two consecutive affected loops of a loop-nest-associated construct, user code that appears28
inside the loop body of the outer affected loop but outside the loop body of the inner affected29
loop. 198, 84, 198, 204, 205, 43430

is-device-ptr attribute31

For a given device construct, a data-sharing attribute of a variable that implies the private32
attribute, and additionally the variable is initialized with a device address that corresponds to33

62 OpenMP API – Version 6.0 November 2024

the device pointer variable of the same name in the enclosing data environment of the1
construct. 2352

ISO C binding property3

The property of a routine that its Fortran version has the BIND(C) attribute. 63, 554, 556,4
603–606, 608, 609, 611, 613–615, 617, 619, 620, 635, 640, 642, 643, 656–6615

ISO C property6

The property that a routine argument has the BIND(C) attribute in Fortran. If any argument7
of a routine has the ISO C property then the routine has the ISO C binding property. 535, 63,8
554, 604–609, 611, 613, 614, 616, 617, 619, 620, 640, 642, 656–661, 770, 774, 7779

iteration count10

The number of times that the loop body of a given loop is executed. 203, 203–205, 264, 379,11
383, 88812

iterator13

A programming mechanism to specify a set of values. 169, 170, 196, 204, 286, 400, 906, 91614

iterator specifier15

A tuple that specifies an iterator-identifier and its associated iterator value set. 169, 63, 162,16
16917

iterator-specifier list18

An argument list that consists of iterator-specifier list items. 16219

iterator-specifier list item20

A list item that is an iterator specifier. 162, 6321

iterator value set22

The set of values that correspond to a given instance of an iterator modifier. 170, 63,23
169–17124

L25

last-level cache26

The last cache in a memory hierarchy that is used by a set of cores. 12827

lastprivate attribute28

For a given construct, a data-sharing attribute of a variable that implies the private attribute,29
and additionally, the final value of the variable may be assigned to the variable that has the30
same name in the enclosing data environment of the construct. 230, 64, 21131

CHAPTER 2. GLOSSARY 63

lastprivate variable1

A private variable that has the lastprivate attribute with respect to a given construct. 9092

leaf construct3

For a given construct, a construct that corresponds to one of the leaf directives of the4
executable directive. 20, 32, 46, 61, 82, 174, 318, 516, 528–531, 9185

leaf directive6

For a given directive, the directive itself if it is not a compound directive, or a directive from7
which the compound directive is composed that is not itself a compound directive. 35, 64,8
5279

leaf-directive name10

The directive name of a leaf directive. 525, 525, 527, 91911

league12

The set of teams formed by a teams construct, each of which is associated with a different13
contention group. 4, 105, 116, 253, 394, 395, 421–423, 581, 725, 75814

lexicographic order15

The total order of two logical iteration vectors ωa = (i1, . . . , in) and ωb = (j1, . . . , jn),16
denoted by ωa ≤lex ωb, where either ωa = ωb or ∃m ∈ {1, . . . , n} such that im < jm and17
ik = jk for all k ∈ {1, . . . ,m− 1}. 380, 38118

linear attribute19

For a given loop-nest-associated construct, a data-sharing attribute of a variable that is20
equivalent to an induction attribute for which the induction operation is a linear recurrence,21
where the binary operator ⊕ is + and the step expression s is a loop-invariant integer22
expression. 232, 6423

linear variable24

A private variable that has the linear attribute with respect to a given construct. 23225

list26

A comma-separated set. 22, 39, 40, 64, 85, 158, 162, 163, 345, 349, 387, 444, 700, 88627

list item28

A member of a list. 21, 23, 33, 37, 39, 40, 46, 47, 49, 51, 61, 63, 65, 68–71, 73, 76, 80, 82,29
83, 86, 87, 98, 109, 112, 141, 158–160, 162–165, 168–170, 210–212, 214, 217–222,30
225–231, 233–239, 241, 243–245, 247–250, 252–254, 256–259, 267–270, 272–276,31
279–291, 294–296, 300–303, 311–313, 315, 328, 332, 333, 338, 339, 345–349, 363, 364,32
372–374, 378–380, 401, 421, 424, 430, 436, 437, 444, 445, 454, 456, 459, 461–464, 466,33
499, 500, 507–509, 521, 522, 528–531, 534, 875, 888, 897, 899, 900, 904, 905, 910, 91634

64 OpenMP API – Version 6.0 November 2024

local static variable1

A variable with static storage duration that for C/C++ has block scope and for Fortran is2
declared in the specification part of a procedure or BLOCK construct. 305, 3093

locator list4

An argument list that consists of locator list items. 162, 160, 295, 4375

locator list item6

A list item that refers to storage locations in memory and is one of the items specifically7
identified in Section 5.2.1. 163, 65, 162–164, 181, 435, 437, 505, 506, 508, 5108

lock9

An OpenMP variable that is used in lock routines to enforce mutual exclusion. 65, 66, 74, 75,10
80, 97, 109, 110, 449, 496, 501, 504, 558, 561, 663–668, 670–676, 734, 742, 769, 788, 795,11
893, 91312

lock-acquiring property13

The property that a routine may acquire a lock by putting it into the locked state. 670, 65,14
663, 670, 67115

lock-acquiring routine16

A routine that has the lock-acquiring property. 670, 449, 663, 670, 675, 765–76817

lock-destroying property18

The property that a routine destroys a lock by putting it into the uninitialized state. 667, 65,19
668, 66920

lock-destroying routine21

A routine that has the lock-destroying property. 667, 668, 669, 76722

locked state23

The lock state that indicates the lock has been set by some task. 663, 65, 66, 67324

lock-initializing property25

The property that a routine initializes a lock by putting it into the unlocked state. 664, 65,26
664–66727

lock-initializing routine28

A routine that has the lock-initializing property. 664, 664–667, 765, 76629

lock property30

The property that a routine operates on locks. 663, 6631

CHAPTER 2. GLOSSARY 65

lock-releasing property1

The property that a routine may unset a lock by returning it to the unlocked state. 672, 66,2
663, 673, 6743

lock-releasing routine4

A routine that has the lock-releasing property. 672, 449, 663, 672, 673, 767, 7685

lock routine6

A routine that has the lock property. 663, 65, 535, 663, 8937

lock state8

The state of a lock that determines if it can be set. 663, 65, 109, 110, 663, 672–6749

lock-testing property10

The property that a routine that may set a lock by putting it into the locked state does not11
suspend execution of the task that executes the routine if it cannot set the lock. 675, 66, 675,12
67613

lock-testing routine14

A routine that has the lock-testing property. 675, 675, 766–76815

logical iteration16

An instance of the executed loop body of a canonical loop nest, or a DO CONCURRENT loop17
in Fortran, denoted by a number in the logical iteration space of the loops that indicates an18
order in which the logical iteration would be executed relative to the other logical iterations19
in a sequential execution. 4, 20, 32, 33, 47, 50, 59, 61, 66, 67, 92, 94, 99, 107, 111, 204, 205,20
253, 370, 371, 375, 377–382, 401, 429–433, 534, 719, 754, 889, 890, 905, 907, 910, 912, 91621

logical iteration space22

For a canonical loop nest, or a DO CONCURRENT loop in Fortran, the sequence 0,. . . ,N − 123
where N is the number of distinct logical iterations. 204, 32, 47, 55, 59, 66, 107, 204, 374,24
377–380, 53425

logical iteration vector26

An n-tuple (i1, . . . , in) that identifies a logical iteration of a canonical loop nest, where n is27
the loop nest depth and ik is the logical iteration number of the kth loop, from outermost to28
innermost. 64, 66, 88, 205, 380, 381, 90529

logical iteration vector space30

The set of logical iteration vectors that each correspond to a logical iteration of a canonical31
loop nest. 205, 379, 38132

66 OpenMP API – Version 6.0 November 2024

loop body1

A structured block that encompasses the executable statements that are iteratively executed2
by a loop statement. 197, 62, 63, 66, 378, 4343

loop-collapsing construct4

A loop-nest-associated construct for which some number of outer loops of the associated5
loop nest may be collapsed loops. 31, 32, 205, 219, 220, 233, 3986

loop-iteration variable7

For a loop of a canonical loop nest, var as defined in Section 6.4.1. A C++ range-based8
for-statement has no loop-iteration variable. 67, 171, 196, 200–205, 211–213, 230, 233,9
371, 424, 434, 512, 513, 529, 531, 91610

loop-iteration vector11

An n-tuple (i1, . . . , in) that identifies a logical iteration of the affected loops of a12
loop-nest-associated directive, where n is the number of affected loops and ik is the value of13
the loop-iteration variable of the kth affected loop, from outermost to innermost. 67, 203,14
204, 512, 51315

loop-iteration vector space16

The set of loop-iteration vectors that each corresponds to a logical iteration of the affected17
loops of a loop-nest-associated directive. 204, 203, 20418

loop-nest-associated construct19

A loop-nest-associated directive and its associated loop nest. 60, 62, 64, 67, 92, 94, 97, 113,20
154, 205, 234, 259, 372, 373, 380, 381, 404, 512, 53121

loop-nest-associated directive22

An executable directive for which the associated user code must be a canonical loop nest.23
153, 20, 23, 67, 152, 153, 198, 203, 211, 212, 233, 258, 371, 372, 375, 377, 379–381, 399,24
416, 417, 420, 423, 429, 51625

loop nest depth26

For a canonical loop nest, the maximal number of loops, including the outermost loop, that27
can be affected by a loop-nest-associated directive. 66, 203, 206, 37428

loop schedule29

The manner in which the collapsed iterations of affected loops are to be distributed among a30
set of threads that cooperatively execute the affected loops. 205, 35, 92, 94, 205, 398, 404,31
414, 420, 423, 90532

loop-sequence-associated construct33

A loop-sequence-associated directive and its associated canonical loop sequence. 68, 20734

CHAPTER 2. GLOSSARY 67

loop-sequence-associated directive1

An executable directive for which the associated user code must be a canonical loop2
sequence. 153, 23, 67, 152, 371, 3743

loop sequence length4

For a canonical loop sequence, the number of consecutive canonical loop nests regardless of5
their nesting into blocks. 203, 2086

loop-sequence-transforming construct7

A loop-sequence-associated construct with the loop-transforming property. 3718

loop-transforming construct9

A loop-transforming directive and its associated loop nest or associated canonical loop10
sequence. 371, 54, 76, 108, 197, 203, 205, 370–374, 378, 431, 900, 901, 904, 90711

loop-transforming directive12

A directive with the loop-transforming property. 54, 68, 108, 371, 373, 374, 37913

loop-transforming property14

The property that a construct is replaced by the loops that result from applying the15
transformation as defined by its directive to its affected loops. 68, 369, 374, 375, 377,16
379–38117

loosely structured block18

For Fortran, a block of zero or more executable constructs (including OpenMP constructs),19
where the first executable construct (if any) is not a Fortran BLOCK construct, with a single20
entry at the top and a single exit at the bottom. 99, 15321

M22

map-entering clause23

A map clause that, if it appears on a map-entering construct, specifies that the reference24
counts of corresponding list items are increased and, as a result, those list items may enter the25
device data environment. 275, 68, 283, 285, 361, 45526

map-entering construct27

A construct that has the map-entering property. 68, 274, 281, 283, 284, 287, 527, 56428

map-entering map type29

A map-type that specifies the clause on which it is specified is a map-entering clause. 275,30
27531

68 OpenMP API – Version 6.0 November 2024

map-entering property1

A property of a construct that it may include mapping operations that allocate storage on the2
target device and that result in assignment to the corresponding list item from the original list3
item. 68, 275, 454, 458, 4604

map-exiting clause5

A map clause that, if it appears on a map-exiting construct, specifies that the reference counts6
of corresponding list items are decreased and, as a result, those list items may exit the device7
data environment. 275, 69, 4578

map-exiting construct9

A construct that has the map-exiting property. 69, 274, 284, 52710

map-exiting map type11

A map-type that specifies the clause on which it is specified is a map-exiting clause. 275, 27512

map-exiting property13

A property of a construct that it may include mapping operations that release storage on the14
target device and that result in assignment from the corresponding list item to the original list15
item. 69, 275, 456, 458, 46016

mappable storage block17

A storage block, derived from the list items of map clauses specified on a data-mapping18
construct, for which a corresponding storage block in a device data environment is created,19
removed, or otherwise referenced by the construct. 283, 284, 287, 29620

mappable type21

A type that is valid for a mapped variable. If a type is composed from other types (such as the22
type of an array element or a structure element) and any of the other types are not mappable23
types then the type is not a mappable type.24

For C, the type must be a complete type.25

For C++, the type must be a complete type; in addition, for class types:26

• All member functions accessed in any target region must appear in a declare target27
directive.28

For Fortran, no restrictions on the type except that for derived types:29

• All type-bound procedures accessed in any target region must appear in a30
declare_target directive.31

COMMENT: Pointer types are mappable types but the memory block to which the32
pointer refers is not mapped.33

CHAPTER 2. GLOSSARY 69

69, 287, 290, 291, 2961

mapped address range2

For a given original list item, the address range that starts from its starting address and ends3
with its ending address. 280, 71, 2814

mapped variable5

An original variable in a data environment with a corresponding variable in a device data6
environment. The original and corresponding variables may share storage. 38, 49, 69, 70, 82,7
98, 464, 5648

mapper9

An operation that defines how variables of given type are to be mapped or updated with10
respect to a device data environment. 41, 48, 111, 183, 274–276, 278, 281–283, 287,11
293–296, 298, 29912

mapper identifier13

An OpenMP identifier that specifies the name of a user-defined mapper. 278, 278, 29514

mapping operation15

An operation that establishes or removes a correspondence between a variable in one data16
environment and another variable in a device data environment. 9, 23, 25, 69, 70, 95, 275,17
283, 284, 286, 361, 564, 734, 739, 899, 90018

map type19

A categorization of a data-mapping clause that determines whether the mapping operations20
that result from that clause include assignments between the original storage and21
corresponding storage of its list items. 61, 82, 109, 283, 28422

map-type decay23

A process applied to input map type, according to an underlying map type, that results in an24
output map type. 275, 61, 82, 275, 281, 45925

map-type-modifying property26

The property that a modifier that combines with a map-type to determine details of a27
mapping operation. 280, 28228

matchable candidate29

A mapped variable for which corresponding storage was created in a device data30
environment. 280, 71, 28131

70 OpenMP API – Version 6.0 November 2024

matched candidate1

A matchable candidate that, due to a matching mapped address range or extended address2
range, may determine the lower bound and length to use for a given assumed-size array that is3
a list item in a map clause. 281, 236, 281, 287, 9044

matching taskgraph record5

A finalized taskgraph record that has a matching value for the scalar expression that identifies6
a taskgraph region. 436, 92, 435–4397

memory8

A storage resource for storing and retrieving variables that are accessible by threads. 7, 6–11,9
13, 19, 20, 32, 44, 52, 63, 65, 71–73, 76, 89, 92, 99, 101, 105, 107, 114, 116, 143, 164, 165,10
231, 303–308, 359, 360, 484–487, 494, 499, 509, 544, 555, 561, 603, 607, 608, 612, 618,11
619, 630, 639, 643, 646, 647, 654, 655, 661, 662, 720, 774, 778, 779, 799, 821, 826,12
833–837, 839, 840, 846, 853, 872, 874, 876, 885, 899, 900, 902, 903, 907–910, 913, 91513

memory-allocating routine14

A memory-management routine that has the memory-allocating-routine property. 654, 20,15
72, 89, 114, 654, 655, 66216

memory-allocating-routine property17

The property that a memory-management routine allocates memory. 654, 71, 656–66018

memory allocator19

An OpenMP object that fulfills requests to allocate and to deallocate memory for program20
variables from the storage resources of its associated memory space. 9, 9, 21, 23, 24, 71, 72,21
116, 287, 305–313, 358, 463, 549, 646, 647, 652–655, 662, 888, 899, 903, 91022

memory-allocator-retrieving property23

The property that a memory-management routine retrieves a memory allocator handle. 647,24
71, 647–65125

memory-allocator-retrieving routine26

A memory-management routine that has the memory-allocator-retrieving property. 647,27
647–65228

memory-copying property29

The property that a routine copies memory from the device data environment of one device30
to the device data environment of another device. 612, 71, 613–615, 61731

memory-copying routine32

A routine that has the memory-copying property. 612, 52, 89, 448, 612, 61333

CHAPTER 2. GLOSSARY 71

memory-management routine1

A routine that has the memory-management-routine property. 630, 20, 71–73, 630, 635–6372

memory-management-routine property3

The property that a routine manages memory on the current device. 630, 72, 631–636,4
638–644, 646–653, 656–6615

memory part6

A storage block that resides on a single storage resource within a memory space. 727

memory partition8

A definition of how a memory allocator divides the allocated memory into memory parts and9
the storage resources on which it allocates those memory parts. 72, 307, 553, 555, 556, 639,10
641–64411

memory partitioner12

An OpenMP object that represents mechanisms to create and to destroy memory partitions.13
72, 306, 307, 547, 553–555, 637–64414

memory-partitioning property15

The property that a memory-management routine creates or destroys or otherwise affects16
memory partitions or memory partitioners. 637, 72, 638–64317

memory-partitioning routine18

A memory-management routine that has the memory-partitioning property. 63719

memory-reading callback20

A callback that has the memory-reading property. 837, 837, 83821

memory-reading property22

The property that a callback reads memory from an OpenMP program. 837, 72, 83823

memory-reallocating routine24

A memory-management routine that has the memory-reallocating-routine property. 654,25
655, 66026

memory-reallocating-routine property27

The property that a memory-allocating routine deallocates memory in addition to allocating28
it. 72, 66029

memory-setting property30

The property that a routine fills memory in a device data environment with a specified value.31
618, 73, 619, 62032

72 OpenMP API – Version 6.0 November 2024

memory-setting routine1

A routine that has the memory-setting property. 618, 448, 618–6212

memory space3

A representation of storage resources from which memory can be allocated or deallocated.4
More than one memory space may exist. 630, 9, 23, 24, 72, 73, 102, 144, 287, 304, 307, 317,5
555, 630, 635–637, 643, 645, 647, 888, 903, 9106

memory-space-retrieving property7

The property that a memory-management routine retrieves a memory space handle. 630, 73,8
631–6349

memory-space-retrieving routine10

A memory-management routine that has the memory-space-retrieving property. 630,11
630–63412

mergeable task13

A task that may be a merged task if it is an undeferred task. 440, 102, 427, 440, 468, 47914

merged task15

A task with a minimal data environment. 73, 428, 440, 449, 459, 719, 781, 88216

metadirective17

A directive that conditionally resolves to another directive. 324, 47, 48, 92, 152, 324–327,18
363, 889, 904, 905, 907, 91019

minimal data environment20

A data environment of a task that, inclusive of ICVs, is the same as that of its enclosing21
context, with the exception of list items in all-data-environments clauses that are specified on22
the task-generating construct that generated the task. 21, 73, 236, 23823

modifier24

A mechanism to customize clause behavior for its specified arguments. xxvii, 22, 33, 35, 41,25
50, 53, 63, 70, 76, 80, 81, 86, 87, 91, 92, 97, 109, 110, 126, 158–163, 169, 171, 174, 181,26
215, 224, 230, 231, 233, 249, 251, 268, 275, 276, 278, 280–282, 286, 287, 294–296, 300,27
316, 317, 331–333, 342, 343, 348, 414, 419, 421, 435–437, 459, 468, 470, 471, 505, 513,28
528, 529, 739, 888, 890, 891, 898–902, 904–907, 909, 91129

mutex-acquiring callback30

A callback that has the mutex-acquiring property. 76531

CHAPTER 2. GLOSSARY 73

mutex-acquiring property1

The property of a callback that it is dispatched when attempting to acquire2
mutually-exclusive access for a mutual-exclusion construct or when initializing or attempting3
to acquire a lock. 765, 73, 7664

mutex-execution callback5

A callback that has the mutex-execution property. 7676

mutex-execution property7

The property of a callback that it is dispatched when mutually-exclusive access is acquired or8
released for a mutual-exclusion construct or when a lock is acquired, released, or destroyed.9
767, 74, 767, 76810

mutual-exclusion construct11

A construct that has the mutual-exclusion property. 74, 765–76812

mutual-exclusion property13

The property that a construct provides mutual-exclusion semantics. 74, 473, 494, 514, 51514

mutually exclusive tasks15

Tasks that may be executed in any order, but not at the same time. 448, 50816

N17

named-handle property18

The property that a handle is an integer kind in Fortran that is distinguished by the name of19
the handle. 538, 553, 558–56020

named parameter list item21

A parameter list item that is the name of a parameter of a procedure. 163, 162, 163, 299, 30022

named pointer23

For C/C++, the base pointer of a given lvalue expression or array section, or the base pointer24
of one of its named pointers. For Fortran, the base pointer of a given variable or array25
section, or the base pointer of one of its named pointers.26

COMMENT: For the array section (*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n],27
where identifiers pi have a pointer type declaration and identifiers xi have an array28
type declaration, the named pointers are: p0, (*p0).x0[k1].p1, and29
(*p0).x0[k1].p1->p2.30

74, 16531

74 OpenMP API – Version 6.0 November 2024

name-list trait1

A trait that is defined with properties that match the names that identify particular instances2
of the trait that are effective at a given point in an OpenMP program. 318, 319, 321, 3223

native thread4

An execution entity upon which an OpenMP thread may be implemented. 3, 5, 6, 75, 80, 81,5
88, 107, 117, 135, 136, 385, 395, 398, 719, 733, 734, 742, 745, 747, 777, 786, 817, 829, 836,6
855–857, 867, 8787

native thread context8

A tool context that refers to a native thread. 822, 836, 837, 839, 8419

native thread handle10

A handle that refers to a native thread. 828, 854–857, 867, 86911

native thread identifier12

An identifier for a native thread defined by a native thread implementation. 138, 822, 829,13
830, 841, 851, 855, 85614

native trace format15

A format for implementation defined trace records that may be device-specific. 75, 704–706,16
812, 81417

native trace record18

A trace record in a native trace format. 706, 726, 727, 812–81419

nestable lock20

A lock that can be acquired (i.e., set) multiple times by the same task before being released21
(i.e., unset). 663, 75, 504, 560, 663, 664, 672, 734, 769, 79522

nestable lock property23

The property that a routine operates on nestable locks. 663, 75, 665, 667, 669, 671, 674, 67624

nestable lock routine25

A routine that has the nestable lock property. 663, 56026

nested construct27

A construct (lexically) enclosed by another construct. 21028

nested parallelism29

A condition in which more than one level of parallelism is active at a point in the execution of30
an OpenMP program. 4, 90831

CHAPTER 2. GLOSSARY 75

nested region1

A region (dynamically) enclosed by another region. That is, a region generated from the2
execution of another region or one of its nested regions. 3, 37, 76, 84, 369, 4043

new list item4

An instance of a list item created for the data environment of the construct on which a5
privatization clause or a data-mapping attribute clause specified. 219, 37, 87, 111, 219–221,6
226–228, 230, 233, 235, 236, 258, 267, 283–285, 9167

NUMA domain8

A device partition in which the closest memory to all cores is the same memory and is at a9
similar distance from the cores. 12810

non-negative property11

The property that an expression, including one that is used as the argument of a clause, a12
modifier or a routine, has a value that is greater than or equal to zero. 161, 119, 130, 131,13
133, 140, 142–144, 160, 163, 204, 305, 322, 378, 384, 394, 443, 541, 575, 582, 600, 636,14
680, 695, 771, 793, 794, 892, 89315

non-conforming program16

An OpenMP program that is not a conforming program. 2, 34, 42, 110, 214, 217, 429, 448,17
505, 663, 90018

non-host declare target directive19

A declare target directive that does not specify a device_type clause with host. 34520

non-host device21

A device that is not the host device. 7, 19, 26, 100, 117, 119, 120, 127, 139, 140, 329, 359,22
362, 385, 425, 450, 464, 594, 690, 692, 850, 851, 857, 889, 89623

non-null pointer24

A pointer that is not NULL. 622, 698, 700, 704, 745, 746, 81325

non-null value26

A value that is not NULL. 655, 731, 797, 798, 818, 836, 837, 839, 87127

non-property trait28

A trait that is specified without additional properties. 318, 319, 32329

nonrectangular-compatible property30

The property that the transformation defined by a loop-transforming construct is compatible31
with non-rectangular loops and therefore will not yield a non-conforming canonical loop nest32
due to their presence. 371, 372, 37533

76 OpenMP API – Version 6.0 November 2024

non-rectangular loop1

For a loop nest, a loop for which a loop bound references the iteration variable of a2
surrounding loop in the loop nest. 76, 200, 202, 205, 207, 234, 259, 372, 376, 380, 381, 420,3
423, 433, 9094

non-sequentially consistent atomic construct5

An atomic construct for which the seq_cst clause is not specified 136

NULL7

A null pointer. For C/C++, the value NULL or the value nullptr. For Fortran, the8
disassociated pointer for variables that have the POINTER attribute or the value9
C_NULL_PTR for variables of type C_PTR. 76, 145, 332, 590, 597, 605–609, 611, 612, 618,10
627, 628, 654, 655, 661, 684, 686, 687, 695, 698, 700, 704, 744, 757, 758, 763, 764, 771,11
773, 774, 779, 781, 787, 789, 790, 795–799, 818, 836, 837, 839, 844, 872, 89412

numeric abstract name13

An abstract name that refers to a quantity associated with a conceptual abstract name. 128,14
19, 85, 128–130, 134, 89715

O16

offsetting loop17

The outer generated loops of a stripe construct that determine the offsets within the grid18
cells used for each execution of the grid loops. 379, 379, 380, 88919

OMPD20

An interface that helps a third-party tool inspect the OpenMP state of a program that has21
begun execution. 816, 2, 14, 15, 77, 108, 116, 146, 184, 185, 816–818, 820, 822, 824,22
827–829, 833, 836, 841, 845–849, 855, 87823

OMPD callback24

A callback that has the OMPD property. 184, 185, 823, 826, 827, 831, 833, 836, 837, 839,25
84126

OMPD library27

A dynamically loadable library that implements the OMPD interface. 816, 15, 46, 816–823,28
826, 829–831, 833–839, 841–851, 853, 867, 870, 872, 874, 87629

OMPD property30

The property that a callback, routine or type is included in OMPD and its namespace, which31
implies it has the ompd_ prefix. 77, 78, 819, 820, 822–832, 834, 835, 837–849, 851–869,32
871–873, 875–87733

CHAPTER 2. GLOSSARY 77

OMPD routine1

A routine that has the OMPD property. 826, 827, 831, 845–850, 855, 856, 858–862, 875–8772

OMPD type3

A type that has the OMPD property. 184, 33, 56, 81, 83, 184, 185, 819–824, 826–837, 839,4
841–8445

OMPT6

An interface that helps a first-party tool monitor the execution of an OpenMP program. 697,7
2, 14, 45, 78, 98, 144, 146, 185, 476, 565, 690, 697–701, 703–706, 722, 725, 727, 733,8
744–746, 772, 786, 787, 802, 803, 812, 813, 877, 894, 9039

OMPT active10

An OMPT interface state in which the OpenMP implementation is prepared to accept11
runtime calls from a first-party tool and will dispatch any registered callbacks and in which a12
first-party tool can invoke runtime entry points if not otherwise restricted. 695, 700, 70713

OMPT callback14

A callback that has the OMPT property. 185, 703, 711, 713, 744, 787, 80215

OMPT inactive16

An OMPT interface state in which the OpenMP implementation will not make any callbacks17
and in which a first-party tool cannot invoke runtime entry points. 695, 699, 700, 74518

OMPT interface state19

A state that indicates the permitted interactions between a first-party tool and the OpenMP20
implementation. 78, 695, 699, 700, 707, 74521

OMPT pending22

An OMPT interface state in which the OpenMP implementation can only call functions to23
initialize a first-party tool and in which a first-party tool cannot invoke runtime entry points.24
699, 70025

OMPT property26

The property that a callback, runtime entry point or type is included in OMPT and its27
namespace, which implies it has the ompt_ prefix. 78, 79, 697, 698, 708, 710–712,28
714–732, 734–743, 745–753, 755–757, 759–770, 772–777, 780, 782, 784, 786–797,29
799–801, 803–81430

OMPT-tool finalizer31

An implementation of the finalize callback. 707, 446, 698, 74632

78 OpenMP API – Version 6.0 November 2024

OMPT-tool initializer1

An implementation of the initialize callback. 697, 446, 698, 700, 703, 7452

OMPT type3

A type that has the OMPT property. xxvii, 184, 33, 56, 81, 83, 185, 415, 697, 698, 700, 703,4
705–708, 710, 711, 713–731, 733, 735–738, 740–743, 745–751, 753, 754, 756–776, 778,5
779, 781, 783–785, 787–796, 798–814, 824, 830, 864, 870, 877, 894, 896, 903, 905, 9086

once-for-all-constituents property7

The property that a clause applies once for all constituent constructs to which it applies when8
it appears on a compound construct. 159, 205, 206, 5289

opaque property10

The property that an OpenMP type is opaque, which implies that objects of that type may11
only be accessed, modified and destroyed through OpenMP directives, routines, callbacks12
and entry points. Further, an object of an opaque type can be copied without affecting, or13
copying, its underlying state. Destruction of an OpenMP object, which by definition has an14
opaque type, destroys the state to which all copies of the object refer. All handles have15
opaque types. 79, 538, 539, 553, 558–560, 623–628, 710, 717, 772, 776, 811–813, 840,16
849–853, 857, 858, 860, 863, 865–873, 875–87717

opaque type18

A type that has the opaque property. 62, 79, 80, 538, 539, 553, 558–56019

OpenMP Additional Definitions document20

A document that exists outside of the OpenMP specification and defines additional values21
that may be used in a conforming program. The OpenMP Additional Definitions document is22
available via https://www.openmp.org/specifications/. 79, 140, 319, 469,23
539, 54124

OpenMP API routine25

A runtime library routine that is defined by the OpenMP implementation and that can be26
called from user code via the OpenMP API. 45, 80, 93, 115, 127, 240, 359, 360, 367, 533,27
586, 630, 688, 694, 89228

OpenMP architecture29

The architecture on which a region executes. 80, 69930

OpenMP context31

The execution context of an OpenMP program as represented by a set of traits, including32
active constructs, execution devices, OpenMP functionality supported by the implementation33
and any available dynamic values. 318, 33, 37, 98, 183, 318, 320, 321, 323–325, 328–331,34
335, 337, 341, 355, 541, 889, 90635

CHAPTER 2. GLOSSARY 79

https://www.openmp.org/specifications/

OpenMP environment variable1

A variable that is part of the runtime environment in which an OpenMP program executes2
and that a user may set to control the behavior of the program, typically through the3
initialization of an ICV. 127, 45, 50, 115, 120, 127, 872, 9144

OpenMP identifier5

An identifier that has a specialized purpose for use in OpenMP programs, as defined by this6
specification. 183, 60, 70, 86, 90, 93, 159, 164, 183, 185, 241–2447

OpenMP lock variable8

A lock. 6639

OpenMP object10

Any object of an opaque type that allows programmers to save, to manipulate and to use state11
related to the OpenMP API. 42, 62, 71, 72, 79, 505, 773, 776, 803, 811, 81312

OpenMP operation13

When used as a list item, a special expression that returns an object of a specified OpenMP14
types. Otherwise, an operation that is applied to a list item according to the semantics of a15
directive, clause, or modifier. 165, 60, 61, 80, 90, 162, 165, 183, 333, 406, 49916

OpenMP operation list17

An argument list that consists of OpenMP operation list items. 162, 16518

OpenMP operation list item19

A list item that is an OpenMP operation. 162, 8020

OpenMP process21

A collection of one or more native threads and address spaces. An OpenMP process may22
contain native threads and address spaces for multiple OpenMP architectures. At least one23
native thread in an OpenMP process is mapped to an OpenMP thread. An OpenMP process24
may be live or a core file. 20, 80, 819, 820, 829, 836, 845, 846, 849, 85025

OpenMP program26

A program that consists of a base program that is annotated with OpenMP directives or that27
calls OpenMP API routines. 3, 5–9, 13, 14, 19, 21, 22, 26, 32, 35, 36, 44–46, 48, 55–58, 62,28
72, 75, 76, 78–80, 91, 93, 108, 110, 115, 117, 127, 138, 148, 149, 164, 183, 214, 217, 222,29
233, 251, 289, 293, 294, 304, 305, 318–320, 325, 360, 370, 395, 404, 443, 463, 464, 472,30
473, 497, 499, 505, 582, 585, 592, 600, 602, 612, 663, 678, 688, 690, 691, 694, 695, 697,31
699, 700, 703, 720, 721, 744, 771, 789, 796, 801, 802, 808, 816–818, 821, 826, 829, 835,32
837, 839, 842–844, 878, 885, 915, 91733

80 OpenMP API – Version 6.0 November 2024

OpenMP property1

The property that a routine, callback or type is in the OpenMP namespace, which implies it2
has the omp_ prefix. 81, 536–542, 544, 545, 547, 548, 550, 552–554, 556–558, 560, 562,3
563, 565, 566, 573, 574, 623–628, 631–636, 638–642, 644, 646, 648–652, 656–661,4
664–671, 673–676, 6945

OpenMP stylized expression6

A base language expression that is subject to restrictions that enable its use within an7
OpenMP implementation. 32, 33, 60, 61, 159, 185, 2408

OpenMP thread9

A logical execution entity with a stack and associated thread-specific memory subject to the10
semantics and constraints of this specification and may be implemented upon a native thread.11
5–7, 22, 56, 75, 80, 84, 105–107, 132, 134, 136, 568, 777, 851, 854–858, 860, 863, 871, 878,12
89013

OpenMP thread pool14

The set of all threads that may execute a task of a contention group and, thus, are ever15
available to be assigned to a team that executes implicit tasks of the contention group, 3, 5,16
22, 93, 94, 106, 442, 44817

OpenMP type18

A type that has the OpenMP property or a type that is an OMPD type or an OMPT type. 183,19
23, 33, 53, 56, 62, 79, 80, 82, 83, 159, 162, 163, 165, 181–185, 204, 334, 376, 469, 509, 519,20
533, 534, 536, 538, 539, 541, 543–545, 547, 549, 552–556, 558–567, 622, 771, 892, 905, 90721

optional property22

The property that a clause, a modifier or an argument is optional and thus may be omitted. If23
any argument of a routine has the optional property then the routine has the overloaded24
property. 81, 157–159, 163, 206, 270, 325, 326, 334, 341, 343, 344, 346, 350, 357–362,25
365–367, 372, 382, 383, 393, 418, 422, 439, 440, 473, 481, 483–492, 498, 511, 517, 518,26
535, 616, 617, 620, 623–62527

order-concurrent-nestable construct28

A construct that has the order-concurrent-nestable property. 398, 91729

order-concurrent-nestable property30

The property that a construct or routine generates a region that may be a strictly nested region31
of a region that was generated by a construct on which an order clause with an ordering32
argument of concurrent is specified. 81, 374, 375, 377, 379–381, 384, 399, 423, 49433

order-concurrent-nestable routine34

A routine that has the order-concurrent-nestable property. 398, 91735

CHAPTER 2. GLOSSARY 81

original list item1

The instance of a list item in the data environment of the enclosing context. 37, 49, 51, 69,2
70, 82, 98, 215, 219–221, 225, 227–231, 233, 235–237, 242, 247, 248, 250–254, 256–259,3
267, 268, 271, 272, 280, 283–285, 288, 289, 295, 296, 298, 346, 361, 418, 420, 422, 444,4
466, 899, 9165

original list-item updating clause6

A clause that has the original list-item updating property 5227

original list-item updating property8

The property that a clause includes an effect of updating the value of the original list item9
when the region for which it is specified is completed. 82, 229, 252, 255, 25710

original pointer11

An original list item that corresponds to a corresponding pointer. 28412

original storage13

The storage of a given mapped variable. 8, 70, 95, 285, 286, 73914

original storage block15

A storage block that contains the storage of one or more mapped variables in a data16
environment. 8, 9, 38, 28317

original variable18

For a variable that is referenced in the structured block that is associated with a19
block-associated directive that accepts data-sharing attribute clauses, the variable by the same20
name that exists immediately outside the construct. 7, 721

orphaned construct22

A construct that gives rise to a region for which the binding thread set is the current team, but23
is not nested within another construct that gives rise to the binding region. 51524

outermost-leaf property25

The property that a clause applies to the outermost leaf construct that permits it when it26
appears on a compound construct. 159, 237, 271, 481, 483, 52827

output map type28

The map type that results when map-type decay is applied to an input map type. 275, 61, 70,29
109, 275, 28130

overlapping type name31

An OpenMP type for which its name has the overlapping type-name property. 75432

82 OpenMP API – Version 6.0 November 2024

overlapping type-name property1

The property that an OpenMP type name is used for both an ordinary OpenMP type (possibly2
an OMPD type or an OMPT type) and for a callback in the same name space; which type is3
intended should be apparent from the context in this document. 82, 717, 722, 735, 743, 752,4
753, 762, 765, 7665

overloaded property6

The property that a routine has an overloaded C++ interface. 81, 83, 655–6617

overloaded routine8

A routine that has the overloaded property. 655, 6619

P10

parallel handle11

A handle that refers to a parallel region. 831, 828, 858–860, 866, 86812

parallelism-generating construct13

A construct that has the parallelism-generating property. 231, 367, 371, 52614

parallelism-generating property15

The property that a construct enables parallel execution by generating one or more teams,16
explicit tasks, or SIMD instructions. 83, 384, 394, 399, 426, 429, 454, 456, 458, 460, 46517

parallel region18

A region that has a set of associated implicit tasks and an associated team of threads that19
execute those tasks. 4, 5, 19, 23, 31, 38, 53, 59, 83, 85, 100, 103–105, 114, 116, 125, 132,20
136, 273, 389, 402, 404–407, 409, 414, 423–426, 429, 475–478, 502, 527, 536, 568–570,21
715, 722, 744, 758, 763, 764, 796–798, 827, 831, 854, 858–860, 863, 866, 894, 914, 91622

parameter list23

An argument list that consists of parameter list items. 16224

parameter list item25

A list item that identifies one or more parameters of a procedure. 162, 74, 83, 162, 163, 53426

parent device27

For a given target region, the device on which the corresponding target construct was28
encountered. 257, 359, 451, 46129

parent thread30

The thread that encountered the parallel construct and generated a parallel region is31
the parent thread of each thread that executes a task region that binds to that parallel32

CHAPTER 2. GLOSSARY 83

region. The primary thread of a parallel region is the same thread as its parent thread1
with respect to any resources associated with an OpenMP thread. The thread that encounters2
a target or teams construct is not the parent thread of the initial thread of the3
corresponding target or teams region. 4, 22, 83, 844

partial tile5

A tile that is not a complete tile. 381, 3816

partitioned construct7

A construct that has the partitioned property. 404, 84, 5268

partitioned property9

The property of a construct that it is a work-distribution construct for which any encountered10
user code in the corresponding region, excluding code from nested regions that are not11
closely nested regions, is executed by only one thread from its binding thread set. 84, 405,12
407, 409, 412, 416, 417, 420, 42313

partitioned worksharing construct14

A construct that is both a partitioned construct and a worksharing construct. 4, 8415

partitioned worksharing region16

A region that corresponds to a partitioned worksharing construct. 91717

perfectly nested loop18

A loop that has no intervening code between it and the body of its surrounding loop. The19
outermost loop of a loop nest is always perfectly nested. 198, 57, 268, 376, 379–381, 514,20
91621

persistent self map22

A self map for which the corresponding storage remains present in the device data23
environment, as if it has an infinite reference count. 360, 8, 88524

place25

An unordered set of processors on a device. 130, 4, 61, 84, 85, 106, 116, 117, 128, 131–133,26
389–393, 679–682, 792–794, 886, 890, 89727

place-assignment group28

A logical group of places and positions from the place-assignment-var ICV that is used to29
define a set of assignments of threads to places according to a given thread affinity policy.30
390, 390, 39131

84 OpenMP API – Version 6.0 November 2024

place-count abstract name1

A numeric abstract name that refers to a quantity associated with a place-list abstract name.2
1283

place list4

The ordered list that describes all OpenMP places available to the execution environment. 85,5
131, 394, 679, 792, 886, 8976

place-list abstract name7

A conceptual abstract name that refers to a set of hardware abstractions of a given category8
that may be used to specify each place in a place list. 128, 85, 128, 1319

place number10

A number that uniquely identifies a place in the place list, with zero identifying the first place11
in the place list, and each consecutive whole number identifying the next place in the place12
list. 390, 390, 681, 682, 793, 79413

place partition14

An ordered list that corresponds to a contiguous interval in the place list. It describes the15
places currently available to the execution environment for a given parallel region. 61, 106,16
117, 391, 39217

pointer association query18

A query to the association status of a pointer via comparison to zero in C/C++ or by calling19
the ASSOCIATED intrinsic with one argument in Fortran. 46320

pointer attachment21

The process of making a pointer variable an attached pointer. 284, 25, 28522

pointer property23

The property that a routine or callback either returns a pointer type in C/C++ and is an24
assumed-size array in Fortran or has an argument that has such a type. 535, 596, 597, 614,25
616, 617, 620, 625–628, 631, 632, 636, 644, 648, 649, 680, 682–686, 698, 714, 726, 734,26
745–753, 755–757, 759–762, 765, 766, 769, 770, 772, 774–777, 780, 782, 784, 786–788,27
790–793, 795–797, 799, 800, 803–814, 834, 835, 837, 839–842, 844–846, 849–854,28
856–873, 875–87729

pointer-to-pointer property30

The property that a routine or callback either returns a pointer-to-pointer type in C/C++ or31
has an argument that has such a type. 535, 775, 782, 787, 788, 796, 797, 799, 800, 834, 840,32
847, 849–851, 853, 854, 856–863, 870, 873, 87633

CHAPTER 2. GLOSSARY 85

positive property1

The property that an expression, including one that is used as the argument of a clause, a2
modifier or a routine, has a value that is greater than zero. 161, 129–131, 133–135, 160, 162,3
206, 207, 300, 305, 306, 309, 313, 373, 374, 376, 383, 388, 393, 397, 401, 418, 422, 432,4
433, 452, 546, 547, 568, 583, 584, 602, 605, 614, 617, 631, 632, 645, 648, 649, 734, 805,5
886, 887, 889–8936

post-modified property7

The property of a clause that its modifiers must appear after its arguments. 158, 159, 161,8
223, 232, 291, 3009

preceding dependence-compatible task10

For a given task, a dependence-compatible task that may be its antecedent task. 507, 51, 59,11
507, 50812

predecessor task13

For a given task, an antecedent task of that task, or any predecessor task of any of its14
antecedent tasks. 507, 86, 455, 457, 462, 466, 479, 50815

predefined default mapper16

The default mapper that is used if no default mapper that is a user-defined mapper is visible17
for the type of a given list item. 278, 238, 278, 281, 282, 288, 295, 29618

predefined identifier19

Unless otherwise specified, an OpenMP identifier that is defined for use in arbitrary base20
language expressions. 183, 7, 183, 378, 533, 534, 692, 693, 708, 847, 89221

predetermined data-sharing attribute22

A data-sharing attribute that applies regardless of the clauses that are specified on a given23
construct, unless explicitly specified otherwise. 211, 210–213, 222, 224, 276, 292, 461, 528,24
91525

preference specification26

The specification of a set of preferences for interoperating with a foreign runtime27
environment. 470, 86, 162, 471, 89128

preference specification list29

An argument list that consists of preference specification list items. 16230

preference specification list item31

A list item that is a preference specification. 162, 86, 47032

86 OpenMP API – Version 6.0 November 2024

pre-modified property1

The property of a clause that its modifiers must appear before its arguments. 158, 1612

preprocessed code3

For C/C++, a sequence of preprocessing tokens that result from the first six phases of4
translation, as defined by the base language. 337, 9065

present storage6

A storage block that exists in a given device data environment. 282–2877

primary thread8

An assigned thread that has thread number 0. A primary thread may be an initial thread or9
the thread that encounters a parallel construct, forms a team, generates a set of implicit10
tasks, and then executes one of those tasks as thread number 0. 4, 4, 5, 28, 53, 59, 84, 87,11
105, 106, 216, 271, 272, 384, 385, 390, 392, 403, 405, 503, 569, 796, 91612

private attribute13

For a given construct, a data-sharing attribute of a data entity that its lifetime is limited to that14
of the corresponding region and it is visible only to a single task generated by the construct or15
to a single SIMD lane used by the construct. 219, 7, 8, 21, 52, 60–63, 87, 90, 111, 160,16
210–212, 214, 221, 228, 231, 236, 238, 241, 242, 247, 252–254, 256, 257, 267, 268, 273,17
313, 371, 404, 521, 528, 91518

private-only variable19

A variable that has a private attribute and no other data-sharing attribute with respect to a20
given construct. 226, 43721

private variable22

A variable that has a private attribute with respect to a given construct. 7, 7, 8, 52, 60, 64, 87,23
90, 220, 222, 267, 268, 270, 273, 410, 413, 418, 421, 422, 89824

privatization clause25

The clause that may result in private variables that are new list items. 210, 37, 76, 87, 222,26
23627

privatization property28

The property that a clause privatizes list items. 225, 227, 229, 232, 235, 236, 252, 255–257,29
44530

privatized list item31

A list item that appears in the argument list of a privatization clause, resulting in one or more32
private new list items. 219, 219–222, 225, 226, 235, 25333

CHAPTER 2. GLOSSARY 87

procedure1

A function (for C/C++ and Fortran) or subroutine (for Fortran). 15, 26, 30, 35, 41, 45, 51, 53,2
54, 59, 65, 74, 83, 91, 95, 100, 107, 108, 112, 146, 149, 154, 161–164, 184, 188, 214, 225,3
226, 228, 233, 234, 240, 261, 264, 277, 281, 282, 294, 296, 300, 318, 319, 322, 329, 330,4
335, 336, 341–345, 347–351, 402, 412, 413, 448, 450, 461, 464, 533, 534, 555, 556, 638,5
639, 641–644, 697, 698, 700, 707, 719, 721, 731, 798, 806, 821, 826, 827, 831, 836, 841,6
889, 906, 9107

procedure property8

The property that a routine argument has a function pointer type in C/C++ and a procedure9
type in Fortran. 535, 638, 80810

processor11

An implementation defined hardware unit on which one or more threads can execute. 43, 84,12
117, 131, 136, 595, 680, 791–794, 803, 885, 886, 91413

product order14

The partial order of two logical iteration vectors ωa = (i1, . . . , in) and ωb = (j1, . . . , jn),15
denoted by ωa ≤product ωb, where ik ≤ jk for all k ∈ {1, . . . , n}. 38116

program order17

An ordering of operations performed by the same thread as determined by the execution18
sequence of operations specified by the base language.19

COMMENT: For versions of C and C++ that include base language support for20
threading, program order corresponds to the sequenced-before relation between21
operations performed by the same thread.22

12, 13, 88, 9823

progress group24

A group of consecutive threads in a team that may execute on the same progress unit. 393,25
39326

progress unit27

An implementation defined set of consecutive hardware threads on which native threads may28
execute a common stream of instructions. 6, 6, 7, 88, 393, 534, 59629

property30

A characteristic of an OpenMP feature. xxvii, 20–22, 24, 28–31, 33, 35, 37, 39–41, 43–46,31
49, 50, 52–55, 57, 61–63, 65, 66, 68–79, 81–97, 101, 103–107, 109, 110, 112–114, 159, 160,32
169, 173, 179–182, 205–207, 215, 223–227, 229, 230, 232, 235–238, 251, 252, 255–258,33
260, 262, 263, 265, 266, 269–272, 274, 278–280, 289–291, 293, 297–301, 303, 309, 310,34
312, 313, 315, 316, 318–321, 323, 325–327, 330, 331, 333, 334, 336–341, 343, 344, 346,35

88 OpenMP API – Version 6.0 November 2024

349, 350, 352–355, 357–369, 372, 374–384, 388, 392–394, 397–403, 405–409, 412,1
416–418, 420, 422, 423, 425, 426, 429, 432–435, 438–446, 450–452, 454, 456, 458, 460,2
465, 468–470, 472, 473, 475, 478, 479, 481–494, 498, 504–507, 511, 512, 514, 515,3
517–520, 524, 528, 535–545, 547, 548, 550, 552–554, 556–560, 562, 563, 565, 566,4
568–579, 581–584, 586–590, 592–602, 604–609, 611, 613–617, 619, 620, 622–628,5
631–636, 638–644, 646–653, 656–661, 664–671, 673–676, 678–686, 688–692, 694, 697,6
698, 708–712, 714–732, 734–743, 745–753, 755–757, 759–770, 772–777, 780, 782, 784,7
786–797, 799–801, 803–814, 819, 820, 822–832, 834, 835, 837–873, 875–877, 892, 8998

pure property9

The property that a directive has no observable side effects or state, yielding the same result10
every time it is encountered. 149, 215, 260, 263, 266, 293, 301, 310, 325, 327, 334, 341, 346,11
352, 368, 369, 374, 375, 377, 379–381, 399, 897, 90412

R13

raw-memory-allocating routine14

A memory-allocating routine that has the raw-memory-allocating-routine property. 654,15
654–65716

raw-memory-allocating-routine property17

The property that a memory-allocating routine returns a pointer to uninitialized memory.18
654, 89, 656, 65719

read-modify-write20

An atomic operation that reads and writes to a given storage location.21

COMMENT: Any atomic update is a read-modify-write operation.22

11, 8923

read structured block24

An atomic structured block that may be associated with an atomic directive that expresses25
an atomic read operation. 189, 190, 192, 49726

rectangular-memory-copying property27

The property of a memory-copying routine that the memory that it copies forms a rectangular28
subvolume. 612, 89, 614, 61729

rectangular-memory-copying routine30

A routine with the rectangular-memory-copying property. 612, 612, 615, 618, 735, 779, 89331

reduction32

A use of a reduction operation. 33, 90, 104, 183, 239–242, 244, 245, 249–251, 253, 256,33
430, 898, 904, 907, 909, 912, 91434

CHAPTER 2. GLOSSARY 89

reduction attribute1

For a given construct, a data-sharing attribute of a data entity that implies the private attribute2
and for which a partial result is computed in the context of a reduction computation. 249, 903

reduction clause4

A reduction-scoping clause or a reduction-participating clause. 239, 61, 219, 222, 239–241,5
247–251, 253, 256, 257, 260, 2616

reduction expression7

A combiner expression or an initializer expression. 240, 2408

reduction identifier9

An OpenMP identifier that specifies a combiner OpenMP operation to use in a reduction.10
239, 183, 239, 240, 244, 245, 247–249, 251, 260, 261, 430, 89911

reduction operation12

An operation that applies a combiner and an associated initializer to a set of values. 32, 89,13
94, 111, 23914

reduction-participating clause15

A clause that defines the participants in a reduction. 239, 90, 239, 251, 252, 25616

reduction-participating property17

The property that a clause is a reduction-participating clause. 252, 25618

reduction-scoping clause19

A clause that defines the region in which a reduction is computed. 239, 90, 239, 250–253,20
256, 257, 43021

reduction-scoping property22

The property that a clause is a reduction-scoping clause. 252, 25523

reduction variable24

A private variable that has the reduction attribute with respect to a given construct. 249, 24925

referenced pointee26

For a given referencing variable, the referenced data object to which the referring pointer27
points. 26, 27, 91, 237, 238, 279, 282, 283, 29628

referencing variable29

For C++, a data entity that is a reference. For Fortran, a data entity that is an allocatable30
variable or a data pointer. 25, 27, 90, 91, 112, 210, 212, 237, 238, 279, 282, 283, 289, 29631

90 OpenMP API – Version 6.0 November 2024

referring pointer1

If a given referencing variable is a Fortran data pointer, the pointer object that is pointer2
associated with the referenced pointee; otherwise, an associated implementation defined3
handle through which the referenced pointee is made accessible. 25, 37, 38, 90, 210, 212,4
238, 279, 282–284, 289, 4615

region6

All code encountered during a specific instance of the execution of a given construct,7
structured block sequence or routine. A region includes any code in called procedures as well8
as any implementation code. The generation of a task at the point where a task-generating9
construct is encountered is a part of the region of the encountering thread. However, an10
explicit task region that corresponds to a task-generating construct is not part of the region of11
the encountering thread unless it is an included task region. The point where a target or12
teams directive is encountered is a part of the region of the encountering thread, but the13
region that corresponds to the target or teams directive is not.14

A region may also be thought of as the dynamic or runtime extent of a construct or of a15
routine. During the execution of an OpenMP program, a construct may give rise to many16
regions. 3–8, 12, 13, 19, 21, 22, 26, 28, 30, 31, 38, 39, 42, 45, 47–51, 54, 55, 58, 59, 61, 69,17
71, 76, 79, 81–84, 87, 90–93, 95–97, 99, 101–107, 109, 113–117, 122, 124, 128–130, 133,18
136, 149, 155, 193, 194, 198, 205, 210, 214, 216, 217, 220, 221, 228, 231, 237, 239, 240,19
248, 250–254, 256, 257, 271, 281, 283, 284, 286, 288, 296, 306–308, 311, 313, 316, 328,20
338, 340, 345, 358, 359, 366, 369, 384, 385, 388, 389, 391, 394–396, 398–400, 402–410,21
412, 413, 420, 421, 423–427, 429, 430, 433, 435–437, 439, 445–451, 454, 456, 458, 459,22
461–466, 468, 472–480, 494–505, 513–516, 519–525, 535, 564, 568, 569, 571, 576, 577,23
580–583, 585, 588, 590, 592–594, 596–603, 618, 630, 645, 646, 652, 653, 655, 664–676,24
678, 683, 685–687, 689, 690, 693–695, 703, 704, 706, 715, 719, 725, 733, 734, 736, 742,25
744, 749–751, 753, 758, 763–768, 778, 781, 785, 788, 795, 796, 800, 850, 859, 878–881,26
883, 885, 887–889, 891, 893, 894, 898, 900–903, 906, 910, 912, 913, 915–91827

region endpoint28

An event that indicates the beginning or end of a region that may be of interest to a tool. 703,29
704, 72930

region-invariant property31

The property that an expression, including one that is used as the argument of a clause, a32
modifier or a routine, has a value that is invariant for the associated region. 161, 160, 232,33
258, 300, 384, 394, 418, 42234

registered callback35

A callback for which callback registration has been performed. 14, 29, 78, 701, 703, 89436

CHAPTER 2. GLOSSARY 91

release flush1

A flush that has the release flush property. 10, 11, 12, 92, 101, 496, 499, 501–5042

release flush property3

A flush with the release flush property orders memory operations that precede the flush before4
memory operations performed by a different thread with which it synchronizes. 52, 92, 4995

release sequence6

A set of modifying atomic operations that are associated with a release flush that may7
establish a synchronizes-with relation between the release flush and an acquire flush. 11, 12,8
5029

repeatable property10

The property that a clause or modifier may appear more than once in a given context with11
which it is associated. 159, 18012

replacement candidate13

A directive variant or function variant that may be selected to replace a metadirective or base14
function. 324, 30, 48, 324, 325, 328, 329, 331, 335, 88915

replayable construct16

A task-generating construct that an implementation must record into a taskgraph record, if17
one is recorded. 435, 92, 94, 103, 215, 435–437, 44118

replay execution19

An execution of a given taskgraph region that entails executing replayable constructs that20
are saved in a matching taskgraph record. 436, 52, 94, 103, 215, 435–437, 891, 89821

reproducible schedule22

A loop schedule for the affected loop nest of a given loop-nest-associated construct that does23
not change between different executions of the construct that have the same binding thread24
set and have the same number of logical iterations. 404, 205, 398, 414, 420, 423, 90525

required property26

The property that a clause, a modifier, an argument, or at least one member of a clause set is27
required and, thus, may not be omitted. 160, 157, 159–161, 181, 251, 252, 255, 256, 258,28
262, 265, 266, 325, 330, 331, 356, 363, 374, 378, 458, 465, 468, 505, 511, 512, 519, 53529

reservation type30

A thread-reservation type. 14231

92 OpenMP API – Version 6.0 November 2024

reserved locator1

An OpenMP identifier that represents system storage that is not necessarily bound to any base2
language storage item. 164, 163, 164, 506, 508, 509, 9063

reserved thread4

A thread in an OpenMP thread pool that must have a particular thread-reservation type when5
executing a task. 1416

resource-relinquishing property7

The property that a routine relinquishes some (or all) resources that the OpenMP program is8
currently using. 688, 93, 689, 6909

resource-relinquishing routine10

A routine that has the resource-relinquishing property. 688, 56, 98, 563, 564, 688, 68911

reverse-offload region12

A region that is associated with a target construct that specifies a device clause with the13
ancestor device-modifier. 345, 91114

routine15

Unless specifically stated otherwise, an OpenMP API routine. xxvii, 2, 3, 6, 7, 14, 15, 17, 21,16
22, 24, 28, 30, 35, 44, 49, 52, 53, 55, 57, 58, 61–63, 65, 66, 71–73, 75–79, 81, 83, 85, 86, 88,17
89, 91, 93, 97, 105, 110, 112, 115, 120–122, 129, 139, 147, 216, 306, 398, 462, 463,18
533–535, 537, 555, 556, 561, 563–565, 567–590, 592–612, 614–616, 618, 620–626,19
628–676, 678–694, 698, 701, 744, 745, 754, 760, 769, 787, 798, 817, 826, 833, 845–867,20
870–872, 874–877, 892–894, 901–903, 907–911, 913, 915–91721

runtime entry point22

A function interface provided by an OpenMP runtime for use by a tool. A runtime entry23
point is typically not associated with a global function symbol. 701, 24, 49, 78, 93, 697, 704,24
705, 745, 78625

runtime error termination26

An error termination that is performed during execution. 6, 50, 149, 283, 285, 296, 389, 450,27
451, 600, 602, 603, 689, 88728

S29

safesync-compatible expression30

An expression that is omp_curr_progress_width, a constant expression, or an31
expression for which all operands are safesync-compatible expressions. 93, 39332

CHAPTER 2. GLOSSARY 93

saved data environment1

For a given replayable construct that is recorded in a taskgraph record, an associated2
enclosing data environment that is also saved in the record for possible use in a replay3
execution of the construct. 436, 103, 215, 435, 4374

scalar variable5

For C/C++, a scalar-variable, as defined by the base language. For Fortran, a scalar variable6
with enum, enumeration, assumed, or intrinsic type, excluding character type, as defined by7
the base language. 185, 189, 195, 200, 211, 214, 223, 231, 277, 292, 778, 888, 9128

scan computation9

A computation performed in the logical iterations of a loop nest that yields a set of values10
that are a running total, as defined by a reduction operation, over an input set of values. 267,11
50, 59–61, 94, 111, 253, 254, 26712

scan phase13

The portion of an affected iteration that includes all statements that read the result of a scan14
computation. 267, 60, 267–27015

schedulable task16

A member of the schedulable task set of a thread. 448, 44917

schedulable task set18

If the thread is a structured thread, the set of tasks bound to the current team. If the thread is19
an unassigned thread, any explicit task in the contention group associated with the current20
OpenMP thread pool. 94, 447, 44821

schedule specification22

The specification of a loop schedule for a given loop-nest-associated construct, which23
includes but is not limited to the schedule type and chunk size. 404, 94, 205, 40424

schedule-specification clause25

A clause that has the schedule-specification property. 40426

schedule-specification property27

The property of a clause that it defines, in part or in full, the schedule specification of a given28
loop-nest-associated construct. 94, 397, 418, 42229

schedule type30

The part of a schedule specification that identifies the method by which the collapsed31
iterations are distributed to threads. 94, 117, 125, 134, 415, 419, 537, 573, 574, 89232

94 OpenMP API – Version 6.0 November 2024

scope handle1

A handle that refers to an OpenMP scope. 827, 875–8772

segment3

A portion of an address space associated with a set of address ranges. 20, 8264

selector set5

Unless specifically stated otherwise, a trait selector set. 36, 45, 58, 102, 111, 3226

self map7

A mapping operation for which the corresponding storage is the same as its original storage.8
284, 84, 283, 285, 361, 9009

semantic requirement set10

A logical set of semantic properties maintained by a task that is updated by directives in the11
scope of the task region. 328, 332, 334, 338, 339, 48212

separated construct13

A construct for which its associated structured block is split into multiple structured block14
sequences by a separating directive. 154, 95, 154, 155, 267, 26815

separating directive16

A directive that splits a structured block that is associated with a construct, the separated17
construct, into multiple structured block sequences. 154, 95, 152, 154, 155, 266, 268, 40818

sequentially consistent atomic operation19

An atomic operation that is specified by an atomic construct for which the seq_cst20
clause is specified. 13, 91421

sequential part22

All code encountered during the execution of an initial task region that is not part of a23
parallel region that corresponds to a parallel construct or a task region24
corresponding to a task construct. Instead, it is enclosed by an implicit parallel region.25

COMMENT: Executable statements in called procedures may be in both a26
sequential part and any number of explicit parallel regions at different points27
in the program execution.28

95, 216, 683, 68529

shape-operator30

For C/C++, an array shaping operator that reinterprets a pointer expression as an array with31
one or more specified dimensions. 165, 165, 295, 444, 509, 90932

CHAPTER 2. GLOSSARY 95

shared attribute1

For a given construct, a data-sharing attribute of a data entity that its lifetime is not limited to2
that of the corresponding region and, if the data entity is a variable, it is visible to all tasks3
generated by the construct in addition to being visible in the enclosing context of the4
construct if declared outside the construct. 225, 8, 96, 210–214, 225, 252–254, 259, 427,5
430, 454, 456, 461, 466, 8886

shared variable7

A variable that has the shared attribute with respect to a given construct. 7, 7, 10–12, 14,8
488–4919

sharing task10

A task for which the implicitly determined data-sharing attribute is shared unless explicitly11
specified otherwise. 213, 96, 45812

sharing-task property13

The property that a task-generating construct generates sharing tasks. 45814

sibling task15

Two tasks are each a sibling task of the other if they are child tasks of the same task region.16
96, 507, 50817

signal18

A software interrupt delivered to a thread. 24, 96, 81719

signal handler20

A function called asynchronously when a signal is delivered to a thread. 7, 24, 720, 786, 81721

SIMD22

Single Instruction, Multiple Data, a lock-step parallelization paradigm. 233, 318, 341, 342,23
402, 888, 889, 91424

SIMD chunk25

A set of iterations executed concurrently, each by a SIMD lane, by a single thread by means26
of SIMD instructions. 399, 97, 342, 399, 401, 91227

SIMD construct28

A simd construct or a compound construct for which the simd construct is a constituent29
construct. 41930

SIMD instruction31

A single machine instruction that can operate on multiple data elements. 3, 83, 96, 97, 300,32
39933

96 OpenMP API – Version 6.0 November 2024

SIMDizable construct1

A construct that has the SIMDizable property. 399, 9172

SIMDizable property3

The property that a construct may be encountered during execution of a simd region. 97,4
374, 375, 377, 379–381, 399, 423, 494, 515, 5165

SIMD lane6

A software or hardware mechanism capable of processing one data element from a SIMD7
instruction. 5, 7, 87, 96, 219–221, 226, 233, 234, 250–253, 258, 3998

SIMD loop9

A loop that includes at least one SIMD chunk. 299, 341, 34210

SIMD-partitionable construct11

A construct that has the SIMD-partitionable property. 52612

SIMD-partitionable property13

The property of a loop-nest-associated construct that it partitions the set of affected iterations14
such that each partition can be divided into SIMD chunks. 97, 416, 417, 420, 42915

simple lock16

A lock that cannot be set if it is already owned by the task trying to set it. 663, 97, 559, 663,17
67018

simple lock property19

The property that a routine operates on simple locks. 663, 97, 664, 666, 668, 670, 673, 67520

simple lock routine21

A routine that has the simple lock property. 663, 55922

simple modifier23

A modifier that can never take an argument when it is specified. 158, 158, 160, 16124

simply contiguous array section25

An array section that can be determined to have contiguous storage at compile time. In26
Fortran, this determination may result from the specification of the CONTIGUOUS attribute27
on the declaration of the array. 214, 88828

simply happens before29

For an event A to simply happen before an event B, A must precede B in simply30
happens-before order. 12, 12, 1331

CHAPTER 2. GLOSSARY 97

simply happens-before order1

An ordering relation that is consistent with program order and the synchronizes-with relation.2
12, 56, 973

sink iteration4

A doacross iteration for which executable code, because of a doacross dependence, cannot5
execute until executable code from the source iteration has completed. 512, 476

socket7

The physical location to which a single chip of one or more cores of a device is attached. 1288

soft pause9

An instance of a resource-relinquishing routine that specifies that the OpenMP state is10
required to persist. 564, 56411

source iteration12

A doacross iteration for which executable code must complete execution before executable13
code from another doacross iteration can execute due to a doacross dependence. 512, 47, 9814

stand-alone directive15

A unassociated directive that is also an executable directive. 153, 155, 15616

standard trace format17

A format for OMPT trace records. 704, 710, 728, 812, 89418

starting address19

The address of the first storage location of a list item or, for a mapped variable of its original20
list item. 51, 70, 28121

static context selector22

The context selector for which traits in the OpenMP context can be fully determined at23
compile time. 48, 324, 326, 32924

static storage duration25

For C/C++, the lifetime of an object with static storage duration, as defined by the base26
language. For Fortran, the lifetime of a variable with a SAVE attribute, implicit or explicit, a27
common block object or a variable declared in a module. 8, 25, 44, 55, 65, 106, 211, 214,28
215, 218, 224, 242, 274, 282, 287, 290, 291, 298, 302, 305, 309, 311, 345, 360, 361, 436,29
437, 461, 88530

step expression31

A loop-invariant expression used by an induction operation. 32, 60, 64, 171, 243, 244, 248,32
26433

98 OpenMP API – Version 6.0 November 2024

storage block1

The physical storage that corresponds to an address range in memory. 9, 19, 38, 52, 69, 72,2
82, 87, 99, 112, 463, 8913

storage location4

A storage block in memory. 7–9, 19, 25, 26, 49, 65, 89, 98, 188, 193–195, 233, 236, 237,5
256, 259, 281, 308, 360, 401, 435, 494–497, 499, 500, 508, 509, 607, 715, 888, 8916

strictly nested region7

A region nested inside another region with no other explicit region nested between them. 81,8
105, 395, 396, 398, 421, 425, 582, 585, 600, 602, 901, 9179

strictly structured block10

A single Fortran BLOCK construct, with a single entry at the top and a single exit at the11
bottom. 99, 153, 41112

string literal13

For C/C++, a string literal. For Fortran, a character literal constant. 53, 140, 469, 47114

striping15

The reordering of logical iterations of a loop that follows a grid while skipping logical16
iterations in-between. 379, 90117

strong flush18

A flush that has the strong flush property. 10, 10, 11, 13, 53, 496, 49919

strong flush property20

A flush with the strong flush property flushes a set of variables from the temporary view of21
the memory of the current thread to the memory. 52, 99, 49922

structure23

A structure is a variable that contains one or more variables that may have different types.24
This includes variables that have a struct type in C/C++, variables that have a class25
type in C++, and variables that have a derived type and are not arrays in Fortran. 36, 99, 212,26
214, 238, 276, 278, 280, 282, 283, 287, 288, 296, 298, 299, 315, 462, 545, 698, 700, 707,27
715, 718, 719, 725, 727, 728, 731, 734, 744–746, 754, 761, 798, 812, 819, 820, 823, 824,28
831, 888, 909, 91229

structured block30

For C/C++, an executable statement, possibly compound, with a single entry at the top and a31
single exit at the bottom, or an OpenMP construct. For Fortran, a strictly structured block or32
a loosely structured block. 186, 3, 7, 29, 35, 37, 43, 67, 82, 95, 109, 110, 132, 153–155, 186,33
187, 198, 202, 236–239, 271, 273, 342, 371, 382, 384, 385, 395, 402, 405–407, 409, 410,34

CHAPTER 2. GLOSSARY 99

412–414, 421, 426, 427, 435, 439, 447, 458, 459, 474, 479, 502, 503, 516, 590, 705, 725,1
741, 744, 754, 767, 768, 882, 8902

structured block sequence3

For C/C++, a sequence of zero or more executable statements (including constructs) that4
together have a single entry at the top and a single exit at the bottom. For Fortran, a block of5
zero or more executable constructs (including OpenMP constructs) with a single entry at the6
top and a single exit at the bottom. 29, 47, 49, 91, 95, 101, 154, 186, 198, 202, 230, 231,7
267–270, 407–409, 8908

structured parallelism9

Parallel execution through the implicit tasks of (possibly nested) parallel regions by the set of10
structured threads in a contention group. 142, 14311

structured thread12

A thread that is assigned to a team and is not a free-agent thread. 94, 100, 107, 117, 142, 387,13
89714

subroutine15

A procedure for which a call cannot be used as the right-hand side of a base language16
assignment operation. 554, 556, 568, 572–575, 582, 584, 589, 592, 599, 601, 608, 638–641,17
646, 652, 661, 664–671, 673, 674, 680, 682, 683, 685, 692, 711, 722, 746–753, 755–757,18
759–764, 766–769, 772–777, 780, 782, 784, 801, 80719

subsidiary directive20

A directive that is not an executable directive and that appears only as part of a construct.21
152, 156, 266–268, 408, 429, 434, 435, 90122

subtask23

A portion of a task region between two consecutive task scheduling points in which a thread24
cannot switch from executing one task to executing another task. 5, 5, 448, 44925

successor task26

For a given task, a dependent task of that task, or any successor task of a dependent task of27
that task. 507, 10028

supported active levels29

An implementation defined maximum number of active levels of parallelism. 575, 576, 88530

supported device31

The host device or any non-host device supported by the implementation, including any32
device-related requirements specified by the requires directive. 119, 139–141, 45033

100 OpenMP API – Version 6.0 November 2024

synchronization construct1

A construct that orders the completion of code executed by different threads. 472, 2, 6, 522,2
7603

synchronization hint4

An indicator of the expected dynamic behavior or suggested implementation of a5
synchronization mechanism. 561, 472, 561, 562, 663, 893, 9116

synchronizes with7

For an event A to synchronize with an event B, a synchronizes-with relation must exist from A8
to B. 12, 11, 12, 19, 502–5049

synchronizes-with relation10

An asymmetric relation that relates a release flush to an acquire flush, or, for C/C++, any pair11
of events A and B such that A “synchronizes with” B according to the base language, and12
establishes memory consistency between their respective executing threads. 10, 92, 98, 10113

synchronizing-region callback14

A callback that has the synchronizing-region property. 763, 76415

synchronizing-region property16

The property that a callback indicates the beginning or end of a synchronization-related17
region. 763, 101, 763, 76418

synchronizing threads19

Two threads are synchronizing if the completion of a structured block sequence by one of the20
threads requires that it first observes a modification by the other thread, including the21
modification to an internal synchronization variable that an implementation performs for22
implicit flush synchronization as described in Section 1.3.5. 6, 7, 101, 362, 39323

T24

target-consistent clause25

A clause for which all expressions that are specified on it are target-consistent26
expressions. 39627

target-consistent expression28

An expression that has the target-consistent property. 101, 39629

target-consistent property30

The property of an expression that its evaluation results in the same value when used on an31
immediately nested construct of a target construct as when specified on that target32
construct. 101, 179, 397, 45233

CHAPTER 2. GLOSSARY 101

target device1

A device with respect to which the current device performs an operation, as specified by a2
device construct or device memory routine. 451, 3, 4, 14, 40, 43, 45, 69, 102, 115, 116, 236,3
237, 239, 257, 275, 283–286, 295, 298, 319, 361, 450, 451, 453, 454, 456, 462, 466, 592,4
593, 603, 604, 607, 608, 610, 611, 697, 701, 704–706, 721, 722, 772, 773, 778, 779, 781,5
785, 800, 803–805, 807, 814, 894, 899, 9096

target_device selector set7

A selector set that may match the target device trait set. 321, 321–323, 9068

target device trait set9

The trait set that consists of traits that define the characteristics of a device that the10
implementation supports. 319, 102, 318, 319, 321, 323, 89711

target memory space12

A memory space that is associated with at least one device that is not the current device when13
it is created. 630, 307, 645, 64714

target task15

A mergeable untied task that is generated by a device construct or a call to a device memory16
routine and that coordinates activity between the current device and the target device. 3, 257,17
286, 454–457, 461, 462, 465, 466, 501, 503, 603, 604, 613, 619, 719, 756, 760, 778, 781,18
785, 79819

target variant20

A version of a device procedure that can only be executed as part of a target region. 31821

task22

A specific instance of executable code and its data environment that the OpenMP23
implementation can schedule for execution by a team. 3–9, 21, 22, 28, 30, 38, 42, 44, 50–52,24
54, 55, 57, 59, 60, 62, 65, 66, 73–75, 81, 83, 86, 87, 91, 93–97, 100, 102–104, 106–110,25
115–117, 124, 132, 134, 181, 216, 219–221, 225–227, 250, 251, 253, 256–258, 281,26
284–287, 301, 305, 306, 328, 384, 386, 387, 390, 393, 395, 403, 405, 406, 408–410, 413,27
414, 421, 426–430, 432–436, 439–445, 447–449, 453, 458, 459, 468, 469, 473–476,28
478–480, 482, 494, 496, 497, 502–504, 507, 509, 513, 515, 516, 521, 522, 524, 531, 534,29
559, 571, 574, 584–586, 590, 601, 602, 663–673, 719, 720, 722, 733, 740–742, 744,30
755–760, 762, 786, 798, 799, 827, 831, 832, 860–862, 864–866, 882, 890, 891, 901, 902,31
907, 914–91632

task completion33

A condition that is satisfied when a thread reaches the end of the executable code that is34
associated with the task and any allow-completion event that is created for the task has been35
fulfilled. 104, 42636

102 OpenMP API – Version 6.0 November 2024

task dependence1

A dependence between two dependence-compatible tasks: the dependent task and an2
antecedent task. The task dependence is fulfilled when the antecedent task has completed.3
504, 42, 103, 108, 448, 505, 507, 509, 511, 559, 586, 604, 715, 716, 902, 907, 9144

task-generating construct5

A construct that has the task-generating property. 5, 52, 54, 73, 91, 92, 96, 103, 124, 132,6
211, 213, 214, 427, 435, 437, 441, 458, 508, 509, 527, 898, 901, 909, 9177

task-generating property8

The property that a construct generates one or more explicit tasks that are child tasks of the9
encountering task. 103, 426, 429, 454, 456, 458, 460, 46510

taskgraph-altering clause11

A clause that has the taskgraph-altering property. 435–43712

taskgraph-altering property13

The property of a clause that if it appears on a replayable construct, it affects the resulting14
number of tasks or the resulting task dependences in a replay execution of a taskgraph record.15
103, 432, 433, 50716

taskgraph record17

For a given taskgraph construct that is encountered on a given device, a data structure that18
contains a sequence of recorded replayable constructs, with their respective saved data19
environments, that are encountered while executing the corresponding taskgraph region.20
435, 52, 92, 94, 103, 435–438, 89121

taskgroup set22

A set of tasks that are logically grouped by a taskgroup region, such that a task is a23
member of the taskgroup set if and only if its task region is nested in the taskgroup24
region and it binds to the same parallel region as the taskgroup region. 29, 103, 478, 52125

task handle26

A handle that refers to a task region. 828, 860–863, 866, 86927

task-inherited clause28

A clause that has the task-inherited property. 43429

task-inherited property30

The property of a clause that if it appears on a task_iteration directive, it will be31
inherited by the tasks that are generated by a task-generating construct. 103, 444, 50732

CHAPTER 2. GLOSSARY 103

taskloop-affected loop1

A collapsed loop of a taskloop construct. 171, 431, 4342

task priority3

A hint for the task execution order of tasks generated by a construct. 443, 143, 443, 912, 9134

task reduction5

A reduction that is performed over a set of tasks that may include explicit tasks. 256, 253,6
256, 9097

task region8

A region consisting of all code encountered during the execution of a task. 4–6, 8, 38, 42, 83,9
96, 100, 107, 110, 216, 227, 384, 385, 394, 448, 449, 454, 456, 458, 466, 501, 521, 588, 672,10
715, 719, 722, 756, 798, 860, 864, 88211

task scheduling point12

A point during the execution of the current task region at which the task can be suspended to13
be resumed later; or the point of task completion, after which the executing thread may14
switch to a different task. 447, 5, 100, 216, 250, 385, 427, 446–449, 475, 476, 478, 479, 495,15
500, 501, 612, 618, 741, 757, 91416

task synchronization construct17

A taskwait, a taskgroup, or a barrier construct. 5, 426, 44818

team19

A set of one or more assigned threads assigned to execute the set of implicit tasks of a20
parallel region. 4, 3, 4, 7, 19, 26, 38, 59, 61, 64, 81, 83, 87, 88, 100, 102, 105, 106, 109, 110,21
113, 114, 116, 125, 132, 133, 216, 234, 253, 254, 259, 270, 271, 273, 362, 384, 385,22
389–395, 397, 402–410, 414, 415, 418–423, 425, 453, 473, 475, 476, 495, 502, 503, 516,23
523, 569, 570, 581, 583, 599, 600, 725, 733, 749, 758, 785, 796, 797, 829, 854, 858–860,24
863, 887, 890, 891, 906, 907, 915–91725

team-executed construct26

A construct that has the team-executed property. 427

team-executed property28

The property that a construct gives rise to a team-executed region. 104, 405–407, 409, 416,29
417, 423, 47530

team-executed region31

A region that is executed by all or none of the threads in the current team. 4, 104, 91732

104 OpenMP API – Version 6.0 November 2024

team-generating construct1

A construct that has the team-generating property. 9172

team-generating property3

The property that a construct generates a parallel region. 105, 384, 394, 4604

team number5

A number that the OpenMP implementation assigns to an initial team. If the initial team is6
not part of a league formed by a teams construct then the team number is zero; otherwise,7
the team number is a non-negative integer less than the number of initial teams in the league.8
105, 117, 422, 583, 7589

teams-nestable construct10

A construct that has the teams-nestable property. 396, 91711

teams-nestable property12

The property that a construct or routine generates a region that may be a strictly nested region13
of a teams region. 105, 374, 375, 377, 379–381, 384, 420, 423, 581, 58214

teams-nestable routine15

A routine that has the teams-nestable property. 396, 91716

team-worker thread17

A thread that is assigned to a team but is not the primary thread. It executes one of the18
implicit tasks that is generated when the team is formed for an active parallel region. 4, 113,19
13220

temporary view21

The state of memory that is accessible to a particular thread. 7, 7, 10, 11, 49922

third-party tool23

A tool that executes as a separate process from the process that it is monitoring and24
potentially controlling. 816, 15, 46, 77, 116, 816–818, 820–823, 826, 829–831, 833, 835,25
836, 841, 843, 845, 846, 851, 878, 91126

thread27

Unless specifically stated otherwise, an OpenMP thread. 3–8, 10–15, 19, 22, 23, 25, 26, 28,28
35, 38, 40, 47, 49, 50, 52–54, 61, 62, 67, 71, 81, 83, 84, 87, 88, 92–94, 96, 99–102, 104–107,29
109, 110, 113, 115–117, 119, 128–130, 134–136, 138, 142, 143, 149, 205, 215–217, 227,30
229, 234, 250–252, 254, 259, 270, 271, 273, 286, 305–308, 346, 352, 353, 360, 366,31
384–395, 402–415, 418–421, 423–427, 429–431, 435, 439, 442, 446–449, 453, 455, 457,32
462, 466, 472–478, 480, 482, 494–497, 499–504, 509, 513–516, 520–524, 534, 561,33
568–573, 579, 584, 585, 590, 601, 602, 607–613, 618, 619, 664–669, 671–678, 681, 692,34

CHAPTER 2. GLOSSARY 105

695, 697, 701, 706, 715, 725, 733, 734, 742, 747, 749, 754, 758, 765, 769, 781, 786, 791,1
793, 795–799, 802, 812, 813, 821, 830–833, 836, 837, 839, 841, 845, 854, 855, 858–862,2
864, 871, 878, 886–888, 890, 891, 900, 901, 907, 911, 914–9173

thread affinity4

A binding of threads to places within the current place partition. 389, 84, 115, 116, 132, 133,5
136–138, 216, 389–392, 678, 686, 687, 886, 890, 909, 9136

thread-exclusive construct7

A construct that has the thread-exclusive property. 9178

thread-exclusive property9

The property that a construct when encountered by multiple threads in the current team is10
executed by only one thread at a time. 106, 473, 51511

thread-limiting construct12

A construct that has the thread-limiting property. 14913

thread-limiting property14

For C++, the property that a construct limits the threads that can catch an exception thrown in15
the corresponding region to the thread that threw the exception. 106, 384, 394, 402, 405–407,16
426, 460, 473, 51517

thread number18

For an assigned thread, a non-negative number assigned by the OpenMP implementation. For19
threads within the same team, zero identifies the primary thread and subsequent consecutive20
numbers identify any worker threads of the team. For an unassigned thread, the thread21
number is the value omp_unassigned_thread. 384, 87, 106, 117, 216, 384, 390, 393,22
403, 418, 569, 578, 758, 798, 854, 91623

thread-pool-worker thread24

A thread in an OpenMP thread pool that is not the initial thread. 74225

threadprivate attribute26

For a given OpenMP thread, a data-sharing attribute of a data entity that it has static storage27
duration, or thread storage duration for C/C++, and is visible only to tasks that are executed28
by the thread. 215, 107, 211, 214, 217, 219, 271–274, 91529

threadprivate memory30

The set of threadprivate variables associated with each thread. 7, 217, 448, 88831

106 OpenMP API – Version 6.0 November 2024

threadprivate variable1

A variable that has the threadprivate attribute with respect to a given OpenMP thread. 215,2
106, 215–219, 270, 271, 398, 413, 4623

thread-reservation type4

A categorization of a thread as either a structured thread or a free-agent thread. 141, 92, 935

thread-safe procedure6

A procedure that performs the intended function even when executed concurrently (by7
multiple native threads). 158

thread-selecting construct9

A construct that has the thread-selecting property. 526, 52710

thread-selecting property11

The property that a construct selects a subset of threads that can execute the corresponding12
region from the binding thread set of the region. 107, 402, 40513

thread-set14

The set of threads for which a flush may enforce memory consistency. 10, 10, 12, 13, 494,15
499, 50116

thread state17

The state associated with a thread, which may be represented by an enumeration type that18
describes the current OpenMP activity of a thread. Only one of the enumeration values can19
apply to a thread at any time. 5, 14, 697, 700, 701, 733, 788, 795, 870, 871, 89420

tied task21

A task that, when its task region is suspended, can be resumed only by the same thread that22
was executing it before suspension. That is, the task is tied to that thread. 5, 4, 384, 439, 44823

tile24

For a tile directive, the logical iteration space of the tile loops. 381, 33, 84, 107, 381, 38325

tile loop26

The inner generated loops of a tile construct that iterate over the logical iterations that27
correspond to a tile. 380, 107, 380, 381, 383, 889, 90128

tool29

Code that can observe and/or modify the execution of an application. 2, 14, 15, 17, 52, 91,30
93, 105, 108, 117, 144–146, 453, 459, 565–567, 614–616, 618, 620, 621, 689, 694, 695,31
697–701, 703–706, 715, 720, 722, 726, 731, 733, 744–751, 753, 754, 756–779, 781, 783,32
785–796, 798–814, 833–855, 858–860, 865, 867–870, 872–874, 876, 877, 89433

CHAPTER 2. GLOSSARY 107

tool callback1

A procedure that a tool provides to an OpenMP implementation to invoke when an associated2
event occurs. 14, 29, 476, 513, 531, 705, 744, 808, 8943

tool context4

An opaque reference provided by a tool to an OMPD library. A tool context uniquely5
identifies an abstraction. 20, 75, 108, 834, 8406

tool defined7

Behavior that must be documented by the tool implementation, and is allowed to vary among8
different compliant tools. 566, 695, 7719

trace record10

A data structure in which to store information associated with an occurrence of an event. 45,11
75, 98, 110, 184, 185, 704–706, 710, 725, 726, 728, 744, 761, 773, 775–779, 781, 783–785,12
803, 805, 806, 808, 810–814, 894, 89613

trait14

An aspect of an OpenMP implementation or the execution of an OpenMP program. 9, 21, 31,15
37, 45, 48, 51, 58, 75, 76, 79, 98, 102, 108, 111, 139, 140, 144, 304–309, 313, 316, 318–323,16
337, 355, 546, 547, 555, 638, 645, 654, 655, 889, 897, 899, 900, 906, 91017

trait selector18

A member of a trait selector set. 320, 318, 321–325, 330, 33719

trait selector set20

A set of traits that are specified to match the trait set at a given point in an OpenMP program.21
320, 95, 108, 32222

trait set23

A grouping of related traits. 318, 36, 45, 48, 58, 102, 108, 318, 321, 32324

transformation-affected loop25

For a loop-transforming construct, an affected loop that is replaced according to the26
semantics of the constituent loop-transforming directive. 205, 369–371, 375–38327

transparent task28

A task for which child tasks are visible to external dependence-compatible tasks for the29
purposes of establishing task dependences. Unless otherwise specified, a transparent task is30
both an importing task and an exporting task. 511, 108, 43731

type-name list32

An argument list that consists of type-name list items. 162, 169, 260, 261, 29333

108 OpenMP API – Version 6.0 November 2024

type-name list item1

A list item that is the name of a type. 163, 108, 162–164, 263, 2642

U3

ultimate property4

The property that a clause or an argument must be the lexically last clause or argument to5
appear on the directive. For a modifier, the property that it must be the lexically last modifier6
to appear on a pre-modified clause or that it must be the lexically first modifier to appear on a7
post-modified clause. 161, 159, 161, 207, 251, 252, 255, 256, 258, 300, 326, 397, 418, 4228

unassigned thread9

A thread that is not currently assigned to any team. 3, 3, 4, 53, 57, 94, 106, 442, 448, 569, 73410

unassociated directive11

A directive that is not directly associated with any base language code. 152, 98, 152–155,12
260, 263, 293, 327, 352, 355, 368, 369, 434, 446, 454, 456, 465, 468, 475, 479, 498, 505,13
514, 520, 52414

undeferred task15

A task for which execution is not deferred with respect to its generating task region. That is,16
its generating task region is suspended until execution of the structured block associated with17
the undeferred task is completed. 427, 59, 73, 109, 427, 430, 437, 440, 50318

undefined19

For variables, the property of not being defined; that is, the variable does not have a valid20
value. 9, 147, 522, 742, 790, 793, 794, 796, 798–80021

underlying map type22

The map type that determines which output map type results from an input map type. 275,23
70, 27524

unified address space25

An address space that is used by all devices. 35926

uninitialized state27

The lock state that indicates the lock must be initialized before it can be set. 65, 639, 641,28
664, 668, 670, 67529

union30

A union is a type that defines one or more fields that overlap in memory, so only one of the31
fields can be used at any given time. For C/C++, implemented using union types. For32
Fortran, implemented using derived types. 109, 708, 710, 71433

CHAPTER 2. GLOSSARY 109

unique property1

The property that a clause, a modifier, or an argument may appear at most once in a given2
context with which it is associated. For a clause set, each member of the clause set may3
appear at most once in the given context. 160, 159–161, 169, 173, 179–182, 205–207, 223,4
225–227, 230, 232, 235–238, 252, 255, 256, 258, 262, 263, 265, 266, 269–272, 278–280,5
289–291, 297–300, 303, 309, 310, 313, 316, 325, 326, 330, 331, 333, 339, 340, 343, 344,6
350, 353, 354, 356–367, 372, 374, 376, 378, 382, 383, 388, 392, 393, 397, 398, 400–403,7
418, 422, 424, 425, 432, 433, 438–445, 450–452, 470, 472, 481, 483–493, 504, 506, 507,8
510–512, 517–5199

unit of work10

In constructs that use units of work, one or more executable statements that will be executed11
by a single thread and are part of the same structured block. A structured block can consist of12
one or more units of work; the number of units of work into which a structured block is split13
is allowed to vary among different compliant implementations. 110, 409, 410, 412, 413, 75314

unlocked state15

The lock state that indicates the lock can be set by any task. 663, 65, 66, 663, 664, 668, 670,16
672–67417

unsigned property18

The property that a routine or callback either returns an unsigned type in C/C++ or has an19
argument that has such a type. 698, 749, 757, 765, 782, 784, 80520

unspecified behavior21

A behavior or result that is not specified by the OpenMP specification or not known prior to22
the compilation or execution of an OpenMP program. Unspecified behavior may result from:23

• Issues that this specification documents as having unspecified behavior;24

• A non-conforming program; or25

• A conforming program exhibiting an implementation defined behavior.26

7–9, 34, 40, 57, 110, 149, 218, 222, 228, 237, 243, 247, 294, 303, 306, 313, 359, 362, 443,27
444, 461, 463, 477, 510, 522, 561, 592–594, 596–603, 607, 610, 611, 622, 629, 645, 646,28
655, 662, 663, 682, 683, 685–687, 693, 80229

untied task30

A task that, when its task region is suspended, can be resumed by any thread in the team.31
That is, the task is not tied to any thread. 5, 102, 217, 427, 439, 448, 91432

untraced-argument property33

The property of an argument of a callback that it is omitted from the corresponding trace34
record of the callback. 746, 749, 755, 769, 770, 777, 780, 78435

110 OpenMP API – Version 6.0 November 2024

update-capture structured block1

An atomic structured block that may be associated with an atomic directive that expresses2
an atomic captured update operation. 192, 192, 193, 4973

update structured block4

An atomic structured block that may be associated with an atomic directive that expresses5
an atomic update operation. 190, 34, 35, 190–1926

update value7

The update value of a new list item used for a scan computation is, for a given logical8
iteration, the value of the new list item on completion of its input phase. 267, 111, 2679

use-device-addr attribute10

For a given device construct, a data-sharing attribute of a data entity that refers to an object in11
a device data environment that corresponds to the data entity of the same name in the12
enclosing data environment of the construct if such an object exists, and otherwise refers to13
the entity in the enclosing data environment. 23814

use-device-ptr attribute15

For a given device construct, a data-sharing attribute of a C pointer variable that implies the16
private attribute, and additionally the variable is initialized to be a device pointer that refers17
to the device address that corresponds to the value of a C pointer of the same name in the18
enclosing data environment of the construct. 23619

user-defined cancellation point20

A cancellation point that is specified by a cancellation point construct. 524, 52421

user-defined induction22

An induction operation that is defined by a declare_induction directive. 263,23
264–266, 89824

user-defined mapper25

A mapper that is defined by a declare_mapper directive. 293, 70, 86, 183, 281,26
294–296, 90427

user-defined reduction28

A reduction operation that is defined by a declare_reduction directive. 260, 260, 262,29
263, 523, 91430

user selector set31

A selector set that may match traits in the dynamic trait set. 321, 321–32332

CHAPTER 2. GLOSSARY 111

utility directive1

A directive that facilitates interactions with the compiler and/or supports code readability. A2
utility directive is an informational directive except when specified to be an executable3
directive. 352, 112, 152, 352, 353, 3694

V5

value property6

The property that a routine parameter does not have a pointer type in C/C++ and has the7
VALUE attribute in Fortran. 535, 554, 604–609, 611, 613, 614, 616, 617, 619, 620, 656–661,8
734, 770, 774, 7779

variable10

A referencing variable or a named data storage block, for which the value can be defined and11
redefined during the execution of a program; for C/C++, this includes const-qualified types12
when explicitly permitted.13

COMMENT: An array element or structure element is a variable that is part of an14
aggregate variable.15

7–13, 15, 20, 25–27, 31, 36–42, 44, 52, 53, 55, 60, 62–65, 70, 71, 74, 82, 87, 90, 96, 98, 99,16
101, 107, 109, 111, 112, 115, 153–155, 163, 164, 169, 181–185, 187, 189, 199, 201, 205,17
210–225, 227–231, 234, 238, 240–244, 248, 254, 258–261, 264, 270–278, 281–283,18
286–292, 294, 301–305, 308, 309, 311, 312, 315, 316, 322, 325, 329, 331, 340, 341,19
345–350, 360, 361, 371, 388, 394, 403, 404, 414, 418, 422, 424, 427, 430, 436, 437, 441,20
445, 450, 454, 456, 459, 461, 463, 464, 466, 499, 500, 511, 513, 528–530, 663, 704, 742,21
778, 788–790, 795–800, 817, 818, 830, 834, 836, 851, 885, 888, 899, 904, 906, 909, 910,22
912, 91523

variable list24

An argument list that consists of variable list items. 162, 51, 249, 31325

variable list item26

For C/C++, a list item that is a variable or an array section; for Fortran, a list item that is a27
named item specifically identified in Section 5.2.1. 163, 51, 112, 162–164, 435, 43728

variant-generating directive29

A declarative directive that has the variant-generating property. 32530

variant-generating property31

The property that a declarative directive generates a variant of a procedure. 112, 341, 346,32
34933

112 OpenMP API – Version 6.0 November 2024

variant substitution1

The replacement of a call to a base function by a call to a function variant. 54, 329, 338, 9062

W3

wait identifier4

A unique handle associated with each data object (for example, a lock) that the OpenMP5
runtime uses to enforce mutual exclusion and potentially to cause a thread to wait actively or6
passively. 742, 742, 7957

white space8

A non-empty sequence of space and/or horizontal tab characters. 46, 127, 134, 135, 137,9
150, 155–158, 172, 173, 526, 89610

work distribution11

The manner in which execution of a region that corresponds to a work-distribution construct12
is assigned to threads. 20613

work-distribution construct14

A construct that has the work-distribution property. 404, 2, 84, 113, 114, 227, 229, 231, 254,15
404, 405, 423, 75216

work-distribution property17

The property that a construct is cooperatively executed by threads in the binding thread set of18
the corresponding region. 113, 405–407, 409, 412, 416, 417, 420, 42319

work-distribution region20

A region that corresponds to a work-distribution construct. 229, 231, 404, 40521

worker thread22

Unless specifically stated otherwise, a team-worker thread. 106, 38523

worksharing construct24

A construct that has the worksharing property. 404, 4, 84, 113, 114, 228, 229, 234, 252–254,25
259, 407, 414, 423, 477, 523, 527, 528, 73326

worksharing-loop construct27

A construct that has the worksharing-loop property. 414, 47, 48, 114, 134, 254, 259,28
414–419, 514–516, 521, 523, 526, 753, 890, 899, 905, 910, 912, 916, 91829

worksharing-loop property30

The property of a worksharing construct that it is a loop-nest-associated construct that31
distributes the collapsed iterations of the affected loops among the threads in the team. 113,32

CHAPTER 2. GLOSSARY 113

416, 417, 5291

worksharing-loop region2

A region that corresponds to a worksharing-loop construct. 414, 117, 125, 414, 514, 516, 9183

worksharing property4

The property of a construct that it is a work-distribution construct that is executed by the team5
of the innermost enclosing parallel region and includes, by default, an implicit barrier. 113,6
405–407, 409, 416, 417, 4237

worksharing region8

A region that corresponds to a worksharing construct. 404, 4, 228, 229, 252, 404, 476, 501,9
753, 907, 91710

write-capture structured block11

An atomic structured block that may be associated with an atomic directive that expresses12
an atomic write operation with capture semantics. 192, 19313

write structured block14

An atomic structured block that may be associated with an atomic directive that expresses15
an atomic write operation. 190, 190, 192, 49716

Z17

zeroed-memory-allocating routine18

A memory-allocating routine that has the zeroed-memory-allocating-routine property. 654,19
654, 658, 65920

zeroed-memory-allocating-routine property21

The property that a memory-allocating routine returns a pointer to memory that has been set22
to zero. 654, 114, 658, 65923

zero-length array section24

An array section that does not include any elements of the array. 167, 247, 280, 50925

zero-offset assumed-size array26

An assumed-size array for which the lower bound is zero. 236, 277, 28227

114 OpenMP API – Version 6.0 November 2024

3 Internal Control Variables1

An OpenMP implementation must act as if internal control variables (ICVs) control the behavior of2
an OpenMP program. These ICVs store information such as the number of threads to use for future3
parallel regions. One copy exists of each ICV per instance of its ICV scope. Possible ICV4
scopes are: global; device; implicit task; and data environment. If an ICV scope is global then one5
copy of the ICV exists for the whole OpenMP program. If an ICV scope is device then a distinct6
copy of the ICV exists for each device. If an ICV scope is implicit task then a distinct copy of the7
ICV exists for each implicit task. If an ICV scope is data environment then a distinct copy of the8
ICV exists for the data environment of each task, unless otherwise specified. The ICVs are given9
values at various times (described below) during the execution of the program. They are initialized10
by the implementation itself and may be given values through OpenMP environment variables and11
through calls to OpenMP API routines. The program can retrieve the values of these ICVs only12
through routines.13

For purposes of exposition, this document refers to the ICVs by certain names, but an14
implementation is not required to use these names or to offer any way to access the variables other15
than through the ways shown in Section 3.2.16

3.1 ICV Descriptions17

Section 3.1 shows the ICV scope and description of each ICV.18

TABLE 3.1: ICV Scopes and Descriptions

ICV Scope Description

active-levels-var data environment Number of nested active parallel regions such
that all active parallel regions are enclosed by the
outermost initial task region on the device

affinity-format-var device Controls the thread affinity format when display-
ing thread affinity

available-devices-var global Controls target device availability and the device
number assignment

CHAPTER 3. INTERNAL CONTROL VARIABLES 115

ICV Scope Description
bind-var data environment Controls the binding of threads to places; when

binding is requested, indicates that the execu-
tion environment is advised not to move threads
between places; can also provide default thread
affinity policies

cancel-var global Controls the desired behavior of the cancel
construct and cancellation points

debug-var global Controls whether an OpenMP implementation
will collect information that an OMPD library
can access to satisfy requests from a third-party
tool

def-allocator-var implicit task Controls the memory allocator used by memory
allocation routines, directives and clauses that do
not specify one explicitly

default-device-var data environment Controls the default target device
device-num-var device Device number of a given device
display-affinity-var global Controls the display of thread affinity
dyn-var data environment Enables dynamic adjustment of the number of

threads used for encountered parallel regions
explicit-task-var data environment Boolean that is true if a given task is an explicit

task, otherwise false
final-task-var data environment Boolean that is true if a given task is a final task,

otherwise false
free-agent-thread-limit-var data environment Controls the maximum number of free-agent

threads that may execute tasks in the contention
group in parallel

free-agent-var data environment Boolean that is true if a free-agent thread is cur-
rently executing a given task, otherwise false

league-size-var data environment Number of initial teams in a league
levels-var data environment Number of nested parallel regions such that all

parallel regions are enclosed by the outermost
initial task region on the device

max-active-levels-var data environment Controls the maximum number of nested active
parallel regions when the innermost active paral-
lel region is generated by a given task

max-task-priority-var global Controls the maximum value that can be speci-
fied in the priority clause

nteams-var device Controls the number of teams requested for en-
countered teams regions

116 OpenMP API – Version 6.0 November 2024

ICV Scope Description
nthreads-var data environment Controls the number of threads requested for

encountered parallel regions
num-devices-var global Number of available non-host devices
num-procs-var device The number of processors available on the device
place-assignment-var implicit task Controls the places to which threads are bound
place-partition-var implicit task Controls the place partition available for encoun-

tered parallel regions
run-sched-var data environment Controls the schedule used for worksharing-loop

regions that specify the runtime schedule type
stacksize-var device Controls the stack size for threads that the

OpenMP implementation creates
structured-thread-limit-var data environment Controls the maximum number of structured

threads that may execute tasks in the contention
group in parallel

target-offload-var global Controls the offloading behavior
team-generator-var data environment Generator type of current team that refers to a

construct name or the OpenMP program
team-num-var data environment Team number of a given thread
team-size-var data environment Size of the current team
teams-thread-limit-var device Controls the maximum number of threads that

may execute tasks in parallel in each contention
group that a teams construct creates

thread-limit-var data environment Controls the maximum number of threads that
may execute tasks in the contention group in par-
allel

thread-num-var data environment Thread number of an implicit task within its cur-
rent team

tool-libraries-var global List of absolute paths to tool libraries
tool-var global Indicates that a tool will be registered
tool-verbose-init-var global Controls whether an OpenMP implementation

will verbosely log the registration of a tool
wait-policy-var device Controls the desired behavior of waiting native

threads

CHAPTER 3. INTERNAL CONTROL VARIABLES 117

3.2 ICV Initialization1

Section 3.2 shows the ICVs, associated environment variables, and initial values.2

TABLE 3.2: ICV Initial Values

ICV Environment Variable Initial Value
active-levels-var (none) 0 (zero)
affinity-format-var OMP_AFFINITY_FORMAT implementation defined
available-devices-var OMP_AVAILABLE_DEVICES See below
bind-var OMP_PROC_BIND implementation defined
cancel-var OMP_CANCELLATION false
debug-var OMP_DEBUG disabled
def-allocator-var OMP_ALLOCATOR implementation defined
default-device-var OMP_DEFAULT_DEVICE See below
device-num-var (none) 0 (zero)
display-affinity-var OMP_DISPLAY_AFFINITY false
dyn-var OMP_DYNAMIC implementation defined
explicit-task-var (none) false
final-task-var (none) false
free-agent-thread-limit-var OMP_THREAD_LIMIT,

OMP_THREADS_RESERVE
See below

free-agent-var (none) false
league-size-var (none) 1 (one)
levels-var (none) 0 (zero)
max-active-levels-var OMP_MAX_ACTIVE_LEVELS,

OMP_NUM_THREADS,
OMP_PROC_BIND

implementation defined

max-task-priority-var OMP_MAX_TASK_PRIORITY 0 (zero)
nteams-var OMP_NUM_TEAMS 0 (zero)
nthreads-var OMP_NUM_THREADS implementation defined
num-devices-var (none) implementation defined
num-procs-var (none) implementation defined
place-assignment-var (none) implementation defined
place-partition-var OMP_PLACES implementation defined
run-sched-var OMP_SCHEDULE implementation defined
stacksize-var OMP_STACKSIZE implementation defined

118 OpenMP API – Version 6.0 November 2024

ICV Environment Variable Initial Value
structured-thread-limit-var OMP_THREAD_LIMIT,

OMP_THREADS_RESERVE
See below

target-offload-var OMP_TARGET_OFFLOAD default
team-generator-var (none) 0 (zero)
team-num-var (none) 0 (zero)
team-size-var (none) 1 (one)
teams-thread-limit-var OMP_TEAMS_THREAD_LIMIT 0 (zero)
thread-limit-var OMP_THREAD_LIMIT implementation defined
thread-num-var (none) 0 (zero)
tool-libraries-var OMP_TOOL_LIBRARIES empty string
tool-var OMP_TOOL enabled
tool-verbose-init-var OMP_TOOL_VERBOSE_INIT disabled
wait-policy-var OMP_WAIT_POLICY implementation defined

If an ICV has an associated environment variable and that ICV neither has global ICV scope nor is1
default-device-var then the ICV has a set of associated device-specific environment variables that2
extend the associated environment variable with the following syntax:3

<ENVIRONMENT VARIABLE>_ALL4

or5

<ENVIRONMENT VARIABLE>_DEV[_<device>]6

where <ENVIRONMENT VARIABLE> is the associated environment variable and <device> is the7
device number as specified in the device clause (see Section 15.2); the semantic and precedence8
is described in Chapter 4.9

Semantics10

• The initial value of available-devices-var is the set of all accessible devices that are also11
supported devices.12

• The initial value of dyn-var is implementation defined if the implementation supports13
dynamic adjustment of the number of threads; otherwise, the initial value is false.14

• The initial value of free-agent-thread-limit-var is one less than the initial value of15
thread-limit-var.16

• The initial value of structured-thread-limit-var is the initial value of thread-limit-var.17

• If target-offload-var is mandatory and the number of available non-host devices is zero18
then default-device-var is initialized to omp_invalid_device. Otherwise, the initial19
value is an implementation defined non-negative integer that is less than or, if20
target-offload-var is not mandatory, equal to the value returned by21
omp_get_initial_device.22

CHAPTER 3. INTERNAL CONTROL VARIABLES 119

• The value of the nthreads-var ICV is a list.1

• The value of the bind-var ICV is a list.2

The host device and non-host device ICVs are initialized before any construct or routine executes.3
After the initial values are assigned, the values of any OpenMP environment variables that were set4
by the user are read and the associated ICVs are modified accordingly. If no device number is5
specified on the device-specific environment variable then the value is applied to all non-host6
devices.7

Cross References8

• OMP_AFFINITY_FORMAT, see Section 4.3.59

• OMP_ALLOCATOR, see Section 4.4.110

• OMP_AVAILABLE_DEVICES, see Section 4.3.711

• OMP_CANCELLATION, see Section 4.3.612

• OMP_DEBUG, see Section 4.6.113

• OMP_DEFAULT_DEVICE, see Section 4.3.814

• OMP_DISPLAY_AFFINITY, see Section 4.3.415

• OMP_DYNAMIC, see Section 4.1.216

• OMP_MAX_ACTIVE_LEVELS, see Section 4.1.517

• OMP_MAX_TASK_PRIORITY, see Section 4.3.1118

• OMP_NUM_TEAMS, see Section 4.2.119

• OMP_NUM_THREADS, see Section 4.1.320

• OMP_PLACES, see Section 4.1.621

• OMP_PROC_BIND, see Section 4.1.722

• OMP_SCHEDULE, see Section 4.3.123

• OMP_STACKSIZE, see Section 4.3.224

• OMP_TARGET_OFFLOAD, see Section 4.3.925

• OMP_TEAMS_THREAD_LIMIT, see Section 4.2.226

• OMP_THREAD_LIMIT, see Section 4.1.427

• OMP_TOOL, see Section 4.5.128

• OMP_TOOL_LIBRARIES, see Section 4.5.229

• OMP_WAIT_POLICY, see Section 4.3.330

120 OpenMP API – Version 6.0 November 2024

3.3 Modifying and Retrieving ICV Values1

Section 3.3 shows methods for modifying and retrieving the ICV values. If (none) is listed for an2
ICV, the OpenMP API does not support its modification or retrieval. Calls to routines retrieve or3
modify ICVs with data environment ICV scope in the data environment of their binding task set.4

TABLE 3.3: Ways to Modify and to Retrieve ICV Values

ICV Ways to Modify Value Ways to Retrieve Value
active-levels-var (none) omp_get_active_level

affinity-format-var omp_set_affinity_format

omp_get_affinity_format

available-devices-var (none) (none)
bind-var (none) omp_get_proc_bind

cancel-var (none) omp_get_cancellation

debug-var (none) (none)
def-allocator-var omp_set_default_allocator

omp_get_default_allocator

default-device-var omp_set_default_device

omp_get_default_device

device-num-var (none) omp_get_device_num

display-affinity-var (none) (none)
dyn-var omp_set_dynamic omp_get_dynamic

explicit-task-var (none) omp_in_explicit_task

final-task-var (none) omp_in_final

free-agent-thread-limit-
var

(none) (none)

free-agent-var (none) omp_is_free_agent

league-size-var (none) omp_get_num_teams

levels-var (none) omp_get_level

max-active-levels-var omp_set_max_active_levels

omp_get_max_active_levels

max-task-priority-var (none) omp_get_max_task_priority

nteams-var omp_set_device_num_teams

omp_get_device_num_teams

omp_set_num_teams omp_get_max_teams

nthreads-var omp_set_num_threadsomp_get_max_threads

num-devices-var (none) omp_get_num_devices

num-procs-var (none) omp_get_num_procs

place-assignment-var (none) (none)

CHAPTER 3. INTERNAL CONTROL VARIABLES 121

ICV Ways to Modify Value Ways to Retrieve Value
place-partition-var (none) omp_get_partition_num_places,

omp_get_partition_place_nums,
omp_get_place_num_procs,
omp_get_place_proc_ids

run-sched-var omp_set_schedule omp_get_schedule

stacksize-var (none) (none)
structured-thread-limit-
var

(none) (none)

target-offload-var (none) (none)
team-generator-var (none) (none)
team-num-var (none) omp_get_team_num

team-size-var (none) omp_get_num_threads

teams-thread-limit-var omp_set_device_teams_thread_limit

omp_get_device_teams_thread_limit

omp_set_teams_thread_limit

omp_get_teams_thread_limit

thread-limit-var thread_limit omp_get_thread_limit

thread-num-var (none) omp_get_thread_num

tool-libraries-var (none) (none)
tool-var (none) (none)
tool-verbose-init-var (none) (none)
wait-policy-var (none) (none)

Semantics1

• The value of the bind-var ICV is a list. The omp_get_proc_bind routine retrieves the2
value of the first element of this list.3

• The value of the nthreads-var ICV is a list. The omp_set_num_threads routine sets the4
value of the first element of this list, and the omp_get_max_threads routine retrieves the5
value of the first element of this list.6

• Detailed values in the place-partition-var ICV are retrieved using the listed routines.7

• The thread_limit clause sets the thread-limit-var ICV for the region of the construct on8
which it appears.9

Cross References10

• omp_get_active_level Routine, see Section 21.1711

• omp_get_affinity_format Routine, see Section 29.912

• omp_get_cancellation Routine, see Section 30.113

122 OpenMP API – Version 6.0 November 2024

• omp_get_default_allocator Routine, see Section 27.101

• omp_get_default_device Routine, see Section 24.22

• omp_get_device_num Routine, see Section 24.43

• omp_get_device_num_teams Routine, see Section 24.114

• omp_get_device_teams_thread_limit Routine, see Section 24.135

• omp_get_dynamic Routine, see Section 21.86

• omp_get_level Routine, see Section 21.147

• omp_get_max_active_levels Routine, see Section 21.138

• omp_get_max_task_priority Routine, see Section 23.1.19

• omp_get_max_teams Routine, see Section 22.410

• omp_get_max_threads Routine, see Section 21.411

• omp_get_num_devices Routine, see Section 24.312

• omp_get_num_procs Routine, see Section 24.513

• omp_get_num_teams Routine, see Section 22.114

• omp_get_num_threads Routine, see Section 21.215

• omp_get_partition_num_places Routine, see Section 29.616

• omp_get_partition_place_nums Routine, see Section 29.717

• omp_get_place_num_procs Routine, see Section 29.318

• omp_get_place_proc_ids Routine, see Section 29.419

• omp_get_proc_bind Routine, see Section 29.120

• omp_get_schedule Routine, see Section 21.1021

• omp_get_supported_active_levels Routine, see Section 21.1122

• omp_get_team_num Routine, see Section 22.323

• omp_get_teams_thread_limit Routine, see Section 22.524

• omp_get_thread_limit Routine, see Section 21.525

• omp_get_thread_num Routine, see Section 21.326

• omp_in_explicit_task Routine, see Section 23.1.227

• omp_in_final Routine, see Section 23.1.328

• omp_set_affinity_format Routine, see Section 29.829

CHAPTER 3. INTERNAL CONTROL VARIABLES 123

• omp_set_default_allocator Routine, see Section 27.91

• omp_set_default_device Routine, see Section 24.12

• omp_set_device_num_teams Routine, see Section 24.123

• omp_set_device_teams_thread_limit Routine, see Section 24.144

• omp_set_dynamic Routine, see Section 21.75

• omp_set_max_active_levels Routine, see Section 21.126

• omp_set_num_teams Routine, see Section 22.27

• omp_set_num_threads Routine, see Section 21.18

• omp_set_schedule Routine, see Section 21.99

• omp_set_teams_thread_limit Routine, see Section 22.610

• thread_limit Clause, see Section 15.311

3.4 How the Per-Data Environment ICVs Work12

When a task-generating construct, a parallel construct or a teams construct is encountered,13
each generated task inherits the values of the ICVs with data environment ICV scope from the ICV14
values of the generating task, unless otherwise specified.15

When a parallel construct is encountered, the value of each ICV with implicit task ICV scope16
is inherited from the binding implicit task of the generating task unless otherwise specified.17

When a task-generating construct is encountered, each generated task inherits the value of18
nthreads-var from the nthreads-var value of the generating task. If a parallel construct is19
encountered on which a num_threads clause is specified with a nthreads list of more than one20
list item, the value of nthreads-var for the generated implicit tasks is the list obtained by deletion of21
the first item of the nthreads list. Otherwise, when a parallel construct is encountered, if the22
nthreads-var list of the generating task contains a single element, the generated implicit tasks23
inherit that list as the value of nthreads-var; if the nthreads-var list of the generating task contains24
multiple elements, the generated implicit tasks inherit the value of nthreads-var as the list obtained25
by deletion of the first element from the nthreads-var value of the generating task. The bind-var26
ICV is handled in the same way as the nthreads-var ICV, except that an override list cannot be27
specified through the proc_bind clause of an encountered parallel construct.28

When a target construct corresponds to an active target region, the resulting initial task uses the29
values of the data environment scoped ICVs from the device data environment ICV values of the30
device that will execute the region, unless otherwise specified.31

When a target construct corresponds to an inactive target region, the resulting initial task uses32
the values of the ICVs with data environment ICV scope from the data environment of the task that33

124 OpenMP API – Version 6.0 November 2024

encountered the target construct, unless otherwise specified.1

If a target construct with a thread_limit clause is encountered, the thread-limit-var ICV2
from the data environment of the resulting initial task is instead set to an implementation defined3
value between one and the value specified in the clause.4

If a target construct with no thread_limit clause is encountered, the thread-limit-var ICV5
from the data environment of the resulting initial task is set to an implementation defined value that6
is greater than zero.7

If a teams construct with a thread_limit clause is encountered, the thread-limit-var ICV8
from the data environment of the initial task for each team is instead set to an implementation9
defined value between one and the value specified in the clause.10

If a teams construct with no thread_limit clause is encountered and teams-thread-limit-var11
is greater than zero, the thread-limit-var ICV from the data environment of the initial task of each12
team is set to an implementation defined value that is greater than zero and does not exceed13
teams-thread-limit-var. If a teams construct with no thread_limit clause is encountered and14
teams-thread-limit-var is zero, the thread-limit-var ICV from the data environment of the initial15
task of each team is set to an implementation defined value that is greater than zero.16

If a target construct, teams construct, or parallel construct is encountered, the17
team-generator-var ICV for the data environments of the generated implicit tasks is instead set to18
the value of the appropriate team generator type as specified in Section 39.13.19

When encountering a worksharing-loop region for which the runtime schedule type is specified,20
all implicit task regions that constitute the binding parallel region must have the same value for21
run-sched-var in their data environments. Otherwise, the behavior is unspecified.22

Cross References23

• OMPD team_generator Type, see Section 39.1324

3.5 ICV Override Relationships25

Section 3.5 shows the override relationships among construct clauses and ICVs. The table only lists26
ICVs that can be overridden by a clause.27

TABLE 3.4: ICV Override Relationships

ICV Clause, if used
bind-var proc_bind

def-allocator-var allocate, allocator
nteams-var num_teams

nthreads-var num_threads

CHAPTER 3. INTERNAL CONTROL VARIABLES 125

ICV Clause, if used
run-sched-var schedule

teams-thread-limit-var thread_limit

If a schedule clause specifies a modifier then that modifier overrides any modifier that is1
specified in the run-sched-var ICV.2

If bind-var is not set to false then the proc_bind clause overrides the value of the first element of3
the bind-var ICV; otherwise, the proc_bind clause has no effect.4

Cross References5

• allocate Clause, see Section 8.66

• allocator Clause, see Section 8.47

• num_teams Clause, see Section 12.2.18

• num_threads Clause, see Section 12.1.29

• proc_bind Clause, see Section 12.1.410

• schedule Clause, see Section 13.6.311

• thread_limit Clause, see Section 15.312

126 OpenMP API – Version 6.0 November 2024

4 Environment Variables1

This chapter describes the OpenMP environment variables that specify the settings of the ICVs that2
affect the execution of OpenMP programs (see Chapter 3). The names of the environment variables3
must be upper case. Unless otherwise specified, the values assigned to the environment variables4
are case insensitive and may have leading and trailing white space. The assigned values for most5
environment variables are strings or integers. In particular, boolean values are specified as the6
string true or false. Modifications to the environment variables after the program has started,7
even if modified by the program itself, are ignored by the OpenMP implementation. However, the8
settings of some of the ICVs can be modified during the execution of the OpenMP program by the9
use of the appropriate directive clauses or OpenMP API routines. These examples demonstrate how10
to set the OpenMP environment variables in different environments:11

• csh-like shells:12

setenv OMP_SCHEDULE "dynamic"13

• bash-like shells:14

export OMP_SCHEDULE="dynamic"15

• Windows Command Line:16

set OMP_SCHEDULE=dynamic17

As defined in Section 3.2, device-specific environment variables extend many of the environment18
variables defined in this chapter. If the corresponding environment variable for a specific device19
number is set, then the setting for that environment variable is used to set the value of the associated20
ICV of the device with the corresponding device number. If the corresponding environment21
variable that includes the _DEV suffix but no device number is set, then its setting is used to set the22
value of the associated ICV of any non-host device for which the device number-specific23
corresponding environment variable is not set. The corresponding environment variable without a24
suffix sets the associated ICV of the host device. If the corresponding environment variable25
includes the _ALL suffix, the setting of that environment variable is used to set the value of the26
associated ICV of any host or non-host device for which corresponding environment variables that27
are device number specific through the use of the _DEV suffix or the absence of a suffix are not set.28

Restrictions29
Restrictions to device-specific environment variables are as follows:30

• Device-specific environment variables must not correspond to environment variables that31
initialize ICVs with global ICV scope.32

• Device-specific environment variables must not specify the host device.33

CHAPTER 4. ENVIRONMENT VARIABLES 127

4.1 Parallel Region Environment Variables1

This section defines environment variables that affect the operation of parallel regions.2

4.1.1 Abstract Name Values3

This section defines abstract names that must be understood by the execution and runtime4
environment for the environment variables that explicitly allow them. The entities defined by the5
abstract names are implementation defined. There are two kinds of abstract names: conceptual6
abstract names and numeric abstract names.7

Conceptual abstract names include place-list abstract names that are the strings defined in8
Table 4.1. If an environment variable is set to a value that includes a place-list abstract name, the9
behavior is as if the place-list abstract name were replaced with the list of places associated with10
that abstract name on each device where the environment variable is applied.11

TABLE 4.1: Predefined Place-list Abstract Names

Abstract Name Meaning

threads A set where each place corresponds to a single hardware
thread of the device.

cores A set where each place corresponds to a single core of the de-
vice.

ll_caches A set where each place corresponds to the set of cores for a
single last-level cache of the device.

numa_domains A set where each place corresponds to the set of cores for a
single NUMA domain of the device.

sockets A set where each place corresponds to the set of cores for a
single socket of the device.

For each place-list abstract name specified in Table 4.1, a corresponding place-count abstract name12
prefixed with n_ also exists for which the associated value is the number of places in the list of13
places specified by the place-list abstract name, as described above.14

If an environment variable is set to a value that includes a numeric abstract name, the behavior is as15
if the numeric abstract name were replaced with the value associated with that numeric abstract16
name.17

4.1.2 OMP_DYNAMIC18

The OMP_DYNAMIC environment variable controls dynamic adjustment of the number of threads19
to use for executing parallel regions by setting the initial value of the dyn-var ICV.20

128 OpenMP API – Version 6.0 November 2024

The value of this environment variable must be one of the following:1

true | false2

If the environment variable is set to true, the OpenMP implementation may adjust the number of3
threads to use for executing parallel regions in order to optimize the use of system resources. If4
the environment variable is set to false, the dynamic adjustment of the number of threads is5
disabled. The behavior of the program is implementation defined if the value of OMP_DYNAMIC is6
neither true nor false.7

Example:8

export OMP_DYNAMIC=true9

Cross References10

• dyn-var ICV, see Table 3.111

• omp_get_dynamic Routine, see Section 21.812

• omp_set_dynamic Routine, see Section 21.713

• parallel Construct, see Section 12.114

4.1.3 OMP_NUM_THREADS15

The OMP_NUM_THREADS environment variable sets the number of threads to use for parallel16
regions by setting the initial value of the nthreads-var ICV. See Chapter 3 for a comprehensive set17
of rules about the interaction between the OMP_NUM_THREADS environment variable, the18
num_threads clause, the omp_set_num_threads routine and dynamic adjustment of19
threads, and Section 12.1.1 for a complete algorithm that describes how the number of threads for a20
parallel region is determined.21

The value of this environment variable must be a list of positive integer values and/or numeric22
abstract names. The values of the list set the number of threads to use for parallel regions at the23
corresponding nested levels.24

The behavior of the program is implementation defined if any value of the list specified in the25
OMP_NUM_THREADS environment variable leads to a number of threads that is greater than an26
implementation can support or if any value is not a positive integer.27

The OMP_NUM_THREADS environment variable sets the max-active-levels-var ICV to the number28
of active levels of parallelism that the implementation supports if the OMP_NUM_THREADS29
environment variable is set to a comma-separated list of more than one value. The value of the30
max-active-levels-var ICV may be overridden by setting OMP_MAX_ACTIVE_LEVELS. See31
Section 4.1.5 for details.32

CHAPTER 4. ENVIRONMENT VARIABLES 129

Example:1

export OMP_NUM_THREADS=4,3,22
export OMP_NUM_THREADS=n_cores,23

Cross References4

• OMP_MAX_ACTIVE_LEVELS, see Section 4.1.55

• nthreads-var ICV, see Table 3.16

• num_threads Clause, see Section 12.1.27

• omp_set_num_threads Routine, see Section 21.18

• parallel Construct, see Section 12.19

4.1.4 OMP_THREAD_LIMIT10

The OMP_THREAD_LIMIT environment variable sets the number of threads to use for a11
contention group by setting the thread-limit-var ICV. The value of this environment variable must12
be a positive integer or a numeric abstract name. The behavior of the program is implementation13
defined if the requested value of OMP_THREAD_LIMIT is greater than the number of threads that14
an implementation can support, or if the value is not a positive integer.15

Cross References16

• thread-limit-var ICV, see Table 3.117

4.1.5 OMP_MAX_ACTIVE_LEVELS18

The OMP_MAX_ACTIVE_LEVELS environment variable controls the maximum number of nested19
active parallel regions by setting the initial value of the max-active-levels-var ICV. The value20
of this environment variable must be a non-negative integer. The behavior of the program is21
implementation defined if the requested value of OMP_MAX_ACTIVE_LEVELS is greater than the22
maximum number of active levels an implementation can support, or if the value is not a23
non-negative integer.24

Cross References25

• max-active-levels-var ICV, see Table 3.126

4.1.6 OMP_PLACES27

The OMP_PLACES environment variable sets the initial value of the place-partition-var ICV. A list28
of places can be specified in the OMP_PLACES environment variable. The value of OMP_PLACES29

130 OpenMP API – Version 6.0 November 2024

can be one of two types of values: either a place-list abstract name that describes a set of places or1
an explicit list of places described by non-negative numbers.2

The OMP_PLACES environment variable can be defined using an explicit ordered list of3
comma-separated places. A place is defined by an unordered set of comma-separated non-negative4
numbers enclosed by braces, or a non-negative number. The meaning of the numbers and how the5
numbering is done are implementation defined. Generally, the numbers represent the smallest unit6
of execution exposed by the execution environment, typically a hardware thread.7

Intervals may also be used to define places. Intervals can be specified using the <lower-bound> :8
<length> : <stride> notation to represent the following list of numbers: “<lower-bound>,9
<lower-bound> + <stride>, ..., <lower-bound> + (<length> - 1)*<stride>.” When <stride> is10
omitted, a unit stride is assumed. Intervals can specify numbers within a place as well as sequences11
of places.12

An exclusion operator “!” can also be used to exclude the number or place immediately following13
the operator.14

Alternatively, the place-list abstract names listed in Table 4.1 should be understood by the execution15
and runtime environment. The entities defined by the abstract names are implementation defined.16
An implementation may also add abstract names as appropriate for the target platform.17

The abstract name may be appended with one or two positive numbers in parentheses, that is,18
abstract_name(<len >) or abstract_name(<len > : <stride >) where abstract_name is a19
place-list abstract name listed in Table 4.1, len denotes the length of the place list and stride denotes20
the increment between consecutive places in the place list. When requesting fewer places than21
available on the system, the determination of which resources of type abstract_name are to be22
included in the place list is implementation defined. When requesting more resources than23
available, the length of the place list is implementation defined.24

The behavior of the program is implementation defined when the execution environment cannot25
map a numerical value (either explicitly defined or implicitly derived from an interval) within the26
OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.27
The behavior is also implementation defined when the OMP_PLACES environment variable is28
defined using a place-list abstract name.29

The following grammar describes the values accepted for the OMP_PLACES environment variable.30

⟨list⟩ |= ⟨p-list⟩ | ⟨aname⟩
⟨p-list⟩ |= ⟨p-interval⟩ | ⟨p-list⟩,⟨p-interval⟩

⟨p-interval⟩ |= ⟨place⟩:⟨len⟩:⟨stride⟩ | ⟨place⟩:⟨len⟩ | ⟨place⟩ | !⟨place⟩
⟨place⟩ |= {⟨res-list⟩} | ⟨res⟩

⟨res-list⟩ |= ⟨res-interval⟩ | ⟨res-list⟩,⟨res-interval⟩
⟨res-interval⟩ |= ⟨res⟩:⟨len⟩:⟨stride⟩ | ⟨res⟩:⟨len⟩ | ⟨res⟩ | !⟨res⟩

⟨aname⟩ |= ⟨word⟩(⟨len⟩:⟨stride⟩) | ⟨word⟩(⟨len⟩) | ⟨word⟩

CHAPTER 4. ENVIRONMENT VARIABLES 131

⟨word⟩ |= sockets | cores | ll_caches | numa_domains
| threads | <implementation-defined abstract name>

⟨res⟩ |= non-negative integer
⟨len⟩ |= positive integer

⟨stride⟩ |= integer

Examples:1

export OMP_PLACES=threads2
export OMP_PLACES="threads(4)"3
export OMP_PLACES="threads(8:2)"4
export OMP_PLACES5

="{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}"6
export OMP_PLACES="{0:4},{4:4},{8:4},{12:4}"7
export OMP_PLACES="{0:4}:4:4"8

where each of the last three definitions corresponds to the same four places including the smallest9
units of execution exposed by the execution environment numbered, in turn, 0 to 3, 4 to 7, 8 to 11,10
and 12 to 15.11

Cross References12

• place-partition-var ICV, see Table 3.113

4.1.7 OMP_PROC_BIND14

The OMP_PROC_BIND environment variable sets the initial value of the bind-var ICV. The value15
of this environment variable is either true, false, or a comma separated list of primary,16
close, or spread. The values of the list set the thread affinity policy to be used for parallel17
regions at the corresponding nested level. The first value also sets the thread affinity policy to be18
used for implicit parallel regions.19

If the environment variable is set to false, the execution environment may move OpenMP threads20
between OpenMP places, thread affinity is disabled, and proc_bind clauses on parallel21
constructs are ignored.22

Otherwise, the execution environment should not move team-worker threads between places, thread23
affinity is enabled, and the initial thread is bound to the first place in the place-partition-var ICV24
prior to the first active parallel region, or immediately after encountering the first task-generating25
construct. An initial thread that is created by a teams construct is bound to the first place in its26
place-partition-var ICV before it begins execution of the associated structured block. A free-agent27
thread that executes a task bound to a team is assigned a place according to the rules described in28
Section 12.1.3.29

132 OpenMP API – Version 6.0 November 2024

If the environment variable is set to true, the thread affinity policy is implementation defined but1
must conform to the previous paragraph. The behavior of the program is implementation defined if2
the value in the OMP_PROC_BIND environment variable is not true, false, or a comma3
separated list of primary, close, or spread. The behavior is also implementation defined if4
an initial thread cannot be bound to the first place in the place-partition-var ICV.5

The OMP_PROC_BIND environment variable sets the max-active-levels-var ICV to the number of6
active levels of parallelism that the implementation supports if the OMP_PROC_BIND environment7
variable is set to a comma-separated list of more than one element. The value of the8
max-active-levels-var ICV may be overridden by setting OMP_MAX_ACTIVE_LEVELS. See9
Section 4.1.5 for details.10

Examples:11

export OMP_PROC_BIND=false12
export OMP_PROC_BIND="spread, spread, close"13

Cross References14

• OMP_MAX_ACTIVE_LEVELS, see Section 4.1.515

• Controlling OpenMP Thread Affinity, see Section 12.1.316

• bind-var ICV, see Table 3.117

• max-active-levels-var ICV, see Table 3.118

• place-partition-var ICV, see Table 3.119

• omp_get_proc_bind Routine, see Section 29.120

• parallel Construct, see Section 12.121

• proc_bind Clause, see Section 12.1.422

• teams Construct, see Section 12.223

4.2 Teams Environment Variables24

This section defines environment variables that affect the operation of teams regions.25

4.2.1 OMP_NUM_TEAMS26

The OMP_NUM_TEAMS environment variable sets the maximum number of teams created by a27
teams construct by setting the nteams-var ICV. The value of this environment variable must be a28
non-negative integer. The behavior of the program is implementation defined if the requested value29
of OMP_NUM_TEAMS is greater than the number of teams that an implementation can support, or if30
the value is not a positive integer.31

CHAPTER 4. ENVIRONMENT VARIABLES 133

Cross References1

• nteams-var ICV, see Table 3.12

• teams Construct, see Section 12.23

4.2.2 OMP_TEAMS_THREAD_LIMIT4

The OMP_TEAMS_THREAD_LIMIT environment variable sets the maximum number of OpenMP5
threads that can execute tasks in each contention group created by a teams construct by setting the6
teams-thread-limit-var ICV. The value of this environment variable must be a positive integer or a7
numeric abstract name. The behavior of the program is implementation defined if the requested8
value of OMP_TEAMS_THREAD_LIMIT is greater than the number of threads that an9
implementation can support, or if the value is neither a positive integer nor one of the allowed10
abstract names.11

Cross References12

• teams-thread-limit-var ICV, see Table 3.113

• teams Construct, see Section 12.214

4.3 Program Execution Environment Variables15

This section defines environment variables that affect program execution.16

4.3.1 OMP_SCHEDULE17

The OMP_SCHEDULE environment variable controls the schedule type and chunk size of all18
worksharing-loop constructs that have the schedule type runtime, by setting the value of the19
run-sched-var ICV. The value of this environment variable takes the form [modifier:]kind[, chunk],20
where:21

• modifier is one of monotonic or nonmonotonic;22

• kind specifies the schedule type and is one of static, dynamic, guided, or auto;23

• chunk is an optional positive integer that specifies the chunk size.24

If the modifier is not present, the modifier is set to monotonic if kind is static; for any other25
kind it is set to nonmonotonic.26

If chunk is present, white space may be on either side of the “,”.27

The behavior of the program is implementation defined if the value of OMP_SCHEDULE does not28
conform to the above format.29

134 OpenMP API – Version 6.0 November 2024

Examples:1

export OMP_SCHEDULE="guided,4"2
export OMP_SCHEDULE="dynamic"3
export OMP_SCHEDULE="nonmonotonic:dynamic,4"4

Cross References5

• run-sched-var ICV, see Table 3.16

• schedule Clause, see Section 13.6.37

4.3.2 OMP_STACKSIZE8

The OMP_STACKSIZE environment variable controls the size of the stack for threads, by setting9
the value of the stacksize-var ICV. The environment variable does not control the size of the stack10
for an initial thread. Whether this environment variable also controls the size of the stack of native11
threads is implementation defined. The value of this environment variable takes the form size[unit],12
where:13

• size is a positive integer that specifies the size of the stack for threads.14

• unit is B, K, M, or G and specifies whether the given size is in Bytes, Kilobytes (1024 Bytes),15
Megabytes (1024 Kilobytes), or Gigabytes (1024 Megabytes), respectively. If unit is present,16
white space may occur between size and it, whereas if unit is not present then K is assumed.17

The behavior of the program is implementation defined if OMP_STACKSIZE does not conform to18
the above format, or if the implementation cannot provide a stack with the requested size.19

Examples:20

export OMP_STACKSIZE=2000500B21
export OMP_STACKSIZE="3000 k "22
export OMP_STACKSIZE=10M23
export OMP_STACKSIZE=" 10 M "24
export OMP_STACKSIZE="20 m "25
export OMP_STACKSIZE=" 1G"26
export OMP_STACKSIZE=2000027

Cross References28

• stacksize-var ICV, see Table 3.129

4.3.3 OMP_WAIT_POLICY30

The OMP_WAIT_POLICY environment variable provides a hint to an OpenMP implementation31
about the desired behavior of waiting native threads by setting the wait-policy-var ICV. A32
compliant implementation may or may not abide by the setting of the environment variable. The33
value of this environment variable must be one of the following:34

CHAPTER 4. ENVIRONMENT VARIABLES 135

active | passive1

The active value specifies that waiting native threads should mostly be active, consuming2
processor cycles, while waiting. A compliant implementation may, for example, make waiting3
native threads spin. The passive value specifies that waiting native threads should mostly be4
passive, not consuming processor cycles, while waiting. For example, a compliant implementation5
may make waiting native threads yield the processor to other native threads or go to sleep. The6
details of the active and passive behaviors are implementation defined. The behavior of the7
program is implementation defined if the value of OMP_WAIT_POLICY is neither active nor8
passive.9

Examples:10

export OMP_WAIT_POLICY=ACTIVE11
export OMP_WAIT_POLICY=active12
export OMP_WAIT_POLICY=PASSIVE13
export OMP_WAIT_POLICY=passive14

Cross References15

• wait-policy-var ICV, see Table 3.116

4.3.4 OMP_DISPLAY_AFFINITY17

The OMP_DISPLAY_AFFINITY environment variable sets the display-affinity-var ICV so that18
the runtime displays formatted affinity information for the host device. Affinity information is19
printed for all OpenMP threads in each parallel region upon first entering it. Also, if the20
information accessible by the format specifiers listed in Table 4.2 changes for any thread in the21
parallel region then thread affinity information for all threads in that region is again displayed. If the22
thread affinity for each respective parallel region at each nesting level has already been displayed23
and the thread affinity has not changed, then the information is not displayed again. Thread affinity24
information for threads in the same parallel region may be displayed in any order. The value of the25
OMP_DISPLAY_AFFINITY environment variable may be set to one of these values:26

true | false27

The true value instructs the runtime to display the thread affinity information, and uses the format28
setting defined in the affinity-format-var ICV. The runtime does not display the thread affinity29
information when the value of the OMP_DISPLAY_AFFINITY environment variable is false or30
undefined. For all values of the environment variable other than true or false, the display31
action is implementation defined.32

Example:33

export OMP_DISPLAY_AFFINITY=TRUE34

For this example, an OpenMP implementation displays thread affinity information during program35
execution, in a format given by the affinity-format-var ICV. The following is a sample output:36

136 OpenMP API – Version 6.0 November 2024

nesting_level= 1, thread_num= 0, thread_affinity= 0,11
nesting_level= 1, thread_num= 1, thread_affinity= 2,32

Cross References3

• OMP_AFFINITY_FORMAT, see Section 4.3.54

• Controlling OpenMP Thread Affinity, see Section 12.1.35

• affinity-format-var ICV, see Table 3.16

• display-affinity-var ICV, see Table 3.17

4.3.5 OMP_AFFINITY_FORMAT8

The OMP_AFFINITY_FORMAT environment variable sets the initial value of the9
affinity-format-var ICV which defines the format when displaying thread affinity information. The10
value of this environment variable is case sensitive and leading and trailing white space is11
significant. Its value is a character string that may contain as substrings one or more field specifiers12
(as well as other characters). The format of each field specifier is13

%[[[0].] size] type14

where each specifier must contain the percent symbol (%) and a type, that must be either a single15
character short name or its corresponding long name delimited with curly braces, such as %n or16
%{thread_num}. A literal percent is specified as %%. Field specifiers can be provided in any17
order. The behavior is implementation defined for field specifiers that do not conform to this format.18

The 0 modifier indicates whether or not to add leading zeros to the output, following any indication19
of sign or base. The . modifier indicates the output should be right justified when size is specified.20
By default, output is left justified. The minimum field length is size, which is a decimal digit string21
with a non-zero first digit. If no size is specified, the actual length needed to print the field will be22
used. If the 0 modifier is used with type of A, {thread_affinity}, H, {host}, or a type that23
is not printed as a number, the result is unspecified. Any other characters in the format string that24
are not part of a field specifier will be included literally in the output.25

TABLE 4.2: Available Field Types for Formatting OpenMP Thread Affinity Information

Short
Name

Long Name Meaning

t team_num The value returned by omp_get_team_num

T num_teams The value returned by omp_get_num_teams

table continued on next page

CHAPTER 4. ENVIRONMENT VARIABLES 137

table continued from previous page

Short
Name

Long Name Meaning

L nesting_level The value returned by omp_get_level

n thread_num The value returned by omp_get_thread_num

N num_threads The value returned by omp_get_num_threads

a ancestor_tnum The value returned by
omp_get_ancestor_thread_num with an argument
of one less than the value returned by omp_get_level

H host The name for the host device on which the OpenMP pro-
gram is running

P process_id The process identifier used by the implementation

i native_thread_id The native thread identifier used by the implementation

A thread_affinity The list of numerical identifiers, in the format of a comma-
separated list of integers or integer ranges, that represent
processors on which a thread may execute, subject to
OpenMP thread affinity control and/or other external affin-
ity mechanisms

Implementations may define additional field types. If an implementation does not have information1
for a field type or an unknown field type is part of a field specifier, "undefined" is printed for this2
field when displaying thread affinity information.3

Example:4

export OMP_AFFINITY_FORMAT=\5
"Thread Affinity: %0.3L %.8n %.15{thread_affinity} %.12H"6

The above example causes an OpenMP implementation to display thread affinity information in the7
following form:8

Thread Affinity: 001 0 0-1,16-17 nid0039
Thread Affinity: 001 1 2-3,18-19 nid00310

Cross References11

• Controlling OpenMP Thread Affinity, see Section 12.1.312

• affinity-format-var ICV, see Table 3.113

• omp_get_ancestor_thread_num Routine, see Section 21.1514

• omp_get_level Routine, see Section 21.1415

138 OpenMP API – Version 6.0 November 2024

• omp_get_num_teams Routine, see Section 22.11

• omp_get_num_threads Routine, see Section 21.22

• omp_get_thread_num Routine, see Section 21.33

4.3.6 OMP_CANCELLATION4

The OMP_CANCELLATION environment variable sets the initial value of the cancel-var ICV. The5
value of this environment variable must be one of the following:6

true | false7

If the environment variable is set to true, the effects of the cancel construct and of cancellation8
points are enabled (i.e., cancellation is enabled). If the environment variable is set to false,9
cancellation is disabled and cancel constructs and cancellation points are effectively ignored.10
The behavior of the program is implementation defined if OMP_CANCELLATION is set to neither11
true nor false.12

Cross References13

• cancel Construct, see Section 18.214

• cancel-var ICV, see Table 3.115

4.3.7 OMP_AVAILABLE_DEVICES16

The OMP_AVAILABLE_DEVICES environment variable sets the available-devices-var ICV and17
determines the available non-host devices and their device numbers by permitting selection of18
devices from the set of supported accessible devices and by ordering them. This ICV is initialized19
before any other ICV that uses a device number, depends on the number of available devices, or20
permits device-specific environment variables. After the available-devices-var ICV is initialized,21
only those devices that the ICV identifies are available devices and the omp_get_num_devices22
routine returns the number of devices stored in the ICV.23

The value of this environment variable must be a comma-separated list. Each item is either a trait24
specification as specified in the following or *. A * expands to all non-host accessible devices that25
are supported devices while a trait specification expands to a possibly empty set of accessible and26
supported devices for which the specification is fulfilled. After expansion, further selection via an27
optional array subscript syntax and removal of devices that appear in previous items, each item28
contains an unordered set of devices. A consecutive unique device number is then assigned to each29
device in the sets, starting with device number zero, where the device number of the first device in30
an item is the total number of devices in all previous items.31

Traits are specified by the case-insensitive trait name followed by the argument in parentheses. The32
permitted traits are kind(kind-name), isa(isa-name), arch(arch-name),33
vendor(vendor-name), and uid(uid-string), where the names are as specified in Section 9.134

CHAPTER 4. ENVIRONMENT VARIABLES 139

and the OpenMP Additional Definitions document; the kind-name host is not permitted. Multiple1
traits can be combined using the binary operators && and || to require both or either trait,2
respectively. Parentheses can be used for grouping, but are optional except that && and || may not3
appear in the same grouping level. The unary ! operator inverts the meaning of the immediately4
following trait or parenthesized group.5

Each trait specification or * yields a (possibly zero-sized) array of non-host devices with the lowest6
array element, if it exists, having index zero. The C/C++ syntax [index] can be used to select an7
element and the array section syntax for C/C++ as specified in Section 5.2.5 can be used to specify8
a subset of elements. Any array element specified by the subscript that is outside the bounds of the9
array resulting from the trait specification or * is silently excluded.10

Example:11

Four GPUs are accessible and supported, with unique identifiers represented as12
<uid-gpu0>,...,<uid-gpu3>.13

export OMP_AVAILABLE_DEVICES="kind(gpu)"14

export OMP_AVAILABLE_DEVICES="uid(<uid-gpu0>),kind(gpu)"15

export OMP_AVAILABLE_DEVICES="uid(<uid-gpu1>),kind(gpu)[:2]"16

where the above OMP_AVAILABLE_DEVICES assignments select:17

• All GPUs;18

• All GPUs with device <uid-gpu0> assigned device number 0; and19

• Device <uid-gpu1>, which is assigned device number 0, and two other GPUs.20

Cross References21

• Device Directives and Clauses, see Chapter 1522

• available-devices-var ICV, see Table 3.123

4.3.8 OMP_DEFAULT_DEVICE24

The OMP_DEFAULT_DEVICE environment variable sets the initial value of the default-device-var25
ICV. The value of this environment variable must be a comma-separated list, each item being either26
a non-negative integer value that denotes the device number, a trait specification with an optional27
subscript selector, or one of the following case-insensitive string literals: initial to specify the28
host device, invalid to specify the device number omp_invalid_device, or default to29
set the ICV as if this environment variable was not specified (see Section 1.2).30

The trait specification is as described for OMP_AVAILABLE_DEVICES (see Section 4.3.7), except31
that in addition the trait device_num(device number) may be specified and host is permitted32
as kind-name. The device numbers yielded by the trait specification are sorted in ascending order33
by device number and form a set; the array-element syntax as described for34

140 OpenMP API – Version 6.0 November 2024

OMP_AVAILABLE_DEVICES can be used to select an element from this set. If an item is an1
empty set, non-existing element, or does not evaluate to an available device, the next item is2
evaluated; otherwise, the default-device-var ICV is set to the first value of the set. However,3
initial, invalid, and default always match. If none of the list items match, the4
default-device-var ICV is set to omp_invalid_device.5

Example:6

Four GPUs are accessible and supported, with unique identifiers represented as7
<uid-gpu0>,...,<uid-gpu3>. The default device is set to device <uid-gpu0>.8

export OMP_DEFAULT_DEVICE="uid(<uid-gpu0>)"9

Cross References10

• Device Directives and Clauses, see Chapter 1511

• default-device-var ICV, see Table 3.112

4.3.9 OMP_TARGET_OFFLOAD13

The OMP_TARGET_OFFLOAD environment variable sets the initial value of the target-offload-var14
ICV. Its value must be one of the following:15

mandatory | disabled | default16

The mandatory value specifies that the effect of any device construct or device routine that uses a17
device that is not an available device or a supported device, or uses a non-conforming device18
number, is as if the omp_invalid_device device number was used. Support for the19
disabled value is implementation defined. If an implementation supports it, the behavior is as if20
the only device is the host device. The default value specifies the default behavior as described21
in Section 1.2.22

Example:23

export OMP_TARGET_OFFLOAD=mandatory24

Cross References25

• Device Directives and Clauses, see Chapter 1526

• Device Memory Routines, see Chapter 2527

• target-offload-var ICV, see Table 3.128

4.3.10 OMP_THREADS_RESERVE29

The OMP_THREADS_RESERVE environment variable controls the number of reserved threads in30
each contention group by setting the initial value of the structured-thread-limit-var and the31
free-agent-thread-limit-var ICVs.32

CHAPTER 4. ENVIRONMENT VARIABLES 141

The OMP_THREADS_RESERVE environment variable can be defined using a non-negative integer1
or an unordered list of reservations. Each reservation specifies a thread-reservation type, for which2
the possible values are listed in Table 4.3. The reservation type may be appended with one3
non-negative number in parentheses, that is, reservation_type(<num-threads>), where4
<num-threads> denotes the number of threads to reserve for that reservation type. If only a5
non-negative integer is provided, this number denotes the number of threads to reserve for6
structured parallelism. If only one reservation type is provided, and its <num-threads> is not7
specified, the number of threads to reserve is thread-limit-var if the reservation type is8
structured, or thread-limit-var minus 1 if the reservation type is free_agent.9

TABLE 4.3: Reservation Types for OMP_THREADS_RESERVE

Reservation Type Meaning Default Value

structured Threads reserved for structured threads 1

free_agent Threads reserved for free-agent threads 0

The OMP_THREADS_RESERVE environment variable sets the initial value of the10
structured-thread-limit-var and the free-agent-thread-limit-var ICVs according to Algorithm 4.1.11

Algorithm 4.1 Initial structured-thread-limit-var and free-agent-thread-limit-var ICVs Values
let structured-reserve be the number of threads to reserve for structured threads;
let free-agent-reserve be the number of threads to reserve for free-agent threads;
let threads-reserve be the sum of structured-reserve and free-agent-reserve;
if (structured-reserve < 1) then structured-reserve = 1;
if (free-agent-reserve = thread-limit-var) then free-agent-reserve = free-agent-reserve - 1;
if (threads-reserve ≤ thread-limit-var) then

structured-thread-limit-var = thread-limit-var - free-agent-reserve;
free-agent-thread-limit-var = thread-limit-var - structured-reserve;

else behavior is implementation defined

The following grammar describes the values accepted for the OMP_THREADS_RESERVE12
environment variable.13

⟨reserve⟩ |= ⟨res-list⟩ | ⟨res-type⟩ | ⟨res-num⟩
⟨res-list⟩ |= ⟨res⟩ | ⟨res-list⟩,⟨res⟩

⟨res⟩ |= ⟨res-type⟩(⟨res-num⟩)
⟨res-type⟩ |= structured | free_agent
⟨res-num⟩ |= non-negative integer

142 OpenMP API – Version 6.0 November 2024

Examples:1

export OMP_THREADS_RESERVE=42
export OMP_THREADS_RESERVE="structured(4)"3
export OMP_THREADS_RESERVE="structured"4
export OMP_THREADS_RESERVE="structured(2),free_agent(2)"5

where the first two definitions correspond to the same reservation for structured parallelism, the6
third definition reserves all available threads for structured parallelism, and the last one reserves7
threads for both structured parallelism and free-agent threads.8

Cross References9

• free-agent-thread-limit-var ICV, see Table 3.110

• structured-thread-limit-var ICV, see Table 3.111

• parallel Construct, see Section 12.112

• threadset Clause, see Section 14.813

4.3.11 OMP_MAX_TASK_PRIORITY14

The OMP_MAX_TASK_PRIORITY environment variable controls the use of task priorities by15
setting the initial value of the max-task-priority-var ICV. The value of this environment variable16
must be a non-negative integer.17

Example:18

export OMP_MAX_TASK_PRIORITY=2019

Cross References20

• max-task-priority-var ICV, see Table 3.121

4.4 Memory Allocation Environment Variables22

This section defines environment variables that affect memory allocations.23

4.4.1 OMP_ALLOCATOR24

The OMP_ALLOCATOR environment variable sets the initial value of the def-allocator-var ICV25
that specifies the default allocator for allocation calls, directives and clauses that do not specify an26
allocator. The following grammar describes the values accepted for the OMP_ALLOCATOR27
environment variable.28

CHAPTER 4. ENVIRONMENT VARIABLES 143

⟨allocator⟩ |= ⟨predef-allocator⟩ | ⟨predef-mem-space⟩ | ⟨predef-mem-space⟩:⟨traits⟩
⟨traits⟩ |= ⟨trait⟩=⟨value⟩ | ⟨trait⟩=⟨value⟩,⟨traits⟩

⟨predef-allocator⟩ |= one of the predefined allocators from Table 8.3
⟨predef-mem-space⟩ |= one of the predefined memory spaces from Table 8.1

⟨trait⟩ |= one of the allocator trait names from Table 8.2
⟨value⟩ |= one of the allowed values from Table 8.2 | non-negative integer

| ⟨predef-allocator⟩

The value can be an integer only if the trait accepts a numerical value, for the fb_data trait the1
value can only be predef-allocator. If the value of this environment variable is not a predefined2
allocator then a new allocator with the given predefined memory space and optional traits is created3
and set as the def-allocator-var ICV. If the new allocator cannot be created, the def-allocator-var4
ICV will be set to omp_default_mem_alloc.5

Example:6

export OMP_ALLOCATOR=omp_high_bw_mem_alloc7
export OMP_ALLOCATOR="omp_large_cap_mem_space:alignment=16,\8
pinned=true"9
export OMP_ALLOCATOR="omp_high_bw_mem_space:pool_size=1048576,\10
fallback=allocator_fb,fb_data=omp_low_lat_mem_alloc"11

Cross References12

• Memory Allocators, see Section 8.213

• def-allocator-var ICV, see Table 3.114

4.5 OMPT Environment Variables15

This section defines environment variables that affect operation of the OMPT tool interface.16

4.5.1 OMP_TOOL17

The OMP_TOOL environment variable sets the tool-var ICV, which controls whether an OpenMP18
runtime will try to register a first-party tool. The value of this environment variable must be one of19
the following:20

enabled | disabled21

If OMP_TOOL is set to any value other than enabled or disabled, the behavior is unspecified.22
If OMP_TOOL is not defined, the default value for tool-var is enabled.23

144 OpenMP API – Version 6.0 November 2024

Example:1

export OMP_TOOL=enabled2

Cross References3

• OMPT Overview, see Chapter 324

• tool-var ICV, see Table 3.15

4.5.2 OMP_TOOL_LIBRARIES6

The OMP_TOOL_LIBRARIES environment variable sets the tool-libraries-var ICV to a list of tool7
libraries that are considered for use on a device on which an OpenMP implementation is being8
initialized. The value of this environment variable must be a list of names of dynamically-loadable9
libraries, separated by an implementation specific, platform typical separator. Whether the value of10
this environment variable is case sensitive is implementation defined.11

If the tool-var ICV is not enabled, the value of tool-libraries-var is ignored. Otherwise, if12
ompt_start_tool is not visible in the address space on a device where OpenMP is being13
initialized or if ompt_start_tool returns NULL, an OpenMP implementation will consider14
libraries in the tool-libraries-var list in a left-to-right order. The OpenMP implementation will15
search the list for a library that meets two criteria: it can be dynamically loaded on the current16
device and it defines the symbol ompt_start_tool. If an OpenMP implementation finds a17
suitable library, no further libraries in the list will be considered.18

Example:19

export OMP_TOOL_LIBRARIES=libtoolXY64.so:/usr/local/lib/20
libtoolXY32.so21

Cross References22

• OMPT Overview, see Chapter 3223

• tool-libraries-var ICV, see Table 3.124

• ompt_start_tool Procedure, see Section 32.2.125

4.5.3 OMP_TOOL_VERBOSE_INIT26

The OMP_TOOL_VERBOSE_INIT environment variable sets the tool-verbose-init-var ICV, which27
controls whether an OpenMP implementation will verbosely log the registration of a tool. The28
value of this environment variable must be one of the following:29

disabled | stdout | stderr | <filename>30

If OMP_TOOL_VERBOSE_INIT is set to any value other than case insensitive disabled,31
stdout, or stderr, the value is interpreted as a filename and the OpenMP runtime will try to32

CHAPTER 4. ENVIRONMENT VARIABLES 145

log to a file with prefix filename. If the value is interpreted as a filename, whether it is case1
sensitive is implementation defined. If opening the logfile fails, the output will be redirected to2
stderr. If OMP_TOOL_VERBOSE_INIT is not defined, the default value for3
tool-verbose-init-var is disabled. Support for logging to stdout or stderr is4
implementation defined. Unless tool-verbose-init-var is disabled, the OpenMP runtime will log5
the steps of the tool activation process defined in Section 32.2.2 to a file with a name that is6
constructed using the provided filename prefix. The format and detail of the log is implementation7
defined. At a minimum, the log will contain one of the following:8

• That the tool-var ICV is disabled;9

• An indication that a tool was available in the address space at program launch; or10

• The path name of each tool in OMP_TOOL_LIBRARIES that is considered for dynamic11
loading, whether dynamic loading was successful, and whether the ompt_start_tool12
procedure is found in the loaded library.13

In addition, if an ompt_start_tool procedure is called the log will indicate whether or not the14
tool will use the OMPT interface.15

Example:16

export OMP_TOOL_VERBOSE_INIT=disabled17
export OMP_TOOL_VERBOSE_INIT=STDERR18
export OMP_TOOL_VERBOSE_INIT=ompt_load.log19

Cross References20

• OMPT Overview, see Chapter 3221

• tool-verbose-init-var ICV, see Table 3.122

4.6 OMPD Environment Variables23

This section defines environment variables that affect operation of the OMPD tool interface.24

4.6.1 OMP_DEBUG25

The OMP_DEBUG environment variable sets the debug-var ICV, which controls whether an26
OpenMP runtime collects information that an OMPD library may need to support a tool. The value27
of this environment variable must be one of the following:28

enabled | disabled29

If OMP_DEBUG is set to any value other than enabled or disabled then the behavior is30
implementation defined.31

Example:32

export OMP_DEBUG=enabled33

146 OpenMP API – Version 6.0 November 2024

Cross References1

• Enabling Runtime Support for OMPD, see Section 38.3.12

• OMPD Overview, see Chapter 383

• debug-var ICV, see Table 3.14

4.7 OMP_DISPLAY_ENV5

The OMP_DISPLAY_ENV environment variable instructs the runtime to display the information as6
described in the omp_display_env routine section (Section 30.4). The value of the7
OMP_DISPLAY_ENV environment variable may be set to one of these values:8

true | false | verbose9

If the environment variable is set to true, the effect is as if the omp_display_env routine is10
called with the verbose argument set to false at the beginning of the program. If the environment11
variable is set to verbose, the effect is as if the omp_display_env routine is called with the12
verbose argument set to true at the beginning of the program. If the environment variable is13
undefined or set to false, the runtime does not display any information. For all values of the14
environment variable other than true, false, and verbose, the displayed information is15
unspecified.16

Example:17

export OMP_DISPLAY_ENV=true18

For the output of the above example, see Section 30.4.19

Cross References20

• omp_display_env Routine, see Section 30.421

CHAPTER 4. ENVIRONMENT VARIABLES 147

5 Directive and Construct Syntax1

This chapter describes the syntax of directives and clauses and their association with base language2
code. Directives are specified with various base language mechanisms that allow compilers to3
ignore the directives and conditionally compiled code if support of the OpenMP API is not4
provided or enabled. A compliant implementation must provide an option or interface that ensures5
that underlying support of all directives and conditional compilation mechanisms is enabled. In the6
remainder of this document, the phrase OpenMP compilation is used to mean a compilation with7
these OpenMP features enabled.8

Restrictions9
Restrictions on OpenMP programs include:10

• Unless otherwise specified, a program must not depend on any ordering of the evaluations of11
the expressions that appear in the clauses specified on a directive.12

• Unless otherwise specified, a program must not depend on any side effects of the evaluations13
of the expressions that appear in the clauses specified on a directive.14

C / C++
• The use of omp as the first preprocessing token of a pragma directive must be for OpenMP15

directives that are defined in this specification; OpenMP reserves these uses for OpenMP16
directives.17

• The use of omp as the attribute namespace of an attribute specifier, or as the optional18
namespace qualifier within a sequence attribute, must be for OpenMP directives that are19
defined in this specification; OpenMP reserves these uses for such directives.20

• The use of ompx as the first preprocessing token of a pragma directive must be for21
implementation defined extensions to the OpenMP directives; OpenMP reserves these uses22
for such extensions.23

• The use of ompx as the attribute namespace of an attribute specifier, or as the optional24
namespace qualifier within a sequence attribute, must be for implementation defined25
extensions to the OpenMP directives; OpenMP reserves these uses for such extensions.26

C / C++
Fortran

• In free form source files, the !$omp sentinel must be used for OpenMP directives that are27
defined in this specification; OpenMP reserves these uses for such directives.28

148 OpenMP API – Version 6.0 November 2024

• In fixed form source files, sentinels that end with omp must be used for OpenMP directives1
that are defined in this specification; OpenMP reserves these uses for such directives.2

• In free form source files, the !$ompx sentinel must be used for implementation defined3
extensions to the OpenMP directives; OpenMP reserves these uses for such extensions.4

• In fixed form source files, sentinels that end with omx must be used for implementation5
defined extensions to the OpenMP directives; OpenMP reserves these uses for such6
extensions.7

Fortran
• A clause name must be the name of a clause that is defined in this specification except for8

those that begin with ompx_, which may be used for implementation defined extensions and9
which OpenMP reserves for such extensions.10

• OpenMP reserves names that begin with the omp_, ompt_ and ompd_ prefixes for names11
defined in this specification so OpenMP programs must not declare names that begin with12
them.13

• OpenMP reserves names that begin with the ompx_ prefix for implementation defined14
extensions so OpenMP programs must not declare names that begin with it.15

C++
• OpenMP programs must not declare a namespace with the omp, ompx, ompt or ompd16

names, as these are reserved for the OpenMP implementation.17

C++
Restrictions on explicit regions (that arise from executable directives) are as follows:18

C++
• A throw executed inside a region that arises from a thread-limiting construct must cause19

execution to resume within the same region, and the same thread that threw the exception20
must catch it. If the directive also has the exception-aborting property then whether the21
exception is caught or the throw results in runtime error termination is implementation22
defined.23

C++
Fortran

• A directive may not appear in a pure or simple procedure unless it has the pure property.24

• A directive may not appear in a WHERE or FORALL construct.25

• A directive may not appear in a DO CONCURRENT construct unless it has the pure property.26

• If more than one image is executing the program, any image control statement, ERROR STOP27
statement, FAIL IMAGE statement, NOTIFY WAIT statement, collective subroutine call or28
access to a coindexed object that appears in an explicit region will result in unspecified29
behavior.30

Fortran

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 149

5.1 Directive Format1

This section defines several categories of directives and constructs. Directives are specified with a2
directive specification. A directive specification consists of the directive specifier and any clauses3
that may optionally be associated with the directive, Thus, the directive-specifation is:4

directive-specifier [[,] clause[[,] clause] ...]5

where the directive-specifier is:6

directive-name7

or for argument-modified directives:8

directive-name[(directive-arguments)]9

where directive-name is the directive name of the directive.10

Some directives specify a paired end directive. If the directive-name of such a directive starts with11
begin, the end directive has the same directive name except begin is replaced with end. If the12
directive-name does not start with begin, unless otherwise specified the directive name of the end13
directive is end directive-name.14

Some directives have underscores in their directive-name. Some of those directives are explicitly15
specified alternatively to allow the underscores in their directive-name to be replaced with white16
space. In addition, if a directive-name starts with either begin or end then it is separated from the17
rest of the directive-name by white space.18

The directive-specification of a paired end directive may include one or more optional end-clause:19

directive-specifier [[,] end-clause[[,] end-clause]...]20

where end-clause has the end-clause property, which explicitly allows it on a paired end directive.21

C / C++
A directive may be specified as a pragma directive:22

#pragma omp directive-specification new-line23

or a pragma operator:24

_Pragma("omp directive-specification")25

26

Note – In this directive, directive-name is depobj, directive-arguments is o. directive-specifier is27
depobj(o) and directive-specification is depobj(o) depend(inout: d).28

#pragma omp depobj(o) depend(inout: d)29

30

White space can be used before and after the #. Preprocessing tokens in a directive-specification of31
#pragma and _Pragma pragmas are subject to macro expansion.32

150 OpenMP API – Version 6.0 November 2024

In C23 and later versions or C++11 and later versions, a directive may be specified as a C/C++1
attribute specifier:2

[[omp :: directive-attr]]3

C++
or4

[[using omp : directive-attr]]5

C++
where directive-attr is6

directive(directive-specification)7

or8

sequence([omp::]directive-attr [[, [omp::]directive-attr] ...])9

Multiple attributes on the same statement are allowed. Attribute directives that apply to the same10
statement are unordered unless the sequence attribute is specified, in which case the right-to-left11
ordering applies. The omp:: namespace qualifier within a sequence attribute is optional. The12
application of multiple attributes in a sequence attribute is ordered as if each directive had been13
specified as a pragma directive on subsequent lines. The directive attribute must not be14
specified inside a sequence attribute unless it specifies a block-associated directive.15

16

Note – This example shows the expected transformation:17

[[omp::sequence(directive(parallel), directive(for))]]18
for(...) {}19
// becomes20
#pragma omp parallel21
#pragma omp for22
for(...) {}23

24

The pragma and attribute forms are interchangeable for any directive. Some directives may be25
composed of consecutive attribute specifiers if specified in their syntax. Any two consecutive26
attribute specifiers may be reordered or expressed as a single attribute specifier, as permitted by the27
base language, without changing the behavior of the directive.28

Directives are case-sensitive. Each expression used in the OpenMP syntax inside of a clause must29
be a valid assignment-expression of the base language unless otherwise specified.30

C / C++
C++

Directives may not appear in constexpr functions or in constant expressions.31

C++

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 151

Fortran
A directive for Fortran is specified with a stylized comment as follows:1

sentinel directive-specification2

All directives must begin with a directive sentinel. The format of a sentinel differs between fixed3
form and free form source files, as described in Section 5.1.1 and Section 5.1.2. In order to simplify4
the presentation, free form is used for the syntax of directives for Fortran throughout this document,5
except as noted.6

Directives are case insensitive. Directives cannot be embedded within continued statements, and7
statements cannot be embedded within directives. Each expression used in the OpenMP syntax8
inside of a clause must be a valid expression of the base language unless otherwise specified.9

Fortran
A directive may be categorized as one of the following:10

• declarative directive;11

• executable directive;12

• informational directive;13

• metadirective;14

• subsidiary directive; or15

• utility directive.16

Base language code can be associated with directives. A directive may be categorized by its base17
language code association as one of the following:18

• block-associated directive;19

• declaration-associated directive;20

• delimited directive;21

• explicitly associated directive;22

• loop-nest-associated directive;23

• loop-sequence-associated directive;24

• separating directive; or25

• unassociated directive.26

A directive and its associated base language code (if any) constitute a syntactic formation that27
follows the syntax given below unless otherwise specified. The end-directive in a specified28
formation refers to the paired end directive for the directive. A construct is a formation for an29
executable directive. An end directive is considered a subsidiary directive of a construct if it is the30
end directive of that construct.31

152 OpenMP API – Version 6.0 November 2024

Unassociated directives are not directly associated with any base language code. The resulting1
formation therefore has the following syntax:2

directive3

Unassociated directives that are declarative directives declare identifiers for use in other directives.4
Unassociated directives that are executable directives are stand-alone directives.5

Explicitly associated directives are declarative directives that take a variable or extended list as a6
directive or clause argument that indicates the declarations with which the directive is associated.7
As a result, explicitly associated directives have the same syntax as the formation for unassociated8
directives.9

Formations that result from a block-associated directive have the following syntax:10

C / C++
directive11

structured-block12

C / C++
Fortran

directive13
structured-block14

[end-directive]15

If structured-block is a loosely structured block, end-directive is required, unless otherwise16
specified. If structured-block is a strictly structured block, end-directive is optional. An17
end-directive that immediately follows a directive and its associated strictly structured block is18
always paired with that directive.19

Fortran
Loop-nest-associated directives are block-associated directives for which the associated20
structured-block is loop-nest, a canonical loop nest. Loop-sequence-associated directives are21
block-associated directives for which the associated structured-block is canonical-loop-sequence, a22
canonical loop sequence.23

Fortran
The associated structured block of a block-associated directive can be a DO CONCURRENT loop24
where it is explicitly allowed.25

For a loop-nest-associated directive, the paired end directive is optional.26

Fortran
A declaration-associated directive is directly associated with a base language declaration.27

C / C++
Formations that result from a declaration-associated directive have the following syntax:28

declaration-associated-specification29

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 153

where declaration-associated-specification is either:1

directive2
function-definition-or-declaration3

or:4

directive5
declaration-associated-specification6

In all cases the directive is associated with the function-definition-or-declaration.7

C / C++
Fortran

The formation that results from a declaration-associated directive in Fortran has the same syntax as8
the formation for an unassociated directive as the associated declaration is determined directly from9
the specification part in which the directive appears.10

Fortran
Fortran / C++

If a directive appears in the specification part of a module then the behavior is as if that directive,11
with the variables, types and procedures that have PRIVATE accessibility omitted, appears in the12
specification part of any compilation unit that references the module unless otherwise specified.13

Fortran / C++
The formation that results from a delimited directive has the following syntax:14

directive15
base-language-code16

end-directive17

Separating directives are used to split statements contained in the associated structured block of a18
block-associated directive (the separated construct) into multiple structured block sequences. If the19
separated construct is a loop-nest-associated construct then any separating directives divide the20
loop body of the innermost affected loop into structured block sequences. Otherwise, the separating21
directives divide the associated structured block into structured block sequences.22

Separating directives and the containing structured block have the following syntax:23

structured-block-sequence24
directive25
structured-block-sequence26
[directive27
structured-block-sequence ...]28

wrapped in a single compound statement for C/C++ or optionally wrapped in a single BLOCK29
construct for Fortran.30

154 OpenMP API – Version 6.0 November 2024

C / C++
Formations that result from directives that are specified as attribute specifiers that use the1
directive attribute are specified as follows. If the directive is an unassociated directive, the2
resulting formation is an attribute-declaration if the directive is not executable and it consists of the3
attribute specifier and a null statement (i.e., “;”) if the directive is an executable directive. For a4
block-associated directive, the resulting formation consists of the attribute specifier and a structured5
block to which the specifier applies. If the directives are separating directives or delimited6
directives then the resulting formation is as specified above for those associations except that the7
attribute specifier for each directive, including the end directive, applies to a null statement.8

A declarative directive that is a declaration-associated directive may alternatively be expressed as9
an attribute specifier:10

[[omp :: decl(directive-specification)]]11

C++
or12

[[using omp : decl(directive-specification)]]13

C++
An explicitly associated directive may alternatively be expressed with an attribute specifier that also14
uses the decl attribute, applies to a variable and/or function declaration, and omits the variable list15
or extended list argument. The effect is as if the omitted list argument is the list of declared16
variables and/or functions to which the attribute specifier applies.17

Formations that result from directives that are specified as attribute specifiers and are18
declaration-associated directives or use the decl attribute are specified as follows. If the directives19
are declaration-associated directives then the resulting formation consists of the attribute specifiers20
and the function-definition-or-declaration to which the specifiers apply. If the directive uses the21
decl attribute then the resulting formation consists of the attribute specifier and the variable22
and/or function declarations to which the specifier applies.23

C / C++
Restrictions24
Restrictions to directive format are as follows:25

C / C++
• A directive-name must not include white space except where explicitly allowed.26

C / C++
• Orphaned separating directives are prohibited. That is, the separating directives must appear27

within the structured block associated with the same construct with which it is associated and28
must not be encountered elsewhere in the region of that separated construct.29

• A stand-alone directive may be placed only at a point where a base language executable30
statement is allowed.31

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 155

Fortran
• A declarative directive must be specified in the specification part after all USE, IMPORT and1
IMPLICIT statements.2

Fortran
C / C++

• A directive that uses the attribute syntax cannot be applied to the same statement or3
associated declaration as a directive that uses the pragma syntax.4

• For any directive that has a paired end directive, both directives must use either the attribute5
syntax or the pragma syntax.6

• The directive and subsidiary directives of a construct must all use the attribute syntax or must7
all use the pragma syntax.8

• Neither a stand-alone directive nor a declarative directive may be used in place of a9
substatement in a selection statement or iteration statement, or in place of the statement that10
follows a label.11

• If a declarative directive applies to a function declaration or definition and it is specified with12
one or more C or C++ attribute specifiers, the specified attributes must be applied to the13
function as permitted by the base language.14

C / C++

Fortran

5.1.1 Free Source Form Directives15

The following sentinels are recognized in free form source files:16

!$omp | !$ompx17

The sentinel can appear in any column as long as it is preceded only by white space. It must appear18
as a single word with no intervening white space. Fortran free form line length and white space19
rules apply to the directive line. The syntax that allows white space to be optional has been20
deprecated. Initial directive lines must have a space after the sentinel. The initial line of a directive21
must not be a continuation line for a base language statement. Fortran free form continuation rules22
apply. Thus, continued directive lines must have an ampersand (&) as the last non-blank character23
on the line, prior to any comment placed inside the directive; continuation directive lines can have24
an ampersand after the directive sentinel with optional white space before and after the ampersand.25

Comments may appear on the same line as a directive. The exclamation point (!) initiates a26
comment. The comment extends to the end of the source line and is ignored. If the first non-blank27
character after the directive sentinel is an exclamation point, the line is ignored.28

Fortran

156 OpenMP API – Version 6.0 November 2024

Fortran

5.1.2 Fixed Source Form Directives1

The following sentinels are recognized in fixed form source files:2

!$omp | c$omp | *$omp | !$omx | c$omx | *$omx3

Sentinels must start in column 1 and appear as a single word with no intervening characters.4
Fortran fixed form line length, white space, continuation, and column rules apply to the directive5
line. The syntax that allows white space to be optional has been deprecated. Initial directive lines6
must have a space or a zero in column 6, and continuation directive lines must have a character7
other than a space or a zero in column 6.8

Comments may appear on the same line as a directive. The exclamation point initiates a comment9
when it appears after column 6. The comment extends to the end of the source line and is ignored.10
If the first non-blank character after the directive sentinel of an initial or continuation directive line11
is an exclamation point, the line is ignored.12

Fortran

5.2 Clause Format13

This section defines the format and categories of OpenMP clauses. Clauses are specified as part of14
a directive-specification. Clauses have the optional property and, thus, may be omitted from a15
directive-specification unless otherwise specified, in which case they have the required property.16
The order in which clauses appear on directives is not significant unless otherwise specified. Some17
clauses form natural groupings that have similar semantic effect and so are frequently specified as a18
clause group. A clause-specification specifies each clause in a directive-specification where19
clause-specification is:20

clause-name[(clause-argument-specification [; clause-argument-specification [;...]])]21

C / C++
White space in a clause-name is prohibited. White space within a clause-argument-specification22
and between another clause-argument-specification is optional.23

C / C++
An implementation may allow clauses with clause names that start with the ompx_ prefix for use on24
any OpenMP directive, and the format and semantics of any such clause is implementation defined.25

The first clause-argument-specification is required unless otherwise explicitly specified while26
additional ones are only permitted on clauses that explicitly allow them. When the first one is27
omitted, the syntax is simply:28

clause-name29

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 157

Clause arguments may be unmodified or modified. For an unmodified argument,1
clause-argument-specification is:2

clause-argument-list3

Unless otherwise specified, modified arguments have the pre-modified property, in which case the4
format is:5

[modifier-specification-list :]clause-argument-list6

Some modified arguments are explicitly specified to have the post-modified property, in which case7
the format is:8

clause-argument-list[: modifier-specification-list]9

For many clauses, clause-argument-list is an OpenMP argument list, which is a comma-separated10
list of a specific kind of list items (see Section 5.2.1), in which case the format of11
clause-argument-list is:12

argument-name13

For all other clauses, clause-argument-list is a comma-separated list of arguments so the format is:14

argument-name [, argument-name [,...]]15

In most of these cases, the list only has a single item so the format of clause-argument-list is again:16

argument-name17

In all cases, white space in clause-argument-list is optional.18

A modifier-specification-list is a comma-separated list of clause argument modifiers for which the19
format is:20

modifier-specification [, modifier-specification [,...]]21

Clause argument modifiers may be simple modifiers or complex modifier. Many clause argument22
modifiers are simple modifiers, for which the format of modifier-specification is:23

modifier-name24

The format of a complex modifier is:25

modifier-name[(modifier-parameter-specification)]26

where modifier-parameter-specification is a comma-separated list of arguments as defined above for27
clause-argument-list. The position of each modifier-argument-name in the list is significant. The28
modifier-parameter-specification and parentheses are required unless every29
modifier-argument-name is optional and omitted, in which case the format of the complex modifier30
is identical to that of a simple modifier:31

modifier-name32

158 OpenMP API – Version 6.0 November 2024

Each argument-name and modifier-name is an OpenMP term that may be used in the definitions of1
the clause and any directives on which the clause may appear. Syntactically, each of these terms is2
one of the following:3

• keyword: An OpenMP keyword;4

• OpenMP identifier: An OpenMP identifier;5

• OpenMP argument list: An OpenMP argument list;6

• expression: An expression of some OpenMP type; or7

• OpenMP stylized expression: An OpenMP stylized expression.8

A particular lexical instantiation of an argument specifies a parameter of the clause, while a lexical9
instantiation of a modifier and its parameters affects how or when the argument is applied.10

The order of arguments must match the order in the clause-specification or modifier-specification.11
The order of modifiers in a clause-argument-specification is not significant unless otherwise12
specified.13

General syntactic properties govern the use of clauses, clause and directive arguments, and14
modifiers in a directive. These properties are summarized in Table 5.1, along with the respective15
default properties for clauses, arguments and modifiers.16

TABLE 5.1: Syntactic Properties for Clauses, Arguments and Modifiers

Property Property Description Inverse
Property

Clause
defaults

Argument
defaults

Modifier
defaults

required must be present optional optional required optional

unique may appear at most once repeatable repeatable unique unique

exclusive must appear alone compatible compatible compatible compatible

ultimate must lexically appear last
(or first for a modifier on
a clause with the post-
modified property)

free free free free

A clause, argument or modifier with a given property implies that it does not have the17
corresponding inverse property, and vice versa. The ultimate property implies the unique property.18
If all arguments and modifiers of an argument-modified clause or directive are optional property19
and omitted then the parentheses of the syntax for the clause or directive is also omitted.20

Arguments of directives, clauses and modifiers are never repeatable. Instead, argument lists are21
used whenever the corresponding semantics may be specified for multiple list items that serve as22
the arguments of the directives, clauses or modifiers.23

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 159

Some clause properties determine the constituent directives to which they apply when specified on1
compound directives. A clause with the all-constituents property applies to all constituent2
directives of any compound directive on which it is specified. Unless otherwise specified, a clause3
has the all-constituents property. That is, the all-constituents property is a default clause property.4
A clause with the once-for-all-constituents property applies to the directive once, before any of the5
constituent directives are applied. A clause with the innermost-leaf property applies to the6
innermost constituent directive to which it may be applied. A clause with the outermost-leaf7
property applies to the outermost constituent directive to which it may be applied. A clause with8
the all-privatizing property applies to all constituent directives that permit the clause and to which a9
data-sharing attribute clause that may create a private copy of the same list item is applied.10

Arguments and modifiers that are expressions may additionally have any of the following value11
properties: the constant property; the positive property; the non-negative property; and the12
region-invariant property.13

14

Note – In this example, clause-specification is depend(inout: d), clause-name is depend15
and clause-argument-specification is inout: d. The depend clause has an argument for which16
argument-name is locator-list, which syntactically is the OpenMP locator list d in the example.17
Similarly, the depend clause accepts a simple modifier with the name task-dependence-type.18
Syntactically, task-dependence-type is the keyword inout in the example.19

#pragma omp depobj(o) depend(inout: d)20

21

The clauses that a directive accepts may form clause sets. These clause sets may imply restrictions22
on their use on that directive or may otherwise capture properties for the clauses on the directive.23
While specific properties may be defined for a clause set on a particular directive, the following24
clause set properties have general meanings and implications as indicated by the restrictions below:25
the required property, the unique property, and the exclusive property.26

All clauses that are specified as a clause group form a clause set for which properties are specified27
with the specification of the clause group. Some directives accept a clause group for which each28
member is a directive-name of a directive that has a specific property. These clause groups have the29
required property, the unique property and the exclusive property unless otherwise specified.30

The restrictions for a directive apply to the union of the clauses on the directive and its paired end31
directive.32

Restrictions33
Restrictions to clauses and clause sets are as follows:34

• A clause with the required property for a directive must appear on the directive.35

• A clause with the unique property for a directive may appear at most once on the directive.36

160 OpenMP API – Version 6.0 November 2024

• A clause with the exclusive property for a directive must not appear if a clause with a1
different clause-name also appears on the directive.2

• An ultimate clause, that is one that has the ultimate property for a directive, must be the3
lexically last clause to appear on the directive.4

• If a clause set has the required property, at least one clause in the set must be present on the5
directive for which the clause set is specified.6

• If a clause is a member of a clause set that has the unique property for a directive then the7
clause has the unique property for that directive regardless of whether it has the unique8
property when it is not part of such a clause set.9

• If one clause of a clause set with the exclusive property appears on a directive, no other10
clauses with a different clause-name in that clause set may appear on the directive.11

• An argument with the required property must appear in the clause-specification, unless12
otherwise specified.13

• An argument with the unique property may appear at most once in a14
clause-argument-specification.15

• An argument with the exclusive property must not appear if an argument with a different16
argument-name appears in the clause-argument-specification.17

• A modifier with the required property must appear in the clause-argument-specification.18

• A modifier with the unique property may appear at most once in a19
clause-argument-specification.20

• A modifier with the exclusive property must not appear if a modifier with a different21
modifier-name also appears in the clause-argument-specification.22

• If a clause has the pre-modified property, a modifier with the ultimate property must be the23
last modifier in any clause-argument-specification in which any modifier appears.24

• If a clause has the post-modified property, a modifier with the ultimate property must be the25
first modifier in any clause-argument-specification in which any modifier appears.26

• A modifier that is an expression must neither lexically match the name of a simple modifier27
defined for the clause that is an OpenMP keyword nor modifier-name parenthesized-tokens,28
where modifier-name is the modifier-name of a complex modifier defined for the clause and29
parenthesized-tokens is a token sequence that starts with (and ends with).30

• An argument or parameter with the constant property must be a compile-time constant.31

• An argument or parameter with the positive property must be greater than zero.32

• An argument or parameter with the non-negative property must be greater than or equal to33
zero.34

• An argument or parameter with the region-invariant property must have the same value35
throughout any given execution of the construct or, for declarative directives, execution of the36
procedure with which the declaration is associated.37

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 161

Cross References1

• Directive Format, see Section 5.12

• OpenMP Argument Lists, see Section 5.2.13

• OpenMP Stylized Expressions, see Section 6.24

• OpenMP Types and Identifiers, see Section 6.15

5.2.1 OpenMP Argument Lists6

The OpenMP API defines several kinds of lists, each of which can be used as syntactic instances of7
directive, clause and modifier arguments. These comma-separated argument lists allow the8
corresponding semantics to apply to multiple list items. In any argument list the separation of list9
items has precedence for commas over any base language semantics for commas. Thus, application10
of base language semantics for commas to any expression in an argument list may require the use of11
parentheses.12

A list of any OpenMP type consists of a comma-separated collection of one or more expressions of13
that OpenMP type. A parameter list consists of a comma-separated collection of one or more14
parameter list items. A variable list consists of a comma-separated collection of one or more15
variable list items. An extended list consists of a comma-separated collection of one or more16
extended list items, each of which is a variable list item or the name of a procedure. A locator list17
consists of a comma-separated collection of one or more locator list items. A type-name list18
consists of a comma-separated collection of one or more type-name list items. A directive-name list19
consists of a comma-separated collection of one or more directive-name list items, each of which is20
a directive name. A directive-specification list consists of a comma-separated collection of one or21
more directive-specification list items, each of which is a directive specification. A preference22
specification list consists of a comma-separated collection of one or more preference specification23
list items, each of which is a preference specification as defined in Section 16.1.3. An OpenMP24
operation list consists of a comma-separated collection of one or more OpenMP operation list25
items, each of which is a OpenMP operation defined in Section 5.2.3. An iterator-specifier list26
consists of a comma-separated collection of one or more iterator-specifier list items, each of which27
is an iterator specifier defined in Section 5.2.6.28

A parameter list item can be one of the following:29

• A named parameter list item;30

• The position of a parameter in a parameter specification specified by a positive integer, where31
1 represents the first parameter; or32

• A parameter range specified by lb : ub where both lb and ub must be an expression of integer33
OpenMP type with the constant property and the positive property.34

In both lb and ub, an expression using omp_num_args, that enables identification of parameters35
relative to the last argument of the call, can be used with the form:36

omp_num_args [± logical_offset]37

162 OpenMP API – Version 6.0 November 2024

where logical_offset is an expression of integer OpenMP type with the constant property and the1
non-negative property. The lb and ub expressions are both optional. If lb is not specified the first2
element of the range will be 1. If ub is not specified the last element of the range will be3
omp_num_args. The effect of a specified range of lb..ub is as if the parameters4
lbth, (lb+ 1)th, ..., ubth had been specified individually.5

C / C++
A named parameter list item is the name of a function parameter. A variable list item is a variable6
or an array section. A locator list item is a reserved locator, an array section, or any lvalue7
expression including variables. A type-name list item is a type name.8

C / C++
Fortran

A named parameter list item is a dummy argument of a subroutine or function. A variable list item9
is one of the following:10

• a variable that is not coindexed and that is not a substring;11

• an array section that is not coindexed and that does not contain an element that is a substring;12

• a named constant;13

• a procedure pointer;14

• an associate name that may appear in a variable definition context; or15

• a common block name (enclosed in slashes).16

A locator list item is a variable list item, a function reference with data pointer result, or a reserved17
locator. A type-name list item is a type specifier.18

When a named common block appears in an argument list, it has the same meaning and restrictions19
as if every explicit member of the common block appeared in the list. An explicit member of a20
common block is a variable that is named in a COMMON statement that specifies the common block21
name and is declared in the same scoping unit in which the clause appears. Named common blocks22
do not include the blank common block.23

Fortran
Restrictions24
The restrictions to argument lists are as follows:25

• All list items must be visible, according to the scoping rules of the base language.26

• Unless otherwise specified, OpenMP list items other than parameter list items must be27
directive-wide unique, i.e., a list item can only appear once in one OpenMP list of all28
arguments, clauses, and modifiers of the directive.29

• Unless otherwise specified, any given parameter list item can only be specified once across30
all clauses of the same type in a given directive.31

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 163

• The directive-specifier and the clauses in a directive-specification list item must not be1
comma-separated.2

C
• Unless otherwise specified, a variable that is part of an aggregate variable must not be a3

variable list item or an extended list item.4

C
C++

• Unless otherwise specified, a variable that is part of an aggregate variable must not be a5
variable list item or an extended list item except if the list appears on a clause that is6
associated with a construct within a class non-static member function and the variable is an7
accessible data member of the object for which the non-static member function is invoked.8

C++
Fortran

• A named constant or a procedure pointer can appear as a list item only in clauses where it is9
explicitly allowed.10

• Unless otherwise specified, a variable that is part of an aggregate variable must not be a11
variable list item or an extended list item.12

• Unless otherwise specified, an assumed-type variable must not be a variable list item, an13
extended list item, or a locator list item.14

• A type-name list item must not specify an abstract type or be either CLASS(*) or15
TYPE(*).16

• Since common block names cannot be accessed by use association or host association, a17
common block name specified in a clause must be declared to be a common block in the18
same scoping unit in which the clause appears.19

Fortran

5.2.2 Reserved Locators20

On some directives, some clauses accept the use of reserved locators as special OpenMP identifiers21
that represent system storage not necessarily bound to any base language storage item. The reserved22
locators are:23

omp_all_memory24

The reserved locator omp_all_memory is an OpenMP identifier that denotes a list item treated25
as having storage that corresponds to the storage of all other objects in memory.26

Restrictions27
Restrictions to the reserved locators are as follows:28

• Reserved locators may only appear in clauses and directives where they are explicitly allowed29
and may not otherwise be referenced in an OpenMP program.30

164 OpenMP API – Version 6.0 November 2024

5.2.3 OpenMP Operations1

On some directives, some clauses accept the use of OpenMP operations. An OpenMP operation2
named <generic_name> is a special expression that may be specified in an OpenMP operation list3
and that is used to return an object of the <generic_name> OpenMP type (see Section 6.1). In4
general, the format of an OpenMP operation is the following:5

<generic_name>(operation-parameter-specification)6

C / C++

5.2.4 Array Shaping7

If an expression has a type of pointer to T, then a shape-operator can be used to specify the extent of8
that pointer. In other words, the shape-operator is used to reinterpret, as an n-dimensional array, the9
region of memory to which that expression points.10

Formally, the syntax of the shape-operator is as follows:11

shaped-expression := ([s1][s2]...[sn])cast-expression12

The result of applying the shape-operator to an expression is an lvalue expression with an13
n-dimensional array type with dimensions s1 × s2 . . .× sn and element type T.14

The precedence of the shape-operator is the same as a type cast.15

Each si is an integral type expression that must evaluate to a positive integer.16

Restrictions17
Restrictions to the shape-operator are as follows:18

• The type T must be a complete type.19

• The shape-operator can appear only in clauses for which it is explicitly allowed.20

• The result of a shape-operator must be a containing array of the list item or a containing array21
of one of its named pointers.22

• The type of the expression upon which a shape-operator is applied must be a pointer type.23

C++
• If the type T is a reference to a type T’, then the type will be considered to be T’ for all24

purposes of the designated array.25

C++
C / C++

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 165

5.2.5 Array Sections1

An array section designates a subset of the elements in an array.2

C / C++
To specify an array section in an OpenMP directive, array subscript expressions are extended with3
one of the following syntaxes:4

[lower-bound : length : stride]5

[lower-bound : length :]6

[lower-bound : length]7

[lower-bound : : stride]8

[lower-bound : :]9

[lower-bound :]10

[: length : stride]11

[: length :]12

[: length]13

[: : stride]14

[: :]15

[:]16

The array section must be a subset of the original array.17

Array sections are allowed on multidimensional arrays. Base language array subscript expressions18
can be used to specify length-one dimensions of multidimensional array sections.19

Each of the lower-bound, length, and stride expressions if specified must be an integral type20
expression of the base language. When evaluated they represent a set of integer values as follows:21

{ lower-bound, lower-bound + stride, lower-bound + 2 * stride,... , lower-bound + ((length - 1) *22
stride) }23

The length must evaluate to a non-negative integer.24

The stride must evaluate to a positive integer.25

When the stride is absent it defaults to 1.26

When the length is absent and the size of the dimension is known, it defaults to27
⌈⌈(size − lower-bound)/stride⌉⌉, where size is the size of the array dimension. When the length is28
absent and the size of the dimension is not known, the array section is an assumed-size array.29

When the lower-bound is absent it defaults to 0.30

166 OpenMP API – Version 6.0 November 2024

C/C++ (cont.)

The precedence of a subscript operator that uses the array section syntax is the same as the1
precedence of a subscript operator that does not use the array section syntax.2

3

Note – The following are examples of array sections:4

a[0:6]5

a[0:6:1]6

a[1:10]7

a[1:]8

a[:10:2]9

b[10][:][:]10

b[10][:][:0]11

c[42][0:6][:]12

c[42][0:6:2][:]13

c[1:10][42][0:6]14

S.c[:100]15

p->y[:10]16

this->a[:N]17

(p+10)[:N]18

Assume a is declared to be a 1-dimensional array with dimension size 11. The first two examples19
are equivalent, and the third and fourth examples are equivalent. The fifth example specifies a stride20
of 2 and therefore is not contiguous.21

Assume b is declared to be a pointer to a 2-dimensional array with dimension sizes 10 and 10. The22
sixth example refers to all elements of the 2-dimensional array given by b[10]. The seventh23
example is a zero-length array section.24

Assume c is declared to be a 3-dimensional array with dimension sizes 50, 50, and 50. The eighth25
example is contiguous, while the ninth and tenth examples are not contiguous.26

The final four examples show array sections that are formed from more general array bases.27

The following are examples that are non-conforming array sections:28

s[:10].x29

p[:10]->y30

*(xp[:10])31

For all three examples, a base language operator is applied in an undefined manner to an array32

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 167

section. The only operator that may be applied to an array section is a subscript operator for which1
the array section appears as the postfix expression.2

3
4

C / C++
Fortran

Fortran has built-in support for array sections although some restrictions apply to their use in5
OpenMP directives, as enumerated at the end of this section.6

Fortran
Restrictions7
Restrictions to array sections are as follows:8

• An array section can appear only in clauses for which it is explicitly allowed.9

• A stride expression may not be specified unless otherwise stated.10

C / C++
• An assumed-size array can appear only in clauses for which it is explicitly allowed.11

• An element of an array section with a non-zero size must have a complete type.12

• The array base of an array section must have an array or pointer type.13

• If a consecutive sequence of array subscript expressions appears in an array section, and the14
first subscript expression in the sequence uses the extended array section syntax defined in15
this section, then only the last subscript expression in the sequence may select array elements16
that have a pointer type.17

C / C++
C++

• If the type of the array base of an array section is a reference to a type T, then the type will be18
considered to be T for all purposes of the array section.19

• An array section cannot be used in an overloaded [] operator.20

C++
Fortran

• If a stride expression is specified, it must be positive.21

• The upper bound for the last dimension of a dummy assumed-size array must be specified.22

• If a list item is an array section with vector subscripts, the first array element must be the23
lowest in the array element order of the array section.24

• If a list item is an array section, the last part-ref of the list item must have a section subscript25
list.26

Fortran

168 OpenMP API – Version 6.0 November 2024

5.2.6 iterator Modifier1

Modifiers2
Name Modifies Type Properties
iterator locator-list Complex, name: iterator

Arguments:
iterator-specifier list of iter-

ator specifier list item
type (default)

unique

3

Clauses4
affinity, depend, from, map, to5

An iterator modifier is a unique, complex modifier that defines a set of iterators, each of which is an6
iterator-identifier and an associated iterator value set. An iterator-identifier expands to those values7
in the clause argument for which it is specified. Each list item of the iterator argument is an iterator8
specifier with this format:9

C / C++
[iterator-type] iterator-identifier = range-specification10

C / C++
Fortran

[iterator-type ::] iterator-identifier = range-specification11

Fortran
where:12

• iterator-identifier is a base language identifier.13

• iterator-type is a type that is permitted in a type-name list.14

• range-specification is of the form begin:end[:step], where begin and end are expressions for15
which their types can be converted to iterator-type and step is an integral expression.16

C / C++
In an iterator specifier, if the iterator-type is not specified then that iterator is of int type.17

C / C++
Fortran

In an iterator specifier, if the iterator-type is not specified then that iterator has default integer type.18

Fortran
In a range-specification, if the step is not specified its value is implicitly defined to be 1.19

An iterator only exists in the context of the clause argument that its iterator modifier modifies. An20
iterator also hides all accessible symbols with the same name in the context of that clause argument.21

The use of a variable in an expression that appears in the range-specification causes an implicit22
reference to the variable in all enclosing constructs.23

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 169

C / C++
The iterator value set of the iterator are the set of values i0, . . . , iN−1 where:1

• i0 = (iterator-type) begin;2

• ij = (iterator-type) (ij−1 + step), where j ≥ 1; and3

• if step > 0,4

– i0 < (iterator-type) end;5

– iN−1 < (iterator-type) end; and6

– (iterator-type) (iN−1 + step) ≥ (iterator-type) end;7

• if step < 0,8

– i0 > (iterator-type) end;9

– iN−1 > (iterator-type) end; and10

– (iterator-type) (iN−1 + step) ≤ (iterator-type) end.11

C / C++
Fortran

The iterator value set of the iterator are the set of values i1, . . . , iN where:12

• i1 = begin;13

• ij = ij−1 + step, where j ≥ 2; and14

• if step > 0,15

– i1 ≤ end;16

– iN ≤ end; and17

– iN + step > end;18

• if step < 0,19

– i1 ≥ end;20

– iN ≥ end; and21

– iN + step < end.22

Fortran
The iterator value set will be empty if no possible value complies with the conditions above.23

If an iterator-identifier appears in a list item expression of the modified argument, the effect is as if24
the list item is instantiated within the clause for each member of the iterator value set, substituting25
each occurrence of iterator-identifier in the list item expression with the member of the iterator26
value set. If the iterator value set is empty then the effect is as if the list item was not specified.27

170 OpenMP API – Version 6.0 November 2024

Restrictions1
Restrictions to iterator modifiers are as follows:2

• The iterator-type must not declare a new type.3

• For each value i in an iterator value set, the mathematical result of i + step must be4
representable in iterator-type.5

C / C++
• The iterator-type must be an integral or pointer type.6

• The iterator-type must not be const qualified.7

C / C++
Fortran

• The iterator-type must be an integer type.8

Fortran
• If the step expression of a range-specification equals zero, the behavior is unspecified.9

• Each iterator-identifier can only be defined once in the modifier-parameter-specification.10

• An iterator-identifier must not appear in the range-specification.11

• If an iterator modifier appears in a clause that is specified on a task_iteration directive12
then the loop-iteration variables of taskloop-affected loops of the associated taskloop13
construct must not appear in the range-specification.14

Cross References15

• affinity Clause, see Section 14.1016

• depend Clause, see Section 17.9.517

• from Clause, see Section 7.10.218

• map Clause, see Section 7.9.619

• to Clause, see Section 7.10.120

5.3 Conditional Compilation21

In implementations that support a preprocessor, the _OPENMP macro name is defined to have the22
decimal value yyyymm where yyyy and mm are the year and month designations of the version of23
the OpenMP API that the implementation supports.24

Fortran
The OpenMP API requires Fortran lines to be compiled conditionally, as described in the following25
sections.26

Fortran

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 171

Restrictions1
Restrictions to conditional compilation are as follows:2

• A #define or a #undef preprocessing directive in user code must not define or undefine3
the _OPENMP macro name.4

Fortran

5.3.1 Free Source Form Conditional Compilation Sentinel5

The following conditional compilation sentinel is recognized in free form source files:6

!$7

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the8
following criteria:9

• The sentinel can appear in any column but must be preceded only by white space;10

• The sentinel must appear as a single word with no intervening white space;11

• Initial lines must have a blank character after the sentinel; and12

• Continued lines must have an ampersand as the last non-blank character on the line, prior to13
any comment appearing on the conditionally compiled line.14

Continuation lines can have an ampersand after the sentinel, with optional white space before and15
after the ampersand. If these criteria are met, the sentinel is replaced by two spaces. If these criteria16
are not met, the line is left unchanged.17

18

Note – In the following example, the two forms for specifying conditional compilation in free19
source form are equivalent (the first line represents the position of the first 9 columns):20

!2345678921
!$ iam = omp_get_thread_num() + &22
!$& index23

24
#ifdef _OPENMP25

iam = omp_get_thread_num() + &26
& index27

#endif28

29

Fortran

172 OpenMP API – Version 6.0 November 2024

Fortran

5.3.2 Fixed Source Form Conditional Compilation Sentinels1

The following conditional compilation sentinels are recognized in fixed form source files:2

!$ | *$ | c$3

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the4
following criteria:5

• The sentinel must start in column 1 and appear as a single word with no intervening white6
space;7

• After the sentinel is replaced with two spaces, initial lines must have a space or zero in8
column 6 and only white space and numbers in columns 1 through 5; and9

• After the sentinel is replaced with two spaces, continuation lines must have a character other10
than a space or zero in column 6 and only white space in columns 1 through 5.11

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not met, the line12
is left unchanged.13

14

Note – In the following example, the two forms for specifying conditional compilation in fixed15
source form are equivalent (the first line represents the position of the first 9 columns):16

c2345678917
!$ 10 iam = omp_get_thread_num() +18
!$ & index19

20
#ifdef _OPENMP21

10 iam = omp_get_thread_num() +22
& index23

#endif24

25

Fortran

5.4 directive-name-modifier Modifier26

Modifiers27
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique28

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 173

Clauses1
absent, acq_rel, acquire, adjust_args, affinity, align, aligned, allocate,2
allocator, append_args, apply, at, atomic_default_mem_order, bind,3
capture, collapse, collector, combiner, compare, contains, copyin,4
copyprivate, default, defaultmap, depend, destroy, detach, device,5
device_safesync, device_type, dist_schedule, doacross,6
dynamic_allocators, enter, exclusive, fail, filter, final, firstprivate,7
from, full, grainsize, graph_id, graph_reset, has_device_addr, hint, holds,8
if, in_reduction, inbranch, inclusive, indirect, induction, inductor, init,9
init_complete, initializer, interop, is_device_ptr, lastprivate, linear,10
link, local, map, match, memscope, mergeable, message, no_openmp,11
no_openmp_constructs, no_openmp_routines, no_parallelism, nocontext,12
nogroup, nontemporal, notinbranch, novariants, nowait, num_tasks,13
num_teams, num_threads, order, ordered, otherwise, partial, permutation,14
priority, private, proc_bind, read, reduction, relaxed, release,15
replayable, reverse_offload, safelen, safesync, schedule, self_maps,16
seq_cst, severity, shared, simd, simdlen, sizes, task_reduction,17
thread_limit, threads, threadset, to, transparent, unified_address,18
unified_shared_memory, uniform, untied, update, update, use,19
use_device_addr, use_device_ptr, uses_allocators, weak, when, write20

Semantics21
The directive-name-modifier is a universal modifier that can be used on any clause. The22
directive-name-modifier specifies directive-name, which is the directive name of a directive,23
construct or constituent construct to which the clause applies. If the directive name is that of a24
compound construct, then the leaf constructs to which the clause applies are determined as25
specified in Section 19.2. If no directive-name-modifier is specified then the effect is as if a26
directive-name-modifier was specified with the directive name of the directive on which the clause27
appears.28

Restrictions29
Restrictions to the directive-name-modifier are as follows:30

• The directive-name-modifier must specify the directive name of either the directive on which31
the clause appears or a constituent directive of that directive.32

Cross References33

• absent Clause, see Section 10.6.1.134

• acq_rel Clause, see Section 17.8.1.135

• acquire Clause, see Section 17.8.1.236

• adjust_args Clause, see Section 9.6.237

• affinity Clause, see Section 14.1038

174 OpenMP API – Version 6.0 November 2024

• align Clause, see Section 8.31

• aligned Clause, see Section 7.122

• allocate Clause, see Section 8.63

• allocator Clause, see Section 8.44

• append_args Clause, see Section 9.6.35

• apply Clause, see Section 11.16

• at Clause, see Section 10.27

• atomic_default_mem_order Clause, see Section 10.5.1.18

• bind Clause, see Section 13.8.19

• capture Clause, see Section 17.8.3.110

• full Clause, see Section 11.9.111

• partial Clause, see Section 11.9.212

• collapse Clause, see Section 6.4.513

• collector Clause, see Section 7.6.1914

• combiner Clause, see Section 7.6.1515

• compare Clause, see Section 17.8.3.216

• contains Clause, see Section 10.6.1.217

• copyin Clause, see Section 7.8.118

• copyprivate Clause, see Section 7.8.219

• default Clause, see Section 7.5.120

• defaultmap Clause, see Section 7.9.921

• depend Clause, see Section 17.9.522

• destroy Clause, see Section 5.723

• detach Clause, see Section 14.1124

• device Clause, see Section 15.225

• device_safesync Clause, see Section 10.5.1.726

• device_type Clause, see Section 15.127

• dist_schedule Clause, see Section 13.7.128

• doacross Clause, see Section 17.9.729

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 175

• dynamic_allocators Clause, see Section 10.5.1.21

• enter Clause, see Section 7.9.72

• exclusive Clause, see Section 7.7.23

• fail Clause, see Section 17.8.3.34

• filter Clause, see Section 12.5.15

• final Clause, see Section 14.76

• firstprivate Clause, see Section 7.5.47

• from Clause, see Section 7.10.28

• grainsize Clause, see Section 14.2.19

• graph_id Clause, see Section 14.3.110

• graph_reset Clause, see Section 14.3.211

• has_device_addr Clause, see Section 7.5.912

• hint Clause, see Section 17.113

• holds Clause, see Section 10.6.1.314

• if Clause, see Section 5.515

• in_reduction Clause, see Section 7.6.1216

• inbranch Clause, see Section 9.8.1.117

• inclusive Clause, see Section 7.7.118

• indirect Clause, see Section 9.9.319

• induction Clause, see Section 7.6.1320

• inductor Clause, see Section 7.6.1821

• init Clause, see Section 5.622

• init_complete Clause, see Section 7.7.323

• initializer Clause, see Section 7.6.1624

• interop Clause, see Section 9.7.125

• is_device_ptr Clause, see Section 7.5.726

• lastprivate Clause, see Section 7.5.527

• linear Clause, see Section 7.5.628

• link Clause, see Section 7.9.829

176 OpenMP API – Version 6.0 November 2024

• local Clause, see Section 7.141

• map Clause, see Section 7.9.62

• match Clause, see Section 9.6.13

• memscope Clause, see Section 17.8.44

• mergeable Clause, see Section 14.55

• message Clause, see Section 10.36

• no_openmp Clause, see Section 10.6.1.47

• no_openmp_constructs Clause, see Section 10.6.1.58

• no_openmp_routines Clause, see Section 10.6.1.69

• no_parallelism Clause, see Section 10.6.1.710

• nocontext Clause, see Section 9.7.311

• nogroup Clause, see Section 17.712

• nontemporal Clause, see Section 12.4.113

• notinbranch Clause, see Section 9.8.1.214

• novariants Clause, see Section 9.7.215

• nowait Clause, see Section 17.616

• num_tasks Clause, see Section 14.2.217

• num_teams Clause, see Section 12.2.118

• num_threads Clause, see Section 12.1.219

• order Clause, see Section 12.320

• ordered Clause, see Section 6.4.621

• otherwise Clause, see Section 9.4.222

• permutation Clause, see Section 11.4.123

• priority Clause, see Section 14.924

• private Clause, see Section 7.5.325

• proc_bind Clause, see Section 12.1.426

• read Clause, see Section 17.8.2.127

• reduction Clause, see Section 7.6.1028

• relaxed Clause, see Section 17.8.1.329

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 177

• release Clause, see Section 17.8.1.41

• replayable Clause, see Section 14.62

• reverse_offload Clause, see Section 10.5.1.33

• safelen Clause, see Section 12.4.24

• safesync Clause, see Section 12.1.55

• schedule Clause, see Section 13.6.36

• self_maps Clause, see Section 10.5.1.67

• seq_cst Clause, see Section 17.8.1.58

• severity Clause, see Section 10.49

• shared Clause, see Section 7.5.210

• simd Clause, see Section 17.10.3.211

• simdlen Clause, see Section 12.4.312

• sizes Clause, see Section 11.213

• task_reduction Clause, see Section 7.6.1114

• thread_limit Clause, see Section 15.315

• threads Clause, see Section 17.10.3.116

• threadset Clause, see Section 14.817

• to Clause, see Section 7.10.118

• transparent Clause, see Section 17.9.619

• unified_address Clause, see Section 10.5.1.420

• unified_shared_memory Clause, see Section 10.5.1.521

• uniform Clause, see Section 7.1122

• untied Clause, see Section 14.423

• update Clause, see Section 17.8.2.224

• update Clause, see Section 17.9.425

• use Clause, see Section 16.1.226

• use_device_addr Clause, see Section 7.5.1027

• use_device_ptr Clause, see Section 7.5.828

• uses_allocators Clause, see Section 8.829

178 OpenMP API – Version 6.0 November 2024

• weak Clause, see Section 17.8.3.41

• when Clause, see Section 9.4.12

• write Clause, see Section 17.8.2.33

5.5 if Clause4

Name: if Properties: target-consistent5

Arguments6
Name Type Properties
if-expression expression of OpenMP

logical type
default7

Modifiers8
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique9

Directives10
cancel, parallel, simd, target, target_data, target_enter_data,11
target_exit_data, target_update, task, task_iteration, taskgraph,12
taskloop, teams13

Semantics14
The effect of the if clause depends on the construct to which it is applied. If the construct is not a15
compound construct then the effect is described in the section that describes that construct.16

Restrictions17
Restrictions to the if clause are as follows:18

• At most one if clause can be specified that applies to the semantics of any construct or19
constituent construct of a directive-specification.20

Cross References21

• cancel Construct, see Section 18.222

• parallel Construct, see Section 12.123

• simd Construct, see Section 12.424

• target Construct, see Section 15.825

• target_data Construct, see Section 15.726

• target_enter_data Construct, see Section 15.527

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 179

• target_exit_data Construct, see Section 15.61

• target_update Construct, see Section 15.92

• task Construct, see Section 14.13

• task_iteration Directive, see Section 14.2.34

• taskgraph Construct, see Section 14.35

• taskloop Construct, see Section 14.26

• teams Construct, see Section 12.27

5.6 init Clause8

Name: init Properties: innermost-leaf9

Arguments10
Name Type Properties
init-var variable of OpenMP

type
default11

Modifiers12
Name Modifies Type Properties
prefer-type init-var Complex, name:

prefer_type
Arguments:
prefer-type-specification

list of preference spec-
ification list item type
(default)

complex, unique

depinfo-modifier init-var Complex, Keyword: in,
inout, inoutset,
mutexinoutset, out
Arguments:
locator-list-item locator list

item (default)

complex, unique

interop-type init-var Keyword: target,
targetsync

repeatable

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

13

Directives14
depobj, interop15

180 OpenMP API – Version 6.0 November 2024

Semantics1
When the init clause appears on a depobj construct, it specifies that init-var is a depend object2
for which the state is set to initialized. The effect is that init-var is set to represent a dependence3
type and locator list item as specified by the name and argument of the depinfo-modifier.4

When the init clause appears on an interop construct, it specifies that init-var is an5
interoperability object that is initialized to refer to the list of properties associated with any6
interop-type. For any interop-type, the properties type, type_name, vendor, vendor_name7
and device_num will be available. If the implementation cannot initialize interop-var, it is8
initialized to omp_interop_none.9

The targetsync interop-type will additionally provide the targetsync property, which is the10
handle to a foreign synchronization object for enabling synchronization between OpenMP tasks and11
foreign tasks that execute in the foreign execution context.12

The target interop-type will additionally provide the following properties:13

• device, which will be a foreign device handle;14

• device_context, which will be a foreign device context handle; and15

• platform, which will be a handle to a foreign platform of the device.16

Restrictions17

• init-var must not be constant.18

• If the init clause appears on a depobj construct, init-var must refer to a variable of19
depend OpenMP type that is uninitialized.20

• If the init clause appears on a depobj construct then the depinfo-modifier has the21
required property and otherwise it must not be present.22

• If the init clause appears on an interop construct, init-var must refer to a variable of23
interop OpenMP type.24

• If the init clause appears on an interop construct, the interop-type modifier has the25
required property and each interop-type keyword has the unique property. Otherwise, the26
interop-type modifier must not be present.27

• The prefer-type modifier must not be present unless the init clause appears on an28
interop construct.29

Cross References30

• depobj Construct, see Section 17.9.331

• interop Construct, see Section 16.132

CHAPTER 5. DIRECTIVE AND CONSTRUCT SYNTAX 181

5.7 destroy Clause1

Name: destroy Properties: default2

Arguments3
Name Type Properties
destroy-var variable of OpenMP

variable type
default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
depobj, interop8

Additional information9
When the destroy clause appears on a depobj directive that specifies depend-object as a10
directive argument, the destroy-var argument may be omitted. If omitted, the effect is as if11
destroy-var refers to the depend-object argument.12

Semantics13
When the destroy clause appears on a depobj construct, the state of destroy-var is set to14
uninitialized.15

When the destroy clause appears on an interop construct, the interop-type is inferred based16
on the interop-type used to initialize destroy-var, and destroy-var is set to the value of17
omp_interop_none after resources associated with destroy-var are released. The object18
referred to by destroy-var is unusable after destruction and the effect of using values associated19
with it is unspecified until it is initialized again by another interop construct.20

Restrictions21

• destroy-var must not be constant.22

• If the destroy clause appears on a depobj construct, destroy-var must refer to a variable23
of depend OpenMP type that is initialized.24

• If the destroy clause appears on an interop construct, destroy-var must refer to a25
variable of interop OpenMP type that is initialized.26

Cross References27

• depobj Construct, see Section 17.9.328

• interop Construct, see Section 16.129

182 OpenMP API – Version 6.0 November 2024

6 Base Language Formats and1

Restrictions2

This section defines concepts and restrictions on base language code used in OpenMP. The concepts3
help support base language neutrality for OpenMP directives and their associated semantics.4

6.1 OpenMP Types and Identifiers5

An OpenMP identifier is a special identifier for use within OpenMP programs for some specific6
purpose. For example, reduction identifiers specify the combiner OpenMP operation to use in a7
reduction, OpenMP mapper identifiers specify the name of a user-defined mapper, and foreign8
runtime identifiers specify the name of a foreign runtime.9

Predefined identifiers can be used in base language code. Many predefined identifiers have the10
constant property, as is indicated where they are defined in this specification. The implementation11
implicitly declares these OpenMP identifiers and evaluates them when they are referenced in a12
given context.13

Generic OpenMP types specify the type of expression or variable that is used in OpenMP contexts14
regardless of the base language. These OpenMP types support the definition of many important15
OpenMP concepts independently of the base language in which they are used.16

Assignable OpenMP type instances are defined to facilitate base language neutrality. An assignable17
OpenMP type instance can be used as an argument of a construct in order for the implementation to18
modify the value of that instance.19

C / C++
An assignable OpenMP type instance is an lvalue expression of that OpenMP type.20

C / C++
Fortran

An assignable OpenMP type instance is a variable or a function reference with data pointer result of21
that OpenMP type.22

Fortran
The logical OpenMP type supports logical variables and expressions in any base language.23

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 183

C / C++
Any expression of logical OpenMP type is a scalar expression. This document uses true as a1
generic term for a non-zero integer value and false as a generic term for an integer value of zero.2

C / C++
Fortran

Any expression of logical OpenMP type is a scalar logical expression. This document uses true as a3
generic term for a logical value of .TRUE. and false as a generic term for a logical value of4
.FALSE..5

Fortran
The integer OpenMP type supports integer variables and expressions in any base language.6

C / C++
Any expression of integer OpenMP type is an integer expression.7

C / C++
Fortran

Any expression of integer OpenMP type is a scalar integer expression.8

Fortran
The string OpenMP type supports character string variables and expressions in any base language.9

C / C++
Any expression of string OpenMP type is an expression of type qualified or unqualified const10
char * or char * pointing to a null-terminated character string.11

C / C++
Fortran

Any expression of string OpenMP type is a character string of default kind.12

Fortran
OpenMP function identifiers support procedure names in any base language. Regardless of the base13
language, any OpenMP function identifier is the name of a procedure as a base language identifier.14

Each OpenMP type other than those specifically defined in this section has a generic name,15
<generic_name>, by which it is referred throughout this document and that is used to construct the16
base language construct that corresponds to that OpenMP type. Some OpenMP types are OMPD17
types or OMPT types; all of these OpenMP types have generic names.18

C / C++
Unless otherwise specified, an OMPD trace record has a <generic_name> OMPD type, which19
corresponds to the type ompd_record_<generic_name>_t and an OMPD callback has a20
<generic_name> OMPD type signature, which corresponds to the type21
ompd_callback_<generic_name>_fn_t. Unless otherwise specified, all other22
<generic_name> OMPD types correspond to the type ompd_<generic_name>_t.23

184 OpenMP API – Version 6.0 November 2024

Unless otherwise specified, an OMPT trace record has a <generic_name> OMPT type, which1
corresponds to the type ompt_record_<generic_name>_t and an OMPT callback has a2
<generic_name> OMPT type signature, which corresponds to the type3
ompt_callback_<generic_name>_t. Unless otherwise specified, all other <generic_name>4
OMPT types correspond to the type ompt_<generic_name>_t.5

Otherwise, unless otherwise specified, a variable of <generic_name> OpenMP type is a variable of6
type omp_<generic_name>_t.7

C / C++
Fortran

Unless otherwise specified, the type of an OMPD trace record is not defined and the type signature8
of an OMPD callback is not defined. Unless otherwise specified, a variable of a <generic_name>9
OMPD type is an integer scalar variable of kind ompd_<generic_name>_kind.10

Unless otherwise specified, the type of an OMPT trace record is not defined and the type signature11
of an OMPT callback is not defined. Unless otherwise specified, a variable of a <generic_name>12
OMPT type is an integer scalar variable of kind ompt_<generic_name>_kind.13

Otherwise, unless otherwise specified, a variable of <generic_name> OpenMP type is an integer14
scalar variable of kind omp_<generic_name>_kind.15

Fortran
Cross References16

• OpenMP Foreign Runtime Identifiers, see Section 16.1.117

• OpenMP Reduction and Induction Identifiers, see Section 7.6.118

• Mapper Identifiers and mapper Modifiers, see Section 7.9.419

6.2 OpenMP Stylized Expressions20

An OpenMP stylized expression is a base language expression that is subject to restrictions that21
enable its use within an OpenMP implementation. OpenMP stylized expressions often use22
OpenMP identifiers that the implementation binds to well-defined internal state.23

Cross References24

• OpenMP Collector Expressions, see Section 7.6.2.425

• OpenMP Combiner Expressions, see Section 7.6.2.126

• OpenMP Inductor Expressions, see Section 7.6.2.327

• OpenMP Initializer Expressions, see Section 7.6.2.228

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 185

6.3 Structured Blocks1

This section specifies the concept of a structured block. A structured block:2

• may contain infinite loops where the point of exit is never reached;3

• may halt due to an IEEE exception;4

C / C++
• may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a5
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);6

• may be an expression statement, iteration statement, selection statement, or try block,7
provided that the corresponding compound statement obtained by enclosing it in { and }8
would be a structured block; and9

C / C++
Fortran

• may contain STOP or ERROR STOP statements.10

Fortran
C / C++

A structured block sequence that consists of no statements or more than one statement may appear11
only for executable directives that explicitly allow it. The corresponding compound statement12
obtained by enclosing the sequence in { and } must be a structured block and the structured block13
sequence then should be considered to be a structured block with all of its restrictions.14

C / C++
The remainder of this section covers OpenMP context-specific structured blocks that conform to15
specific syntactic forms and restrictions that are required for certain block-associated directives.16

Restrictions17
Restrictions to structured blocks are as follows:18

• Entry to a structured block must not be the result of a branch.19

• The point of exit cannot be a branch out of the structured block.20

C / C++
• The point of entry to a structured block must not be a call to setjmp.21

• longjmp must not violate the entry/exit criteria of structured blocks.22

C / C++
C++

• throw, co_await, co_yield and co_return must not violate the entry/exit criteria of23
structured blocks.24

C++

186 OpenMP API – Version 6.0 November 2024

Fortran
• If a BLOCK construct appears in a structured block, that BLOCK construct must not contain1

any ASYNCHRONOUS or VOLATILE statements, nor any specification statements that2
include the ASYNCHRONOUS or VOLATILE attributes.3

Fortran

6.3.1 OpenMP Allocator Structured Blocks4

Fortran
An OpenMP allocator structured block is a context-specific structured block that is associated with5
an allocators directive. It consists of allocate-stmt, where allocate-stmt is a Fortran6
ALLOCATE statement. For an allocators directive, the paired end directive is optional.7

Fortran
Cross References8

• allocators Construct, see Section 8.79

6.3.2 OpenMP Function Dispatch Structured Blocks10

An OpenMP function-dispatch structured block is a context-specific structured block that is11
associated with a dispatch directive. It identifies the location of a function dispatch.12

C / C++
A function-dispatch structured block is an expression statement with one of the following forms:13

lvalue-expression = target-call ([expression-list]);14

or15

target-call ([expression-list]);16

C / C++
Fortran

A function-dispatch structured block is an expression statement with one of the following forms,17
where expression can be a variable or a function reference with data pointer result:18

expression = target-call ([arguments])19

or20

CALL target-call [([arguments])]21

For a dispatch directive, the paired end directive is optional.22

Fortran

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 187

Restrictions1
Restrictions to the function-dispatch structured blocks are as follows:2

C++
• The target-call expression can only be a direct call.3

C++
Fortran

• target-call must be a procedure name.4

• target-call must not be a procedure pointer.5

Fortran
Cross References6

• dispatch Construct, see Section 9.77

6.3.3 OpenMP Atomic Structured Blocks8

An OpenMP atomic structured block is a context-specific structured block that is associated with an9
atomic directive. The form of an atomic structured block depends on the atomic semantics that10
the directive enforces.11

C / C++
Any instance of any atomic structured block in which any statement is enclosed in braces remains12
an instance of the same kind of atomic structured block.13

C / C++
Fortran

Enclosing any instance of any atomic structured block in the pair of BLOCK and END BLOCK14
remains an instance of the same kind of atomic structured block, in which case the paired end15
directive is optional.16

Fortran
In the following definitions:17

C / C++
• x, r (result), and v (as applicable) are lvalue expressions with scalar type.18

• e (expected) is an expression with scalar type.19

• d (desired) is an expression with scalar type.20

• e and v may refer to, or access, the same storage location.21

• expr is an expression with scalar type.22

• The order operation, ordop, is either < or >.23

• binop is one of +, *, -, /, &, ^, |, <<, or >>.24

188 OpenMP API – Version 6.0 November 2024

• == comparisons are performed by comparing the value representation of operand values for1
equality after the usual arithmetic conversions; if the object representation does not have any2
padding bits, the comparison is performed as if with memcmp.3

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is4
unspecified but will be at least one.5

• For forms that allow multiple occurrences of expr, the number of times that expr is evaluated6
is unspecified but will be at least one.7

• The number of times that r is evaluated is unspecified but will be at least one.8

• Whether d is evaluated if x == e evaluates to false is unspecified.9

C / C++
Fortran

• x and v (as applicable) are either scalar variables or function references with scalar data10
pointer result of non-character intrinsic type or variables that are non-polymorphic scalar11
pointers and any length type parameter must be constant.12

• e (expected) and d (desired) are either scalar expressions or scalar variables.13

• expr is a scalar expression or scalar variable.14

• r (result) is a scalar logical variable.15

• expr-list is a comma-separated, non-empty list of scalar expressions and scalar variables.16

• intrinsic-procedure-name is one of MAX, MIN, IAND, IOR, IEOR, PREVIOUS, or NEXT.17

• operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV..18

• equalop is ==, .EQ., or .EQV..19

• The order operation, ordop, is one of <, .LT., >, or .GT..20

• == or .EQ. comparisons are performed by comparing the physical representation of operand21
values for equality after the usual conversions as described in the base language, while22
ignoring padding bits, if any.23

• .EQV. comparisons are performed as described in the base language.24

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is25
unspecified but will be at least one.26

• For forms that allow multiple occurrences of expr, the number of times that expr is evaluated27
is unspecified but will be at least one.28

• The number of times that r is evaluated is unspecified but will be at least one.29

• Whether d is evaluated if x equalop e evaluates to false is unspecified.30

Fortran

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 189

A read structured block can be specified for atomic directives that enforce atomic read semantics1
but not capture semantics.2

C / C++
A read structured block is read-expr-stmt, a read expression statement that has the following form:3

v = x;4

C / C++
Fortran

A read structured block is read-statement, a read statement that has one of the following forms:5

v = x6
v => x7

Fortran
A write structured block can be specified for atomic directives that enforce atomic write8
semantics but not capture semantics.9

C / C++
A write structured block is write-expr-stmt, a write expression statement that has the following10
form:11

x = expr;12

C / C++
Fortran

A write structured block is write-statement, a write statement that has one of the following forms:13

x = expr14
x => expr15

Fortran
An update structured block can be specified for atomic directives that enforce atomic update16
semantics but not capture semantics.17

C / C++
An update structured block is update-expr-stmt, an update expression statement that has one of the18
following forms:19

x++;20
x--;21
++x;22
--x;23
x binop= expr;24
x = x binop expr;25
x = expr binop x;26

C / C++

190 OpenMP API – Version 6.0 November 2024

Fortran
An update structured block is update-statement, an update statement that has one of the following1
forms:2

x = x operator expr3
x = expr operator x4
x = intrinsic-procedure-name (x)5
x = intrinsic-procedure-name (x, expr-list)6
x = intrinsic-procedure-name (expr-list, x)7

Fortran
A conditional-update structured block can be specified for atomic directives that enforce atomic8
conditional update semantics but not capture semantics.9

C / C++
A conditional-update structured block is either cond-expr-stmt, a conditional expression statement10
that has one of the following forms:11

x = expr ordop x ? expr : x;12
x = x ordop expr ? expr : x;13
x = x == e ? d : x;14

or cond-update-stmt, a conditional update statement that has one of the following forms:15

if(expr ordop x) x = expr;16
if(x ordop expr) x = expr;17
if(x == e) x = d;18

C / C++
Fortran

A conditional-update structured block is conditional-update-statement, a conditional update19
statement that has one of the following forms:20

if (x equalop e) x = d21
if (x equalop e) then; x = d; end if22
x = (x equalop e ? d : x)23
if (x ordop expr) x = expr24
if (x ordop expr) then; x = expr; end if25
x = (x ordop expr ? expr : x)26
if (expr ordop x) x = expr27
if (expr ordop x) then; x = expr; end if28
x = (expr ordop x ? expr : x)29
if (associated(x)) x => expr30
if (associated(x)) then; x => expr; end if31
if (associated(x, e)) x => expr32
if (associated(x, e)) then; x => expr; end if33

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 191

For an atomic construct with a read structured block, write structured block, update structured1
block, or conditional-update structured block, the paired end directive is optional.2

Fortran
A capture structured block can be specified for atomic directives that enforce capture semantics.3
It is further categorized as write-capture structured block, update-capture structured block, or4
conditional-update-capture structured block, which can be specified for atomic directives that5
enforce write, update or conditional update atomic semantics in addition to capture semantics.6

C / C++
A capture structured block is capture-stmt, a capture statement that has one of the following forms:7

v = expr-stmt8
{ v = x; expr-stmt }9
{ expr-stmt v = x; }10

If expr-stmt is write-expr-stmt or expr-stmt is update-expr-stmt as specified above then it is an11
update-capture structured block. If expr-stmt is cond-expr-stmt as specified above then it is a12
conditional-update-capture structured block. In addition, a conditional-update-capture structured13
block can have one of the following forms:14

{ v = x; cond-update-stmt }15
{ cond-update-stmt v = x; }16
if(x == e) x = d; else v = x;17
{ r = x == e; if(r) x = d; }18
{ r = x == e; if(r) x = d; else v = x; }19

C / C++
Fortran

A capture structured block has one of the following forms:20

statement21
capture-statement22

or23

capture-statement24
statement25

where capture-statement has either of the following forms:26

v = x27

v => x28

192 OpenMP API – Version 6.0 November 2024

If statement is write-statement as specified above then it is a write-capture structured block. If1
statement is update-statement as specified above then it is an update-capture structured block and2
may be used in atomic constructs that enforce atomic captured update semantics. If statement is3
conditional-update-statement as specified above then it is a conditional-update-capture structured4
block. In addition, for a conditional-update-capture structured block, statement can have either of5
the following forms:6

x = expr7
x => expr8

In addition, a conditional-update-capture structured block can have one of the following forms:9

if (cond) then10
x assign d11

else12
v assign x13

end if14

or15

r = cond16
if (r) x assign d17

or18

r = cond19
if (r) then20

x assign d21
else22

v assign x23
endif24

where assign is either = or => and cond denotes one of the following conditions:25

x equalop e26
ASSOCIATED(x)27
ASSOCIATED(x, e)28

Fortran
Restrictions29
Restrictions to OpenMP atomic structured blocks are as follows:30

C / C++
• In forms where e is assigned it must be an lvalue.31

• r must be of integral type.32

• During the execution of an atomic region, multiple syntactic occurrences of x must33
designate the same storage location.34

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 193

• During the execution of an atomic region, multiple syntactic occurrences of r must1
designate the same storage location.2

• During the execution of an atomic region, multiple syntactic occurrences of expr must3
evaluate to the same value.4

• None of v, x, r, d and expr (as applicable) may access the storage location designated by any5
other symbol in the list.6

• In forms that capture the original value of x in v, v and e may not refer to, or access, the same7
storage location.8

• binop, binop=, ordop, ==, ++, and -- are not overloaded operators.9

• The expression x binop expr must be numerically equivalent to x binop (expr). This10
requirement is satisfied if the operators in expr have precedence greater than binop, or by11
using parentheses around expr or subexpressions of expr.12

• The expression expr binop x must be numerically equivalent to (expr) binop x. This13
requirement is satisfied if the operators in expr have precedence equal to or greater than14
binop, or by using parentheses around expr or subexpressions of expr.15

• The expression x ordop expr must be numerically equivalent to x ordop (expr). This16
requirement is satisfied if the operators in expr have precedence greater than ordop, or by17
using parentheses around expr or subexpressions of expr.18

• The expression expr ordop x must be numerically equivalent to (expr) ordop x. This19
requirement is satisfied if the operators in expr have precedence equal to or greater than20
ordop, or by using parentheses around expr or subexpressions of expr.21

• The expression x == e must be numerically equivalent to x == (e). This requirement is22
satisfied if the operators in e have precedence equal to or greater than ==, or by using23
parentheses around e or subexpressions of e.24

C / C++
Fortran

• x must not have the ALLOCATABLE attribute.25

• During the execution of an atomic region, multiple syntactic occurrences of x must26
designate the same storage location.27

• During the execution of an atomic region, multiple syntactic occurrences of r must28
designate the same storage location.29

• During the execution of an atomic region, multiple syntactic occurrences of expr must30
evaluate to the same value.31

• None of v, x, d, r, expr, and expr-list (as applicable) may access the same storage location as32
any other symbol in the list.33

194 OpenMP API – Version 6.0 November 2024

• In forms that capture the original value of x in v, v may not access the same storage location1
as e.2

• If intrinsic-procedure-name refers to IAND, IOR, IEOR, PREVIOUS, or NEXT then exactly3
one expression must appear in expr-list.4

• The expression x operator expr must be, depending on its type, either mathematically or5
logically equivalent to x operator (expr). This requirement is satisfied if the operators in expr6
have precedence greater than operator, or by using parentheses around expr or7
subexpressions of expr.8

• The expression expr operator x must be, depending on its type, either mathematically or9
logically equivalent to (expr) operator x. This requirement is satisfied if the operators in expr10
have precedence equal to or greater than operator, or by using parentheses around expr or11
subexpressions of expr.12

• The expression x equalop e must be, depending on its type, either mathematically or logically13
equivalent to x equalop (e). This requirement is satisfied if the operators in e have precedence14
equal to or greater than equalop, or by using parentheses around e or subexpressions of e.15

• intrinsic-procedure-name must refer to the intrinsic procedure name and not to other program16
entities.17

• operator must refer to the intrinsic operator and not to a user-defined operator.18

• Assignments must be either all intrinsic assignments or all pointer assignments.19

• If the ASSOCIATED intrinsic function is referenced in a condition, all assignments must be20
pointer assignments. If pointer assignments are used, only the ASSOCIATED intrinsic21
function may be referenced in a condition.22

• Unless x is a scalar variable or a function references with scalar data pointer result of23
non-character intrinsic type, intrinsic assignments, equalop, and ordop must not be used.24

• Arguments to an ASSOCIATED intrinsic function must not have zero-sized storage25
sequences.26

Fortran
Cross References27

• atomic Construct, see Section 17.8.528

6.4 Loop Concepts29

OpenMP semantics frequently involve loops that occur in the base language code. As detailed in30
this section, OpenMP defines several concepts that facilitate the specification of those semantics31
and their associated syntax.32

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 195

6.4.1 Canonical Loop Nest Form1

A loop nest has canonical loop nest form if it conforms to loop-nest in the following grammar:2

loop-nest One of the following:3

C / C++
for (init-expr; test-expr; incr-expr)4

loop-body5

or6

{7
loop-nest8

}9

C / C++
or10

C++
for (range-decl: range-expr)11

loop-body12

A range-based for loop is equivalent to a regular for loop using iterators, as13
defined in the base language. A range-based for loop has no loop-iteration14
variable.15

C++
or16

Fortran
DO [label] var = lb , ub [, incr]17

[intervening-code]18
loop-body19
[intervening-code]20

[label] END DO21

If the loop-nest is a nonblock-do-construct, it is treated as a block-do-construct22
for each DO construct.23

The value of incr is the increment of the loop. If not specified, its value is24
assumed to be 1.25

or26

BLOCK27
loop-nest28

END BLOCK29

Fortran

196 OpenMP API – Version 6.0 November 2024

or1

loop-nest-generating-construct2

or3

generated-canonical-loop4

loop-body One of the following:5

loop-nest6

or7

C / C++
{8

[intervening-code]9
loop-body10
[intervening-code]11

}12

C / C++
or13

Fortran
BLOCK14

[block-specification-part]15
[intervening-code]16
loop-body17
[intervening-code]18

END BLOCK19

Fortran
or if none of the previous productions match20

final-loop-body21

loop-nest-generating-construct22
A loop-transforming construct that generates a canonical loop nest, which may23
be a canonical loop sequence that contains exactly one canonical loop nest.24

generated-canonical-loop25
A generated loop from a loop-transforming construct that has canonical loop nest26
form and for which the loop body matches loop-body.27

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 197

intervening-code1

C / C++
A non-empty sequence of structured blocks or declarations, referred to as2
intervening code. It must not contain iteration statements, continue3
statements or break statements that apply to the enclosing loop.4

C / C++
Fortran

A non-empty structured block sequence, referred to as intervening code. It must5
not contain:6

• loops;7

• CYCLE statements;8

• EXIT statements;9

• array expressions;10

• array references with a vector subscript;11

• assignment statements where the target is an array object;12

• references to elemental procedures with an array actual argument;13

• references to procedures where the actual argument is an array that is not14
simply contiguous and the corresponding dummy argument has the15
CONTIGUOUS attribute or is an explicit-shape array or assumed-size array.16

Fortran
Additionally, intervening code must not contain executable directives or calls to17
the OpenMP runtime API in its corresponding region. If intervening code is18
present, then a loop at the same depth within the loop nest is not a perfectly19
nested loop.20

final-loop-body A structured block that terminates the scope of loops in the loop nest. If the loop21
nest is associated with a loop-nest-associated directive, loops in this structured22
block cannot be associated with that directive.23

C / C++

init-expr One of the following:24
var = lb25
integer-type var = lb26

C
pointer-type var = lb27

C

198 OpenMP API – Version 6.0 November 2024

C++
random-access-iterator-type var = lb1

C++

test-expr One of the following:2
var relational-op ub3
ub relational-op var4

relational-op One of the following:5
<6
<=7
>8
>=9
!=10

incr-expr One of the following:11
++var12
var++13
- - var14
var - -15
var += incr16
var - = incr17
var = var + incr18
var = incr + var19
var = var - incr20

The value of incr, respectively 1 and -1 for the increment and decrement21
operators, is the increment of the loop.22

C / C++

var One of the following:23

C / C++
A variable of a signed or unsigned integer type.24

C / C++
C

A variable of a pointer type.25
C

C++
A variable of a random access iterator type.26

C++

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 199

Fortran
A scalar variable of integer type.1

Fortran
The loop-iteration variable var must not be modified during the execution of2
intervening-code or loop-body in the loop.3

lb, ub One of the following:4

Expressions of a type compatible with the type of var that are loop invariant with5
respect to the outermost loop.6

or7

One of the following:8
var-outer9
var-outer + a210
a2 + var-outer11
var-outer - a212

where var-outer is of a type compatible with the type of var.13

or14

If var is of an integer type, one of the following:15
a2 - var-outer16
a1 * var-outer17
a1 * var-outer + a218
a2 + a1 * var-outer19
a1 * var-outer - a220
a2 - a1 * var-outer21
var-outer * a122
var-outer * a1 + a223
a2 + var-outer * a124
var-outer * a1 - a225
a2 - var-outer * a126

where var-outer is of an integer type.27

lb and ub are loop bounds. A loop for which lb or ub refers to var-outer is a28
non-rectangular loop. If var is of an integer type, var-outer must be of an integer29
type with the same signedness and bit precision as the type of var.30

The coefficient in a loop bound is 0 if the bound does not refer to var-outer. If a31
loop bound matches a form in which a1 appears, the coefficient is -a1 if the32
product of var-outer and a1 is subtracted from a2, and otherwise the coefficient33
is a1. For other matched forms where a1 does not appear, the coefficient is −1 if34
var-outer is subtracted from a2, and otherwise the coefficient is 1.35

200 OpenMP API – Version 6.0 November 2024

a1, a2, incr Integer expressions that are loop invariant with respect to the outermost loop of1
the loop nest.2

If the loop is associated with a directive, the expressions are evaluated before the3
construct formed from that directive.4

var-outer The loop-iteration variable of a surrounding loop in the loop nest.5

C++

range-decl A declaration of a variable as defined by the base language for range-based for6
loops.7

range-expr An expression that is valid as defined by the base language for range-based for8
loops. It must be invariant with respect to the outermost loop of the loop nest and9
the iterator derived from it must be a random access iterator.10

C++
Restrictions11
Restrictions to canonical loop nests are as follows:12

C / C++
• If test-expr is of the form var relational-op b and relational-op is < or <= then incr-expr must13

cause var to increase on each iteration of the loop. If test-expr is of the form var14
relational-op b and relational-op is > or >= then incr-expr must cause var to decrease on15
each iteration of the loop. Increase and decrease are using the order induced by relational-op.16

• If test-expr is of the form ub relational-op var and relational-op is < or <= then incr-expr17
must cause var to decrease on each iteration of the loop. If test-expr is of the form ub18
relational-op var and relational-op is > or >= then incr-expr must cause var to increase on19
each iteration of the loop. Increase and decrease are using the order induced by relational-op.20

• If relational-op is != then incr-expr must cause var to always increase by 1 or always21
decrease by 1 and the increment must be a constant expression.22

• final-loop-body must not contain any break statement that would cause the termination of23
the innermost loop.24

C / C++
Fortran

• final-loop-body must not contain any EXIT statement that would cause the termination of the25
innermost loop.26

Fortran

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 201

• A loop-nest must also be a structured block.1

• For a non-rectangular loop, if var-outer is referenced in lb and ub then they must both refer to2
the same loop-iteration variable.3

• For a non-rectangular loop, let alb and aub be the respective coefficients in lb and ub,4
incrinner the increment of the non-rectangular loop and incrouter the increment of the loop5
referenced by var-outer. incrinner(aub − alb) must be a multiple of incrouter.6

• The loop-iteration variable may not appear in a threadprivate directive.7

Cross References8

• Canonical Loop Sequence Form, see Section 6.4.29

• Loop-Transforming Constructs, see Chapter 1110

• threadprivate Directive, see Section 7.311

6.4.2 Canonical Loop Sequence Form12

A structured block has canonical loop sequence form if it conforms to canonical-loop-sequence in13
the following grammar:14

canonical-loop-sequence15
16

C / C++
{17

loop-sequence18
}19

C / C++
Fortran

One of the following:20

loop-sequence21

or22

BLOCK23
loop-sequence24

END BLOCK25

Fortran

loop-sequence A structured block sequence with executable statements that match26
canonical-loop-sequence, loop-sequence-generating-construct, or loop-nest (a27
canonical loop nest as defined in Section 6.4.1). The loops must be28
bounds-independent loops with respect to canonical-loop-sequence.29

202 OpenMP API – Version 6.0 November 2024

loop-sequence-generating-construct1
A loop-transforming construct that generates a canonical loop sequence or2
canonical loop nest.3

The loop sequence length and consecutive order of canonical loop nests matched by loop-nest4
ignore how they are nested in canonical-loop-sequence or loop-sequence.5

Cross References6

• looprange Clause, see Section 6.4.77

• Canonical Loop Nest Form, see Section 6.4.18

• Loop-Transforming Constructs, see Chapter 119

6.4.3 OpenMP Loop-Iteration Spaces and Vectors10

A loop-nest-associated directive affects some number of the outermost loops of an associated loop11
nest, called the affected loops, in accordance with its specified clauses. These affected loops and12
their loop-iteration variables form an OpenMP loop-iteration vector space. OpenMP loop-iteration13
vectors allow other directives to refer to points in that loop-iteration vector space.14

A loop-transforming construct that appears inside a loop nest is replaced according to its semantics15
before any loop can be associated with a loop-nest-associated directive that is applied to the loop16
nest. The loop nest depth is determined according to the loops in the loop nest, after any such17
replacements have taken place. A loop counts towards the loop nest depth if it is a base language18
loop statement or generated loop and it matches loop-nest while applying the production rules for19
canonical loop nest form to the loop nest.20

The canonical loop nest form allows the iteration count of all affected loops to be computed before21
executing the outermost loop. For any affected loop, the iteration count is computed as follows:22

C / C++
• If var has a signed integer type and the var operand of test-expr after usual arithmetic23

conversions has an unsigned integer type then the loop iteration count is computed from lb,24
test-expr and incr using an unsigned integer type corresponding to the type of var.25

• Otherwise, if var has an integer type then the loop iteration count is computed from lb,26
test-expr and incr using the type of var.27

C / C++
C

• If var has a pointer type then the loop iteration count is computed from lb, test-expr and incr28
using the type ptrdiff_t.29

C

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 203

C++
• If var has a random access iterator type then the loop iteration count is computed from lb,1

test-expr and incr using the type2
std::iterator_traits<random-access-iterator-type>::difference_type.3

• For range-based for loops, the loop iteration count is computed from range-expr using the4
type std::iterator_traits<random-access-iterator-type>::difference_type5
where random-access-iterator-type is the iterator type derived from range-expr.6

C++
Fortran

• The loop iteration count is computed from lb, ub and incr using the type of var.7

Fortran
The behavior is unspecified if any intermediate result required to compute the iteration count8
cannot be represented in the type determined above.9

No synchronization is implied during the evaluation of the lb, ub, incr or range-expr expressions.10
Whether, in what order, or how many times any side effects within the lb, ub, incr, or range-expr11
expressions occur is unspecified.12

Let the number of loops affected with a construct be n, where all of the affected loops have a13
loop-iteration variable. The OpenMP loop-iteration vector space is the n-dimensional space defined14
by the values of vari, 1 ≤ i ≤ n, the loop-iteration variables of the affected loops, with i = 115
referring to the outermost loop of the loop nest. An OpenMP loop-iteration vector, which may be16
used as an argument of OpenMP directives and clauses, then has the form:17

var1 [± offset1], var2 [± offset2], . . ., varn [± offsetn]18

where offseti is a constant, non-negative expression of integer OpenMP type that facilitates19
identification of relative points in the loop-iteration vector space.20

Alternatively, OpenMP defines a special keyword omp_cur_iteration that represents the21
current logical iteration. It enables identification of relative points in the logical iteration space22
with:23

omp_cur_iteration [± logical_offset]24

where logical_offset is a constant, non-negative expression of integer OpenMP type.25

The iterations of some number of affected loops can be collapsed into one larger logical iteration26
space that is the collapsed iteration space. The particular integer type used to compute the iteration27
count for the collapsed loop is implementation defined, but its bit precision must be at least that of28
the widest type that the implementation would use for the iteration count of each loop if it was the29
only affected loop. The number of times that any intervening code between any two collapsed loops30
will be executed is unspecified but will be the same for all intervening code at the same depth, at31
least once per iteration of the loop that encloses the intervening code and at most once per collapsed32

204 OpenMP API – Version 6.0 November 2024

logical iteration. If the iteration count of any loop is zero and that loop does not enclose the1
intervening code, the behavior is unspecified.2

At the beginning of each collapsed iteration in a loop-collapsing construct, the loop-iteration3
variable or the variable declared by range-decl of each collapsed loop has the value that it would4
have if the collapsed loops were not associated with any directive.5

6.4.4 Consistent Loop Schedules6

A loop schedule for a given loop-nest-associated construct assigns a thread in the binding thread set7
of that construct to a logical iteration vector of the affected loop nest. If the loop schedules of two8
loop-nest-associated constructs are consistent schedules, the behavior is as if they produce the same9
mapping of logical iteration vectors to threads. In particular, if two loop-nest-associated construct10
have consistent schedules and they have the same binding thread set, the implementation will11
guarantee that memory effects of a logical iteration in the first loop nest have completed before the12
execution of the corresponding logical iteration in the second loop nest.13

Two loop-nest-associated constructs have consistent schedules if all of the following conditions14
hold:15

• The constructs have the same directive-name;16

• The regions that correspond to the two constructs have the same binding region;17

• The constructs have the same schedule specification;18

• The constructs have reproducible schedules;19

• The affected loops have identical logical iteration vector spaces;20

• The two sets of affected loops either consist of only rectangular loops or both contain a21
non-rectangular loop; and22

• The loop schedules of transformation-affected loops among any affected loops that are23
generated loops of a loop-transforming construct are all themselves consistent.24

6.4.5 collapse Clause25

Name: collapse Properties: once-for-all-constituents, unique26

Arguments27
Name Type Properties
n expression of integer

type
default28

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 205

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
distribute, do, for, loop, simd, taskloop4

Semantics5
The collapse clause affects one or more loops of a canonical loop nest on which it appears for6
the purpose of identifying the portion of the depth of the canonical loop nest to which to apply the7
work distribution semantics of the directive. The argument n specifies the number of loops of the8
associated loop nest to which to apply those semantics. On all directives on which the collapse9
clause may appear, the effect is as if a value of one was specified for n if the collapse clause is10
not specified.11

Restrictions12

• n must not evaluate to a value greater than the loop nest depth.13

Cross References14

• distribute Construct, see Section 13.715

• do Construct, see Section 13.6.216

• for Construct, see Section 13.6.117

• loop Construct, see Section 13.818

• simd Construct, see Section 12.419

• taskloop Construct, see Section 14.220

6.4.6 ordered Clause21

Name: ordered Properties: once-for-all-constituents, unique22

Arguments23
Name Type Properties
n expression of integer

type
optional, constant, posi-
tive

24

Modifiers25
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique26

206 OpenMP API – Version 6.0 November 2024

Directives1
do, for2

Semantics3
The ordered clause is used to specify the doacross-affected loops for the purpose of identifying4
cross-iteration dependences. The argument n specifies the number of doacross-affected loops to use5
for that purpose. If n is not specified then the behavior is as if n is specified with the same value as6
is specified for the collapse clause on the construct.7

Restrictions8

• None of the doacross-affected loops may be non-rectangular loops.9

• n must not evaluate to a value greater than the depth of the associated loop nest.10

• If n is explicitly specified and the collapse clause is also specified for the ordered11
clause on the same construct, n must be greater than or equal to the n specified for the12
collapse clause.13

Cross References14

• collapse Clause, see Section 6.4.515

• do Construct, see Section 13.6.216

• for Construct, see Section 13.6.117

6.4.7 looprange Clause18

Name: looprange Properties: unique19

Arguments20
Name Type Properties
first expression of OpenMP

integer type
constant, positive

count expression of OpenMP
integer type

constant, positive, ulti-
mate

21

Directives22
fuse23

Semantics24
For a loop-sequence-associated construct, the looprange clause determines the canonical loop25
nests of the associated loop sequence that are affected by the directive. The affected loop nests are26
the count consecutive canonical loop nests that begin with the canonical loop nest specified by the27
first argument.28

CHAPTER 6. BASE LANGUAGE FORMATS AND RESTRICTIONS 207

For all directives on which the looprange clause may appear, if the clause is not specified then1
the effect is as if the clause was specified with a value equal to the loop sequence lengths of the2
associated canonical loop sequence.3

Restrictions4
Restrictions to the looprange clause are as follows:5

• first+ count− 1 must not evaluate to a value greater than the loop sequence length of the6
associated canonical loop sequence.7

Cross References8

• fuse Construct, see Section 11.39

• Canonical Loop Sequence Form, see Section 6.4.210

208 OpenMP API – Version 6.0 November 2024

Part II1

Directives and Clauses2

209

7 Data Environment1

This chapter presents directives and clauses for controlling data environments. These directives and2
clauses include the data-environment attribute clauses (or simply data-environment clauses), which3
explicitly determine the data-environment attributes of list items specified in an argument list. The4
data-environment clauses form a general clause set for which certain restrictions apply to their use5
on directives that accept any members of the set. In addition, these clauses are divided into two6
subsets that also form general clause sets: data-sharing attribute clauses (or simply data-sharing7
clauses) and data-mapping attribute clause (or simply data-mapping clauses). Additional8
restrictions apply to the use of these clause sets on directives that accept any members of them.9

Data-sharing clauses control the data-sharing attributes of variables in a construct, indicating10
whether a variable is shared or private in the outermost scope of the construct. Any clause that11
indicates a variable is private in that scope is a privatization clause. Data-mapping clauses control12
the data-mapping attributes of variables in a data environment, indicating whether a variable is13
mapped from the data environment to another device data environment.14

7.1 Data-Sharing Attribute Rules15

This section describes how the data-sharing attributes of variables referenced in data environments16
are determined. The following two cases are described separately:17

• Section 7.1.1 describes the data-sharing attribute rules for variables referenced in a construct.18

• Section 7.1.2 describes the data-sharing attribute rules for variables referenced in a region,19
but outside any construct.20

For any variable that is a referencing variable (including formal arguments passed by reference for21
C++), the data-sharing attribute rules apply only to its referring pointer unless otherwise specified.22

7.1.1 Variables Referenced in a Construct23

A variable that is referenced in a construct can have a predetermined data-sharing attribute, an24
explicitly determined data-sharing attribute, or an implicitly determined data-sharing attribute,25
according to the rules outlined in this section.26

Specifying a variable in a copyprivate clause or a data-sharing attribute clause other than the27
private clause on a nested construct causes an implicit reference to the variable in the enclosing28
construct. Specifying a variable in a map clause of an enclosed construct may cause an implicit29
reference to the variable in the enclosing construct. Such implicit references are also subject to the30
data-sharing attribute rules outlined in this section.31

210 OpenMP API – Version 6.0 November 2024

Fortran
A type parameter inquiry or complex part designator that is referenced in a construct is treated as if1
its designator is referenced.2

Fortran
Certain variables and objects have predetermined data-sharing attributes for the construct in which3
they are referenced. The first matching rule from the following list of predetermined data-sharing4
attribute rules applies for variables and objects that are referenced in a construct.5

• Variables with automatic storage duration that are declared in a scope inside the construct are6
private.7

• Variables and common blocks (in Fortran) that appear as arguments in threadprivate8
directives or variables with the _Thread_local (in C) or thread_local (in C/C++)9
storage-class specifier are threadprivate.10

• Variables and common blocks (in Fortran) that appear as arguments in groupprivate11
directives are groupprivate.12

• Variables and common blocks (in Fortran) that appear as list items in local clauses on13
declare_target directives are device-local.14

• Variables with static storage duration that are declared in a scope inside the construct are15
shared.16

• Objects with dynamic storage duration are shared.17

• The loop-iteration variable in any affected loop of a loop or simd construct is lastprivate.18

• The loop-iteration variable in any affected loop of a loop-nest-associated directive is19
otherwise private.20

C++
• The implicitly declared variables of a range-based for loop are private.21

C++
Fortran

• Loop-iteration variables inside parallel, teams, taskgraph, or task-generating22
constructs are private in the innermost such construct that encloses the loop.23

Fortran
C / C++

• Variables with static storage duration that are declared in a scope inside the construct are24
shared.25

• If a list item in a has_device_addr clause or in a map clause on the target construct26
has a base pointer, and the base pointer is a scalar variable that is not a list item in a map27
clause on the construct, the base pointer is firstprivate.28

CHAPTER 7. DATA ENVIRONMENT 211

• If a list item in a reduction or in_reduction clause on the construct has a base1
pointer then the base pointer is private.2

• Static data members are shared.3

• If a list item in a shared clause on the construct is a referencing variable then the referring4
pointer of the list item is firstprivate.5

• If a list item in a map clause on the target construct has a base referencing variable that6
does not have a containing structure, the referring pointer of the base referencing variable is7
firstprivate.8

• The __func__ variable and similar function-local predefined variables are shared.9

C / C++
Fortran

• Assumed-size arrays and named constants are shared in constructs that are not data-mapping10
constructs.11

• A named constant is firstprivate in target constructs.12

• An associate name that may appear in a variable definition context is shared if its association13
occurs outside of the construct and otherwise it has the same data-sharing attribute as the14
selector with which it is associated.15

• If a list item in a map clause on the target construct has a base referencing variable that is16
not the list item itself, the referring pointer of the base referencing variable is firstprivate17
unless that referencing variable is a structure element, a list item in an enter clause on a18
declare target directive, or a list item in a map clause on the construct where the semantics of19
the clause apply to its referring pointer.20

Fortran
• If a list item in a has_device_addr clause on the target construct has a base21

referencing variable, the referring pointer of the base referencing variable is firstprivate.22

Variables with predetermined data-sharing attributes may not be listed in data-sharing clauses,23
except for the cases listed below. For these exceptions only, listing a predetermined variable in a24
data-sharing clause is allowed and overrides its predetermined data-sharing attributes.25

• The loop-iteration variable in any affected loop of a loop-nest-associated directive may be26
listed in a private or lastprivate clause.27

• If a simd construct has just one affected loop then its loop-iteration variable may be listed in28
a linear clause with a linear-step that is the increment of the affected loop.29

C / C++
• Variables with const-qualified type with no mutable members may be listed in a30
firstprivate clause, even if they are static data members.31

212 OpenMP API – Version 6.0 November 2024

• The __func__ variable and similar function-local predefined variables may be listed in a1
shared or firstprivate clause.2

C / C++
Fortran

• A loop-iteration variable of a loop that is not associated with any directive may be listed in a3
data-sharing attribute clause on the surrounding teams, parallel or task-generating4
construct, and on enclosed constructs, subject to other restrictions.5

• An assumed-size array may be listed in a shared clause.6

• A named constant may be listed in a shared or firstprivate clause.7

Fortran
Additional restrictions on the variables that may appear in individual clauses are described with8
each clause in Section 7.5.9

Variables with explicitly determined data-sharing attributes are those that are referenced in a given10
construct and are listed in a data-sharing clause on the construct. Variables with implicitly11
determined data-sharing attributes are those that are referenced in a given construct and do not have12
predetermined data-sharing attributes or explicitly determined data-sharing attributes in that13
construct. Rules for variables with implicitly determined data-sharing attributes are as follows:14

• In a parallel, teams, or task-generating construct, the data-sharing attributes of these15
variables are determined by the default clause, if present (see Section 7.5.1).16

• In a parallel construct, if no default clause is present, these variables are shared.17

• If no default clause is present on constructs that are not task-generating constructs, these18
variables reference the variables with the same names that exist in the enclosing context. If19
no default clause is present on a task-generating construct and the generated task is a20
sharing task, these variables are shared.21

• In a target construct, variables that are not mapped after applying data-mapping attribute22
rules (see Section 7.9) are firstprivate.23

C++
• In an orphaned task-generating construct, if no default clause is present, formal24

arguments passed by reference are firstprivate.25

C++
Fortran

• In an orphaned task-generating construct, if no default clause is present, dummy26
arguments are firstprivate.27

Fortran

CHAPTER 7. DATA ENVIRONMENT 213

• In a task-generating construct, if no default clause is present, a variable for which the1
data-sharing attribute is not determined by the rules above is shared if the variable is2
determined to be shared by all implicit tasks bound to the current team in the enclosing3
context.4

• In a task-generating construct, if no default clause is present, a variable for which the5
data-sharing attribute is not determined by the rules above is firstprivate.6

An OpenMP program is non-conforming if a variable in a task-generating construct is implicitly7
determined to be firstprivate according to the above rules but is not permitted to appear in a8
firstprivate clause according to the restrictions specified in Section 7.5.4.9

7.1.2 Variables Referenced in a Region but not in a10

Construct11

The data-sharing attribute of a variable or object that is referenced in a region, but not in the12
corresponding construct, is determined by the first matching rule from the following list.13

• Variables with automatic storage duration that are declared in called procedures in the region14
are private.15

• Variables and common blocks (in Fortran) that appear as arguments in threadprivate16
directives or variables with the _Thread_local (in C) or thread_local (in C/C++)17
storage-class specifier are threadprivate.18

• Variables and common blocks (in Fortran) that appear as arguments in groupprivate19
directives are groupprivate.20

• Variables and common blocks (in Fortran) that appear as list items in local clauses on21
declare_target directives are device-local.22

• Variables with static storage duration are shared.23

• Objects with dynamic storage duration are shared.24

Fortran
• Variables that are accessed by host or use association are shared.25

• A dummy argument of a called procedure in the region that does not have the VALUE26
attribute is private if the associated actual argument is not shared.27

• A dummy argument of a called procedure in the region that does not have the VALUE28
attribute is shared if the actual argument is shared and it is a scalar variable, structure, an29
array that is not a pointer or assumed-shape array, or a simply contiguous array section.30
Otherwise, the data-sharing attribute of the dummy argument is implementation defined if31
the associated actual argument is shared.32

Fortran

214 OpenMP API – Version 6.0 November 2024

7.2 saved Modifier1

Modifiers2
Name Modifies Type Properties
saved list Keyword: saved default3

Clauses4
firstprivate5

Semantics6
If the saved modifier is present in a data-environment attribute clause that is specified on a7
replayable construct then its original list items of a replay execution are defined by the saved data8
environment of the replayable construct. The saved modifier has no effect if specified in a clause9
that does not appear on a replayable construct.10

Cross References11

• firstprivate Clause, see Section 7.5.412

• taskgraph Construct, see Section 14.313

7.3 threadprivate Directive14

Name: threadprivate
Category: declarative

Association: explicit
Properties: pure15

Arguments16
threadprivate(list)17

Name Type Properties
list list of variable list item

type
default18

Semantics19
The threadprivate directive specifies that variables have the threadprivate attribute and20
therefore they are replicated with each thread having its own copy. Unless otherwise specified, each21
copy of a threadprivate variable is initialized once, in the manner specified by the program, but at22
an unspecified point in the program prior to the first reference to that copy. The storage of all copies23
of a threadprivate variable is freed according to how variables with static storage duration are24
handled in the base language, but at an unspecified point in the program.25

C++
Each copy of a block-scope threadprivate variable that has a dynamic initializer is initialized the26
first time its thread encounters its definition; if its thread does not encounter its definition, whether27
it is initialized is unspecified. If it is initialized, its initialization occurs at an unspecified point in28
the program.29

CHAPTER 7. DATA ENVIRONMENT 215

C++
The content of a threadprivate variable can change across a task scheduling point if the executing1
thread switches to another task that modifies the variable. For more details on task scheduling, see2
Section 1.2 and Chapter 14.3

In parallel regions, references by the primary thread are to the copy of the variable of the4
thread that encountered the parallel region.5

During a sequential part, references are to the copy of the variable of the initial thread. The values6
of data in the copy for the initial thread are guaranteed to persist between any two consecutive7
references to the threadprivate variable in the program, provided that no teams construct that is8
not nested inside of a target construct is encountered between the references and that the initial9
thread is not executing code inside of a teams region. For initial threads that are executing code10
inside of a teams region, the values of data in the copies of a threadprivate variable for those11
initial threads are guaranteed to persist between any two consecutive references to the variable12
inside that teams region.13

The values of data in the threadprivate variables of threads that are not initial threads are14
guaranteed to persist between two consecutive active parallel regions only if all of the following15
conditions hold:16

• Neither parallel region is nested inside another explicit parallel region;17

• The sizes of the teams used to execute both parallel regions are the same;18

• The thread affinity policies used to execute both parallel regions are the same;19

• The value of the dyn-var ICV in the enclosing task region is false at entry to both20
parallel regions;21

• No teams construct that is not nested inside of a target construct is encountered between22
the parallel regions;23

• No construct with an order clause that specifies concurrent is encountered between the24
parallel regions; and25

• Neither the omp_pause_resource nor omp_pause_resource_all routine is called.26

If these conditions all hold, and if a threadprivate variable is referenced in both regions, then threads27
with the same thread number in their respective regions reference the same copy of that variable.28

C / C++
If the above conditions hold, the storage duration, lifetime, and value of a copy of a threadprivate29
variable that does not appear in any copyin clause on the corresponding construct of the second30
region spans the two consecutive active parallel regions. Otherwise, the storage duration, lifetime,31
and value of the copy of the variable in the second region is unspecified.32

C / C++

216 OpenMP API – Version 6.0 November 2024

Fortran
If the above conditions hold, the definition, association, or allocation status of a copy of a1
threadprivate variable or a variable in a threadprivate common block that is not affected by any2
copyin clause that appears on the corresponding construct of the second region (a variable is3
affected by a copyin clause if the variable appears in the copyin clause or it is in a common4
block that appears in the copyin clause) spans the two consecutive active parallel regions.5
Otherwise, the definition and association status of a copy of the variable in the second region are6
undefined, and the allocation status of an allocatable variable are implementation defined.7

If a threadprivate variable or a variable in a threadprivate common block is not affected by any8
copyin clause that appears on the corresponding construct of the first parallel region in9
which it is referenced, the copy of the variable inherits the declared type parameter and the default10
parameter values from the original variable. The variable or any subobject of the variable is11
initially defined or undefined according to the following rules:12

• If it has the ALLOCATABLE attribute, each copy created has an initial allocation status of13
unallocated;14

• If it has the POINTER attribute, each copy has the same association status as the initial15
association status; and16

• If it does not have either the POINTER or the ALLOCATABLE attribute:17

– If it is initially defined, either through explicit initialization or default initialization,18
each copy created is so defined;19

– Otherwise, each copy created is undefined.20

Fortran
C++

The order in which any constructors for different threadprivate variables of class type are called is21
unspecified. The order in which any destructors for different threadprivate variables of class type22
are called is unspecified. A variable that is part of an aggregate variable may appear in a23
threadprivate directive only if it is a static data member of a C++ class.24

C++
Restrictions25
Restrictions to the threadprivate directive are as follows:26

• A thread must not reference a copy of a threadprivate variable that belongs to another thread.27

• A threadprivate variable must not appear as the base variable of a list item in any clause28
except for the copyin and copyprivate clauses.29

• An OpenMP program in which an untied task accesses threadprivate memory is30
non-conforming.31

CHAPTER 7. DATA ENVIRONMENT 217

C / C++
• Each list item must be a file-scope, namespace-scope, or static block-scope variable.1

• No list item may have an incomplete type.2

• The address of a threadprivate variable must not be an address constant.3

• If the value of a variable referenced in an explicit initializer of a threadprivate variable is4
modified prior to the first reference to any instance of the threadprivate variable, the behavior5
is unspecified.6

• A threadprivate directive for file-scope variables must appear outside any definition or7
declaration, and must lexically precede all references to any of the variables in its argument8
list.9

• A threadprivate directive for namespace-scope variables must appear outside any10
definition or declaration other than the namespace definition itself and must lexically precede11
all references to any of the variables in its argument list.12

• Each variable in the argument list of a threadprivate directive at file, namespace, or13
class scope must refer to a variable declaration at file, namespace, or class scope that14
lexically precedes the directive.15

• A threadprivate directive for a static block-scope variable must appear in the scope of16
the variable and not in a nested scope. The directive must lexically precede all references to17
any of the variables in its argument list.18

• Each variable in the argument list of a threadprivate directive in block scope must refer19
to a variable declaration in the same scope that lexically precedes the directive. The variable20
must have static storage duration.21

• If a variable is specified in a threadprivate directive in one compilation unit, it must be22
specified in a threadprivate directive in every compilation unit in which it is declared.23

C / C++
C++

• A threadprivate directive for static class member variables must appear in the class24
definition, in the same scope in which the member variables are declared, and must lexically25
precede all references to any of the variables in its argument list.26

• A threadprivate variable must not have an incomplete type or a reference type.27

• A threadprivate variable with class type must have:28

– An accessible, unambiguous default constructor in the case of default initialization29
without a given initializer;30

– An accessible, unambiguous constructor that accepts the given argument in the case of31
direct initialization; and32

– An accessible, unambiguous copy constructor in the case of copy initialization with an33
explicit initializer.34

C++

218 OpenMP API – Version 6.0 November 2024

Fortran
• Each list item must be a named variable or a named common block; a named common block1

must appear between slashes.2

• The list argument must not include any coarrays or associate names.3

• The threadprivate directive must appear in the declaration section of a scoping unit in4
which the common block or variable is declared.5

• If a threadprivate directive that specifies a common block name appears in one6
compilation unit, then such a directive must also appear in every other compilation unit that7
contains a COMMON statement that specifies the same name. It must appear after the last such8
COMMON statement in the compilation unit.9

• If a threadprivate variable or a threadprivate common block is declared with the BIND10
attribute, the corresponding C entities must also be specified in a threadprivate11
directive in the C program.12

• A variable may only appear as an argument in a threadprivate directive in the scope in13
which it is declared. It must not be an element of a common block or appear in an14
EQUIVALENCE statement.15

• A variable that appears as an argument in a threadprivate directive must be declared in16
the scope of a module or have the SAVE attribute, either explicitly or implicitly.17

• The effect of an access to a threadprivate variable in a DO CONCURRENT construct is18
unspecified.19

Fortran
Cross References20

• copyin Clause, see Section 7.8.121

• dyn-var ICV, see Table 3.122

• order Clause, see Section 12.323

• Determining the Number of Threads for a parallel Region, see Section 12.1.124

7.4 List Item Privatization25

Some data-sharing attribute clauses, including reduction clauses, specify that list items that appear26
in their argument list may be privatized for the construct on which they appear. Each task that27
references a privatized list item in any statement in the construct receives at least one new list item28
if the construct is a loop-collapsing construct, and otherwise each such task receives one new list29
item. Each SIMD lane used in a simd construct that references a privatized list item in any30
statement in the construct receives at least one new list item. Language-specific attributes for new31
list items are derived from the corresponding original list items. Inside the construct, all references32

CHAPTER 7. DATA ENVIRONMENT 219

to the original list items are replaced by references to the new list items received by the task or1
SIMD lane, and the new list items have the private attribute.2

If the construct is a loop-collapsing construct then, within the same collapsed logical iteration of3
the collapsed loops, the same new list item replaces all references to the original list item. For any4
two collapsed iterations, if the references to the original list item are replaced by the same new list5
item then the collapsed iterations must execute in some sequential order.6

In the rest of the region, whether references are to a new list item or the original list item is7
unspecified. Therefore, if an attempt is made to reference the original list item, its value after the8
region is also unspecified. If a task or a SIMD lane does not reference a privatized list item,9
whether the task or SIMD lane receives a new list item is unspecified.10

The value and/or allocation status of the original list item will change only:11

• If accessed and modified via a pointer;12

• If possibly accessed in the region but outside of the construct;13

• As a side effect of directives or clauses; or14

Fortran
• If accessed and modified via construct association.15

Fortran
C++

If the construct is contained in a member function, whether accesses anywhere in the region16
through the implicit this pointer refer to the new list item or the original list item is unspecified.17

C++
C / C++

A new list item of the same type, with automatic storage duration, is allocated for the construct.18
The storage and thus lifetime of these new list items last until the block in which they are created19
exits. The size and alignment of the new list item are determined by the type of the variable. This20
allocation occurs once for each task generated by the construct and once for each SIMD lane used21
by the construct.22

Unless otherwise specified, the new list item is initialized, or has an undefined initial value, as if it23
had been locally declared without an initializer.24

C / C++
C++

If the type of a list item is a reference to a type T then the type will be considered to be T for all25
purposes of the clause.26

The order in which any default constructors for different private variables of class type are called is27
unspecified. The order in which any destructors for different private variables of class type are28
called is unspecified.29

C++

220 OpenMP API – Version 6.0 November 2024

Fortran
If any statement of the construct references a list item, a new list item of the same type and type1
parameters is allocated. This allocation occurs once for each task generated by the construct and2
once for each SIMD lane used by the construct. If the type of the list item has default initialization,3
the new list item has default initialization. Otherwise, the initial value of the new list item is4
undefined. The initial status of a private pointer is undefined.5

For a list item or the subobject of a list item with the ALLOCATABLE attribute:6

• If the allocation status is unallocated, the new list item or the subobject of the new list item7
will have an initial allocation status of unallocated;8

• If the allocation status is allocated, the new list item or the subobject of the new list item will9
have an initial allocation status of allocated; and10

• If the new list item or the subobject of the new list item is an array, its bounds will be the11
same as those of the original list item or the subobject of the original list item.12

A privatized list item may be storage-associated with other variables when the data-sharing13
attribute clause is encountered. Storage association may exist because of base language constructs14
such as EQUIVALENCE or COMMON. If A is a variable that is privatized by a construct and B is a15
variable that is storage-associated with A then:16

• The contents, allocation, and association status of B are undefined on entry to the region;17

• Any definition of A, or of its allocation or association status, causes the contents, allocation,18
and association status of B to become undefined; and19

• Any definition of B, or of its allocation or association status, causes the contents, allocation,20
and association status of A to become undefined.21

A privatized list item may be a selector of an ASSOCIATE, SELECT RANK or SELECT TYPE22
construct. If the construct association is established prior to a parallel region, the association23
between the associate name and the original list item will be retained in the region.24

The dynamic type of a privatized list item of a polymorphic type is the declared type.25

Finalization of a list item of a finalizable type or subobjects of a list item of a finalizable type26
occurs at the end of the region. The order in which any final subroutines for different variables of a27
finalizable type are called is unspecified.28

Fortran
If a list item appears in both firstprivate and lastprivate clauses, the update required for29
the lastprivate clause occurs after all initializations for the firstprivate clause.30

Restrictions31
The following restrictions apply to any list item that is privatized unless otherwise specified for a32
given data-sharing attribute clause:33

• If a list item is an array or array section, it must specify contiguous storage.34

CHAPTER 7. DATA ENVIRONMENT 221

C++
• A variable of class type (or array thereof) that is privatized requires an accessible,1

unambiguous default constructor for the class type.2

• A variable that is privatized must not have the constexpr specifier unless it is of class type3
with a mutable member. This restriction does not apply to the firstprivate clause.4

C++
C / C++

• A variable that is privatized must not have a const-qualified type unless it is of class type5
with a mutable member. This restriction does not apply to the firstprivate clause.6

• A variable that is privatized must not have an incomplete type or be a reference to an7
incomplete type.8

C / C++
Fortran

• Variables that appear in namelist statements, in variable format expressions, and in9
expressions for statement function definitions, must not be privatized.10

• Pointers with the INTENT(IN) attribute must not be privatized. This restriction does not11
apply to the firstprivate clause.12

• A private variable must not be coindexed or appear as an actual argument to a procedure13
where the corresponding dummy argument is a coarray.14

• Assumed-size arrays must not be privatized.15

• An optional dummy argument that is not present must not appear as a list item in a16
privatization clause or be privatized as a result of an implicitly determined data-sharing17
attribute or predetermined data-sharing attribute.18

Fortran

7.5 Data-Sharing Attribute Clauses19

Several constructs accept clauses that allow a user to control the data-sharing attributes of variables20
referenced in the construct. Not all of the clauses listed in this section are valid on all directives.21
The set of clauses that is valid on a particular directive is described with the directive. The22
reduction clauses are explained in Section 7.6.23

A list item may be specified in both firstprivate and lastprivate clauses.24

C++
If a variable referenced in a data-sharing attribute clause has a type derived from a template and the25
OpenMP program does not otherwise reference that variable, any behavior related to that variable is26
unspecified.27

C++

222 OpenMP API – Version 6.0 November 2024

Fortran
If individual members of a common block appear in a data-sharing attribute clause other than the1
shared clause, the variables no longer have a Fortran storage association with the common block.2

Fortran

7.5.1 default Clause3

Name: default Properties: unique, post-modified4

Arguments5
Name Type Properties
data-sharing-attribute Keyword:

firstprivate,
none, private,
shared

default
6

Modifiers7
Name Modifies Type Properties
variable-category implicit-behavior Keyword: aggregate,

all, allocatable,
pointer, scalar

default

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

8

Directives9
parallel, target, target_data, task, taskloop, teams10

Semantics11
The default clause determines the implicitly determined data-sharing attributes of certain12
variables that are referenced in the construct, in accordance with the rules given in Section 7.1.1.13

The variable-category specifies the variables for which the attribute may be set, and the attribute is14
specified by implicit-behavior. If no variable-category is specified in the clause then the effect is as15
if all was specified for the variable-category.16

C / C++
The scalar variable-category specifies non-pointer scalar variables.17

C / C++
Fortran

The scalar variable-category specifies non-pointer and non-allocatable scalar variables. The18
allocatable variable-category specifies variables with the ALLOCATABLE attribute.19

Fortran
The pointer variable-category specifies variables of pointer type. The aggregate20
variable-category specifies aggregate variables. Finally, the all variable-category specifies all21
variables.22

CHAPTER 7. DATA ENVIRONMENT 223

If data-sharing-attribute is not none, the data-sharing attributes of the selected variables will be1
data-sharing-attribute. If data-sharing-attribute is none, the data-sharing attribute is not2
implicitly determined. If data-sharing-attribute is shared then the clause has no effect on a3
target construct; otherwise, its effect on a target construct is equivalent to specifying the4
defaultmap clause with the same data-sharing-attribute and variable-category. If both the5
default and defaultmap clauses are specified on a target construct, and their6
variable-category modifiers specify intersecting categories, the defaultmap clause has7
precedence over the default clause for variables of those categories.8

Restrictions9
Restrictions to the default clause are as follows:10

• If data-sharing-attribute is none, each variable that is referenced in the construct and does11
not have a predetermined data-sharing attribute must have an explicitly determined12
data-sharing attribute.13

C / C++
• If data-sharing-attribute is firstprivate or private, each variable with static storage14

duration that is declared in a namespace or global scope, is referenced in the construct, and15
does not have a predetermined data-sharing attribute must have an explicitly determined16
data-sharing attribute.17

C / C++
Cross References18

• defaultmap Clause, see Section 7.9.919

• parallel Construct, see Section 12.120

• target Construct, see Section 15.821

• target_data Construct, see Section 15.722

• task Construct, see Section 14.123

• taskloop Construct, see Section 14.224

• teams Construct, see Section 12.225

7.5.2 shared Clause26

Name: shared Properties: data-environment attribute, data-
sharing attribute27

Arguments28
Name Type Properties
list list of variable list item

type
default29

224 OpenMP API – Version 6.0 November 2024

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
parallel, target_data, task, taskloop, teams4

Semantics5
The shared clause declares one or more list items to have a shared attribute in tasks generated by6
the construct on which it appears. All references to a list item within a task refer to the storage area7
of the original list item at the point the directive was encountered.8

The programmer must ensure, by adding proper synchronization, that storage shared by an explicit9
task region does not reach the end of its lifetime before the explicit task region completes its10
execution.11

Fortran
The list items may include assumed-type variables and procedure pointers.12

The association status of a shared pointer becomes undefined upon entry to and exit from the13
construct if it is associated with a target or a subobject of a target that appears as a privatized list14
item in a data-sharing attribute clause on the construct. A reference to the shared storage that is15
associated with the dummy argument by any other task must be synchronized with the reference to16
the procedure to avoid possible data races.17

Fortran
Cross References18

• parallel Construct, see Section 12.119

• target_data Construct, see Section 15.720

• task Construct, see Section 14.121

• taskloop Construct, see Section 14.222

• teams Construct, see Section 12.223

7.5.3 private Clause24

Name: private Properties: data-environment attribute, data-
sharing attribute, innermost-leaf, privatization25

Arguments26
Name Type Properties
list list of variable list item

type
default27

CHAPTER 7. DATA ENVIRONMENT 225

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
distribute, do, for, loop, parallel, scope, sections, simd, single, target,4
target_data, task, taskloop, teams5

Semantics6
The private clause specifies that its list items are to be privatized list item according to7
Section 7.4. Each task or SIMD lane that references a list item in the construct receives only one8
new list item, unless the construct has one or more affected loops and an order clause that9
specifies concurrent is also present. Each new list item is a private-only variable, unless10
otherwise specified.11

Fortran
The list items may include procedure pointers.12

Fortran
Restrictions13
Restrictions to the private clause are as specified in Section 7.4.14

Cross References15

• distribute Construct, see Section 13.716

• do Construct, see Section 13.6.217

• for Construct, see Section 13.6.118

• List Item Privatization, see Section 7.419

• loop Construct, see Section 13.820

• parallel Construct, see Section 12.121

• scope Construct, see Section 13.222

• sections Construct, see Section 13.323

• simd Construct, see Section 12.424

• single Construct, see Section 13.125

• target Construct, see Section 15.826

• target_data Construct, see Section 15.727

• task Construct, see Section 14.128

• taskloop Construct, see Section 14.229

• teams Construct, see Section 12.230

226 OpenMP API – Version 6.0 November 2024

7.5.4 firstprivate Clause1

Name: firstprivate Properties: data-environment attribute, data-
sharing attribute, privatization2

Arguments3
Name Type Properties
list list of variable list item

type
default4

Modifiers5
Name Modifies Type Properties
saved list Keyword: saved default
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
distribute, do, for, parallel, scope, sections, single, target, target_data,8
task, taskloop, teams9

Semantics10
The firstprivate clause provides a superset of the functionality provided by the private11
clause. A list item that appears in a firstprivate clause is subject to the private clause12
semantics descrilbed in Section 7.5.3, except as noted. In addition, the new list item has the13
firstprivate attribute and is initialized from the original list item. The initialization of the new list14
item is done once for each task that references the list item in any statement in the construct. The15
initialization is done prior to the execution of the construct.16

For a firstprivate clause on a construct that is not a work-distribution construct, the initial17
value of the new list item is the value of the original list item that exists immediately prior to the18
construct in the task region where the construct is encountered unless otherwise specified. For a19
firstprivate clause on a work-distribution construct, the initial value of the new list item for20
each implicit task of the threads that execute the construct is the value of the original list item that21
exists in the implicit task immediately prior to the point in time that the construct is encountered22
unless otherwise specified.23

To avoid data races, concurrent updates of the original list item must be synchronized with the read24
of the original list item that occurs as a result of the firstprivate clause.25

C / C++
For variables of non-array type, the initialization occurs by copy assignment. For an array of26
elements of non-array type, each element is initialized as if by assignment from an element of the27
original array to the corresponding element of the new array.28

C / C++

CHAPTER 7. DATA ENVIRONMENT 227

C++
For each variable of class type:1

• If the firstprivate clause is not on a target construct then a copy constructor is2
invoked to perform the initialization; and3

• If the firstprivate clause is on a target construct then how many copy constructors,4
if any, are invoked is unspecified.5

If copy constructors are called, the order in which copy constructors for different variables of class6
type are called is unspecified.7

C++
Fortran

If the firstprivate clause is on a target construct and a variable is of polymorphic type, the8
behavior is unspecified.9

If an original list item does not have the POINTER attribute, initialization of the new list items10
occurs as if by intrinsic assignment unless the original list item has a compatible type-bound11
defined assignment, in which case initialization of the new list items occurs as if by the defined12
assignment. If an original list item that does not have the POINTER attribute has an allocation13
status of unallocated, the new list items will have the same status.14

If an original list item has the POINTER attribute, the new list items receive the same association15
status as the original list item, as if by pointer assignment.16

The list items may include named constants and procedure pointers.17

Fortran
Restrictions18
Restrictions to the firstprivate clause are as follows:19

• A list item that is private within a parallel region must not appear in a firstprivate20
clause on a worksharing construct if any of the worksharing regions that arise from the21
worksharing construct ever bind to any of the parallel regions that arise from the22
parallel construct.23

• A list item that is private within a teams region must not appear in a firstprivate24
clause on a distribute construct if any of the distribute regions that arise from the25
distribute construct ever bind to any of the teams regions that arise from the teams26
construct.27

• A list item that appears in a reduction clause on a parallel construct must not appear28
in a firstprivate clause on a task or taskloop construct if any of the task regions29
that arise from the task or taskloop construct ever bind to any of the parallel regions30
that arise from the parallel construct.31

228 OpenMP API – Version 6.0 November 2024

• A list item that appears in a reduction clause on a worksharing construct must not appear1
in a firstprivate clause on a task construct encountered during execution of any of2
the worksharing regions that arise from the worksharing construct.3

C++
• A variable of class type (or array thereof) that appears in a firstprivate clause requires4

an accessible, unambiguous copy constructor for the class type.5

• If the original list item in a firstprivate clause on a work-distribution construct has a6
reference type then it must bind to the same object for all threads in the binding thread set of7
the work-distribution region.8

C++
Cross References9

• distribute Construct, see Section 13.710

• do Construct, see Section 13.6.211

• for Construct, see Section 13.6.112

• parallel Construct, see Section 12.113

• private Clause, see Section 7.5.314

• scope Construct, see Section 13.215

• sections Construct, see Section 13.316

• single Construct, see Section 13.117

• target Construct, see Section 15.818

• target_data Construct, see Section 15.719

• task Construct, see Section 14.120

• taskloop Construct, see Section 14.221

• teams Construct, see Section 12.222

7.5.5 lastprivate Clause23

Name: lastprivate Properties: data-environment attribute, data-
sharing attribute, original list-item updating,
privatization

24

Arguments25
Name Type Properties
list list of variable list item

type
default26

CHAPTER 7. DATA ENVIRONMENT 229

Modifiers1
Name Modifies Type Properties
lastprivate-
modifier

list Keyword: conditional default

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique
2

Directives3
distribute, do, for, loop, sections, simd, taskloop4

Semantics5
The lastprivate clause provides a superset of the functionality provided by the private6
clause. A list item that appears in a lastprivate clause is subject to the private clause7
semantics described in Section 7.5.3. In addition, each new list item has the lastprivate attribute.8
Further, when a lastprivate clause without the conditional modifier appears on a9
directive and the list item is not a loop-iteration variable of any affected loop, the value of each new10
list item from the sequentially last iteration of the affected loops, or the lexically last structured11
block sequence associated with a sections construct, is assigned to the original list item.12
Alternatively, when the conditional modifier appears on the clause or the list item is a13
loop-iteration variable of one of the affected loops, if execution of the canonical loop nest, when it14
is not associated with a directive, would assign a value to the list item then the original list item is15
assigned that value.16

C++
For class types, the copy assignment operator is invoked. The order in which copy assignment17
operators for different variables of the same class type are invoked is unspecified.18

C++
C / C++

For an array of elements of non-array type, each element is assigned to the corresponding element19
of the original array.20

C / C++
Fortran

If the original list item does not have the POINTER attribute, its update occurs as if by intrinsic21
assignment unless it has a type bound procedure as a defined assignment.22

If the original list item has the POINTER attribute, its update occurs as if by pointer assignment.23

Fortran
When the conditional modifier does not appear on the lastprivate clause, any list item24
that is not a loop-iteration variable of the affected loops and that is not assigned a value by the25
sequentially last iteration of the loops, or by the lexically last structured block sequence associated26
with a sections construct, has an unspecified value after the construct. When the27
conditional modifier does not appear on the lastprivate clause, a list item that is the28
loop-iteration variable of an affected loop has an unspecified value after the construct if it would not29
be assigned a value during execution of the canonical loop nest when the loop nest is not associated30
with a directive. Unassigned subcomponents also have unspecified values after the construct.31

230 OpenMP API – Version 6.0 November 2024

If the lastprivate clause is used on a construct to which neither the nowait nor the1
nogroup clauses are applied, the original list item becomes defined at the end of the construct.2
Otherwise, if the lastprivate clause is used on a construct to which the nowait or the3
nogroup clauses are applied, accesses to the original list item may create a data race so if an4
assignment to the original list item occurs then other synchronization must ensure that the5
assignment completes and the original list item is flushed to memory. In either case, to avoid data6
races, concurrent reads or updates of the original list item must be synchronized with any update of7
the original list item that occurs as a result of the lastprivate clause.8

If a list item that appears in a lastprivate clause with the conditional modifier is modified9
in the region by an assignment outside the construct or by an assignment that does not lexically10
assign to the list item then the value assigned to the original list item is unspecified.11

Restrictions12
Restrictions to the lastprivate clause are as follows:13

• A list item must not appear in a lastprivate clause on a work-distribution construct if14
the corresponding region binds to the region of a parallelism-generating construct in which15
the list item is private.16

• A list item that appears in a lastprivate clause with the conditional modifier must17
be a scalar variable.18

C++
• A variable of class type (or array thereof) that appears in a lastprivate clause requires19

an accessible, unambiguous default constructor for the class type, unless the list item is also20
specified in a firstprivate clause.21

• A variable of class type (or array thereof) that appears in a lastprivate clause requires22
an accessible, unambiguous copy assignment operator for the class type.23

• If an original list item in a lastprivate clause on a work-distribution construct has a24
reference type then it must bind to the same object for all threads in the binding thread set of25
the work-distribution region.26

C++
Fortran

• A variable that appears in a lastprivate clause must be definable.27

• If the original list item has the ALLOCATABLE attribute, the corresponding list item of28
which the value is assigned to the original list item must have an allocation status of allocated29
upon exit from the sequentially last iteration of the affected loops or lexically last structured30
block sequence associated with a sections construct.31

• If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is32
unspecified.33

Fortran

CHAPTER 7. DATA ENVIRONMENT 231

Cross References1

• distribute Construct, see Section 13.72

• do Construct, see Section 13.6.23

• for Construct, see Section 13.6.14

• loop Construct, see Section 13.85

• private Clause, see Section 7.5.36

• sections Construct, see Section 13.37

• simd Construct, see Section 12.48

• taskloop Construct, see Section 14.29

7.5.6 linear Clause10

Name: linear Properties: data-environment attribute, data-
sharing attribute, privatization, innermost-
leaf, post-modified

11

Arguments12
Name Type Properties
list list of variable list item

type
default13

Modifiers14
Name Modifies Type Properties
step-simple-
modifier

list OpenMP integer expression exclusive, region-
invariant, unique

step-complex-
modifier

list Complex, name: step
Arguments:
linear-step expression of

integer type (region-
invariant)

unique

linear-modifier list Keyword: ref, uval, val unique
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

15

Directives16
declare_simd, do, for, simd17

232 OpenMP API – Version 6.0 November 2024

Semantics1
The linear clause provides a superset of the functionality provided by the private clause. A2
list item that appears in a linear clause is subject to the private clause semantics described in3
Section 7.5.3, except as noted. Additionally, each new list item has the linear attribute and so is a4
linear variable. If the step-simple-modifier is specified, the behavior is as if the5
step-complex-modifier is instead specified with step-simple-modifier as its linear-step argument. If6
linear-step is not specified, it is assumed to be one.7

When a linear clause is specified on a loop-collapsing construct and a list item is the8
loop-iteration variable of an affected loop, the effect is as if that list item had appeared in a9
lastprivate clause. Otherwise, when a linear clause is specified on a loop-collapsing10
construct, the value of the new list item on each collapsed iteration corresponds to the value of the11
original list item before entering the construct plus the logical number of the iteration times12
linear-step. The value that corresponds to the sequentially last collapsed iteration of the collapsed13
loops is assigned to the original list item.14

When a linear clause is specified on a declare_simd directive, the list items refer to15
parameters of the procedure to which the directive applies. For a given call to the procedure, the16
clause determines whether the SIMD version generated by the directive may be called. If the clause17
does not specify the ref linear-modifier, the SIMD version requires that the value of the18
corresponding argument at the callsite is equal to the value of the argument from the first lane plus19
the logical number of the SIMD lane times the linear-step. If the clause specifies the ref20
linear-modifier, the SIMD version requires that the storage locations of the corresponding21
arguments at the callsite from each SIMD lane correspond to storage locations within a22
hypothetical array of elements of the same type, indexed by the logical number of the SIMD lane23
times the linear-step.24

Restrictions25
Restrictions to the linear clause are as follows:26

• If a reduction clause with the inscan modifier also appears on the construct, only27
loop-iteration variables of affected loops may appear as list items in a linear clause.28

• A linear-modifier may be specified as ref or uval only for linear clauses on29
declare_simd directives.30

• For a linear clause that appears on a loop-nest-associated directive, the difference between31
the value of a list item at the end of a collapsed iteration and its value at the beginning of the32
collapsed iteration must be equal to linear-step.33

• If linear-modifier is uval for a list item in a linear clause that is specified on a34
declare_simd directive and the list item is modified during a call to the SIMD version of35
the procedure, the OpenMP program must not depend on the value of the list item upon36
return from the procedure.37

• If linear-modifier is uval for a list item in a linear clause that is specified on a38
declare_simd directive, the OpenMP program must not depend on the storage of the39

CHAPTER 7. DATA ENVIRONMENT 233

argument in the procedure being the same as the storage of the corresponding argument at the1
callsite.2

• None of the affected loops of a loop-nest-associated construct that has a linear clause may3
be a non-rectangular loop.4

C
• All list items must be of integral or pointer type.5

• If specified, linear-modifier must be val.6

C
C++

• If linear-modifier is not ref, all list items must be of integral or pointer type, or must be a7
reference to an integral or pointer type.8

• If linear-modifier is ref or uval, all list items must be of a reference type.9

• If a list item in a linear clause on a worksharing construct has a reference type then it must10
bind to the same object for all threads of the team.11

• If a list item in a linear clause that is specified on a declare_simd directive is of a12
reference type and linear-modifier is not ref, the difference between the value of the13
argument on exit from the function and its value on entry to the function must be the same for14
all SIMD lanes.15

C++
Fortran

• If linear-modifier is not ref, all list items must be of type integer.16

• If linear-modifier is ref or uval, all list items must be dummy arguments without the17
VALUE attribute.18

• List items must not be variables that have the POINTER attribute.19

• If linear-modifier is not ref and a list item has the ALLOCATABLE attribute, the allocation20
status of the list item in the last collapsed iteration must be allocated upon exit from that21
collapsed iteration.22

• If linear-modifier is ref, list items must be polymorphic variables, assumed-shape arrays, or23
variables with the ALLOCATABLE attribute.24

• If a list item in a linear clause that is specified on a declare_simd directive is a25
dummy argument without the VALUE attribute and linear-modifier is not ref, the difference26
between the value of the argument on exit from the procedure and its value on entry to the27
procedure must be the same for all SIMD lanes.28

• A common block name must not be a list item in a linear clause.29

Fortran

234 OpenMP API – Version 6.0 November 2024

Cross References1

• declare_simd Directive, see Section 9.82

• do Construct, see Section 13.6.23

• for Construct, see Section 13.6.14

• private Clause, see Section 7.5.35

• simd Construct, see Section 12.46

• taskloop Construct, see Section 14.27

7.5.7 is_device_ptr Clause8

Name: is_device_ptr Properties: data-environment attribute,
data-sharing attribute, device-associated,
innermost-leaf, privatization

9

Arguments10
Name Type Properties
list list of variable list item

type
default11

Modifiers12
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique13

Directives14
dispatch, target15

Semantics16
The is_device_ptr clause indicates that its list items are device pointers. Support for device17
pointers created outside of any OpenMP mechanism that returns a device pointer, is18
implementation defined.19

If the is_device_ptr clause is specified on a target construct, each list item is privatized20
inside the construct. Each new list item has the is-device-ptr attribute and is initialized to the device21
address to which the original list item refers.22

Restrictions23
Restrictions to the is_device_ptr clause are as follows:24

• Each list item must be a valid device pointer for the device data environment.25

CHAPTER 7. DATA ENVIRONMENT 235

Cross References1

• dispatch Construct, see Section 9.72

• has_device_addr Clause, see Section 7.5.93

• target Construct, see Section 15.84

7.5.8 use_device_ptr Clause5

Name: use_device_ptr Properties: all-data-environments, data-
environment attribute, data-sharing attribute,
device-associated, privatization

6

Arguments7
Name Type Properties
list list of variable list item

type
default8

Modifiers9
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique10

Directives11
target_data12

Semantics13
Each list item in the use_device_ptr clause results in a new list item that has the14
use-device-ptr attribute and is a device pointer that refers to a device address. Since the15
use_device_ptr clause is an all-data-environments clause, it has this effect even for minimal16
data environments. The device address is determined as follows. A list item is treated as if a17
zero-offset assumed-size array at the storage location to which the list item points is mapped by a18
map clause on the construct with a map-type of storage. If a matched candidate is found for the19
assumed-size array (see Section 7.9.6), the new list item refers to the device address that is the base20
address of the array section that corresponds to the assumed-size array in the device data21
environment. Otherwise, the new list item refers to the address stored in the original list item. All22
references to the list item inside the structured block associated with the construct are replaced with23
the new list item that is a private copy in the associated data environment on the encountering24
device. Thus, the use_device_ptr clause is a privatization clause.25

Restrictions26
Restrictions to the use_device_ptr clause are as follows:27

• Each list item must be a C pointer for which the value is the address of an object that has28
corresponding storage or is accessible on the target device.29

236 OpenMP API – Version 6.0 November 2024

Cross References1

• target_data Construct, see Section 15.72

7.5.9 has_device_addr Clause3

Name: has_device_addr Properties: data-environment attribute,
data-sharing attribute, device-associated,
outermost-leaf

4

Arguments5
Name Type Properties
list list of variable list item

type
default6

Modifiers7
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique8

Directives9
dispatch, target10

Semantics11
The has_device_addr clause indicates that its list items already have device addresses and12
therefore they may be directly accessed from a target device. Inside the construct, the list items13
have the has-device-addr attribute. The list items may include array sections. If the list item is a14
referencing variable, the semantics of the has_device_addr clause apply to its referenced15
pointee. When the clause appears on the target construct, if the device address of a list item is16
not for the device on which the target region executes, accessing the list item inside the region17
results in unspecified behavior.18

Fortran
For a list item in a has_device_addr clause, the CONTIGUOUS attribute, storage location,19
storage size, array bounds, character length, association status and allocation status (as applicable)20
are the same inside the construct on which the clause appears as for the original list item. The result21
of inquiring about other list item properties inside the structured block is implementation defined.22
For a list item that is an array section, the array bounds and result when invoking C_LOC inside the23
structured block is the same as if the array base had been specified in the clause instead.24

Fortran
Restrictions25
Restrictions to the has_device_addr clause are as follows:26

C / C++
• Each list item must have a valid device address for the device data environment.27

C / C++

CHAPTER 7. DATA ENVIRONMENT 237

Fortran
• A list item must either have a valid device address for the device data environment, be an1

unallocated allocatable variable, or be a disassociated data pointer.2

• The association status of a list item that is a pointer must not be undefined unless it is a3
structure component and it results from a predefined default mapper.4

Fortran
Cross References5

• dispatch Construct, see Section 9.76

• target Construct, see Section 15.87

7.5.10 use_device_addr Clause8

Name: use_device_addr Properties: all-data-environments, data-
environment attribute, data-sharing attribute,
device-associated

9

Arguments10
Name Type Properties
list list of variable list item

type
default11

Modifiers12
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique13

Directives14
target_data15

Semantics16
Each list item in a use_device_addr clause has the use-device-addr attribute inside the17
construct. If the list item is present in the device data environment on entry to the construct, the list18
item is treated as if it is implicitly mapped by a map clause on the construct with a map-type of19
storage and all references to the list item inside the structured block associated with the20
construct are to the corresponding list item in the device data environment. The list items in a21
use_device_addr clause may include array sections and assumed-size arrays. Since the22
use_device_addr clause is an all-data-environments clause, it has this effect even for minimal23
data environments.24

If the list item is a referencing variable, the semantics of the use_device_addr clause apply to25
its referenced pointee. A private copy of the referring pointer that refers to the corresponding26
referenced pointee is used in place of the original referring pointer in the structured block.27

238 OpenMP API – Version 6.0 November 2024

C / C++
If a list item is an array section that has a base pointer, all references to the base pointer inside the1
structured block are replaced with a new pointer that contains the base address of the corresponding2
list item. This conversion may be elided if no corresponding list item is present.3

C / C++
Restrictions4
Restrictions to the use_device_addr clause are as follows:5

• Each list item must have a corresponding list item in the device data environment or be6
accessible on the target device.7

• If a list item is an array section, the array base must be a base language identifier.8

Cross References9

• target_data Construct, see Section 15.710

7.6 Reduction and Induction Clauses and Directives11

The reduction clauses and the induction clause are data-sharing attribute clauses that can be12
used to perform reductions and inductions in parallel. These recurrence calculations involve the13
repeated application of reduction operations or induction operations. Reduction clauses include14
reduction-scoping clauses and reduction-participating clauses. Reduction-scoping clauses define15
the region in which a reduction is computed. Reduction-participating clauses define the participants16
in the reduction. The induction clause can be used to express induction operations in a loop.17

7.6.1 OpenMP Reduction and Induction Identifiers18

The syntax of OpenMP reduction identifiers and induction identifiers is defined as follows:19

C
A reduction identifier is either an identifier or one of the following operators: +, *, &, |, ^, && or20
||.21

An induction identifier is either an identifier or one of the following operators: + or *.22

C
C++

A reduction identifier is either an id-expression or one of the following operators: +, *, &, |, ^, &&23
or ||.24

An induction identifier is either an id-expression or one of the following operators: + or *.25

C++

CHAPTER 7. DATA ENVIRONMENT 239

Fortran
A reduction identifier is either a base language identifier, a user-defined operator, an allowed1
intrinsic procedure name or one of the following operators: +, *, .and., .or., .eqv. or2
.neqv.. The intrinsic procedure names that are allowed as reduction identifiers are max, min,3
iand, ior and ieor.4

An induction identifier is either a base language identifier, a user-defined operator, or one of the5
following operators: + or *.6

Fortran

7.6.2 OpenMP Reduction and Induction Expressions7

A reduction expression is an OpenMP stylized expression that is relevant to reduction clauses. An8
induction expression is an OpenMP stylized expression that is relevant to the induction clause.9

Restrictions10
Restrictions to reduction expressions and induction expressions are as follows:11

• The execution of a reduction expression or induction expression must not result in the12
execution of a construct or an OpenMP API routine.13

• A declare target directive must be specified for any procedure that can be accessed through14
any reduction expression or induction expression that respectively corresponds to a reduction15
identifier or an induction identifier that is used in a target region.16

Fortran
• Any generic identifier, defined operation, defined assignment, or specific procedure used in a17

reduction expression or an induction expression must be resolvable to a procedure with an18
explicit interface that has only scalar dummy arguments.19

• Any procedure used in a reduction expression or an induction expression must not have any20
alternate returns appear in the argument list.21

• Any procedure called in the region of a reduction expression or an induction expression must22
be pure and must not reference any host-associated or use-associated variables nor any23
variables in a common block.24

Fortran

7.6.2.1 OpenMP Combiner Expressions25

A combiner expression specifies how a reduction combines partial results into a single value.26

Fortran
A combiner expression is an assignment statement or a subroutine name followed by an argument27
list.28

Fortran

240 OpenMP API – Version 6.0 November 2024

In the definition of a combiner expression, omp_in and omp_out are OpenMP identifiers for1
special variables that refer to storage of the type of the list item to which the reduction applies. If2
the list item is an array or array section, the OpenMP identifiers omp_in and omp_out each refer3
to an array element of that list item. Each of these OpenMP identifiers denotes one of the values to4
be combined before executing the combiner expression. The omp_out OpenMP identifier refers to5
the storage that holds the resulting combined value after executing the combiner expression. The6
number of times that the combiner expression is executed and the order of these executions for any7
reduction clause are unspecified.8

Fortran
If the combiner expression is a subroutine name with an argument list, the combiner expression is9
evaluated by calling the subroutine with the specified argument list. If the combiner expression is an10
assignment statement, the combiner expression is evaluated by executing the assignment statement.11

If a generic name is used in a combiner expression and the list item in the corresponding reduction12
clause is an array or array section, that generic name is resolved to the specific procedure that is13
elemental or only has scalar dummy arguments.14

Fortran
Restrictions15
Restrictions to combiner expressions are as follows:16

• The only variables allowed in a combiner expression are omp_in and omp_out.17

Fortran
• Any selectors in the designator of omp_in and omp_out must be component selectors.18

Fortran

7.6.2.2 OpenMP Initializer Expressions19

If the initialization of the private copies of list items in a reduction clause is not determined a20
priori, the syntax of an initializer expression is as follows:21

C
omp_priv = initializer22

C
or23

C++
omp_priv initializer24

C++
or25

CHAPTER 7. DATA ENVIRONMENT 241

C / C++
function-name(argument-list)1

C / C++
or2

Fortran
omp_priv = expression3

or4

subroutine-name(argument-list)5

Fortran
In the definition of an initializer expression, the omp_priv OpenMP identifier represents a special6
variable that refers to the storage to be initialized. The OpenMP identifier omp_orig represents a7
special variable that can be used in an initializer expression to refer to the storage of the original list8
item to be reduced. The number of times that an initializer expression is evaluated and the order of9
these evaluations are unspecified.10

C / C++
If an initializer expression is a function name with an argument list, it is evaluated by calling the11
function with the specified argument list. Otherwise, an initializer expression specifies how12
omp_priv is declared and initialized.13

C / C++
Fortran

If an initializer expression is a subroutine name with an argument list, it is evaluated by calling the14
subroutine with the specified argument list. If an initializer expression is an assignment statement,15
the initializer expression is evaluated by executing the assignment statement.16

Fortran
C

The a priori initialization of private copies that are created for reductions follows the rules for17
initialization of objects with static storage duration.18

C
C++

The a priori initialization of private copies that are created for reductions follows the base language19
rules for default initialization.20

C++
Fortran

The rules for a priori initialization of private copies that are created for reductions are as follows:21

• For complex, real, or integer types, the value 0 will be used.22

• For logical types, the value .false. will be used.23

242 OpenMP API – Version 6.0 November 2024

• For derived types for which default initialization is specified, default initialization will be1
used.2

• Otherwise, the behavior is unspecified.3

Fortran
Restrictions4
Restrictions to initializer expressions are as follows:5

• The only variables allowed in an initializer expression are omp_priv and omp_orig.6

• An initializer expression must not modify the variable omp_orig.7

C
• If an initializer expression is a function name with an argument list, one of the arguments8

must be the address of omp_priv.9

C
C++

• If an initializer expression is a function name with an argument list, one of the arguments10
must be omp_priv or the address of omp_priv.11

C++
Fortran

• If an initializer expression is a subroutine name with an argument list, one of the arguments12
must be omp_priv.13

Fortran

7.6.2.3 OpenMP Inductor Expressions14

An inductor expression specifies an inductor, which is how an induction operation determines a15
new value of the induction variable from its previous value and a step expression.16

Fortran
An inductor expression is either an assignment statement or a subroutine name followed by an17
argument list.18

Fortran
In the definition of an inductor expression, the OpenMP identifier omp_var is a special variable19
that refers to storage of the type of the induction variable to which the induction operation applies,20
and the OpenMP identifier omp_step is a special variable that refers to the step expression of the21
induction operation. If the list item is an array or array section, the OpenMP identifier omp_var22
refers to an array element of that list item.23

Fortran
If the inductor expression is a subroutine name with an argument list, the inductor expression is24
evaluated by calling the subroutine with the specified argument list. If the inductor expression is an25
assignment statement, the inductor expression is evaluated by executing the assignment statement.26

CHAPTER 7. DATA ENVIRONMENT 243

If a generic name is used in an inductor expression and the list item in the corresponding1
induction clause is an array or array section, that generic name is resolved to the specific2
procedure that is elemental or only has scalar dummy arguments.3

Fortran
Restrictions4
Restrictions to inductor expressions are as follows:5

• The only variables allowed in an inductor expression are omp_var and omp_step.6

Fortran
• Any selectors in the designator of omp_var and omp_step must be component selectors.7

Fortran

7.6.2.4 OpenMP Collector Expressions8

A collector expression evaluates to the value of the collective step expression of a collapsed9
iteration. In the definition of a collector expression, the OpenMP identifier omp_step is a special10
variable that refers to the step expression and the OpenMP identifier omp_idx is a special variable11
that refers to the collapsed iteration number.12

Restrictions13
Restrictions to collector expressions are as follows:14

• The only variables allowed in a collector expression are omp_step and omp_idx.15

7.6.3 Implicitly Declared OpenMP Reduction Identifiers16

C / C++
Table 7.1 lists each reduction identifier that is implicitly declared at every scope and its semantic17
initializer expression. The actual initializer value is that value as expressed in the data type of the18
reduction list item if that list item is an arithmetic type. In C++, list items of class type are assigned19
or constructed with an integral value that matches the initializer value as specified in Section 7.6.6.20

TABLE 7.1: Implicitly Declared C/C++ Reduction Identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out += omp_in

* omp_priv = 1 omp_out *= omp_in

& omp_priv = ~ 0 omp_out &= omp_in

| omp_priv = 0 omp_out |= omp_in
table continued on next page

244 OpenMP API – Version 6.0 November 2024

table continued from previous page

Identifier Initializer Combiner

^ omp_priv = 0 omp_out ^= omp_in

&& omp_priv = 1 omp_out = omp_in && omp_out

|| omp_priv = 0 omp_out = omp_in || omp_out

max omp_priv = Minimal
representable number in the
reduction list item type

omp_out = omp_in > omp_out ?
omp_in : omp_out

min omp_priv = Maximal
representable number in the
reduction list item type

omp_out = omp_in < omp_out ?
omp_in : omp_out

C / C++
Fortran

Table 7.2 lists each reduction identifier that is implicitly declared for numeric and logical types and1
its semantic initializer value. The actual initializer value is that value as expressed in the data type2
of the reduction list item.3

TABLE 7.2: Implicitly Declared Fortran Reduction Identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out = omp_in + omp_out

* omp_priv = 1 omp_out = omp_in * omp_out

.and. omp_priv = .true. omp_out = omp_in .and. omp_out

.or. omp_priv = .false. omp_out = omp_in .or. omp_out

.eqv. omp_priv = .true. omp_out = omp_in .eqv. omp_out

.neqv. omp_priv = .false. omp_out = omp_in .neqv. omp_out

max omp_priv = Minimal
representable number in the
reduction list item type

omp_out = max(omp_in, omp_out)

min omp_priv = Maximal
representable number in the
reduction list item type

omp_out = min(omp_in, omp_out)

table continued on next page

CHAPTER 7. DATA ENVIRONMENT 245

table continued from previous page

Identifier Initializer Combiner

iand omp_priv = All bits on omp_out = iand(omp_in, omp_out)

ior omp_priv = 0 omp_out = ior(omp_in, omp_out)

ieor omp_priv = 0 omp_out = ieor(omp_in, omp_out)

Fortran

7.6.4 Implicitly Declared OpenMP Induction Identifiers1

C / C++
Table 7.3 lists each induction identifier that is implicitly declared at every scope for arithmetic types2
and its corresponding inductor expression and collector expression.3

TABLE 7.3: Implicitly Declared C/C++ Induction Identifiers

Identifier Inductor Expression Collector Expression

+ omp_var = omp_var + omp_step omp_step * omp_idx

* omp_var = omp_var * omp_step pow(omp_step, omp_idx)

C / C++
Fortran

Table 7.4 lists each induction identifier that is implicitly declared for numeric types and its4
corresponding inductor expression and collector expression.5

TABLE 7.4: Implicitly Declared Fortran Induction Identifiers

Identifier Inductor Expression Collector Expression

+ omp_var = omp_var + omp_step omp_step * omp_idx

* omp_var = omp_var * omp_step omp_step ** omp_idx

Fortran

246 OpenMP API – Version 6.0 November 2024

7.6.5 Properties Common to Reduction and induction1

Clauses2

The list items that appear in a reduction clause or an induction clause may include array3
sections and array elements.4

C++
If the type is a derived class then any reduction identifier or induction identifier that matches its5
base classes is also a match if no specific match for the type has been specified.6

If the reduction identifier or induction identifier is an implicitly declared reduction identifier or7
induction identifier or otherwise not an id-expression then it is implicitly converted to one by8
prepending the keyword operator (for example, + becomes operator+). This conversion is valid for9
the +, *, /, && and || operators.10

If the reduction identifier or induction identifier is qualified then a qualified name lookup is used to11
find the declaration.12

If the reduction identifier or induction identifier is unqualified then an argument-dependent name13
lookup must be performed using the type of each list item.14

C++
If a list item is an array or array section, it will be treated as if a reduction clause or an15
induction clause would be applied to each separate element of the array or array section.16

If a list item is an array section, the elements of any copy of the array section will be stored17
contiguously.18

Fortran
If the original list item has the POINTER attribute, any copies of the list item are associated with19
private targets.20

Fortran
Restrictions21
Restrictions common to reduction clauses and induction clauses are as follows:22

• Any array element must be specified at most once in all list items on a directive.23

• For a reduction identifier or an induction identifier declared in a declare_reduction or24
a declare_induction directive, the directive must appear before its use in a reduction25
clause or induction clause.26

• If a list item is an array section, it must not be a zero-length array section and its array base27
must be a base language identifier.28

• If a list item is an array section or an array element, accesses to the elements of the array29
outside the specified array section or array element result in unspecified behavior.30

CHAPTER 7. DATA ENVIRONMENT 247

C / C++
• The type of a list item that appears in a reduction clause must be valid for the reduction1

identifier. The type of a list item and of the step expression that appear in an induction2
clause must be valid for the induction identifier.3

• A list item that appears in a reduction clause or an induction clause must not be4
const-qualified.5

• The reduction identifier or induction identifier for any list item must be unambiguous and6
accessible.7

C / C++
Fortran

• The type, type parameters and rank of a list item that appears in a reduction clause must be8
valid for the combiner expression and the initializer expression. The type, type parameters9
and rank of a list item and of the step expression that appear in an induction clause must10
be valid for the inductor expression.11

• A list item that appears in a reduction clause or an induction clause must be definable.12

• A procedure pointer must not appear in a reduction clause or an induction clause.13

• A pointer with the INTENT(IN) attribute must not appear in a reduction clause or an14
induction clause.15

• An original list item with the POINTER attribute or any pointer component of an original list16
item that is referenced in a combiner expression or an inductor expression must be associated17
at entry with the construct that contains the reduction clause or induction clause.18
Additionally, the list item or the pointer component of the list item must not be deallocated,19
allocated, or pointer assigned within the region.20

• An original list item with the ALLOCATABLE attribute or any allocatable component of an21
original list item that corresponds to a special variable identifier in a combiner expression,22
initializer expression, or inductor expression must be in the allocated state at entry to the23
construct that contains the reduction clause or induction clause. Additionally, the list24
item or the allocatable component of the list item must be neither deallocated nor allocated,25
explicitly or implicitly, within the region.26

• If the reduction identifier or induction identifier is defined in a declare_reduction or27
declare_induction directive, that directive must be in the same subprogram, or28
accessible by host or use association.29

• If the reduction identifier or induction identifier is a user-defined operator, the same explicit30
interface for that operator must be accessible at the location of the declare_reduction31
or declare_induction directive that defines the reduction or induction identifier.32

248 OpenMP API – Version 6.0 November 2024

• If the reduction identifier or induction identifier is defined in a declare_reduction or1
declare_induction directive, any procedure referenced in the initializer,2
combiner, inductor, or collector clause must be an intrinsic function, or must have3
an explicit interface where the same explicit interface is accessible as at the4
declare_reduction or declare_induction directive.5

Fortran

7.6.6 Properties Common to All Reduction Clauses6

The clause-specification of a reduction clause has a clause-argument-specification that specifies a7
variable list and has a required reduction-identifier modifier that specifies the reduction identifier to8
use for the list items. This match is done by means of a name lookup in the base language.9

C++
If the type is of class type and the reduction identifier is implicitly declared, then it must provide the10
operator as described in Section 7.6.5 as well as one of:11

• A default constructor and an assignment operator that accepts a type T that can be implicitly12
constructed from an integer expression, such that the following requirement is valid:13

template<typename T>14
requires(T&& t) {15

T();16
t = 0;17

};18

• A single-argument constructor that accepts a type T that can be implicitly constructed from19
an integer expression, such that the following requirement is valid:20

template<typename T>21
requires() {22

T(0);23
};24

The first of these that matches will be used, with the initializer value being passed to the assignment25
operator or constructor.26

C++
Any copies of a list item associated with the reduction have the reduction attribute and so are27
reduction variables. These reduction variables are initialized with the initializer value of the28
reduction identifier. Any copies are combined using the combiner associated with the reduction29
identifier.30

CHAPTER 7. DATA ENVIRONMENT 249

Execution Model Events1
The reduction-begin event occurs before a task begins to perform loads and stores that belong to the2
implementation of a reduction and the reduction-end event occurs after the task has completed3
loads and stores associated with the reduction. If a task participates in multiple reductions, each4
reduction may be bracketed by its own pair of reduction-begin/reduction-end events or multiple5
reductions may be bracketed by a single pair of events. The interval defined by a pair of6
reduction-begin/reduction-end events will not contain a task scheduling point.7

Tool Callbacks8
A thread dispatches a registered reduction callback with ompt_sync_region_reduction9
in its kind argument and ompt_scope_begin as its endpoint argument for each occurrence of a10
reduction-begin event in that thread. Similarly, a thread dispatches a registered reduction11
callback with ompt_sync_region_reduction in its kind argument and ompt_scope_end12
as its endpoint argument for each occurrence of a reduction-end event in that thread. These13
callbacks occur in the context of the task that performs the reduction.14

Restrictions15
Restrictions common to reduction clauses are as follows:16

C
• For a max or min reduction, the type of the list item must be an allowed arithmetic data type:17
char, int, float, double, or _Bool, possibly modified with long, short, signed,18
or unsigned.19

C
C++

• For a max or min reduction, the type of the list item must be an allowed arithmetic data type:20
char, wchar_t, int, float, double, or bool, possibly modified with long, short,21
signed, or unsigned.22

C++
Cross References23

• reduction Callback, see Section 34.7.624

• OMPT scope_endpoint Type, see Section 33.2725

• OMPT sync_region Type, see Section 33.3326

7.6.7 Reduction Scoping Clauses27

Reduction-scoping clauses define the region in which a reduction is computed by tasks or SIMD28
lanes. All properties common to all reduction clauses, which are defined in Section 7.6.5 and29
Section 7.6.6, apply to reduction-scoping clauses.30

The number of copies created for each list item and the point at which those copies are initialized31
are determined by the particular reduction-scoping clause that appears on the construct. The point32
at which the original list item contains the result of the reduction is determined by the particular33

250 OpenMP API – Version 6.0 November 2024

reduction-scoping clause. To avoid data races, concurrent reads or updates of the original list item1
must be synchronized with the update of the original list item that occurs as a result of the2
reduction, which may occur after execution of the construct on which the reduction-scoping clause3
appears, for example, due to the use of a nowait clause.4

The location in the OpenMP program at which values are combined and the order in which values5
are combined are unspecified. Thus, when comparing sequential and parallel executions, or when6
comparing one parallel execution to another (even if the number of threads used is the same),7
bitwise-identical results are not guaranteed. Similarly, side effects (such as floating-point8
exceptions) may not be identical and may not occur at the same location in the OpenMP program.9

7.6.8 Reduction Participating Clauses10

A reduction-participating clause specifies a task or a SIMD lane as a participant in a reduction11
defined by a reduction-scoping clause. All properties common to all reduction clauses, which are12
defined in Section 7.6.5 and Section 7.6.6, apply to reduction-participating clauses.13

Accesses to the original list item may be replaced by accesses to copies of the original list item14
created by a region that corresponds to a construct with a reduction-scoping clause.15

In any case, the final value of the reduction must be determined as if all tasks or SIMD lanes that16
participate in the reduction are executed sequentially in some arbitrary order.17

7.6.9 reduction-identifier Modifier18

Modifiers19
Name Modifies Type Properties
reduction-
identifier

all arguments An OpenMP reduction iden-
tifier

required, ultimate20

Clauses21
in_reduction, reduction, task_reduction22

Semantics23
Reduction clauses use the reduction-identifier modifier to specify the reduction identifier for the24
clause. The reduction identifier determines the initializer expression and combiner expression to25
use for the reduction.26

Cross References27

• OpenMP Reduction and Induction Identifiers, see Section 7.6.128

• in_reduction Clause, see Section 7.6.1229

• reduction Clause, see Section 7.6.1030

• task_reduction Clause, see Section 7.6.1131

CHAPTER 7. DATA ENVIRONMENT 251

7.6.10 reduction Clause1

Name: reduction Properties: data-environment attribute, data-
sharing attribute, original list-item updating,
privatization, reduction scoping, reduction
participating

2

Arguments3
Name Type Properties
list list of variable list item

type
default4

Modifiers5
Name Modifies Type Properties
reduction-
identifier

all arguments An OpenMP reduction iden-
tifier

required, ultimate

reduction-modifier list Keyword: default,
inscan, task

default

original-sharing-
modifier

list Complex, name: original
Arguments:
sharing Keyword:

default, private,
shared (default)

default

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

6

Directives7
do, for, loop, parallel, scope, sections, simd, taskloop, teams8

Semantics9
The reduction clause is a reduction-scoping clause and a reduction-participating clause, as10
described in Section 7.6.7 and Section 7.6.8. For each list item, a private copy is created for each11
implicit task or SIMD lane and is initialized with the initializer value of the reduction-identifier.12
After the end of the region, the original list item is updated with the values of the private copies13
using the combiner associated with the reduction-identifier. If the clause appears on a worksharing14
construct and the original list item is private in the enclosing context of that construct, the behavior15
is as if a shared copy (initialized with the initializer value) specific to the worksharing region is16
updated by combining its value with the values of the private copies created by the clause; once an17
encountering thread observes that all of those updates are completed, the original list item for that18
thread is then updated by combining its value with the value of the shared copy.19

If the original-sharing-modifier is not present, the behavior is as if it were present with the sharing20
argument specified as default. If the sharing argument is specified as default, original list21
items are assumed to be shared in the enclosing context unless determined not to be shared22
according to the rules specified in Section 7.1. If shared or private is specified as the23

252 OpenMP API – Version 6.0 November 2024

original-sharing-modifier sharing argument, the original list items are assumed to be shared or1
private, respectively, in the enclosing context.2

If reduction-modifier is not present or the default reduction-modifier is present, the behavior is3
as follows. For parallel and worksharing constructs, one or more private copies of each list4
item are created for each implicit task, as if the private clause had been used. For the simd5
construct, one or more private copies of each list item are created for each SIMD lane, as if the6
private clause had been used. For the taskloop construct, private copies are created7
according to the rules of the reduction-scoping clause. For the teams construct, one or more8
private copies of each list item are created for the initial task of each team in the league, as if the9
private clause had been used. For the loop construct, private copies are created and used in the10
construct according to the description and restrictions in Section 7.4. At the end of a region that11
corresponds to a construct for which the reduction clause was specified, the original list item is12
updated by combining its original value with the final value of each of the private copies, using the13
combiner of the specified reduction-identifier.14

If the inscan reduction-modifier is present, a scan computation is performed over updates to the15
list item performed in each logical iteration of the affected loops (see Section 7.7). The list items16
are privatized in the construct according to the description and restrictions in Section 7.4. At the17
end of the region, each original list item is assigned the value described in Section 7.7.18

If the task reduction-modifier is present for a parallel or worksharing construct, then each list19
item is privatized according to the description and restrictions in Section 7.4, and an unspecified20
number of additional private copies may be created to support task reductions. Any copies21
associated with the reduction are initialized before they are accessed by the tasks that participate in22
the reduction, which include all implicit tasks in the corresponding region and all participating23
explicit tasks that specify an in_reduction clause (see Section 7.6.12). After the end of the24
region, the original list item contains the result of the reduction.25

Restrictions26
Restrictions to the reduction clause are as follows:27

• All restrictions common to all reduction clauses, as listed in Section 7.6.5 and Section 7.6.6,28
apply to this clause.29

• For a given construct on which the clause appears, the lifetime of all original list items must30
extend at least until after the synchronization point at which the completion of the31
corresponding region by all participants in the reduction can be observed by all participants.32

• If the inscan reduction-modifier is specified on a reduction clause that appears on a33
worksharing construct and an original list item is private in the enclosing context of the34
construct, the private copies must all have identical values when the construct is encountered.35

• If the reduction clause appears on a worksharing construct and the36
original-sharing-modifier specifies default as its sharing argument, each original list item37
must be shared in the enclosing context unless it is determined not to be shared according to38
the rules specified in Section 7.1.39

CHAPTER 7. DATA ENVIRONMENT 253

• If the reduction clause appears on a worksharing construct and the1
original-sharing-modifier specifies shared or private as its sharing argument, the2
original list items must be shared or private, respectively, in the enclosing context.3

• Each list item specified with the inscan reduction-modifier must appear as a list item in an4
inclusive or exclusive clause on a scan directive enclosed by the construct.5

• If the inscan reduction-modifier is specified, a reduction clause without the inscan6
reduction-modifier must not appear on the same construct.7

• A list item that appears in a reduction clause on a work-distribution construct for which8
the corresponding region binds to a teams region must be shared in the teams region.9

• A reduction clause with the task reduction-modifier may only appear on a parallel10
construct or a worksharing construct, or a compound construct for which any of the11
aforementioned constructs is a constituent construct and neither simd nor loop are12
constituent constructs.13

• A reduction clause with the inscan reduction-modifier may only appear on a14
worksharing-loop construct or a simd construct, or a compound construct for which any of15
the aforementioned constructs is a constituent construct and neither distribute nor16
taskloop is a constituent construct.17

• The inscan reduction-modifier must not be specified on a construct for which the18
ordered or schedule clause is specified.19

• A list item that appears in a reduction clause of the innermost enclosing worksharing20
construct or parallel construct must not be accessed in an explicit task generated by a21
construct unless an in_reduction clause with the same list item appears on that construct.22

• The task reduction-modifier must not appear in a reduction clause if the nowait23
clause is specified on the same construct.24

Fortran
• If the original-sharing-modifier for a reduction clause on a worksharing construct25

specifies default sharing and a list item in the clause either has a base pointer or is a26
dummy argument without the VALUE attribute, the original list item must refer to the same27
object for all threads of the team that execute the corresponding region.28

Fortran
C / C++

• If the original-sharing-modifier specifies default as it sharing argument and a list item in29
a reduction clause on a worksharing construct has a reference type then that list item30
must bind to the same object for all threads of the team.31

• A variable of class type (or array thereof) that appears in a reduction clause with the32
inscan reduction-modifier requires an accessible, unambiguous default constructor and33
copy assignment operator for the class type; the number of calls to them while performing the34
scan computation is unspecified.35

C / C++

254 OpenMP API – Version 6.0 November 2024

Cross References1

• do Construct, see Section 13.6.22

• for Construct, see Section 13.6.13

• List Item Privatization, see Section 7.44

• loop Construct, see Section 13.85

• ordered Clause, see Section 6.4.66

• parallel Construct, see Section 12.17

• private Clause, see Section 7.5.38

• scan Directive, see Section 7.79

• schedule Clause, see Section 13.6.310

• scope Construct, see Section 13.211

• sections Construct, see Section 13.312

• simd Construct, see Section 12.413

• taskloop Construct, see Section 14.214

• teams Construct, see Section 12.215

7.6.11 task_reduction Clause16

Name: task_reduction Properties: data-environment attribute, data-
sharing attribute, original list-item updating,
privatization, reduction scoping

17

Arguments18
Name Type Properties
list list of variable list item

type
default19

Modifiers20
Name Modifies Type Properties
reduction-
identifier

all arguments An OpenMP reduction iden-
tifier

required, ultimate

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique
21

Directives22
taskgroup23

CHAPTER 7. DATA ENVIRONMENT 255

Semantics1
The task_reduction clause is a reduction-scoping clause, as described in Section 7.6.7, that2
specifies a task reduction. For each list item, the number of copies is unspecified. Any copies3
associated with the reduction are initialized before they are accessed by the tasks that participate in4
the reduction. After the end of the region, the original list item contains the result of the reduction.5

Restrictions6
Restrictions to the task_reduction clause are as follows:7

• All restrictions common to all reduction clauses, as listed in Section 7.6.5 and Section 7.6.6,8
apply to this clause.9

Cross References10

• taskgroup Construct, see Section 17.411

7.6.12 in_reduction Clause12

Name: in_reduction Properties: data-environment attribute, data-
sharing attribute, privatization, reduction par-
ticipating

13

Arguments14
Name Type Properties
list list of variable list item

type
default15

Modifiers16
Name Modifies Type Properties
reduction-
identifier

all arguments An OpenMP reduction iden-
tifier

required, ultimate

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique
17

Directives18
target, target_data, task, taskloop19

Semantics20
The in_reduction clause is a reduction-participating clause, as described in Section 7.6.8, that21
specifies that a task participates in a reduction. For a given list item, the in_reduction clause22
defines a task to be a participant in a task reduction that is defined by an enclosing region for a23
matching list item that appears in a task_reduction clause or a reduction clause with the24
task reduction-modifier, where either:25

1. The matching list item has the same storage location as the list item in the in_reduction26
clause; or27

2. A private copy, derived from the matching list item, that is used to perform the task reduction28
has the same storage location as the list item in the in_reduction clause.29

256 OpenMP API – Version 6.0 November 2024

For the task construct, the generated task becomes the participating task. For each list item, a1
private copy may be created as if the private clause had been used.2

For the target construct, the target task becomes the participating task. For each list item, a3
private copy may be created in the data environment of the target task as if the private clause4
had been used. This private copy will be implicitly mapped into the device data environment of the5
target device, if the target device is not the parent device.6

At the end of the task region, if a private copy was created its value is combined with a copy created7
by a reduction-scoping clause or with the original list item.8

When specified on the target_data directive, the in_reduction clause has the9
all-data-environments property.10

Restrictions11
Restrictions to the in_reduction clause are as follows:12

• All restrictions common to all reduction clauses, as listed in Section 7.6.5 and Section 7.6.6,13
apply to this clause.14

• For each list item, a matching list item must exist that appears in a task_reduction15
clause or a reduction clause with the task reduction-modifier that is specified on a16
construct that corresponds to a region in which the region of the participating task is closely17
nested. The construct that corresponds to the innermost enclosing region that meets this18
condition must specify the same reduction-identifier for the matching list item as the19
in_reduction clause.20

Cross References21

• target Construct, see Section 15.822

• target_data Construct, see Section 15.723

• task Construct, see Section 14.124

• taskloop Construct, see Section 14.225

7.6.13 induction Clause26

Name: induction Properties: data-environment attribute, data-
sharing attribute, original list-item updating,
privatization

27

Arguments28
Name Type Properties
list list of variable list item

type
default29

CHAPTER 7. DATA ENVIRONMENT 257

Modifiers1
Name Modifies Type Properties
induction-
identifier

list OpenMP induction identifier required, ultimate

step-modifier list Complex, name: step
Arguments:
induction-step expression

of induction-step type
(region-invariant)

required

induction-modifier list Keyword: relaxed,
strict

default

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

2

Directives3
distribute, do, for, simd, taskloop4

Semantics5
The induction clause provides a superset of the functionality provided by the private clause.6
A list item that appears in an induction clause is subject to the private clause semantics7
described in Section 7.5.3, except as otherwise specified. The new list items have the induction8
attribute.9

When an induction clause is specified on a loop-nest-associated directive and the strict10
induction-modifier is present, the value of the new list item at the beginning of each collapsed11
iteration is determined by the closed form of the induction operation. The value of the original list12
item at the end of the last collapsed iteration is the result of applying the inductor expression to the13
value of the new list item at the beginning of that collapsed iteration. When the relaxed14
induction-modifier is present, the implementation may assume that the value of the new list item at15
the end of the previous collapsed iteration, if executed by the same task or SIMD lane, is the value16
determined by the closed form of the induction operation. When an induction-modifier is not17
specified, the behavior is as if the relaxed induction-modifier is present.18

The value of the new list item at the end of the last collapsed iteration is assigned to the original list19
item.20

C++
For class types, the copy assignment operator is invoked. The order in which copy assignment21
operators for different variables of the same class type are invoked is unspecified.22

C++
C / C++

For an array of elements of non-array type, each element is assigned to the corresponding element23
of the original array.24

C / C++

258 OpenMP API – Version 6.0 November 2024

Fortran
If the original list item does not have the POINTER attribute, its update occurs as if by intrinsic1
assignment unless it has a type bound procedure as a defined assignment.2

If the original list item has the POINTER attribute, its update occurs as if by pointer assignment.3

Fortran
If the construct is a worksharing-loop construct with the nowait clause present and the original4
list item is shared in the enclosing context, access to the original list item after the construct may5
create a data race. To avoid this data race, user code must insert synchronization.6

The induction-identifier must match a previously declared induction identifier of the same name7
and type for each of the list items and for the induction-step-expr. This match is done by means of a8
name lookup in the base language.9

Restrictions10
Restrictions to the induction clause are as follows:11

• All restrictions listed in Section 7.6.5 apply to this clause.12

• The induction-step must not be an array or array section.13

• If an array section or array element appears as a list item in an induction clause on a14
worksharing construct, all threads of the team must specify the same storage location.15

• None of the affected loops of a loop-nest-associated construct that has an induction16
clause may be a non-rectangular loop.17

C / C++
• If a list item in an induction clause on a worksharing construct has a reference type and18

the original list item is shared in the enclosing context then it must bind to the same object for19
all threads of the team.20

• If a list item in an induction clause on a worksharing construct is an array section or an21
array element that has a base pointer and the original list item is shared in the enclosing22
context, the base pointer must point to the same variable for all threads of the team.23

C / C++
Cross References24

• distribute Construct, see Section 13.725

• do Construct, see Section 13.6.226

• for Construct, see Section 13.6.127

• List Item Privatization, see Section 7.428

• private Clause, see Section 7.5.329

• simd Construct, see Section 12.430

CHAPTER 7. DATA ENVIRONMENT 259

• taskloop Construct, see Section 14.21

7.6.14 declare_reduction Directive2

Name: declare_reduction
Category: declarative

Association: unassociated
Properties: pure3

Arguments4
declare_reduction(reduction-specifier)5

Name Type Properties
reduction-specifier OpenMP reduction spec-

ifier
default6

Clauses7
combiner, initializer8

Additional information9
The declare_reduction directive may alternatively be specified with declare10
reduction as the directive-name.11

The syntax reduction-identifier : typename-list : combiner-expr, where combiner is an OpenMP12
combiner expression, may alternatively be used for reduction-specifier. The combiner clause13
must not be specified if this syntax is used. This syntax has been deprecated.14

Semantics15
The declare_reduction directive declares a reduction identifier that can be used in a16
reduction clause as a user-defined reduction. The directive argument reduction-specifier uses the17
following syntax:18

reduction-identifier : typename-list19

where reduction-identifier is a reduction identifier and typename-list is a type-name list.20

The specified reduction identifier and type-name list identify the declare_reduction21
directive. The reduction identifier can later be used in a reduction clause that uses variables of the22
types specified in the type-name list. If the directive specifies several types then the behavior is as if23
a declare_reduction directive was specified for each type. The visibility and accessibility of24
a user-defined reduction are the same as those of a variable declared at the same location in the25
program.26

C++
The declare_reduction directive can also appear at the locations in a program where a static27
data member could be declared. In this case, the visibility and accessibility of the declaration are28
the same as those of a static data member declared at the same location in the program.29

C++

260 OpenMP API – Version 6.0 November 2024

The enclosing context of the combiner expression specified by the combiner clause and of the1
initializer expression specified by the initializer clause is that of the2
declare_reduction directive. The combiner expression and the initializer expression must be3
correct in the base language, as if they were the body of a procedure defined at the same location in4
the program.5

Fortran
If a type with a deferred or assumed length type parameter is specified in a6
declare_reduction directive, the reduction identifier of that directive can be used in a7
reduction clause with any variable of the same type and the same kind parameter, regardless of the8
length type parameters with which the variable is declared.9

If the specified reduction identifier is the same as the name of a user-defined operator or an10
extended operator, or the same as a generic name that is one of the allowed intrinsic procedures,11
and if the operator or procedure name appears in an accessibility statement in the same module, the12
accessibility of the corresponding declare_reduction directive is determined by the13
accessibility attribute of the statement.14

If the specified reduction identifier is the same as a generic name that is one of the allowed intrinsic15
procedures and is accessible, and if it has the same name as a derived type in the same module, the16
accessibility of the corresponding declare_reduction directive is determined by the17
accessibility of the generic name according to the base language.18

Fortran
Restrictions19
Restrictions to the declare_reduction directive are as follows:20

• A reduction identifier must not be re-declared in the current scope for the same type or for a21
type that is compatible according to the base language rules.22

• The type-name list must not declare new types.23

C / C++
• A type name in a declare_reduction directive must not be a function type, an array24

type, a reference type, or a type qualified with const, volatile or restrict.25

C / C++
Fortran

• If the length type parameter is specified for a type, it must be a constant, a colon (:) or an26
asterisk (*).27

• If a type with a deferred or assumed length parameter is specified in a28
declare_reduction directive, no other declare_reduction directive with the29
same type, the same kind parameters and the same reduction identifier is allowed in the same30
scope.31

Fortran

CHAPTER 7. DATA ENVIRONMENT 261

Cross References1

• combiner Clause, see Section 7.6.152

• OpenMP Combiner Expressions, see Section 7.6.2.13

• OpenMP Initializer Expressions, see Section 7.6.2.24

• OpenMP Reduction and Induction Identifiers, see Section 7.6.15

• initializer Clause, see Section 7.6.166

7.6.15 combiner Clause7

Name: combiner Properties: unique, required8

Arguments9
Name Type Properties
combiner-expr expression of combiner

type
default10

Modifiers11
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique12

Directives13
declare_reduction14

Semantics15
This clause specifies combiner-expr as the combiner expression for a user-defined reduction.16

Cross References17

• declare_reduction Directive, see Section 7.6.1418

• OpenMP Combiner Expressions, see Section 7.6.2.119

7.6.16 initializer Clause20

Name: initializer Properties: unique21

Arguments22
Name Type Properties
initializer-expr expression of initializer

type
default23

262 OpenMP API – Version 6.0 November 2024

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
declare_reduction4

Semantics5
This clause specifies initializer-expr as the initializer expression for a user-defined reduction.6

Cross References7

• declare_reduction Directive, see Section 7.6.148

• OpenMP Initializer Expressions, see Section 7.6.2.29

7.6.17 declare_induction Directive10

Name: declare_induction
Category: declarative

Association: unassociated
Properties: pure11

Arguments12
declare_induction(induction-specifier)13

Name Type Properties
induction-specifier OpenMP induction spec-

ifier
default14

Clauses15
collector, inductor16

Semantics17
The declare_induction directive declares an induction identifier that can be used in an18
induction clause as a user-defined induction. The directive argument induction-specifier uses19
the following syntax:20

induction-identifier : type-specifier-list21

where type-specifier-list is defined as follows:22

type-specifier-list := type-specifier | type-specifier , type-specifier-list23

type-specifier := typename-list-item | typename-pair24

typename-pair := (typename-list-item , typename-list-item)25

and where induction-identifier is the specified induction identifier and typename-list-item is a26
type-name list item.27

CHAPTER 7. DATA ENVIRONMENT 263

The induction identifier identifies the declare_induction directive. The induction identifier1
can be used in an induction clause that lists induction variables of the types specified in the2
type-specifier-list, with corresponding step expressions of the same type if the type-specifier-list3
does not specify a typename-pair. If the type-specifier-list specifies a typename-pair then the4
induction identifier can be used in an induction clause that lists that pair, in which case the5
induction variable and omp_var must be of the first type specified in the typename-pair while the6
corresponding step expression and omp_step must be of the second type in the typename-pair.7
The type of omp_idx is the type used for the iteration count of the collapsed iteration space of the8
collapsed loops of the construct on which the induction clause appears.9

The visibility and accessibility of a user-defined induction are the same as those of a variable10
declared at the same location in the program.11

C++
The declare_induction directive can also appear at the locations in a program where a static12
data member could be declared. In this case, the visibility and accessibility of the declaration are13
the same as those of a static data member declared at the same location in the program.14

C++
The enclosing context of the inductor expression specified by the inductor clause and of the15
collector expression specified by the collector clause is that of the declare_induction16
directive. The inductor expression and the collector expression must be correct in the base17
language, as if they were the body of a procedure defined at the same location in the program.18

Fortran
If the induction identifier is the same as the name of a user-defined operator or an extended19
operator, or the same as a generic name that is one of the allowed intrinsic procedures, and if the20
operator or procedure name appears in an accessibility statement in the same module, the21
accessibility of the corresponding declare_induction directive is determined by the22
accessibility attribute of the statement.23

If the induction identifier is the same as a generic name that is one of the allowed intrinsic24
procedures and is accessible, and if it has the same name as a derived type in the same module, the25
accessibility of the corresponding declare_induction directive is determined by the26
accessibility of the generic name according to the base language.27

Fortran
Restrictions28
Restrictions to the declare_induction directive are as follows:29

• An induction identifier must not be re-declared in the current scope for the same type or for a30
type that is compatible according to the base language rules.31

• A type-name list item in the type-specifier-list must not declare a new type.32

264 OpenMP API – Version 6.0 November 2024

C / C++
• A type name in a declare_induction directive must not be a function type, an array1

type, a reference type, or a type qualified with const, volatile or restrict.2

C / C++
Fortran

• A type name in a declare_induction directive must not be an enum type or an3
enumeration type.4

Fortran
Cross References5

• collector Clause, see Section 7.6.196

• OpenMP Collector Expressions, see Section 7.6.2.47

• OpenMP Inductor Expressions, see Section 7.6.2.38

• OpenMP Loop-Iteration Spaces and Vectors, see Section 6.4.39

• OpenMP Reduction and Induction Identifiers, see Section 7.6.110

• inductor Clause, see Section 7.6.1811

7.6.18 inductor Clause12

Name: inductor Properties: unique, required13

Arguments14
Name Type Properties
inductor-expr expression of inductor

type
default15

Modifiers16
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique17

Directives18
declare_induction19

Semantics20
This clause specifies inductor-expr as the inductor expression for a user-defined induction.21

CHAPTER 7. DATA ENVIRONMENT 265

Cross References1

• declare_induction Directive, see Section 7.6.172

• OpenMP Inductor Expressions, see Section 7.6.2.33

7.6.19 collector Clause4

Name: collector Properties: unique, required5

Arguments6
Name Type Properties
collector-expr expression of collector

type
default7

Modifiers8
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique9

Directives10
declare_induction11

Semantics12
This clause specifies collector-expr as the collector expression for a user-defined induction, which13
ensures that a collector is available for use in the closed form of the induction operation.14

Cross References15

• declare_induction Directive, see Section 7.6.1716

• OpenMP Collector Expressions, see Section 7.6.2.417

7.7 scan Directive18

Name: scan
Category: subsidiary

Association: separating
Properties: pure19

Separated directives20
do, for, simd21

Clauses22
exclusive, inclusive, init_complete23

Clause set24
Properties: unique, required, exclusive Members: exclusive, inclusive,

init_complete
25

266 OpenMP API – Version 6.0 November 2024

Semantics1
The scan directive is a subsidiary directive that separates the final-loop-body of an enclosing2
simd construct or worksharing-loop construct (or a composite construct that combines them) into3
structured block sequences that represent different phases of a scan computation. The use of scan4
directives results in a structured block sequence that serves as an input phase, a structured block5
sequence that serves as a scan phase, and, optionally, a structured block sequence that serves as an6
initialization phase. The optional initialization phase begins the collapsed iteration by initializing7
private variables that can be used in the input phase, the input phase contains all computations that8
update the list item in the collapsed iteration, and the scan phase ensures that any statement that9
reads the list item uses the result of the scan computation for that collapsed iteration. Thus, the10
scan directive specifies that a scan computation updates each list item on each collapsed iteration11
of the enclosing canonical loop nest that is associated with the separated construct.12

The clause that is specified on the scan directive determines the phases of the scan computation13
that correspond to the structured block sequences that precede and follow the directive.14

The result of a scan computation for a given collapsed iteration is calculated according to the last15
generalized prefix sum (PRESUMlast) applied over the sequence of values given by the value of the16
original list item prior to the affected loops and all preceding updates to the new list item in the17
collapsed iteration space. The operation PRESUMlast(op, a1, . . . , aN) is defined for a given binary18
operator op and a sequence of N values a1, . . . , aN as follows:19

• if N = 1, a120

• if N > 1, op(PRESUMlast(op, a1, . . . , aj), PRESUMlast(op, ak, . . . , aN)),21
1 ≤ j + 1 = k ≤ N.22

At the beginning of the input phase of each collapsed iteration, the new list item is either initialized23
with the value of the initializer expression of the reduction-identifier specified by the reduction24
clause on the separated construct or with the value of the list item in the scan phase of some25
collapsed iteration. The update value of a new list item is, for a given collapsed iteration, the value26
the new list item would have on completion of its input phase if it were initialized with the value of27
the initializer expression.28

Let orig-val be the value of the original list item on entry to the separated construct. Let combiner29
be the combiner expression for the reduction-identifier specified by the reduction clause on the30
construct. Let ui be the update value of a list item for collapsed iteration i. For list items that appear31
in an inclusive clause on the scan directive, at the beginning of the scan phase for collapsed32
iteration i the new list item is assigned the result of the operation PRESUMlast(combiner, orig-val,33
u0, . . . , ui). For list items that appear in an exclusive clause on the scan directive, at the34
beginning of the scan phase for collapsed iteration i = 0 the list item is assigned the value orig-val,35
and at the beginning of the scan phase for collapsed iteration i > 0 the list item is assigned the36
result of the operation PRESUMlast(combiner, orig-val, u0, . . . , ui-1).37

For list items that appear in an inclusive clause, at the end of the separated construct, the38
original list item is assigned the value of the private copy from the last collapsed iteration of the39
affected loops of the separated construct. For list items that appear in an exclusive clause, let k40

CHAPTER 7. DATA ENVIRONMENT 267

be the last collapsed iteration of the affected loops of the separated construct. At the end of the1
separated construct, the original list item is assigned the result of the operation PRESUMlast(2
combiner, orig-val, u0, . . . , uk).3

Restrictions4
Restrictions to the scan directive are as follows:5

• The separated construct must have at most one scan directive with an inclusive or6
exclusive clause as a separating directive.7

• The separated construct must have at most one scan directive with an init_complete8
clause as a separating directive.9

• If specified, a scan directive with an init_complete clause must precede a scan10
directive with an exclusive clause that is a subsidiary directive of the same construct.11

• The affected loops of the separated construct must all be perfectly nested loops.12

• Each list item that appears in the inclusive or exclusive clause must appear in a13
reduction clause with the inscan modifier on the separated construct.14

• Each list item that appears in a reduction clause with the inscan modifier on the15
separated construct must appear in a clause on the scan separating directive.16

• Cross-iteration dependences across different collapsed iterations of the separated construct17
must not exist, except for dependences for the list items specified in an inclusive or18
exclusive clause.19

• Intra-iteration dependences from a statement in the structured block sequence that20
immediately precedes a scan directive with an inclusive or exclusive clause to a21
statement in the structured block sequence that follows that scan directive must not exist,22
except for dependences for the list items specified in that clause.23

• The private copy of a list item that appears in the inclusive or exclusive clause must24
not be modified in the scan phase.25

• Any list item that appears in an exclusive clause must not be modified or used in the26
initialization phase.27

• Statements in the initialization phase must only modify private variables. Any private28
variables modified in the initialization phase must not be used in the scan phase.29

Cross References30

• do Construct, see Section 13.6.231

• exclusive Clause, see Section 7.7.232

• for Construct, see Section 13.6.133

• inclusive Clause, see Section 7.7.134

268 OpenMP API – Version 6.0 November 2024

• init_complete Clause, see Section 7.7.31

• reduction Clause, see Section 7.6.102

• simd Construct, see Section 12.43

7.7.1 inclusive Clause4

Name: inclusive Properties: innermost-leaf, unique5

Arguments6
Name Type Properties
list list of variable list item

type
default7

Modifiers8
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique9

Directives10
scan11

Semantics12
The inclusive clause is used on a scan directive to specify that an inclusive scan computation13
is performed for each list item of the argument list. The structured block sequence that precedes the14
directive serves as the input phase of the inclusive scan computation while the structured block15
sequence that follows the directive serves as the scan phase of the inclusive scan computation. The16
list items that appear in an inclusive clause may include array sections and array elements.17

Cross References18

• scan Directive, see Section 7.719

7.7.2 exclusive Clause20

Name: exclusive Properties: innermost-leaf, unique21

Arguments22
Name Type Properties
list list of variable list item

type
default23

Modifiers24
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique25

CHAPTER 7. DATA ENVIRONMENT 269

Directives1
scan2

Semantics3
The exclusive clause is used on a scan directive to specify an exclusive scan computation is4
performed for each list item of the argument list. The structured block sequence that follows the5
directive serves as the input phase of the exclusive scan computation while the structured block6
sequence that precedes the directive serves as the scan phase of the exclusive scan computation.7
The list items that appear in an exclusive clause may include array sections and array elements.8

Cross References9

• scan Directive, see Section 7.710

7.7.3 init_complete Clause11

Name: init_complete Properties: innermost-leaf, unique12

Arguments13
Name Type Properties
create_init_phase expression of OpenMP

logical type
constant, optional14

Modifiers15
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique16

Directives17
scan18

Semantics19
The init_complete clause is used on a scan directive to demarcate the end of the20
initialization phase of an exclusive scan computation. The structured block sequence that precedes21
the directive serves as the initialization phase of the exclusive scan computation while the structured22
block sequence that follows the directive serves as the scan phase of the exclusive scan computation.23
If create_init_phase is not specified, the effect is as if create_init_phase evaluates to true.24

Cross References25

• scan Directive, see Section 7.726

7.8 Data Copying Clauses27

This section describes the copyin clause and the copyprivate clause. These two clauses28
support copying data values from private variables or threadprivate variables of an implicit task or29
thread to the corresponding variables of other implicit tasks or threads in the team.30

270 OpenMP API – Version 6.0 November 2024

7.8.1 copyin Clause1

Name: copyin Properties: outermost-leaf, data copying2

Arguments3
Name Type Properties
list list of variable list item

type
default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
parallel8

Semantics9
The copyin clause provides a mechanism to copy the value of a threadprivate variable of the10
primary thread to the threadprivate variable of each other member of the team that is executing the11
parallel region.12

C / C++
The copy is performed after the team is formed and prior to the execution of the associated13
structured block. For variables of non-array type, the copy is by copy assignment. For an array of14
elements of non-array type, each element is copied as if by assignment from an element of the array15
of the primary thread to the corresponding element of the array of all other threads.16

C / C++
C++

For class types, the copy assignment operator is invoked. The order in which copy assignment17
operators for different variables of the same class type are invoked is unspecified.18

C++
Fortran

The copy is performed, as if by assignment, after the team is formed and prior to the execution of19
the associated structured block.20

Named variables that appear in a threadprivate common block may be specified. The whole21
common block does not need to be specified.22

On entry to any parallel region, the copy of each thread of a variable that is affected by a23
copyin clause for the parallel region will acquire the type parameters, allocation, association,24
and definition status of the copy of the primary thread, according to the following rules:25

• If the original list item has the POINTER attribute, each copy receives the same association26
status as that of the copy of the primary thread as if by pointer assignment.27

CHAPTER 7. DATA ENVIRONMENT 271

• If the original list item does not have the POINTER attribute, each copy becomes defined1
with the value of the copy of the primary thread as if by intrinsic assignment unless the list2
item has a type bound procedure as a defined assignment. If the original list item does not3
have the POINTER attribute but has the allocation status of unallocated, each copy will have4
the same status.5

• If the original list item is unallocated or unassociated, each copy inherits the declared type6
parameters and the default type parameter values from the original list item.7

Fortran
Restrictions8
Restrictions to the copyin clause are as follows:9

• A list item that appears in a copyin clause must be threadprivate.10

C++
• A variable of class type (or array thereof) that appears in a copyin clause requires an11

accessible, unambiguous copy assignment operator for the class type.12

C++
Fortran

• A common block name that appears in a copyin clause must be declared to be a common13
block in the same scoping unit in which the copyin clause appears.14

Fortran
Cross References15

• parallel Construct, see Section 12.116

7.8.2 copyprivate Clause17

Name: copyprivate Properties: innermost-leaf, end-clause, data
copying18

Arguments19
Name Type Properties
list list of variable list item

type
default20

Modifiers21
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique22

Directives23
single24

272 OpenMP API – Version 6.0 November 2024

Semantics1
The copyprivate clause provides a mechanism to use a private variable to broadcast a value2
from the data environment of one implicit task to the data environments of the other implicit tasks3
that belong to the innermost enclosing parallel region. The effect of the copyprivate clause on4
the specified list items occurs after the execution of the structured block associated with the5
construct on which the clause is specified, and before any of the threads in the team have left the6
barrier at the end of the construct. To avoid data races, concurrent reads or updates of the list item7
must be synchronized with the update of the list item that occurs as a result of the copyprivate8
clause if, for example, the nowait clause is used to remove the barrier.9

C / C++
In all other implicit tasks that belong to the parallel region, each specified list item becomes defined10
with the value of the corresponding list item in the implicit task associated with the thread that11
executed the structured block. For variables of non-array type, the definition occurs by copy12
assignment. For an array of elements of non-array type, each element is copied by copy assignment13
from an element of the array in the data environment of the implicit task that is associated with the14
thread that executed the structured block to the corresponding element of the array in the data15
environment of the other implicit tasks.16

C / C++
C++

For class types, a copy assignment operator is invoked. The order in which copy assignment17
operators for different variables of class type are called is unspecified.18

C++
Fortran

If a list item does not have the POINTER attribute then, in all other implicit tasks that belong to the19
parallel region, the list item becomes defined as if by intrinsic assignment with the value of the20
corresponding list item in the implicit task that is associated with the thread that executed the21
structured block. If the list item has a type bound procedure as a defined assignment, the22
assignment is performed by the defined assignment.23

If the list item has the POINTER attribute then, in all other implicit tasks that belong to the parallel24
region, the list item receives, as if by pointer assignment, the same association status as the25
corresponding list item in the implicit task that is associated with the thread that executed the26
structured block.27

The order in which any final subroutines for different variables of a finalizable type are called is28
unspecified.29

Fortran
Restrictions30
Restrictions to the copyprivate clause are as follows:31

• All list items that appear in a copyprivate clause must be either threadprivate or private32
in the enclosing context.33

CHAPTER 7. DATA ENVIRONMENT 273

C++
• A variable of class type (or array thereof) that appears in a copyprivate clause requires1

an accessible unambiguous copy assignment operator for the class type.2

C++
Fortran

• A common block that appears in a copyprivate clause must be threadprivate.3

• Pointers with the INTENT(IN) attribute must not appear in a copyprivate clause.4

• Any list item with the ALLOCATABLE attribute must have the allocation status of allocated5
when the intrinsic assignment is performed.6

Fortran
Cross References7

• List Item Privatization, see Section 7.48

• single Construct, see Section 13.19

• threadprivate Directive, see Section 7.310

7.9 Data-Mapping Control11

This section describes the available mechanisms for controlling how data are mapped to device data12
environments. It covers implicitly determined data-mapping attribute rules for variables referenced13
in target constructs, clauses that support explicitly determined data-mapping attributes, and14
clauses for mapping variables with static storage duration and making procedures available on other15
devices. It also describes how mappers may be defined and referenced to control the mapping of16
data with user-defined types. When storage is mapped, the programmer must ensure, by adding17
proper synchronization or by explicit unmapping, that the storage does not reach the end of its18
lifetime before it is unmapped.19

7.9.1 map-type Modifier20

Modifiers21
Name Modifies Type Properties
map-type all arguments Keyword: from, storage,

to, tofrom
default22

Clauses23
map24

Additional information25
The value alloc may be used on map-entering constructs and the value release may be used26
on map-exiting constructs with identical meaning to the value storage.27

274 OpenMP API – Version 6.0 November 2024

Semantics1
The map-type modifier determines the type of mapping operations that are performed as a result of2
the clause on which it appears. All mapping operations update the reference count of corresponding3
storage in a device data environment, which may entail creation or removal of that storage. The4
storage map-type never includes an assignment operation. If the map-type is to, from, or5
tofrom, the map-type is an assigning map type and may include an assignment operation to or6
from the target device.7

The map-type is a map-entering map type if it is to, tofrom, or storage. The map-type is a8
map-exiting map type if it is from, tofrom, or storage. If the map-type is a map-entering map9
type, the clause on which the map-type appears is a map-entering clause. If the map-type is a10
map-exiting map type, the clause on which the map-type appears is a map-exiting clause.11

When a map-type is not specified for a clause on which it may be specified, the map-type defaults to12
storage if the delete-modifier is present on the clause or if the list item for which the map-type is13
not specified is an assumed-size array. Otherwise, the map-type defaults to tofrom if a map-type14
is not specified for a clause on which it may be specified, unless otherwise specified.15

Fortran
When a map-type is not specified for a clause on which it may be specified, the map-type defaults to16
storage if the list item for which the map-type is not specified is an assumed-type variable.17

Fortran
Restrictions18
Restrictions to the map-type modifier are as follows:19

• If the clause on which the map-type appears is specified on a construct that is map-entering20
but not map-exiting, the map-type must be map-entering.21

• If the clause on which the map-type appears is specified on a construct that is map-exiting but22
not map-entering, the map-type must be map-exiting.23

Cross References24

• map Clause, see Section 7.9.625

7.9.2 Map Type Decay26

Map-type decay is a process that derives an output map type from a given input map type according27
to an underlying map type. This process is defined by Table 7.5, where the output map type is28
shown at the row and column that corresponds to the underlying map type and input map type,29
respectively. When map-type decay determines the map-type modifier to apply for a map clause on30
a data-mapping constituent directive of a composite construct, the input map type is given by the31
map-type modifier specified by the map clause on the composite construct and the underlying map32
type is respectively to or from for a map-entering constituent directive or a map-exiting33
constituent directive. When map-type decay is applied by an invoked mapper, the underlying map34

CHAPTER 7. DATA ENVIRONMENT 275

TABLE 7.5: Map-Type Decay of Map Type Combinations

storage to from tofrom
storage storage storage storage storage
to storage to storage to
from storage storage from from
tofrom storage to from tofrom

type is given by the map-type modifier of the map clause specified by the mapper and the input map1
type is given by the map-type modifier of the map clause that invokes the mapper.2

7.9.3 Implicit Data-Mapping Attribute Rules3

When specified, data-mapping attribute clauses on target directives determine the data-mapping4
attributes for variables referenced in a target construct. Otherwise, the first matching rule from5
the following list determines the implicitly determined data-mapping attribute (or implicitly6
determined data-sharing attribute) for variables referenced in a target construct that do not have7
a predetermined data-sharing attribute according to Section 7.1.1. References to structure elements8
or array elements are treated as references to the structure or array, respectively, for the purposes of9
implicitly determined data-mapping attributes or implicitly determined data-sharing attributes of10
variables referenced in a target construct.11

• If a variable appears in an enter or link clause on a declare target directive that does not12
have a device_type clause with the nohost device-type-description then it is treated as13
if it had appeared in a map clause with a map-type of tofrom.14

• If a variable is the base variable of a list item in a reduction, lastprivate or linear15
clause on a compound target construct then the list item is treated as if it had appeared in a16
map clause with a map-type of tofrom if Section 19.2 specifies this behavior.17

• If a variable is the base variable of a list item in an in_reduction clause on a target18
construct then it is treated as if the list item had appeared in a map clause with a map-type of19
tofrom and an always-modifier.20

• If a defaultmap clause is present for the category of the variable and specifies an implicit21
behavior other than default, the data-mapping attribute or data-sharing attribute is22
determined by that clause.23

C++
• If the target construct is within a class non-static member function, and a variable is an24

accessible data member of the object for which the non-static member function is invoked,25
the variable is treated as if the this[:1] expression had appeared in a map clause with a26
map-type of tofrom. Additionally, if the variable is of type pointer or reference to pointer,27

276 OpenMP API – Version 6.0 November 2024

it is also treated as if it is the array base of a zero-offset assumed-size array that appears in a1
map clause with the storage map-type.2

• If the this keyword is referenced inside a target construct within a class non-static3
member function, it is treated as if the this[:1] expression had appeared in a map clause4
with a map-type of tofrom.5

C++
C / C++

• A variable that is of type pointer, but is neither a pointer to function nor (for C++) a pointer6
to a member function, is treated as if it is the array base of a zero-offset assumed-size array7
that appears in a map clause with the storage map-type.8

C / C++
C++

• A variable that is of type reference to pointer, but is neither a reference to pointer to function9
nor a reference to a pointer to a member function, is treated as if it is the array base of a10
zero-offset assumed-size array that appears in a map clause with the storage map-type.11

C++
Fortran

• If a compound target construct is associated with a DO CONCURRENT loop, a variable that12
has REDUCE or SHARED locality in the loop is treated as if it had appeared in a map clause13
with a map-type of tofrom.14

Fortran
• If a variable is not a scalar variable then it is treated as if it had appeared in a map clause with15

a map-type of tofrom.16

Fortran
• If a scalar variable has the TARGET, ALLOCATABLE or POINTER attribute then it is treated17

as if it had appeared in a map clause with a map-type of tofrom.18

• If a variable is an assumed-type variable then it is treated as if it had appeared in a map19
clause with a map-type of storage.20

• A procedure pointer is treated as if it had appeared in a firstprivate clause.21

Fortran
• If the above rules do not apply then a scalar variable is not mapped but instead has an22

implicitly determined data-sharing attribute of firstprivate (see Section 7.1.1).23

CHAPTER 7. DATA ENVIRONMENT 277

7.9.4 Mapper Identifiers and mapper Modifiers1

Modifiers2
Name Modifies Type Properties
mapper locator-list Complex, name: mapper

Arguments:
mapper-identifier OpenMP

identifier (default)

unique
3

Clauses4
from, map, to5

Semantics6
Mapper identifiers can be used to identify uniquely the mapper used in a map or data-motion clause7
through a mapper modifier, which is a unique, complex modifier. A declare_mapper directive8
defines a mapper identifier that can later be specified in a mapper modifier as its9
modifier-parameter-specification. Each mapper identifier is a base language identifier or default10
where default is the default mapper for all types.11

A non-structure type T has a predefined default mapper that is defined as if by the following12
declare_mapper directive:13

C / C++
#pragma omp declare_mapper(T v) map(tofrom: v)14

C / C++
Fortran

!$omp declare_mapper(T :: v) map(tofrom: v)15

Fortran
A structure type T has a predefined default mapper that is defined as if by a declare_mapper16
directive that specifies v in a map clause with the storage map-type and each structure element17
of v in a map clause with the tofrom map-type.18

A declare_mapper directive that uses the default mapper identifier overrides the predefined19
default mapper for the given type, making it the default mapper for variables of that type.20

Cross References21

• declare_mapper Directive, see Section 7.9.1022

• from Clause, see Section 7.10.223

• Data-Motion Clauses, see Section 7.1024

• map Clause, see Section 7.9.625

• to Clause, see Section 7.10.126

278 OpenMP API – Version 6.0 November 2024

7.9.5 ref-modifier Modifier1

Modifiers2
Name Modifies Type Properties
ref-modifier all arguments Keyword: ref_ptee,

ref_ptr, ref_ptr_ptee
unique3

Clauses4
map5

Semantics6
The ref-modifier for a given clause indicates how to interpret the identity of a list item argument of7
that clause. If the ref_ptr or ref_ptr_ptee ref-modifier is specified, the semantics of the8
clause apply to the referring pointer of the referencing variable. If the ref_ptee or9
ref_ptr_ptee ref-modifier is specified and a referenced pointee of the referencing variable10
exists, the semantics of the clause apply to the referenced pointee.11

Restrictions12
Restrictions to the ref-modifier are as follows:13

• A list item that appears in a clause with the ref-modifier must be a referencing variable.14

C / C++
• A list item that appears in a clause for which the ref-modifier is specified must have a15

containing structure.16

C / C++
Cross References17

• map Clause, see Section 7.9.618

7.9.6 map Clause19

Name: map Properties: data-environment attribute, data-
mapping attribute20

Arguments21
Name Type Properties
locator-list list of locator list item

type
default22

CHAPTER 7. DATA ENVIRONMENT 279

Modifiers1
Name Modifies Type Properties
always-modifier locator-list Keyword: always map-type-

modifying
close-modifier locator-list Keyword: close map-type-

modifying
present-modifier locator-list Keyword: present map-type-

modifying
self-modifier locator-list Keyword: self map-type-

modifying
ref-modifier all arguments Keyword: ref_ptee,

ref_ptr, ref_ptr_ptee
unique

delete-modifier locator-list Keyword: delete map-type-
modifying

mapper locator-list Complex, name: mapper
Arguments:
mapper-identifier OpenMP

identifier (default)

unique

iterator locator-list Complex, name: iterator
Arguments:
iterator-specifier list of iter-

ator specifier list item
type (default)

unique

map-type all arguments Keyword: from, storage,
to, tofrom

default

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

2

Directives3
declare_mapper, target, target_data, target_enter_data,4
target_exit_data5

Semantics6
The map clause specifies how an original list item is mapped from the data environment of the7
current task to a corresponding list item in the device data environment of the device identified by8
the construct. The list items that appear on a map clause may include array sections, assumed-size9
arrays, and structure elements. A list item in a map clause may reference any iterator-identifier10
defined in its iterator modifier. A list item may appear more than once in the map clauses that are11
specified on the same directive.12

C / C++
If a list item is a zero-length array section that has a single array subscript, the behavior is as if the13
list item is an assumed-size array that is instead mapped with the storage map-type.14

C / C++

280 OpenMP API – Version 6.0 November 2024

When a list item in a map clause that is not an assumed-size array is mapped on a map-entering1
construct and corresponding storage is created in the device data environment on entry to the region,2
the list item becomes a matchable candidate with an associated starting address, ending address,3
and base address that define its mapped address range and extended address range. The current set4
of matchable candidates consists of any map clause list item on the construct that is a matchable5
candidate and all matchable candidates that were previously mapped and are still mapped.6

A list item in a map clause that is an assumed-size array is treated as if an array section, with an7
array base, lower bound and length determined as follows, is substituted in its place if a matched8
candidate is found. If the assumed-size array is an array section, the array base of the substitute9
array section is the same as for the assumed-size array; otherwise, the array base is the10
assumed-size array. If the mapped address range of a matchable candidate includes the first storage11
location of the assumed-size array, it is a matched candidate. If a matchable candidate does not12
exist for which the mapped address range includes the first storage location of the assumed-size13
array then a matchable candidate is a matched candidate if its extended address range includes the14
first storage location of the assumed-size array. If multiple matched candidates exist, an arbitrary15
one of them is the found matched candidate. The lower bound and length of the substitute array16
section are set such that its storage is identical to the storage of the found matched candidate. If a17
matched candidate is not found then a substitute array section is not formed and no further actions18
that are described in this section are performed for the list item.19

Fortran
The list items may include assumed-type variables and procedure pointers.20

If a list item in a map clause is an assumed-type variable for which the storage location is included21
in the mapped address range of a matchable candidate, the list item is treated as if it refers to the22
storage of that matchable candidate. Otherwise, no further actions that are described in this section23
are performed for the list item.24

Fortran
If a list item is an array or array section, the array elements become implicit list items with the same25
modifiers (including the map-type) specified in the clause. If the array or array section is implicitly26
mapped and corresponding storage exists in the device data environment prior to a task27
encountering the construct on which the map clause appears, only those array elements that have28
corresponding storage are implicitly mapped.29

If a mapper modifier is not present, the behavior is as if a mapper modifier was specified with the30
default parameter. The map behavior of a list item in a map clause is modified by a visible31
user-defined mapper (see Section 7.9.10) if the mapper-identifier of the mapper modifier is defined32
for a base language type that matches the type of the list item. Otherwise, the predefined default33
mapper for the type of the list item applies. The effect of the mapper modifier is to remove the list34
item from the map clause and to apply the clauses specified in the declared mapper to the construct35
on which the map clause appears. In the clauses applied by the mapper, references to var are36
replaced with references to the list item and the map-type is replaced with the output map type that37
is determined according to the rules of map-type decay. If any modifier with the38

CHAPTER 7. DATA ENVIRONMENT 281

map-type-modifying property appears in the map clause then the effect is as if that modifier1
appears in each map clause specified in the declared mapper.2

Unless otherwise specified, if a list item is a referencing variable then the effect of the map clause is3
applied to its referring pointer and, if a referenced pointee exists, its referenced pointee. For the4
purposes of the map clause, the referenced pointee is treated as if its referring pointer is the5
referring pointer of the referencing variable.6

C++
If a list item is a reference and it does not have a containing structure then the map clause is applied7
only to its referenced pointee.8

C++
Fortran

If a component of a derived type list item is a map clause list item that results from the predefined9
default mapper for that derived type, and if the derived type component is not an explicit list item or10
the array base of an explicit list item in a map clause on the construct then:11

• If it has the POINTER attribute, it is attach-ineligible; and12

• If it has the ALLOCATABLE attribute and an allocated allocation status, and it is present in13
the device data environment when the construct is encountered, the map clause may treat its14
allocation status as if it is unallocated if the corresponding component does not have15
allocated storage.16

If a list item in a map clause is an associated pointer that is attach-ineligible or the pointer is the17
base pointer of another list item in a map clause on the same construct then the effect of the map18
clause does not apply to its pointer target.19

If a list item is a procedure pointer, it is attach-ineligible.20

Fortran
C++

If a list item has a closure type that is associated with a lambda expression, it is mapped as if it has21
a structure type. For each variable that is captured by reference by the lambda expression, the22
behavior is as if the closure type contains a non-static data member that is a reference to that23
variable unless otherwise specified. If a variable that is captured by reference is a reference that24
binds to an object with static storage duration, a corresponding non-static data member might not25
exist in the closure type. For the corresponding list item of closure type, references in the body of26
the lambda expression to a variable that is captured by reference refer to the corresponding storage27
of the variable in the device data environment. For each pointer, that is not a function pointer, that28
is captured by the lambda expression, the behavior is as if the pointer or, if a corresponding pointer29
member exists, the corresponding pointer member of the closure object is the base pointer of a30
zero-offset assumed-size array that appears as a list item in a map clause with the storage31
map-type.32

282 OpenMP API – Version 6.0 November 2024

If the this pointer is captured by a lambda expression in class scope, and a variable of the1
associated closure type is later mapped explicitly or implicitly with its full static type, the behavior2
is as if the object to which this points is also mapped as an array section, of length one, for which3
the base pointer is the non-static data member that corresponds to the this pointer in the closure4
object.5

C++
If a map clause with a present-modifier appears on a construct and on entry to the region the6
corresponding list item is not present in the device data environment, runtime error termination is7
performed.8

If a map-entering clause has the self-modifier, the resulting mapping operations are self maps.9

The effective map clause set of a data-mapping construct is the set of all map clauses that apply to10
that construct, including implicit map clauses and map clauses applied by mappers. The effective11
map clause set of a construct determines the set of mappable storage blocks for that construct. All12
map clause list items that share storage or have the same containing structure or containing array13
result in a single mappable storage block that contains the storage of the list items, unless otherwise14
specified. The storage for each other map clause list item becomes a distinct mappable storage15
block. If a list item is a referencing variable that has a containing structure, the behavior is as if16
only the storage for its referring pointer is part of that structure. In general, if a list item is a17
referencing variable then the storage for its referring pointer and its referenced pointee occupy18
distinct mappable storage blocks.19

For each mappable storage block that is determined by the effective map clause set of a20
map-entering construct, on entry to the region the following sequence of steps occurs as if21
performed as a single atomic operation:22

1. If a corresponding storage block is not present in the device data environment then:23

a) A corresponding storage block, which may share storage with the original storage24
block, is created in the device data environment of the target device;25

b) The corresponding storage block receives a reference count that is initialized to zero.26
This reference count also applies to any part of the corresponding storage block.27

2. The reference count of the corresponding storage block is incremented by one.28

3. For each map clause list item in the effective map clause set that is contained by the29
mappable storage block:30

a) If the reference count of the corresponding storage block is one, a new list item with31
language-specific attributes derived from the original list item is created in the32
corresponding storage block. The reference count of the new list item is always equal to33
the reference count of its storage.34

b) If the reference count of the corresponding list item is one or if the always-modifier is35
specified, and if the map type is to, the corresponding list item is updated as if the list36
item appeared in a to clause on a target_update directive.37

CHAPTER 7. DATA ENVIRONMENT 283

If the effect of the map clauses on a construct would assign the value of an original list item to a1
corresponding list item more than once then an implementation is allowed to ignore additional2
assignments of the same value to the corresponding list item.3

In all cases on entry to the region, concurrent reads or updates of any part of the corresponding list4
item must be synchronized with any update of the corresponding list item that occurs as a result of5
the map clause to avoid data races.6

For map clauses on map-entering constructs, if any list item has a base pointer or referring pointer7
for which a corresponding pointer exists in the device data environment after all mappable storage8
blocks are mapped, and either a new list item or the corresponding pointer is created in the device9
data environment on entry to the region, then pointer attachment is performed and the10
corresponding pointer becomes an attached pointer to the corresponding list item via corresponding11
pointer initialization.12

The original list item and corresponding list item may share storage such that writes to either item13
by one task followed by a read or write of the other list item by another task without intervening14
synchronization can result in data races. They are guaranteed to share storage if the mapping15
operation is a self map, if the map clause appears on a data-mapping construct for which the target16
device is the encountering device, or if the corresponding list item has an attached pointer that17
shares storage with its original pointer.18

For each mappable storage block that is determined by the effective map clause set of a map-exiting19
construct, and for which corresponding storage is present in the device data environment, on exit20
from the region the following sequence of steps occurs as if performed as a single atomic operation:21

1. For each map clause list item in the effective map clause set that is contained by the22
mappable storage block:23

a) If the reference count of the corresponding list item is one or if the always-modifier or24
delete-modifier is specified, and if the map type is from, the original list item is25
updated as if the list item appeared in a from clause on a target_update directive.26

2. If the delete-modifier is not present and the reference count of the corresponding storage27
block is finite then the reference count is decremented by one.28

3. If the delete-modifier is present and the reference count of the corresponding storage block is29
finite then the reference count is set to zero.30

4. If the reference count of the corresponding storage block is zero, all storage to which that31
reference count applies is removed from the device data environment.32

If the effect of the map clauses on a construct would assign the value of a corresponding list item to33
an original list item more than once, then an implementation is allowed to ignore additional34
assignments of the same value to the original list item.35

In all cases on exit from the region, concurrent reads or updates of any part of the original list item36
must be synchronized with any update of the original list item that occurs as a result of the map37
clause to avoid data races.38

284 OpenMP API – Version 6.0 November 2024

If a single contiguous part of the original storage of a list item that results from an implicitly1
determined data-mapping attribute has corresponding storage in the device data environment prior2
to a task encountering the construct on which the map clause appears, only that part of the original3
storage will have corresponding storage in the device data environment as a result of the map clause.4

If a list item with an implicitly determined data-mapping attribute does not have any corresponding5
storage in the device data environment prior to a task encountering the construct associated with the6
map clause, and one or more contiguous parts of the original storage are either list items or base7
pointers to list items that are explicitly mapped on the construct, only those parts of the original8
storage will have corresponding storage in the device data environment as a result of the map9
clauses on the construct.10

C / C++
If a new list item is created then the new list item will have the same static type as the original list11
item, and language-specific attributes of the new list item, including size and alignment, are12
determined by that type.13

C / C++
C++

If corresponding storage that differs from the original storage is created in a device data14
environment, all new list items that are created in that corresponding storage are default initialized.15
Default initialization for new list items of class type, including their data members, is performed as16
if with an implicitly-declared default constructor and as if non-static data member initializers are17
ignored.18

C++
Fortran

If a new list item is created then the new list item will have the same type, type parameter, and rank19
as the original list item. The new list item inherits all default values for the type parameters from20
the original list item.21

Fortran
The close-modifier is a hint that the corresponding storage should be close to the target device.22

If a map-entering clause specifies a self map for a list item then runtime error termination is23
performed if any of the following is true:24

• The original list item is not accessible and cannot be made accessible from the target device;25

• The corresponding list item is present prior to a task encountering the construct on which the26
clause appears, and the corresponding storage differs from the original storage; or27

• The list item is a pointer that would be assigned a different value as a result of pointer28
attachment.29

CHAPTER 7. DATA ENVIRONMENT 285

Execution Model Events1
The target-map event occurs in a thread that executes the outermost region that corresponds to an2
encountered device construct with a map clause, after the target-task-begin event for the device3
construct and before any mapping operations are performed. The target-data-op-begin event occurs4
before a thread initiates a data operation on the target device that is associated with a map clause, in5
the outermost region that corresponds to the encountered construct. The target-data-op-end event6
occurs after a thread initiates a data operation on the target device that is associated with a map7
clause, in the outermost region that corresponds to the encountered construct.8

Tool Callbacks9
A thread dispatches one or more registered target_map_emi callbacks for each occurrence of a10
target-map event in that thread. The callback occurs in the context of the target task. A thread11
dispatches a registered target_data_op_emi callback with ompt_scope_begin as its12
endpoint argument for each occurrence of a target-data-op-begin event in that thread. Similarly, a13
thread dispatches a registered target_data_op_emi callback with ompt_scope_end as its14
endpoint argument for each occurrence of a target-data-op-end event in that thread.15

Restrictions16
Restrictions to the map clause are as follows:17

• Two list items of the map clauses on the same construct must not share original storage18
unless one of the following is true: they are the same list item, one is the containing structure19
of the other, at least one is an assumed-size array, or at least one is implicitly mapped due to20
the list item also appearing in a use_device_addr clause.21

• If the same list item appears more than once in map clauses on the same construct, the map22
clauses must specify the same mapper modifier.23

• A variable that is a groupprivate variable or a device-local variable must not appear as a list24
item in a map clause.25

• If a list item is an array or an array section, it must specify contiguous storage.26

• If an expression that is used to form a list item in a map clause contains an iterator identifier27
that is defined by an iterator modifier, the list item instances that would result from different28
values of the iterator must not have the same containing array and must not have base29
pointers that share original storage.30

• If multiple list items are explicitly mapped on the same construct and have the same31
containing array or have base pointers that share original storage, and if any of the list items32
do not have corresponding list items that are present in the device data environment prior to a33
task encountering the construct, then the list items must refer to the same array elements of34
either the containing array or the implicit array of the base pointers.35

• If any part of the original storage of a list item that is explicitly mapped by a map clause has36
corresponding storage in the device data environment prior to a task encountering the37
construct associated with the map clause, all of the original storage must have corresponding38
storage in the device data environment prior to the task encountering the construct.39

286 OpenMP API – Version 6.0 November 2024

• If a list item in a map clause has corresponding storage in the device data environment, all1
corresponding storage must correspond to a single mappable storage block that was2
previously mapped.3

• If a list item is an element of a structure, and a different element of the structure has a4
corresponding list item in the device data environment prior to a task encountering the5
construct associated with the map clause, then the list item must also have a corresponding6
list item in the device data environment prior to the task encountering the construct.7

• Each list item must have a mappable type.8

• If a mapper modifier appears in a map clause, the type on which the specified mapper9
operates must match the type of the list items in the clause.10

• Handles for memory spaces and memory allocators must not appear as list items in a map11
clause.12

• If a list item is an assumed-size array, multiple matched candidates must not exist unless they13
are subobjects of the same containing structure.14

• If a list item is an assumed-size array, the map-type must be storage.15

• If a list item appears in a map clause with the self-modifier, any other list item in a map16
clause on the same construct that has the same base variable or base pointer must also be17
specified with the self-modifier.18

C++
• If a list item has a polymorphic class type and its static type does not match its dynamic type,19

the behavior is unspecified if the map clause is specified on a map-entering construct and a20
corresponding list item is not present in the device data environment prior to a task21
encountering the construct.22

• No type mapped through a reference may contain a reference to its own type, or any23
references to types that could produce a cycle of references.24

• If a given variable is captured by reference by the associated lambda expression of a list item25
that has a closure type and that variable is a reference that binds to a variable with static26
storage duration, the variable to which it binds must appear in an enter clause or a link27
clause on a declare target directive and must have corresponding storage in the device data28
environment prior to a task encountering the construct.29

C++
C / C++

• A list item cannot be a variable that is a member of a structure of a union type.30

• A bit-field cannot appear in a map clause.31

• A pointer that has a corresponding pointer that is an attached pointer must not be modified32
for the duration of the lifetime of the list item to which the corresponding pointer is attached33
in the device data environment.34

C / C++

CHAPTER 7. DATA ENVIRONMENT 287

Fortran
• The association status of a list item that is a pointer must not be undefined unless it is a1

structure component and it results from a predefined default mapper.2

• If a list item of a map clause is an allocatable variable or is the subobject of an allocatable3
variable, the original list item must not be allocated, deallocated or reshaped while the4
corresponding list item has allocated storage.5

• A pointer that has a corresponding pointer that is an attached pointer and is associated with a6
given pointer target must not become associated with a different pointer target for the7
duration of the lifetime of the list item to which the corresponding pointer is attached in the8
device data environment.9

• If a list item has polymorphic type, the behavior is unspecified.10

• If an array section is mapped and the size of the array section is smaller than that of the11
whole array, the behavior of referencing the whole array in a target region is unspecified.12

• A list item must not be a complex part designator.13

• If a list item is an assumed-type variable, the map-type must be storage.14

Fortran
Cross References15

• declare_mapper Directive, see Section 7.9.1016

• Array Sections, see Section 5.2.517

• iterator Modifier, see Section 5.2.618

• Mapper Identifiers and mapper Modifiers, see Section 7.9.419

• map-type Modifier, see Section 7.9.120

• OMPT scope_endpoint Type, see Section 33.2721

• target Construct, see Section 15.822

• target_data Construct, see Section 15.723

• target_data_op_emi Callback, see Section 35.724

• target_enter_data Construct, see Section 15.525

• target_exit_data Construct, see Section 15.626

• target_map_emi Callback, see Section 35.927

• target_update Construct, see Section 15.928

288 OpenMP API – Version 6.0 November 2024

7.9.7 enter Clause1

Name: enter Properties: data-environment attribute, data-
mapping attribute2

Arguments3
Name Type Properties
list list of extended list item

type
default4

Modifiers5
Name Modifies Type Properties
automap-modifier list Keyword: automap default
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
declare_target8

Semantics9
The enter clause is a data-mapping attribute clause.10

If a procedure name appears in an enter clause in the same compilation unit in which the11
definition of the procedure occurs then a device-specific version of the procedure is created for all12
devices to which the directive of the clause applies.13

C / C++
If a variable appears in an enter clause in the same compilation unit in which the definition of the14
variable occurs then a corresponding list item to the original list item is created in the device data15
environment of all devices to which the directive of the clause applies.16

C / C++
Fortran

If a variable that is host associated appears in an enter clause then a corresponding list item to the17
original list item is created in the device data environment of all devices to which the directive of18
the clause applies.19

Fortran
If a variable appears in an enter clause then the corresponding list item in the device data20
environment of each device to which the directive of the clause applies is initialized once, in the21
manner specified by the OpenMP program, but at an unspecified point in the OpenMP program22
prior to the first reference to that list item. The list item is never removed from those device data23
environments, as if its reference count was initialized to positive infinity, unless otherwise specified.24

If a list item is a referencing variable, the effect of the enter clause applies to its referring pointer.25

CHAPTER 7. DATA ENVIRONMENT 289

Fortran
If a list item is an allocatable variable, the automap-modifier is present, and the variable is allocated1
by an ALLOCATE statement or deallocated by a DEALLOCATE statement where the enter clause2
is visible, the behavior is as follows:3

• Upon allocation due to the ALLOCATE statement, the list item is mapped to the device data4
environment of the default device as if it appeared as a list item in a map clause on a5
target_enter_data directive; and6

• Immediately prior to the deallocation due to the DEALLOCATE statement, the list item is7
removed from the device data environment of the default device as if it appeared as a list item8
in a map clause with the delete-modifier on a target_exit_data directive.9

Fortran
Restrictions10
Restrictions to the enter clause are as follows:11

• Each list item must have a mappable type.12

• Each list item must have static storage duration.13

C / C++
• The automap-modifier must not be present.14

C / C++
Fortran

• If the automap-modifier is present, each list item must be an allocatable variable.15

Fortran
Cross References16

• declare_target Directive, see Section 9.9.117

7.9.8 link Clause18

Name: link Properties: data-environment attribute19

Arguments20
Name Type Properties
list list of variable list item

type
default21

Modifiers22
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique23

290 OpenMP API – Version 6.0 November 2024

Directives1
declare_target2

Semantics3
The link clause supports compilation of device procedures that refer to variables with static4
storage duration that appear as list items in the clause. The declare_target directive on which5
the clause appears does not map the list items. Instead, they are mapped according to the6
data-mapping rules described in Section 7.9.3.7

Restrictions8
Restrictions to the link clause are as follows:9

• Each list item must have a mappable type.10

• Each list item must have static storage duration.11

Cross References12

• declare_target Directive, see Section 9.9.113

• Data-Mapping Control, see Section 7.914

7.9.9 defaultmap Clause15

Name: defaultmap Properties: unique, post-modified16

Arguments17
Name Type Properties
implicit-behavior Keyword: default,

firstprivate,
from, none,
present, private,
self, storage, to,
tofrom

default

18

Modifiers19
Name Modifies Type Properties
variable-category implicit-behavior Keyword: aggregate,

all, allocatable,
pointer, scalar

default

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

20

Directives21
target22

Additional information23
The value alloc may also be specified as implicit-behavior with identical meaning to the value24
storage.25

CHAPTER 7. DATA ENVIRONMENT 291

Semantics1
The defaultmap clause controls the implicitly determined data-mapping attributes or implicitly2
determined data-sharing attributes of certain variables that are referenced in a target construct,3
in accordance with the rules given in Section 7.9.3. The variable-category specifies the variables4
for which the attribute may be set, and the attribute is specified by implicit-behavior. If no5
variable-category is specified in the clause then the effect is as if all was specified for the6
variable-category.7

C / C++
The scalar variable-category specifies non-pointer scalar variables.8

C / C++
Fortran

The scalar variable-category specifies non-pointer and non-allocatable scalar variables. The9
allocatable variable-category specifies variables with the ALLOCATABLE attribute.10

Fortran
The pointer variable-category specifies variables of pointer type. The aggregate11
variable-category specifies aggregate variables. Finally, the all variable-category specifies all12
variables.13

If implicit-behavior corresponds to a map-type, the attribute is a data-mapping attribute determined14
by an implicit map clause with the specified map-type. If implicit-behavior is firstprivate,15
the attribute is a data-sharing attribute of firstprivate. If implicit-behavior is present, the16
attribute is a data-mapping attribute determined by an implicit map clause with a map-type of17
storage and the present-modifier. If implicit-behavior is self, the attribute is a data-mapping18
attribute determined by an implicit map clause with a map-type of storage and the self-modifier.19
If implicit-behavior is none then no implicitly determined data-mapping attributes or implicitly20
determined data-sharing attributes are defined for variables in variable-category, except for21
variables that appear in the enter or link clause of a declare_target directive. If22
implicit-behavior is default then the clause has no effect.23

Restrictions24
Restrictions to the defaultmap clause are as follows:25

• A given variable-category may be specified in at most one defaultmap clause on a26
construct.27

• If a defaultmap clause specifies the all variable-category, no other defaultmap28
clause may appear on the construct.29

• If implicit-behavior is none, each variable that is specified by variable-category and is30
referenced in the construct but does not have a predetermined data-sharing attribute and does31
not appear in an enter or link clause on a declare_target directive must be32
explicitly listed in a data-environment attribute clause on the construct.33

292 OpenMP API – Version 6.0 November 2024

C / C++
• The specified variable-category must not be allocatable.1

C / C++
Cross References2

• Implicit Data-Mapping Attribute Rules, see Section 7.9.33

• target Construct, see Section 15.84

7.9.10 declare_mapper Directive5

Name: declare_mapper
Category: declarative

Association: unassociated
Properties: pure6

Arguments7
declare_mapper(mapper-specifier)8

Name Type Properties
mapper-specifier OpenMP mapper speci-

fier
default9

Clauses10
map11

Additional information12
The declare_mapper directive may alternatively be specified with declare mapper as the13
directive-name.14

Semantics15
User-defined mappers can be defined using the declare_mapper directive. The16
mapper-specifier argument declares the mapper using the following syntax:17

C / C++
[mapper-identifier :] type var18

C / C++
Fortran

[mapper-identifier :] type :: var19

Fortran
where mapper-identifier is a mapper identifier, type is a type that is permitted in a type-name list,20
and var is a base language identifier.21

The type and an optional mapper-identifier uniquely identify the mapper for use in a map clause or22
data-motion clause later in the OpenMP program.23

CHAPTER 7. DATA ENVIRONMENT 293

If mapper-identifier is not specified, the behavior is as if mapper-identifier is default.1

The variable declared by var is available for use in all map clauses on the directive, and no part of2
the variable to be mapped is mapped by default.3

The effect that a user-defined mapper has on either a map clause that maps a list item of the given4
base language type or a data-motion clause that invokes the mapper and updates a list item of the5
given base language type is to replace the map or update with a set of map clauses or updates6
derived from the map clauses specified by the mapper, as described in Section 7.9.6 and7
Section 7.10.8

A list item in a map clause that appears on a declare_mapper directive may include array9
sections.10

All map clauses that are introduced by a mapper are further subject to mappers that are in scope,11
except a map clause with list item var maps var without invoking a mapper.12

C++
The declare_mapper directive can also appear at locations in the OpenMP program at which a13
static data member could be declared. In this case, the visibility and accessibility of the declaration14
are the same as those of a static data member declared at the same location in the OpenMP15
program.16

C++
Restrictions17
Restrictions to the declare_mapper directive are as follows:18

• No instance of type can be mapped as part of the mapper, either directly or indirectly through19
another base language type, except the instance var that is passed as the list item. If a set of20
declare_mapper directives results in a cyclic definition then the behavior is unspecified.21

• The type must not declare a new base language type.22

• At least one map clause that maps var or at least one element of var is required.23

• List items in map clauses on the declare_mapper directive may only refer to the declared24
variable var and entities that could be referenced by a procedure defined at the same location.25

• If a mapper modifier is specified for a map clause, its parameter must be default.26

• Multiple declare_mapper directives that specify the same mapper-identifier for the same27
base language type or for compatible base language types, according to the base language28
rules, must not appear in the same scope.29

C
• type must be a struct or union type.30

C

294 OpenMP API – Version 6.0 November 2024

C++
• type must be a struct, union, or class type.1

• If type is a struct or class type, it must not be derived from any virtual base class.2

C++
Fortran

• type must not be an intrinsic type, a parameterized derived type, an enum type, or an3
enumeration type.4

Fortran
Cross References5

• map Clause, see Section 7.9.66

7.10 Data-Motion Clauses7

A data-motion clause specifies data movement between devices in a device set that is specified by8
the construct on which the clause appears, where one of the devices in the set is the encountering9
device and the remaining devices are target devices of the construct. Each data-motion clause10
specifies a data-motion attribute relative to the target devices.11

A data-motion clause specifies an OpenMP locator list as its argument. A corresponding list item12
and an original list item exist for each list item. If the corresponding list item is not present in the13
device data environment then no assignment occurs between the corresponding list item and the14
original list item. Otherwise, each corresponding list item in the device data environment has an15
original list item in the data environment of the encountering task. Assignment is performed to16
either the original list item or the corresponding list item as specified with the specific data-motion17
clauses. List items may reference any iterator-identifier defined in an iterator modifier on the18
clause. The list items may include array sections with stride expressions.19

C / C++
The list items may use shape-operators.20

C / C++
If a list item is an array or array section then it is treated as if it is replaced by each of its array21
elements in the clause.22

If the mapper modifier is not specified, the behavior is as if the modifier was specified with the23
default mapper identifier. The effect of a data-motion clause on a list item is modified by a24
visible user-defined mapper if a mapper modifier is specified with a mapper identifier for a type that25
matches the type of the list item. Otherwise, the predefined default mapper for the type of the list26
item applies. Each list item is replaced with the list items that the given mapper specifies are to be27
mapped with a compatible map type with respect to the data-motion attribute of the clause.28

CHAPTER 7. DATA ENVIRONMENT 295

If a present-modifier is specified and the corresponding list item is not present in the device data1
environment then runtime error termination is performed. For a list item that is replaced with a set2
of list items as a result of a user-defined mapper, the present-modifier only applies to those mapper3
list items that share storage with the original list item.4

If a list item is a referencing variable then the effect of the data-motion clause is applied only to its5
referenced pointee and only if the referenced pointee exists.6

Fortran
If a list item is an associated procedure pointer, the corresponding list item on the device is7
associated with the target procedure of the host device.8

Fortran
C / C++

On exit from the associated region, if the corresponding list item is an attached pointer, the original9
list item will have the value it had on entry to the region and the corresponding list item will have10
the value it had on entry to the region.11

C / C++
For each list item that is not an attached pointer, the value of the assigned list item is assigned the12
value of the other list item. To avoid data races, concurrent reads or updates of the assigned list13
item must be synchronized with the update of an assigned list item that occurs as a result of a14
data-motion clause.15

Restrictions16
Restrictions to data-motion clauses are as follows:17

• Each list item of locator-list must have a mappable type.18

• If an array appears as a list item in a data-motion clause and it has corresponding storage in19
the device data environment, the corresponding storage must correspond to a single20
mappable storage block that was previously mapped.21

• If a list item in a data-motion clause has corresponding storage in the device data22
environment, all corresponding storage must correspond to a single mappable storage block23
that was previously mapped.24

• If a mapper modifier appears in a data-motion clause, the specified mapper must operate on a25
type that matches either the type or array element type of each list item in the clause.26

Fortran
• The association status of a list item that is a pointer must not be undefined unless it is a27

structure component and it results from a predefined default mapper.28

Fortran

296 OpenMP API – Version 6.0 November 2024

Cross References1

• declare_mapper Directive, see Section 7.9.102

• device Clause, see Section 15.23

• from Clause, see Section 7.10.24

• Array Sections, see Section 5.2.55

• Array Shaping, see Section 5.2.46

• iterator Modifier, see Section 5.2.67

• target_update Construct, see Section 15.98

• to Clause, see Section 7.10.19

7.10.1 to Clause10

Name: to Properties: data-motion attribute11

Arguments12
Name Type Properties
locator-list list of locator list item

type
default13

Modifiers14
Name Modifies Type Properties
present-modifier locator-list Keyword: present default
mapper locator-list Complex, name: mapper

Arguments:
mapper-identifier OpenMP

identifier (default)

unique

iterator locator-list Complex, name: iterator
Arguments:
iterator-specifier list of iter-

ator specifier list item
type (default)

unique

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

15

Directives16
target_update17

CHAPTER 7. DATA ENVIRONMENT 297

Semantics1
The to clause is a data-motion clause that specifies data movement to the target devices from the2
encountering device so the corresponding list items are the assigned list items and the compatible3
map types are to and tofrom.4

C++
A list item for which a mapper does not exist is ignored if it has static storage duration and either it5
has the constexpr specifier or it is a non-mutable member of a structure that has the6
constexpr specifier.7

C++
Cross References8

• iterator Modifier, see Section 5.2.69

• target_update Construct, see Section 15.910

7.10.2 from Clause11

Name: from Properties: data-motion attribute12

Arguments13
Name Type Properties
locator-list list of locator list item

type
default14

Modifiers15
Name Modifies Type Properties
present-modifier locator-list Keyword: present default
mapper locator-list Complex, name: mapper

Arguments:
mapper-identifier OpenMP

identifier (default)

unique

iterator locator-list Complex, name: iterator
Arguments:
iterator-specifier list of iter-

ator specifier list item
type (default)

unique

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

16

Directives17
target_update18

Semantics19
The from clause is a data-motion clause that specifies data movement from the target devices to20
the encountering device so the original list items are the assigned list items and the compatible map21
types are from and tofrom.22

298 OpenMP API – Version 6.0 November 2024

C
A list item for which a mapper does not exist is ignored if it has the const specifier or if it is a1
member of a structure that has the const specifier.2

C
C++

A list item for which a mapper does not exist is ignored if it has the const or constexpr3
specifier or if it is a non-mutable member of a structure that has the const or constexpr4
specifier.5

C++
Cross References6

• iterator Modifier, see Section 5.2.67

• target_update Construct, see Section 15.98

7.11 uniform Clause9

Name: uniform Properties: data-environment attribute10

Arguments11
Name Type Properties
parameter-list list of parameter list item

type
default12

Modifiers13
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique14

Directives15
declare_simd16

Semantics17
The uniform clause declares one or more arguments to have an invariant value for all concurrent18
invocations of the function in the execution of a single SIMD loop.19

Restrictions20
Restrictions to the uniform clause are as follows:21

• Only named parameter list items can be specified in the parameter-list.22

Cross References23

• declare_simd Directive, see Section 9.824

CHAPTER 7. DATA ENVIRONMENT 299

7.12 aligned Clause1

Name: aligned Properties: data-environment attribute, post-
modified2

Arguments3
Name Type Properties
list list of variable list item

type
default4

Modifiers5
Name Modifies Type Properties
alignment list OpenMP integer expression positive, region

invariant, ultimate,
unique

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

6

Directives7
declare_simd, simd8

Semantics9
C / C++

The aligned clause declares that the object to which each list item points is aligned to the10
number of bytes expressed in alignment.11

C / C++
Fortran

The aligned clause declares that the target of each list item is aligned to the number of bytes12
expressed in alignment.13

Fortran
The alignment modifier specifies the alignment that the program ensures related to the list items. If14
the alignment modifier is not specified, implementation defined default alignments for SIMD15
instructions on the target platforms are assumed.16

Restrictions17
Restrictions to the aligned clause are as follows:18

• If the clause appears on a declare_simd directive, each list item must be a named19
parameter list item of the associated procedure.20

C
• The type of each list item must be an array or pointer type.21

C

300 OpenMP API – Version 6.0 November 2024

C++
• The type of each list item must be an array, pointer, reference to array, or reference to pointer1

type.2

C++
Fortran

• Each list item must be an array.3

Fortran
Cross References4

• declare_simd Directive, see Section 9.85

• simd Construct, see Section 12.46

7.13 groupprivate Directive7

Name: groupprivate
Category: declarative

Association: explicit
Properties: pure8

Arguments9
groupprivate(list)10

Name Type Properties
list list of variable list item

type
default11

Clauses12
device_type13

Semantics14
The groupprivate directive specifies that list items have the groupprivate attribute and15
therefore they are replicated such that each contention group receives its own copy. Each copy of16
the list item is uninitialized upon creation. The lifetime of a groupprivate variable is limited to the17
lifetime of all tasks in the contention group.18

For a device_type clause that is specified implicitly or explicitly on the directive, the behavior19
is as if the list items appear in a local clause on a declare target directive on which the same20
device_type clause is specified and at the same program point.21

All references to a variable in list in any task will refer to the groupprivate copy of that variable that22
is created for the contention group of the innermost enclosing implicit parallel region.23

Restrictions24
Restrictions to the groupprivate directive are as follows:25

• A task that executes in a particular contention group must not access the storage of a26
groupprivate copy of the list item that is created for a different contention group.27

• A variable that is declared with an initializer must not appear in a groupprivate directive.28

CHAPTER 7. DATA ENVIRONMENT 301

C / C++
• Each list item must be a file-scope, namespace-scope, or static block-scope variable.1

• No list item may have an incomplete type.2

• The address of a groupprivate variable must not be an address constant.3

• If any list item is a file-scope variable, the directive must appear outside any definition or4
declaration, and must lexically precede all references to any of the variables in the list.5

• If any list item is a namespace-scope variable, the directive must appear outside any6
definition or declaration other than the namespace definition itself and must lexically precede7
all references to any of the variables in the list.8

• Each variable in the list of a groupprivate directive at file, namespace, or class scope9
must refer to a variable declaration at file, namespace, or class scope that lexically precedes10
the directive.11

• If any list item is a static block-scope variable, the directive must appear in the scope of the12
variable and not in a nested scope and must lexically precede all references to any of the13
variables in the list.14

• Each variable in the list of a groupprivate directive in block scope must have static15
storage duration and must refer to a variable declaration in the same scope that lexically16
precedes the directive.17

• If a variable is specified in a groupprivate directive in one compilation unit, it must be18
specified in a groupprivate directive in every compilation unit in which it is declared.19

C / C++
C++

• If any list item is a static class member variable, the directive must appear in the class20
definition, in the same scope in which the member variable is declared, and must lexically21
precede all references the variable.22

• A groupprivate variable must not have an incomplete type or a reference type.23

C++
Fortran

• Each list item must be a named variable or a named common block; a named common block24
must appear between slashes.25

• The list argument must not include any coarrays or associate names.26

• The groupprivate directive must appear in the declaration section of a scoping unit in27
which the common block or variable is declared.28

• If a groupprivate directive that specifies a common block name appears in one29
compilation unit, then such a directive must also appear in every other compilation unit that30
contains a COMMON statement that specifies the same name. Each such directive must appear31
after the last such COMMON statement in that compilation unit.32

302 OpenMP API – Version 6.0 November 2024

• If a groupprivate variable or a groupprivate common block is declared with the BIND1
attribute, the corresponding C entities must also be specified in a groupprivate directive2
in the C program.3

• A variable may only appear as an argument in a groupprivate directive in the scope in4
which it is declared. It must not be an element of a common block or appear in an5
EQUIVALENCE statement.6

• A variable that appears as a list item in a groupprivate directive must be declared in the7
scope of a module or have the SAVE attribute, either explicitly or implicitly.8

• The effect of an access to a groupprivate variable in a DO CONCURRENT construct is9
unspecified.10

Fortran
Cross References11

• device_type Clause, see Section 15.112

• local Clause, see Section 7.1413

7.14 local Clause14

Name: local Properties: data-environment attribute15

Arguments16
Name Type Properties
list list of variable list item

type
default17

Modifiers18
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique19

Directives20
declare_target21

Semantics22
The local clause specifies that each list item has the device-local attribute. A reference to a list23
item on a given device will refer to a copy of the list item that is a device-local variable and is in24
memory associated with the device.25

Cross References26

• declare_target Directive, see Section 9.9.127

CHAPTER 7. DATA ENVIRONMENT 303

8 Memory Management1

This chapter defines directives, clauses and related concepts for managing memory used by2
OpenMP programs.3

8.1 Memory Spaces4

OpenMP memory spaces represent storage resources where variables can be stored and retrieved.5
Table 8.1 shows the list of predefined memory spaces. The selection of a given memory space6
expresses an intent to use storage with certain traits for the allocations. The actual storage resources7
that each memory space represents are implementation defined.8

TABLE 8.1: Predefined Memory Spaces

Memory space name Storage selection intent

omp_default_mem_space Represents the system default storage

omp_large_cap_mem_space Represents storage with large capacity

omp_const_mem_space Represents storage optimized for variables with con-
stant values

omp_high_bw_mem_space Represents storage with high bandwidth

omp_low_lat_mem_space Represents storage with low latency

Variables allocated in the omp_const_mem_space memory space may be initialized through9
the firstprivate clause or with compile-time constants for static and constant variables.10
Implementation defined mechanisms to provide the constant value of these variables may also be11
supported.12

Restrictions13
Restrictions to OpenMP memory spaces are as follows:14

• Variables in the omp_const_mem_space memory space may not be written.15

304 OpenMP API – Version 6.0 November 2024

8.2 Memory Allocators1

OpenMP memory allocators can be used by an OpenMP program to make allocation requests.2
When a memory allocator receives a request to allocate storage of a certain size, an allocation of3
logically contiguous memory in the resources of its associated memory space of at least the size4
that was requested will be returned if possible. This allocation will not overlap with any other5
existing allocation from a memory allocator.6

If an allocator is used to allocate memory for a variable with static storage duration that is not a7
local static variable then the task that requested the allocation is unspecified. If an allocator is used8
to allocate memory for a local static variable then the task that requested the allocation is considered9
to be the current task of the first thread that executes code in which the variable is visible.10

The behavior of the allocation process can be affected by the allocator traits that the user specifies.11
Table 8.2 shows the allowed allocator traits, their possible values and the default value of each trait.12

TABLE 8.2: Allocator Traits

Allocator Trait Allowed Values Default Value

sync_hint contended, uncontended,
serialized, private

contended

alignment Non-negative integer powers of 2 1 byte

access all, memspace, device, cgroup,
pteam, thread

memspace

pool_size Any positive integer Implementation de-
fined

fallback default_mem_fb, null_fb,
abort_fb, allocator_fb

See below

fb_data An allocator handle (none)

pinned true, false false

partition environment, nearest, blocked,
interleaved, partitioner

environment

pin_device Conforming device number (none)

preferred_device Conforming device number (none)

target_access single, multiple single

atomic_scope all, device device

table continued on next page

CHAPTER 8. MEMORY MANAGEMENT 305

table continued from previous page

Allocator Trait Allowed Values Default Value

part_size Positive integer value Implementation de-
fined

partitioner A memory partitioner handle (none)

partitioner_arg An integer value 0

The sync_hint trait describes the expected manner in which multiple threads may use the1
allocator. The values and their descriptions are:2

• contended: high contention is expected on the allocator; that is, many tasks are expected3
to request allocations simultaneously;4

• uncontended: low contention is expected on the allocator; that is, few tasks are expected5
to request allocations simultaneously;6

• serialized: one task at a time will request allocations with the allocator. Requesting two7
allocations simultaneously when specifying serialized results in unspecified behavior;8
and9

• private: the same thread will execute all tasks that request allocations with the allocator.10
Requesting an allocation from tasks that different threads execute, simultaneously or not,11
when specifying private results in unspecified behavior.12

Allocated memory will be byte aligned to at least the value specified for the alignment trait of13
the allocator. Some directives and routines can specify additional requirements on alignment14
beyond those described in this section.15

The access trait defines the access group of tasks that may access memory that is allocated by a16
memory allocator. If the value is all, the access group consists of all tasks that execute on all17
available devices. If the value is memspace, the access group consists of all tasks that execute on18
all devices that are associated with the allocator. If the value is device, the access group consists19
of all tasks that execute on the device where the allocation was requested. If the value is cgroup,20
the access group consists of all tasks in the same contention group as the task that requested the21
allocation. If the value is pteam, the access group consists of all current team tasks of the22
innermost enclosing parallel region in which the allocation was requested. If the value is thread,23
the access group consists of all tasks that are executed by the same thread that executed the24
allocation request. Memory returned by the allocator will be memory accessible by all tasks in the25
same access group as the task that requested the allocation. Attempts to access this memory from a26
task that is not in same access group results in unspecified behavior.27

The total amount of storage in bytes that an allocator can use for allocation requests from tasks in28
the same access group is limited by the pool_size trait. Requests that would result in using more29
storage than pool_size will not be fulfilled by the allocator.30

306 OpenMP API – Version 6.0 November 2024

The fallback trait specifies how the memory allocator behaves when it cannot fulfill an1
allocation request. If the fallback trait is set to null_fb, the allocator returns the value zero if2
it fails to allocate the memory. If the fallback trait is set to abort_fb, the behavior is as if an3
error directive for which sev-level is fatal and action-time is execution is encountered if4
the allocation fails. If the fallback trait is set to allocator_fb then when an allocation fails5
the request will be delegated to the allocator specified in the fb_data trait. If the fallback trait6
is set to default_mem_fb then when an allocation fails another allocation will be tried in7
omp_default_mem_space, which assumes all allocator traits to be set to their default values8
except for fallback trait, which will be set to null_fb. The default value for the fallback9
trait is null_fb for any allocator that is associated with a target memory space. Otherwise, the10
default value is default_mem_fb.11

All memory that is allocated with an allocator for which the pinned trait is specified as true must12
remain in the same storage resource at the same location for its entire lifetime. If pin_device is13
also specified then the allocation must be allocated in that device.14

The partition trait describes the partitioning of allocated memory over the storage resources15
represented by the memory space associated with the allocator. The partitioning will be done in16
parts with a minimum size that is implementation defined. The values are:17

• environment: the placement of allocated memory is determined by the execution18
environment;19

• nearest: allocated memory is placed in the storage resource that is nearest to the thread20
that requests the allocation;21

• blocked: allocated memory is partitioned into parts of approximately the same size with at22
most one part per storage resource; and23

• interleaved: allocated memory parts are distributed in a round-robin fashion across the24
storage resources such that the size of each part is the value of the part_size trait except25
possibly the last part, which can be smaller.26

• partitioner: the number of memory parts and how they are distributed across the27
storage are defined by the memory partition object created by the memory partitioner28
specified by the partitioner trait.29

The part_size trait specifies the size of the parts allocated over the storage resources for some30
of the memory partition trait policies. The actual value of the trait might be rounded up to an31
implementation defined value to comply with hardware restrictions of the storage resources.32

If the preferred_device trait is specified then storage resources of the specified device are33
preferred to fulfill the allocation.34

If the value of the target_access trait is single then data from this allocator cannot be35
accessed on two different devices unless, for any given host device access, the entry and exit of the36
target region in which any accesses occur either both precede or both follow the host device37
access in happens-before order. Additionally, for any two target regions that may access data38

CHAPTER 8. MEMORY MANAGEMENT 307

from this allocator and execute on distinct devices, the entry and exit of one of the regions must1
precede those of the other in happens-before order. If the value of the target_access trait is2
multiple then accesses of data from this allocator from different devices may be arbitrarily3
interleaved, provided that synchronization ensures data races do not occur.4

If the value of the atomic_scope trait is all then all storage locations of data from this5
allocator have an atomic scope that consists of all threads on the devices associated with the6
allocator. If the value is device then all storage locations have an atomic scope that consists of all7
threads on the device on which the atomic operation is performed.8

Table 8.3 shows the list of predefined memory allocators and their associated memory spaces. The9
predefined memory allocators have default values for their allocator traits unless otherwise10
specified.11

TABLE 8.3: Predefined Allocators

Allocator Name Associated Memory Space Non-Default Trait
Values

omp_default_mem_alloc omp_default_mem_space fallback:null_fb

omp_large_cap_mem_alloc omp_large_cap_mem_space (none)

omp_const_mem_alloc omp_const_mem_space (none)

omp_high_bw_mem_alloc omp_high_bw_mem_space (none)

omp_low_lat_mem_alloc omp_low_lat_mem_space (none)

omp_cgroup_mem_alloc Implementation defined access:cgroup

omp_pteam_mem_alloc Implementation defined access:pteam

omp_thread_mem_alloc Implementation defined access:thread

Fortran
If any operation of the base language causes a reallocation of a variable that is allocated with a12
memory allocator then that memory allocator will be used to deallocate the current memory and to13
allocate the new memory. For any allocatable subcomponents, the allocator that is used for the14
deallocation and allocation is unspecified.15

Fortran
Restrictions16

• If the pin_device trait is specified, its value must be the device number of a device17
associated with the memory allocator.18

• If the preferred_device trait is specified, its value must be the device number of a19
device associated with the memory allocator.20

308 OpenMP API – Version 6.0 November 2024

• The omp_cgroup_mem_alloc, omp_pteam_mem_alloc, and1
omp_thread_mem_alloc predefined memory allocators must not be used to allocate a2
variable with static storage duration unless the variable is a local static variable.3

8.3 align Clause4

Name: align Properties: unique5

Arguments6
Name Type Properties
alignment expression of integer

type
constant, positive7

Modifiers8
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique9

Directives10
allocate11

Semantics12
The align clause is used to specify the byte alignment to use for allocations associated with the13
construct on which the clause appears. Specifically, each allocation is byte aligned to at least the14
maximum of the value to which alignment evaluates, the alignment trait of the allocator being15
used for the allocation, and the alignment required by the base language for the type of the variable16
that is allocated. On constructs on which the clause may appear, if it is not specified then the effect17
is as if it was specified with the alignment trait of the allocator being used for the allocation.18

Restrictions19
Restrictions to the align clause are as follows:20

• alignment must evaluate to a power of two.21

Cross References22

• allocate Directive, see Section 8.523

• Memory Allocators, see Section 8.224

CHAPTER 8. MEMORY MANAGEMENT 309

8.4 allocator Clause1

Name: allocator Properties: ICV-defaulted, unique2

Arguments3
Name Type Properties
allocator expression of allocator_-

handle type
default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
allocate8

Semantics9
The allocator clause specifies the memory allocator to be used for allocations associated with10
the construct on which the clause appears. Specifically, the allocator to which allocator evaluates is11
used for the allocations. On constructs on which the clause may appear, if it is not specified then the12
effect is as if it was specified with the value of the def-allocator-var ICV.13

Cross References14

• allocate Directive, see Section 8.515

• Memory Allocators, see Section 8.216

• def-allocator-var ICV, see Table 3.117

8.5 allocate Directive18

Name: allocate
Category: declarative

Association: explicit
Properties: pure19

Arguments20
Name Type Properties
list list of variable list item

type
default21

Clauses22
align, allocator23

310 OpenMP API – Version 6.0 November 2024

Semantics1
The storage for each list item that appears in the allocate directive is provided an allocation2
through the memory allocator as determined by the allocator clause with an alignment as3
determined by the align clause. The scope of this allocation is that of the list item in the base4
language. At the end of the scope for a given list item the memory allocator used to allocate that list5
item deallocates the storage.6

For allocations that arise from this directive the null_fb value of the fallback allocator trait7
behaves as if the abort_fb had been specified.8

Restrictions9
Restrictions to the allocate directive are as follows:10

• An allocate directive must appear in the same scope as the declarations of each of its list11
items and must follow all such declarations.12

• A declared variable may appear as a list item in at most one allocate directive in a given13
compilation unit.14

• allocate directives that appear in a target region must specify an allocator clause15
unless a requires directive with the dynamic_allocators clause is present in the16
same compilation unit.17

C / C++
• If a list item has static storage duration, the allocator clause must be specified and the18

allocator expression in the clause must be a constant expression that evaluates to one of the19
predefined memory allocator values.20

• A variable that is declared in a namespace or global scope may only appear as a list item in an21
allocate directive if an allocate directive that lists the variable follows a declaration22
that defines the variable and if all allocate directives that list it specify the same allocator.23

• A list item must not be a function parameter.24

C / C++
C

• After a list item has been allocated, the scope that contains the allocate directive must not25
end abnormally, such as through a call to the longjmp function.26

C
C++

• After a list item has been allocated, the scope that contains the allocate directive must not27
end abnormally, such as through a call to the longjmp function, other than through C++28
exceptions.29

• A variable that has a reference type must not appear as a list item in an allocate directive.30

C++

CHAPTER 8. MEMORY MANAGEMENT 311

Fortran
• A list item that is specified in an allocate directive must not be a coarray or have a1

coarray as an ultimate component, or have the ALLOCATABLE, or POINTER attribute.2

• If a list item has the SAVE attribute, either explicitly or implicitly, or is a common block3
name then the allocator clause must be specified and only predefined memory allocator4
parameters can be used in the clause.5

• A variable that is part of a common block must not be specified as a list item in an6
allocate directive, except implicitly via the named common block.7

• A named common block may appear as a list item in at most one allocate directive in a8
given compilation unit.9

• If a named common block appears as a list item in an allocate directive, it must appear as10
a list item in an allocate directive that specifies the same allocator in every compilation11
unit in which the common block is used.12

• An associate name must not appear as a list item in an allocate directive.13

• A list item must not be a dummy argument.14

Fortran
Cross References15

• align Clause, see Section 8.316

• allocator Clause, see Section 8.417

• Memory Allocators, see Section 8.218

8.6 allocate Clause19

Name: allocate Properties: all-privatizing20

Arguments21
Name Type Properties
list list of variable list item

type
default22

312 OpenMP API – Version 6.0 November 2024

Modifiers1
Name Modifies Type Properties
allocator-simple-
modifier

list expression of OpenMP allo-
cator_handle type

exclusive, unique

allocator-complex-
modifier

list Complex, name:
allocator
Arguments:
allocator expression of al-

locator_handle type
(default)

unique

align-modifier list Complex, name: align
Arguments:
alignment expression of

integer type (constant,
positive)

unique

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

2

Directives3
allocators, distribute, do, for, parallel, scope, sections, single, target,4
target_data, task, taskgroup, taskloop, teams5

Semantics6
The allocate clause specifies the memory allocator to be used to obtain storage for a variable7
list. If a list item in the clause also appears in a data-sharing attribute clause on the same directive8
that privatizes the list item, allocations that arise from that list item in the clause will be provided by9
the memory allocator. If the allocator-simple-modifier is specified, the behavior is as if the10
allocator-complex-modifier is instead specified with allocator-simple-modifier as its allocator11
argument. The allocator-complex-modifier and align-modifier have the same syntax and semantics12
for the allocate clause as the allocator and align clauses have for the allocate13
directive. For allocations that arise from this clause, the null_fb value of the fallback allocator14
trait behaves as if the abort_fb value had been specified.15

Restrictions16
Restrictions to the allocate clause are as follows:17

• For any list item that is specified in the allocate clause on a directive other than the18
allocators directive, a data-sharing attribute clause that may create a private copy of that19
list item must be specified on the same directive.20

• For task, taskloop or target directives, allocation requests to memory allocators with21
the access trait set to thread result in unspecified behavior.22

• allocate clauses that appear on a target construct or on constructs in a target region23
must specify an allocator-simple-modifier or allocator-complex-modifier unless a24

CHAPTER 8. MEMORY MANAGEMENT 313

requires directive with the dynamic_allocators clause is present in the same1
compilation unit.2

Cross References3

• align Clause, see Section 8.34

• allocator Clause, see Section 8.45

• allocators Construct, see Section 8.76

• distribute Construct, see Section 13.77

• do Construct, see Section 13.6.28

• for Construct, see Section 13.6.19

• Memory Allocators, see Section 8.210

• parallel Construct, see Section 12.111

• scope Construct, see Section 13.212

• sections Construct, see Section 13.313

• single Construct, see Section 13.114

• target Construct, see Section 15.815

• target_data Construct, see Section 15.716

• task Construct, see Section 14.117

• taskgroup Construct, see Section 17.418

• taskloop Construct, see Section 14.219

• teams Construct, see Section 12.220

314 OpenMP API – Version 6.0 November 2024

Fortran

8.7 allocators Construct1

Name: allocators
Category: executable

Association: block : allocator
Properties: default2

Clauses3
allocate4

Semantics5
The allocators construct specifies that if a variable that is to be allocated by the associated6
allocate-stmt, appears as a list item in an allocate clause on the directive an allocator is used to7
allocate storage for the variable according to the semantics of the allocate clause. If a variable8

that is to be allocated does not appear as a list item in an allocate clause, the allocation is9
performed according to the base language implementation. The list items that appear in an10
allocate clause may include structure elements.11

Restrictions12
Restrictions to the allocators construct are as follows:13

• A list item that appears in an allocate clause must appear as one of the variables that is14
allocated by the allocate-stmt in the associated allocator structured block.15

• A list item must not be a coarray or have a coarray as an ultimate component.16

Cross References17

• allocate Clause, see Section 8.618

• Memory Allocators, see Section 8.219

• OpenMP Allocator Structured Blocks, see Section 6.3.120

Fortran

8.8 uses_allocators Clause21

Name: uses_allocators Properties: data-environment attribute, data-
sharing attribute22

Arguments23
Name Type Properties
allocator expression of allocator_-

handle type
default24

CHAPTER 8. MEMORY MANAGEMENT 315

Modifiers1
Name Modifies Type Properties
mem-space allocator Complex, name: memspace

Arguments:
memspace-handle

expression of
memspace_handle type
(default)

default

traits-array allocator Complex, name: traits
Arguments:
traits variable of alloctrait

array type (default)

default

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

2

Directives3
target4

Semantics5
The uses_allocators clause enables the use of the specified allocator in the region associated6
with the directive on which the clause appears. The clause has no effect for an allocator argument7
value of omp_null_allocator. If allocator is an identifier that matches the name of a8
predefined allocator (see Table 8.3), that predefined allocator will be available for use in the region.9
Otherwise, the effect is as if allocator is specified on a private clause. The resulting10
corresponding list item is assigned the result of a call to omp_init_allocator at the11
beginning of the associated region with arguments memspace-handle, the number of traits in the12
traits array, and traits. If mem-space is not specified or omp_null_mem_space is specified, the13
effect is as if memspace-handle is specified as omp_default_mem_space. If traits-array is not14
specified, the effect is as if traits is specified as an empty array. Further, at the end of the associated15
region, the effect is as if this allocator is destroyed as if by a call to omp_destroy_allocator.16

More than one clause-argument-specification may be specified.17

Restrictions18

• The allocator expression must be a base language identifier.19

• If allocator is an identifier that matches the name of a predefined allocator, no modifiers may20
be specified.21

• If allocator is not the name of a predefined allocator and is not omp_null_allocator, it22
must be a variable.23

• The allocator argument must not appear in other data-sharing attribute clauses or24
data-mapping attribute clauses on the same construct.25

316 OpenMP API – Version 6.0 November 2024

C / C++
• The traits argument for the traits-array modifier must be a constant array, have constant1

values and be defined in the same scope as the construct on which the clause appears.2

C / C++
Fortran

• The traits argument for the traits-array modifier must be a named constant of rank one.3

Fortran
• The memspace-handle argument for the mem-space modifier must be an identifier that4

matches one of the predefined memory space names.5

Cross References6

• OpenMP allocator_handle Type, see Section 20.8.17

• OpenMP alloctrait Type, see Section 20.8.28

• Memory Allocators, see Section 8.29

• Memory Spaces, see Section 8.110

• OpenMP memspace_handle Type, see Section 20.8.1111

• omp_destroy_allocator Routine, see Section 27.712

• omp_init_allocator Routine, see Section 27.613

• target Construct, see Section 15.814

CHAPTER 8. MEMORY MANAGEMENT 317

9 Variant Directives1

This chapter defines directives and related concepts to support the seamless adaption of OpenMP2
programs to OpenMP contexts.3

9.1 OpenMP Contexts4

At any point in an OpenMP program, an OpenMP context exists that defines traits that describe the5
active constructs, the execution devices, functionality supported by the implementation and6
available dynamic values. The traits are grouped into trait sets. The defined trait sets are: the7
construct trait set; the device trait set; the target device trait set; the implementation trait set; and the8
dynamic trait set. Traits are categorized as name-list traits, clause-list traits, non-property traits and9
extension traits. This categorization determines the syntax that is used to match the trait, as defined10
in Section 9.2.11

The construct trait set is composed of the directive names, each being a trait, of all enclosing12
constructs at that point in the OpenMP program up to a target construct. Compound constructs13
are added to the set as their leaf constructs in the same nesting order specified by the original14
constructs. The dispatch construct is added to the construct trait set only for the target-call of15
the associated function-dispatch structured block. The construct trait set is ordered by nesting level16
in ascending order. Specifically, the ordering of the set of constructs is c1, . . . , cN , where c1 is the17
construct at the outermost nesting level and cN is the construct at the innermost nesting level. In18
addition, if the point in the OpenMP program is not enclosed by a target construct, the following19
rules are applied in order:20

1. For procedures with a declare_simd directive, the simd trait is added to the beginning of21
the construct trait set as c1 for any generated SIMD versions so the total size of the trait set is22
increased by one.23

2. For procedures that are determined to be function variants by a declare variant directive, the24
trait selectors c1, . . . , cM of the construct selector set are added in the same order to the25
beginning of the construct trait set as c1, . . . , cM so the total size of the trait set is increased26
by M .27

3. For procedures that are determined to be target variants by a declare target directive, the28
target trait is added to the beginning of the construct trait set as c1 so the total size of the trait29
set is increased by one.30

The simd trait is a clause-list trait that is defined with properties that match the clauses that can be31
specified on the declare_simd directive with the same names and semantics. The simd trait32

318 OpenMP API – Version 6.0 November 2024

defines at least the simdlen property and one of the inbranch or notinbranch properties. Traits in the1
construct trait set other than simd are non-property traits.2

The device trait set includes traits that define the characteristics of the device that the compiler3
determines will be the current device during program execution at a given point in the OpenMP4
program. A trait in the device trait set is considered to be active at program points that fall outside a5
defined procedure if it defines a characteristic of some available device, including the host device.6
For each target device that the implementation supports, a target device trait set exists that defines7
the characteristics of that device. At least the following traits must be defined for the device trait set8
and all target device trait sets:9

• The kind(kind-list) name-list trait specifies the general kind of the device. Each member of10
kind-list is a kind-name, for which the following values are defined:11

– host, which specifies that the device is the host device;12

– nohost, which specifies that the device is not the host device; and13

– the values defined in the OpenMP Additional Definitions document.14

• The isa(isa-list) name-list trait specifies the Instruction Set Architectures supported by the15
device. Each member of isa-list is an isa-name, for which the accepted values are16
implementation defined.17

• The arch(arch-list) name-list trait specifies the architectures supported by the device. Each18
member of arch-list is an arch-name, for which the accepted values are implementation19
defined.20

The target device trait set also defines the following traits:21

• The device_num trait specifies the device number of the device.22

• The uid trait specifies a unique identifier string of the device, for which the accepted values23
are implementation defined.24

The implementation trait set includes traits that describe the functionality supported by the OpenMP25
implementation at that point in the OpenMP program. At least the following traits can be defined:26

• The vendor(vendor-list) name-list trait, which specifies the vendor identifiers of the27
implementation. Each member of vendor-list is a vendor-name, for which the defined values28
are in the OpenMP Additional Definitions document.29

• The extension(extension-list) name-list trait, which specifies vendor-specific extensions to the30
OpenMP specification. Each member of extension-list is an extension-name, for which the31
accepted values are implementation defined.32

• A requires(requires-list) clause-list trait, for which the properties are the clauses that have33
been supplied to the requires directive prior to the program point as well as34
implementation defined implicit requirements.35

Implementations can define additional traits in the device trait set, target device trait set and36
implementation trait set; these traits are extension traits.37

CHAPTER 9. VARIANT DIRECTIVES 319

The dynamic trait set includes traits that define the dynamic properties of an OpenMP program at a1
point in its execution. The data state trait in the dynamic trait set refers to the complete data state of2
the OpenMP program that may be accessed at runtime.3

9.2 Context Selectors4

Context selectors are used to define the properties that can match an OpenMP context. OpenMP5
defines different trait selector sets, each of which contains different trait selectors.6

The syntax for a context selector is context-selector-specification as described in the following7
grammar:8

context-selector-specification:9
trait-set-selector[,trait-set-selector[,...]]10

11
trait-set-selector:12

trait-set-selector-name={trait-selector[, trait-selector[, ...]]}13
14

trait-selector:15
trait-selector-name[([trait-score:] trait-property[, trait-property[, ...]])]16

17
trait-property:18

trait-property-name19
trait-property-clause20
trait-property-expression21
trait-property-extension22

23
trait-property-clause:24

clause25
26

trait-property-name:27
identifier28
string-literal29

30
trait-property-expression31

scalar-expression (for C/C++)32
scalar-logical-expression (for Fortran)33
scalar-integer-expression (for Fortran)34

35
trait-score:36

score(score-expression)37
38

trait-property-extension:39
trait-property-name40

320 OpenMP API – Version 6.0 November 2024

identifier(trait-property-extension[, trait-property-extension[, ...]])1
constant integer expression2

For trait selectors that correspond to name-list traits, each trait-property should be3
trait-property-name and, for any value that is a valid identifier, both the identifier and the4
corresponding string literal (for C/C++) and the corresponding char-literal-constant (for Fortran)5
representation are considered representations of the same value.6

For trait selectors that correspond to clause-list traits, each trait-property should be7
trait-property-clause. The syntax is the same as for the matching clause.8

The construct selector set defines the traits in the construct trait set that should be active in the9
OpenMP context. Each trait selector that can be defined in the construct selector set is the10
directive-name of a context-matching construct. Each trait-property of the simd trait selector is a11
trait-property-clause. The syntax is the same as for a valid clause of the declare_simd directive12
and the restrictions on the clauses from that directive apply. The construct selector set is an13
ordered list c1, . . . , cN .14

The device selector set and implementation selector set define the traits that should be15
active in the corresponding trait set of the OpenMP context. The target_device selector set16
defines the traits that should be active in the target device trait set for the device that the specified17
device_num trait selector identifies. The same traits that are defined in the corresponding trait18
sets can be used as trait selectors with the same properties. The kind trait selector of the device19
selector set and target_device selector set can also specify the value any, which is as if no20
kind trait selector was specified. If a device_num trait selector does not appear in the21
target_device selector set then a device_num trait selector that specifies the value of the22
default-device-var ICV is implied. For the device_num trait selector of the target_device23
selector set, a single trait-property-expression must be specified. The device_num trait selector24
can be true only if that trait-property-expression evaluates to a conforming device number other25
than omp_invalid_device. For the atomic_default_mem_order trait selector of the26
implementation selector set, a single trait-property must be specified as an identifier equal to27
one of the valid arguments to the atomic_default_mem_order clause on the requires28
directive. For the requires trait selector of the implementation selector set, each29
trait-property is a trait-property-clause. The syntax is the same as for a valid clause of the30
requires directive and the restrictions on the clauses from that directive apply.31

The user selector set defines the condition trait selector that provides additional user-defined32
conditions. The condition trait selector contains a single trait-property-expression that must33
evaluate to true for the trait selector to be true. Any non-constant trait-property-expression that is34
evaluated to determine the suitability of a variant is evaluated according to the data state trait in the35
dynamic trait set of the OpenMP context. The user selector set is dynamic if the condition36
trait selector is present and the expression in the condition trait selector is not a constant37
expression; otherwise, it is static.38

All parts of a context selector define the static part of the context selector except the following39
parts, which define the dynamic part of the context selector:40

CHAPTER 9. VARIANT DIRECTIVES 321

• Its user selector set if it is dynamic; and1

• Its target_device selector set.2

For the match clause of a declare_variant directive, any argument of the base function that3
is referenced in an expression that appears in the context selector is treated as a reference to the4
expression that is passed into that argument at the call to the base function. Otherwise, a variable or5
procedure reference in an expression that appears in a context selector is a reference to the variable6
or procedure of that name that is visible at the location of the directive on which the context7
selector appears.8

C++
Each occurrence of the this pointer in an expression in a context selector that appears in the9
match clause of a declare_variant directive is treated as an expression that is the address of10
the object on which the associated base function is invoked.11

C++
Implementations can allow further trait selectors to be specified. Each specified trait-property for12
these implementation defined trait selectors should be a trait-property-extension. Implementations13
can ignore specified trait selectors that are not those described in this section.14

Restrictions15
Restrictions to context selectors are as follows:16

• Each trait-property may only be specified once in a trait selector other than those in the17
construct selector set.18

• Each trait-set-selector-name may only be specified once in a context selector.19

• Each trait-selector-name may only be specified once in a trait selector set.20

• A trait-score cannot be specified in traits from the construct selector set, the device21
selector set or the target_device selector sets.22

• A score-expression must be a non-negative constant integer expression.23

• The expression of a device_num trait must evaluate to a conforming device number.24

• A variable or procedure that is referenced in an expression that appears in a context selector25
must be visible at the location of the directive on which the context selector appears unless26
the directive is a declare_variant directive and the variable is an argument of the27
associated base function.28

• If trait-property any is specified in the kind trait-selector of the device selector set or29
the target_device selector sets, no other trait-property may be specified in the same30
selector set.31

• For a trait-selector that corresponds to a name-list trait, at least one trait-property must be32
specified.33

322 OpenMP API – Version 6.0 November 2024

• For a trait-selector that corresponds to a non-property trait, no trait-property may be1
specified.2

• For the requires trait selector of the implementation selector set, at least one3
trait-property must be specified.4

9.3 Matching and Scoring Context Selectors5

A compatible context selector for an OpenMP context satisfies the following conditions:6

• All trait selectors in its user selector set are true;7

• All traits and trait properties that are defined by trait selectors in the target_device8
selector set are active in the target device trait set for the device that is identified by the9
device_num trait selector;10

• All traits and trait properties that are defined by trait selectors in its construct selector set,11
its device selector set and its implementation selector set are active in the12
corresponding trait sets of the OpenMP context;13

• For each trait selector in the context selector, its properties are a subset of the properties of14
the corresponding trait of the OpenMP context; and15

• Trait selectors in its construct selector set appear in the same relative order as their16
corresponding traits in the construct trait set of the OpenMP context;17

Some properties of the simd trait selector have special rules to match the properties of the simd18
trait:19

• The simdlen(N) property of the trait selector matches the simdlen(M) trait of the20
OpenMP context if M is a multiple of N ; and21

• The aligned(list:N) property of the trait selector matches the aligned(list:M) trait of the22
OpenMP context if N is a multiple of M .23

Among compatible context selectors, a score is computed using the following algorithm:24

1. Each trait selector for which the corresponding trait appears in the construct trait set in the25
OpenMP context is given the value 2p−1 where p is the position of the corresponding trait,26
cp, in the construct trait set; if the traits that correspond to the construct selector set27
appear multiple times in the OpenMP context, the highest valued subset of context traits that28
contains all trait selectors in the same order are used;29

2. The kind, arch, and isa trait selectors, if specified, are given the values 2l, 2l+1 and 2l+2,30
respectively, where l is the number of traits in the construct trait set;31

3. Trait selectors for which a trait-score is specified are given the value specified by the32
trait-score score-expression;33

CHAPTER 9. VARIANT DIRECTIVES 323

4. The values given to any additional trait selectors allowed by the implementation are1
implementation defined;2

5. Other trait selectors are given a value of zero; and3

6. A context selector that is a strict subset of another compatible context selector has a score of4
zero. For other context selectors, the final score is the sum of the values of all specified trait5
selectors plus 1.6

9.4 Metadirectives7

A metadirective is a directive that can specify multiple directive variants of which one may be8
conditionally selected to replace the metadirective based on the enclosing context. A metadirective9
is replaced by a nothing directive or one of the directive variants specified by the when clauses10
or the otherwise clause. If no otherwise clause is specified the effect is as if one was11
specified without an associated directive variant.12

The OpenMP context for a given metadirective is defined according to Section 9.1. The order of13
clauses that appear on a metadirective is significant and, if specified, otherwise must be the last14
clause specified on a metadirective.15

Replacement candidates for a metadirective are ordered according to the following rules in16
decreasing precedence:17

• A candidate is before another one if the score associated with the context selector of the18
corresponding when clause is higher.19

• A candidate that was explicitly specified is before one that was implicitly specified.20

• Candidates are ordered according to the order in which they lexically appear on the21
metadirective.22

The list of dynamic replacement candidates is the prefix of the sorted list of replacement candidates23
up to and including the first candidate for which the corresponding when or otherwise clause24
has a static context selector. The first dynamic replacement candidate for which the corresponding25
when or otherwise clause has a compatible context selector, according to the matching rules26
defined in Section 9.3, replaces the metadirective.27

Restrictions28
Restrictions to metadirectives are as follows:29

• Replacement of the metadirective with the directive variant associated with any of the30
dynamic replacement candidates must result in a conforming program.31

• Insertion of user code at the location of a metadirective must be allowed if the first dynamic32
replacement candidate does not have a static context selector.33

• If the list of dynamic replacement candidates has multiple items then all items must be34
executable directives.35

324 OpenMP API – Version 6.0 November 2024

Fortran
• A metadirective that appears in the specification part of a subprogram must follow all1

variant-generating directives that appear in the same specification part.2

• A metadirective is pure if and only if all directive variants specified for it are pure.3

Fortran

9.4.1 when Clause4

Name: when Properties: default5

Arguments6
Name Type Properties
directive-variant directive-specification optional, unique7

Modifiers8
Name Modifies Type Properties
context-selector directive-variant An OpenMP context-

selector-specification
required, unique

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique
9

Directives10
begin metadirective, metadirective11

Semantics12
The specified directive-variant is a replacement candidate for the metadirective on which the clause13
is specified if the static part of the context selector specified by context-selector is compatible with14
the OpenMP context according to the matching rules defined in Section 9.3. If a when clause does15
not explicitly specify a directive variant, it implicitly specifies a nothing directive as the directive16
variant.17

Expressions that appear in the context selector of a when clause are evaluated if no prior dynamic18
replacement candidate has a compatible context selector, and the number of times each expression19
is evaluated is implementation defined. All variables referenced by these expressions are20
considered to be referenced by the metadirective.21

A directive variant that is associated with a when clause can only affect the OpenMP program if22
the directive variant is a dynamic replacement candidate.23

Restrictions24
Restrictions to the when clause are as follows:25

• directive-variant must not specify a metadirective.26

• context-selector must not specify any properties for the simd trait selector.27

CHAPTER 9. VARIANT DIRECTIVES 325

C / C++
• directive-variant must not specify a begin declare_variant directive.1

C / C++
Cross References2

• begin metadirective, see Section 9.4.43

• Context Selectors, see Section 9.24

• metadirective, see Section 9.4.35

• nothing Directive, see Section 10.76

9.4.2 otherwise Clause7

Name: otherwise Properties: unique, ultimate8

Arguments9
Name Type Properties
directive-variant directive-specification optional, unique10

Modifiers11
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique12

Directives13
begin metadirective, metadirective14

Semantics15
The otherwise clause is treated as a when clause with the specified directive variant, if any, and16
a static context selector that is always compatible and has a score lower than the scores associated17
with any other directive variant.18

Restrictions19
Restrictions to the otherwise clause are as follows:20

• directive-variant must not specify a metadirective.21

C / C++
• directive-variant must not specify a begin declare_variant directive.22

C / C++
Cross References23

• begin metadirective, see Section 9.4.424

• metadirective, see Section 9.4.325

• when Clause, see Section 9.4.126

326 OpenMP API – Version 6.0 November 2024

9.4.3 metadirective1

Name: metadirective
Category: meta

Association: unassociated
Properties: pure2

Clauses3
otherwise, when4

Semantics5
The metadirective specifies metadirective semantics.6

Cross References7

• Metadirectives, see Section 9.48

• otherwise Clause, see Section 9.4.29

• when Clause, see Section 9.4.110

9.4.4 begin metadirective11

Name: begin metadirective
Category: meta

Association: delimited
Properties: pure12

Clauses13
otherwise, when14

Semantics15
The begin metadirective is a metadirective that is a delimited directive and for which the16
specified directive variants other than the nothing directive must accept a paired end directive.17
For any directive variant that is selected to replace the begin metadirective directive, the18
required paired end directive is implicitly replaced by the end directive of the directive variant to19
demarcate the statements that are associated with the directive variant. If the nothing directive is20
selected to replace the begin metadirective directive, the end directive is ignored.21

Restrictions22
The restrictions to begin metadirective are as follows:23

• Any directive-variant that is specified by a when or otherwise clause must be a directive24
that has a paired end directive or must be the nothing directive.25

Cross References26

• Metadirectives, see Section 9.427

• nothing Directive, see Section 10.728

• otherwise Clause, see Section 9.4.229

• when Clause, see Section 9.4.130

CHAPTER 9. VARIANT DIRECTIVES 327

9.5 Semantic Requirement Set1

The semantic requirement set of each task is a logical set of elements that can be added to or2
removed from the set by different directives in the scope of the task region, as well as affect the3
semantics of those directives.4

A directive can add the following elements to the set:5

• depend, which specifies that a construct requires enforcement of the synchronization6
relationship expressed by the depend clause;7

• nowait, which specifies that a construct is asynchronous;8

• is_device_ptr(list-item), which specifies that the list-item is a device pointer in a construct;9

• has_device_addr(list-item), which specifies that the list-item has a device address in a10
construct; and11

• interop(list-item), which specifies that the list-item is a user-provided interoperability object12
to be used in a construct. The order in which the interop elements are added is relevant.13

If an implementation supports the unified_address requirement then:14

• Adding an is_device_ptr element for a list item also adds a has_device_addr element for any15
data entity for which the list item is a base pointer; and16

• Adding a has_device_addr element for a list item that has a base pointer also adds an17
is_device_ptr element for that base pointer if the base pointer is an identifier.18

The following directives may add elements to the set:19

• dispatch.20

The following directives may remove elements from the set:21

• declare_variant22

Cross References23

• dispatch Construct, see Section 9.724

• Declare Variant Directives, see Section 9.625

9.6 Declare Variant Directives26

Declare variant directives declare base functions to have the specified function variant. The context27
selector specified by context-selector in the match clause is associated with the function variant.28
The OpenMP context for a direct call to a given base function is defined according to Section 9.1.29

For a function variant to be a replacement candidate to be called instead of the base function, its30
declare variant directive for the base function must be visible at the call site and the static part of its31

328 OpenMP API – Version 6.0 November 2024

associated context selector must be compatible with the OpenMP context of the call according to1
the matching rules defined in Section 9.3. In addition, if the base function is called from a non-host2
device, the declare variant directive must not specify an append_args clause or an3
adjust_args clause with a need_device_ptr or need_device_addr adjust-op.4

Replacement candidates are ordered in decreasing order of the score associated with the context5
selector. If two replacement candidates have the same score then their order is implementation6
defined.7

The list of dynamic replacement candidates is the prefix of the sorted list of replacement candidates8
up to and including the first candidate for which the corresponding match clause has a static9
context selector.10

The first dynamic replacement candidate for which the corresponding match clause has a11
compatible context selector is called instead of the base function. If no compatible candidate exists12
then the base function is called.13

Expressions that appear in the context selector of a match clause are evaluated if no prior dynamic14
replacement candidate has a compatible context selector, and the number of times each expression15
is evaluated is implementation defined. All variables referenced by these expressions are16
considered to be referenced at the call site.17

C++
For calls to constexpr base functions that are evaluated in constant expressions, whether variant18
substitution occurs is implementation defined.19

C++
For indirect function calls that can be determined to call a particular base function, whether variant20
substitution occurs is unspecified.21

Any differences that the specific OpenMP context requires in the prototype of the function variant22
from the base function prototype are implementation defined.23

Different declare variant directives may be specified for different declarations of the same base24
function.25

Restrictions26
Restrictions to declare variant directives are as follows:27

• Calling procedures that a declare variant directive determined to be a function variant28
directly in an OpenMP context that is different from the one that the construct selector29
set of the context selector specifies is non-conforming.30

• If a procedure is determined to be a function variant through more than one declare variant31
directive then the construct selector set of their context selectors must be the same.32

• A procedure determined to be a function variant may not be specified as a base function in33
another declare variant directive.34

CHAPTER 9. VARIANT DIRECTIVES 329

• An adjust_args clause or append_args clause may only be specified if the1
dispatch trait selector of the construct selector set appears in the match clause.2

C / C++
• The type of the function variant must be compatible with the type of the base function after3

the implementation defined transformation for its OpenMP context.4

C / C++
C++

• Declare variant directives may not be specified for virtual, defaulted or deleted functions.5

• Declare variant directives may not be specified for constructors or destructors.6

• Declare variant directives may not be specified for immediate functions.7

• The procedure that a declare variant directive determined to be a function variant may not be8
an immediate function.9

C++
Fortran

• The characteristic of the function variant must be compatible with the characteristic of the10
base function after the implementation defined transformation for its OpenMP context.11

Fortran
Cross References12

• Context Selectors, see Section 9.213

• OpenMP Contexts, see Section 9.114

9.6.1 match Clause15

Name: match Properties: unique, required16

Arguments17
Name Type Properties
context-selector An OpenMP context-

selector-specification
default18

Modifiers19
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique20

Directives21
begin declare_variant, declare_variant22

330 OpenMP API – Version 6.0 November 2024

Semantics1
The context-selector argument of the match clause specifies the context selector to use to2
determine if a specified function variant is a replacement candidate for the specified base function3
in a given OpenMP context.4

Restrictions5
Restrictions to the match clause are as follows:6

• All variables that are referenced in an expression that appears in the context selector of a7
match clause must be accessible at each call site to the base function according to the base8
language rules.9

Cross References10

• begin declare_variant Directive, see Section 9.6.511

• declare_variant Directive, see Section 9.6.412

• Context Selectors, see Section 9.213

9.6.2 adjust_args Clause14

Name: adjust_args Properties: default15

Arguments16
Name Type Properties
parameter-list list of parameter list item

type
default17

Modifiers18
Name Modifies Type Properties
adjust-op parameter-list Keyword:

need_device_addr,
need_device_ptr,
nothing

required

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

19

Directives20
declare_variant21

Semantics22
The adjust_args clause specifies how to adjust the arguments of the base function when a23
specified function variant is selected for replacement in the context of a function-dispatch24
structured block. For each adjust_args clause that is present on the selected function variant,25
the adjustment operation specified by the adjust-op modifier is applied to each argument specified26

CHAPTER 9. VARIANT DIRECTIVES 331

in the clause before being passed to the selected function variant. Any argument specified in the1
clause that does not exist at a given function call site is ignored.2

If the adjust-op modifier is nothing, the argument is passed to the selected function variant3
without being modified.4

If the adjust-op modifier is need_device_ptr, the arguments are converted to corresponding5
device pointers of the default device if they are not already device pointers. If the current task has6
the is_device_ptr element for a given argument in its semantic requirement set (as added by the7
dispatch construct that encloses the call to the base function), the argument is not adjusted.8
Otherwise, the argument is converted in the same manner that a use_device_ptr clause on a9
target_data construct converts its pointer list items into device pointers, except that if the10
argument cannot be converted into a device pointer then NULL is passed as the argument.11

If the adjust-op modifier is need_device_addr, the arguments are replaced with references to12
the corresponding objects in the device data environment of the default device if they do not13
already have device addresses. If the current task has a has_device_addr element for a given14
argument in its semantic requirement set, as added by the dispatch construct that encloses the15
call to the base function, the argument is not adjusted. Otherwise, the argument is converted in the16
same manner that a use_device_addr clause on a target_data construct replaces17
references to the list items.18

Restrictions19

• If the need_device_addr adjust-op modifier is present and the has-device-addr element20
does not exist for a specified argument in the semantic requirement set of the current task, all21
restrictions that apply to a list item in a use_device_addr clause also apply to the22
corresponding argument that is passed by the call.23

C
• If the need_device_ptr adjust-op modifier is present, each list item that appears in the24

clause that refers to a specific named argument in the declaration of the function variant must25
be of pointer type.26

• The need_device_addr adjust-op modifier must not be specified in the clause.27

C
C++

• If the need_device_ptr adjust-op modifier is present, each list item that appears in the28
clause that refers to a specific named argument in the declaration of the function variant must29
be of pointer type or reference to pointer type.30

• If the need_device_addr adjust-op modifier is present, each list item that appears in the31
clause must refer to an argument in the declaration of the function variant that has a reference32
type.33

C++

332 OpenMP API – Version 6.0 November 2024

Fortran
• If the need_device_ptr adjust-op modifier is present, each list item that appears in the1

clause must refer to a dummy argument of C_PTR type in the declaration of the function2
variant.3

• If the need_device_addr adjust-op modifier is present, each list item that appears in the4
clause must refer to a dummy argument in the declaration of the function variant that does5
not have the VALUE attribute.6

• If the need_device_addr adjust-op modifier is present, the corresponding actual7
argument for each specified argument must be contiguous.8

Fortran
Cross References9

• declare_variant Directive, see Section 9.6.410

• use_device_addr Clause, see Section 7.5.1011

• use_device_ptr Clause, see Section 7.5.812

9.6.3 append_args Clause13

Name: append_args Properties: unique14

Arguments15
Name Type Properties
append-op-list list of OpenMP opera-

tion list item type
default16

Modifiers17
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique18

Directives19
declare_variant20

Semantics21
The append_args clause specifies additional arguments to pass in the call when a specified22
function variant is selected for replacement in the context of a function-dispatch structured block.23
The arguments are formed according to each specified list item in append-op-list, in the order those24
list items appear. The arguments are passed to the function variant after any named arguments of25
the base function in the same order in which they are formed. If the base function is variadic, the26
formed arguments are passed before any variadic arguments.27

The supported OpenMP operations in append-op-list are:28

CHAPTER 9. VARIANT DIRECTIVES 333

interop1

The interop operation accepts as its operator-parameter-specification any2
modifier-specification-list that is accepted by the init clause on the interop construct.3

For each interop operation specified, an argument is formed and appended as follows. If the4
semantic requirement set contains one or more interop elements, the first of those elements that was5
added to the set is removed and the associated interoperability object of that removed element is6
appended as an argument. Otherwise, the interop operation constructs an argument of7
interop OpenMP type using the semantic requirement set of the encountering task. The8
argument is constructed as if by an interop construct with an init clause that specifies the9
modifier-specification-list specified in the interop operation. If the semantic requirement set10
contains one or more elements (as added by the dispatch construct) that correspond to clauses11
for an interop construct of interop-type, the behavior is as if the corresponding clauses are12
specified on the interop construct and those elements are removed from the semantic13
requirement set.14

Any appended arguments that were not obtained from the interop elements of the semantic15
requirement set are destroyed after the call to the selected function variant returns, as if an16
interop construct with a destroy clause was used with the same clauses that were used to17
initialize the argument.18

Cross References19

• declare_variant Directive, see Section 9.6.420

• destroy Clause, see Section 5.721

• OpenMP Operations, see Section 5.2.322

• Semantic Requirement Set, see Section 9.523

• init Clause, see Section 5.624

• interop Construct, see Section 16.125

9.6.4 declare_variant Directive26

Name: declare_variant
Category: declarative

Association: declaration
Properties: pure27

Arguments28
declare_variant([base–name:]variant-name)29

Name Type Properties
base-name identifier of function

type
optional

variant-name identifier of function
type

default
30

334 OpenMP API – Version 6.0 November 2024

Clauses1
adjust_args, append_args, match2

Additional information3
The declare_variant directive may alternatively be specified with declare variant as4
the directive-name.5

Semantics6
The declare_variant directive specifies declare variant semantics for a single replacement7
candidate; variant-name identifies the function variant while base-name identifies the base function.8

C
Any expressions in the match clause are interpreted as if they appeared in the scope of arguments9
of the base function.10

C
C++

variant-name and any expressions in the match clause are interpreted as if they appeared at the11
scope of the trailing return type of the base function.12

The function variant is determined by base language standard name lookup rules ([basic.lookup])13
of variant-name using the argument types at the call site after implementation defined changes have14
been made according to the OpenMP context.15

C++
Fortran

The procedure to which base-name refers is resolved at the location of the directive according to the16
establishment rules for procedure names in the base language.17

If a declare_variant directive appears in the specification part of a subprogram or an18
interface body, its bound procedure is this subprogram or the procedure defined by the interface19
body, respectively. Otherwise there is no bound procedure.20

Fortran
Restrictions21
The restrictions to the declare_variant directive are as follows:22

C / C++
• If base-name is specified, it must match the name used in the associated declaration, if any23

declaration is associated.24

C / C++
C++

• If an expression in the context selector that appears in a match clause references the this25
pointer, the base function must be a non-static member function.26

C++

CHAPTER 9. VARIANT DIRECTIVES 335

Fortran
• If the declare_variant directive does not have a bound procedure or the base function1

is not the bound procedure, base-name must be specified.2

• base-name must not be a generic name, an entry name, the name of a procedure pointer, a3
dummy procedure or a statement function.4

• The procedure base-name must have an accessible explicit interface at the location of the5
directive.6

Fortran
Cross References7

• adjust_args Clause, see Section 9.6.28

• append_args Clause, see Section 9.6.39

• Declare Variant Directives, see Section 9.610

• match Clause, see Section 9.6.111

C / C++

9.6.5 begin declare_variant Directive12

Name: begin declare_variant
Category: declarative

Association: delimited
Properties: default13

Clauses14
match15

Additional information16
The begin declare_variant directive may alternatively be specified with begin17
declare variant as the directive-name.18

Semantics19
The begin declare_variant directive associates the context selector in the match clause20
with each function definition in the delimited code region formed by the directive and its paired end21
directive. The delimited code region is a declaration sequence. For the purpose of call resolution,22
each function definition that appears in the delimited code region is a function variant for an23
assumed base function, with the same name and a compatible prototype, that is declared elsewhere24
without an associated declare variant directive.25

If a declare variant directive appears between a begin declare_variant directive and its26
paired end directive, the effective context selectors of the outer directive are appended to the27
context selector of the inner directive to form the effective context selector of the inner directive. If28
a trait-set-selector is present on both directives, the trait-selector list of the outer directive is29
appended to the trait-selector list of the inner directive after equivalent trait-selectors have been30

336 OpenMP API – Version 6.0 November 2024

removed from the outer list. Restrictions that apply to explicitly specified context selectors also1
apply to effective context selectors constructed through this process.2

The symbol name of a function definition that appears between a begin declare_variant3
directive and its paired end directive is determined through the base language rules after the name of4
the function has been augmented with a string that is determined according to the effective context5
selector of the begin declare_variant directive. The symbol names of two definitions of a6
function are considered to be equal if and only if their effective context selectors are equivalent.7

If the context selector of a begin declare_variant directive contains traits in the device or8
implementation set that are known never to be compatible with an OpenMP context during the9
current compilation, the preprocessed code that follows the begin declare_variant10
directive up to its paired end directive is elided.11

Any expressions in the match clause are interpreted at the location of the directive.12

Restrictions13
The restrictions to begin declare_variant directive are as follows:14

• match clause must not contain a simd trait selector.15

• Two begin declare_variant directives and their paired end directives must either16
encompass disjoint source ranges or be perfectly nested.17

C++
• A match clause must not contain a dynamic context selector that references the this18

pointer.19

C++
Cross References20

• Declare Variant Directives, see Section 9.621

• match Clause, see Section 9.6.122

C / C++

9.7 dispatch Construct23

Name: dispatch
Category: executable

Association: block : function-dispatch
Properties: context-matching24

Clauses25
depend, device, has_device_addr, interop, is_device_ptr, nocontext,26
novariants, nowait27

CHAPTER 9. VARIANT DIRECTIVES 337

Binding1
The binding task set for a dispatch region is the generating task. The dispatch region binds2
to the region of the generating task.3

Semantics4
The dispatch construct controls whether variant substitution occurs for target-call in the5
associated function-dispatch structured block. The dispatch construct may also modify the6
semantic requirement set of elements that affect the arguments of the function variant if variant7
substitution occurs (see Section 9.6.2 and Section 9.6.3).8

Elements added to the semantic requirement set by the dispatch construct can be removed by9
the effect of declare variant directives (see Section 9.5) before the dispatch region is executed.10
If one or more depend clauses are present on the dispatch construct, they are added as depend11
elements of the semantic requirement set. If a nowait clause is present on the dispatch12
construct the nowait element is added to the semantic requirement set. For each list item specified13
in an is_device_ptr clause, an is_device_ptr element for that list item is added to the semantic14
requirement set. For each list item specified in a has_device_addr clause, a has_device_addr15
element for that list item is added to the semantic requirement set. For each list item specified in an16
interop clause, an interop element for that list item is added to the semantic requirement set in17
the same order that they were specified on the directive.18

If the dispatch directive adds one or more depend element to the semantic requirement set, and19
those element are not removed by the effect of a declare variant directive, the behavior is as if those20
elements were applied as depend clauses to a taskwait construct that is executed before the21
dispatch region is executed.22

The addition of the nowait and interop elements to the semantic requirement set by the dispatch23
directive has no effect on the dispatch construct apart from the effect it may have on the24
arguments that are passed when calling a function variant.25

If the device clause is present, the value of the default-device-var ICV is set to the value of the26
expression in the clause on entry to the dispatch region and is restored to its previous value at27
the end of the region.28

If the interop clause is present and has only one interop-var, and the device clause is not29
specified, the behavior is as if the device clause is present with a device-description equivalent to30
the device_num property of the interop-var.31

Restrictions32
Restrictions to the dispatch construct are as follows:33

• If the interop clause is present and has more than one interop-var then the device34
clause must also be present.35

Cross References36

• depend Clause, see Section 17.9.537

338 OpenMP API – Version 6.0 November 2024

• device Clause, see Section 15.21

• OpenMP Function Dispatch Structured Blocks, see Section 6.3.22

• Semantic Requirement Set, see Section 9.53

• has_device_addr Clause, see Section 7.5.94

• interop Clause, see Section 9.7.15

• is_device_ptr Clause, see Section 7.5.76

• nocontext Clause, see Section 9.7.37

• novariants Clause, see Section 9.7.28

• nowait Clause, see Section 17.69

• taskwait Construct, see Section 17.510

9.7.1 interop Clause11

Name: interop Properties: unique12

Arguments13
Name Type Properties
interop-var-list list of variable of interop

OpenMP type
default14

Modifiers15
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique16

Directives17
dispatch18

Semantics19
The interop clause specifies interoperability objects to be added to the semantic requirement set20
of the encountering task. They are added to the semantic requirement set in the same order in21
which they are specified in the interop clause.22

Restrictions23
Restrictions to the interop clause are as follows:24

• If the interop clause is specified on a dispatch construct, the matching25
declare_variant directive for the target-call must have an append_args clause with26
a number of list items that equals or exceeds the number of list items in the interop clause.27

CHAPTER 9. VARIANT DIRECTIVES 339

Cross References1

• dispatch Construct, see Section 9.72

9.7.2 novariants Clause3

Name: novariants Properties: unique4

Arguments5
Name Type Properties
do-not-use-variant expression of OpenMP

logical type
default6

Modifiers7
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique8

Directives9
dispatch10

Semantics11
If do-not-use-variant evaluates to true, no function variant is selected for the target-call of the12
dispatch region associated with the novariants clause even if one would be selected13
normally. The use of a variable in do-not-use-variant causes an implicit reference to the variable in14
all enclosing constructs. do-not-use-variant is evaluated in the enclosing context.15

Cross References16

• dispatch Construct, see Section 9.717

9.7.3 nocontext Clause18

Name: nocontext Properties: unique19

Arguments20
Name Type Properties
do-not-update-context expression of OpenMP

logical type
default21

Modifiers22
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique23

340 OpenMP API – Version 6.0 November 2024

Directives1
dispatch2

Semantics3
If do-not-update-context evaluates to true, the construct on which the nocontext clause appears4
is not added to the construct trait set of the OpenMP context. The use of a variable in5
do-not-update-context causes an implicit reference to the variable in all enclosing constructs.6
do-not-update-context is evaluated in the enclosing context.7

Cross References8

• dispatch Construct, see Section 9.79

9.8 declare_simd Directive10

Name: declare_simd
Category: declarative

Association: declaration
Properties: pure, variant-generating11

Arguments12
declare_simd[(proc-name)]13

Name Type Properties
proc-name identifier of function

type
optional14

Clause groups15
branch16

Clauses17
aligned, linear, simdlen, uniform18

Additional information19
The declare_simd directive may alternatively be specified with declare simd as the20
directive-name.21

Semantics22
The association of one or more declare_simd directives with a procedure declaration or23
definition enables the creation of corresponding SIMD versions of the associated procedure that24
can be used to process multiple arguments from a single invocation in a SIMD loop concurrently.25

If a SIMD version is created and the simdlen clause is not specified, the number of concurrent26
arguments for the function is implementation defined.27

For purposes of the linear clause, any integer-typed parameter that is specified in a uniform28
clause on the directive is considered to be constant and so may be used in a step-complex-modifier29
as linear-step.30

CHAPTER 9. VARIANT DIRECTIVES 341

C / C++
The expressions that appear in the clauses of each directive are evaluated in the scope of the1
arguments of the procedure declaration or definition.2

C / C++
C++

The special this pointer can be used as if it was one of the arguments to the procedure in any of3
the linear, aligned, or uniform clauses.4

C++
Restrictions5
Restrictions to the declare_simd directive are as follows:6

• The procedure body must be a structured block.7

• The execution of the procedure, when called from a SIMD loop, must not result in the8
execution of any constructs except for atomic constructs and ordered constructs on9
which the simd clause is specified.10

• The execution of the procedure must not have any side effects that would alter its execution11
for concurrent iterations of a SIMD chunk.12

C / C++
• If a declare_simd directive is specified for a declaration of a procedure then the13

definition of the procedure must have a declare_simd directive with identical clauses14
with identical arguments and modifiers.15

• The procedure must not contain calls to the longjmp or setjmp functions.16

C / C++
C++

• The procedure must not contain throw statements.17

C++
Fortran

• proc-name must not be a generic name, procedure pointer, or entry name.18

• If proc-name is omitted, the declare_simd directive must appear in the specification part19
of a subroutine subprogram or a function subprogram for which creation of the SIMD20
versions is enabled.21

• Any declare_simd directive must appear in the specification part of a subroutine22
subprogram, function subprogram, or interface body to which it applies.23

• If a procedure is declared via a procedure declaration statement, the procedure proc-name24
should appear in the same specification.25

342 OpenMP API – Version 6.0 November 2024

• If a declare_simd directive is specified for a procedure then the definition of the1
procedure must contain a declare_simd directive with identical clauses with identical2
arguments and modifiers.3

• Procedures pointers may not be used to access versions created by the declare_simd4
directive.5

Fortran
Cross References6

• aligned Clause, see Section 7.127

• linear Clause, see Section 7.5.68

• simdlen Clause, see Section 12.4.39

• uniform Clause, see Section 7.1110

9.8.1 branch Clauses11

Clause groups12
Properties: exclusive, unique Members:

Clauses
inbranch, notinbranch

13

Directives14
declare_simd15

Semantics16
The branch clause group defines a set of clauses that indicate if a procedure can be assumed to be17
or not to be encountered in a branch. If neither clause is specified, then the procedure may or may18
not be called from inside a conditional statement of the calling context.19

Cross References20

• declare_simd Directive, see Section 9.821

9.8.1.1 inbranch Clause22

Name: inbranch Properties: unique23

Arguments24
Name Type Properties
inbranch expression of OpenMP

logical type
constant, optional25

CHAPTER 9. VARIANT DIRECTIVES 343

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
declare_simd4

Semantics5
If inbranch evaluates to true, the inbranch clause specifies that the procedure will always be6
called from inside a conditional statement of the calling context. If inbranch evaluates to false, the7
procedure may be called other than from inside a conditional statement. If inbranch is not8
specified, the effect is as if inbranch evaluates to true.9

Cross References10

• declare_simd Directive, see Section 9.811

9.8.1.2 notinbranch Clause12

Name: notinbranch Properties: unique13

Arguments14
Name Type Properties
notinbranch expression of OpenMP

logical type
constant, optional15

Modifiers16
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique17

Directives18
declare_simd19

Semantics20
If notinbranch evaluates to true, the notinbranch clause specifies that the procedure will never21
be called from inside a conditional statement of the calling context. If notinbranch evaluates to22
false, the procedure may be called from inside a conditional statement. If notinbranch is not23
specified, the effect is as if notinbranch evaluates to true.24

Cross References25

• declare_simd Directive, see Section 9.826

344 OpenMP API – Version 6.0 November 2024

9.9 Declare Target Directives1

Declare target directives apply to procedures and/or variables to ensure that they can be executed or2
accessed on a device. Variables are either replicated as device-local variables for each device3
through a local clause, are mapped for all device executions through an enter clause, or are4
mapped for specific device executions through a link clause. An implementation may generate5
different versions of a procedure to be used for target regions that execute on different devices.6
Whether it generates different versions, and whether it calls a different version in a target region7
from the version that it calls outside a target region, are implementation defined.8

To facilitate device usage, OpenMP defines rules that implicitly specify declare target directives for9
procedures and variables. The remainder of this section defines those rules as well as restrictions10
that apply to all declare target directives.11

C++
If a variable with static storage duration has the constexpr specifier and is not a groupprivate12
variable then the variable is treated as if it had appeared as a list item in an enter clause on a13
declare target directive.14

C++
If a variable with static storage duration that is not a device-local variable (including that it is not a15
groupprivate variable) is declared in a device procedure then the variable is treated as if it had16
appeared as a list item in an enter clause on a declare target directive.17

If a procedure is referenced outside of any reverse-offload region in a procedure that appears as a18
list item in an enter clause on a non-host declare target directive then the name of the referenced19
procedure is treated as if it had appeared in an enter clause on a declare target directive.20

C / C++
If a variable with static storage duration or a function (except lambda for C++) is referenced in the21
initializer expression list of a variable with static storage duration that appears as a list item in an22
enter or local clause on a declare target directive then the name of the referenced variable or23
procedure is treated as if it had appeared in an enter clause on a declare target directive.24

C / C++
Fortran

If a declare_target directive has a device_type clause then any enclosed internal25
procedure cannot contain any declare_target directives. The enclosing device_type26
clause implicitly applies to internal procedures.27

Fortran
A reference to a device-local variable that has static storage duration inside a device procedure is28
replaced with a reference to the copy of the variable for the device. Otherwise, a reference to a29
variable that has static storage duration in a device procedure is replaced with a reference to a30
corresponding variable in the device data environment. If the corresponding variable does not exist31
or the variable does not appear in an enter or link clause on a declare target directive, the32
behavior is unspecified.33

CHAPTER 9. VARIANT DIRECTIVES 345

Execution Model Events1
The target-global-data-op event occurs when an original list item is associated with a2
corresponding list item on a device as a result of a declare target directive; the event occurs before3
the first access to the corresponding list item.4

Tool Callbacks5
A thread dispatches a registered target_data_op_emi callback with6
ompt_scope_beginend as its endpoint argument for each occurrence of a7
target-global-data-op event in that thread.8

Restrictions9
Restrictions to any declare target directive are as follows:10

• The same list item must not explicitly appear in both an enter clause on one declare target11
directive and a link or local clause on another declare target directive.12

• The same list item must not explicitly appear in both a link clause on one declare target13
directive and a local clause on another declare target directive.14

• If a variable appears in a enter clause on a declare target directive, its initializer must not15
refer to a variable that appears in a link clause on a declare target directive.16

Cross References17

• begin declare_target Directive, see Section 9.9.218

• declare_target Directive, see Section 9.9.119

• enter Clause, see Section 7.9.720

• link Clause, see Section 7.9.821

• OMPT scope_endpoint Type, see Section 33.2722

• target Construct, see Section 15.823

• target_data_op_emi Callback, see Section 35.724

9.9.1 declare_target Directive25

Name: declare_target
Category: declarative

Association: explicit
Properties: declare-target, device,
pure, variant-generating

26

Arguments27
declare_target(extended-list)28

Name Type Properties
extended-list list of extended list item

type
optional29

346 OpenMP API – Version 6.0 November 2024

Clauses1
device_type, enter, indirect, link, local2

Additional information3
The declare_target directive may alternatively be specified with declare target as the4
directive-name.5

Semantics6
The declare_target directive is a declare target directive. If the extended-list argument is7
specified, the effect is as if any list items from extended-list that are not groupprivate variables8
appear in the list argument of an implicit enter clause and any list items that are groupprivate9
variables appear in the list argument of an implicit local clause.10

If neither the extended-list argument nor a data-environment attribute clause is specified then the11
directive is a declaration-associated directive. The effect is as if the name of the associated12
procedure appears as a list item in an enter clause of a declare target directive that otherwise13
specifies the same set of clauses.14

C / C++
If the declare_target directive is specified as an attribute specifier with the decl attribute15
and a decl attribute is not used on the declaration to specify groupprivate variables, the effect is as16
if an enter clause is specified if a link or local clause is not specified.17

If the declare_target directive is specified as an attribute specifier with the decl attribute18
and a decl attribute is used on the declaration to specify groupprivate variables, the effect is as if a19
local clause is specified.20

C / C++
Restrictions21
Restrictions to the declare_target directive are as follows:22

• If the extended-list argument is specified, no clauses may be specified.23

• If the directive is not a declaration-associated directive and an extended-list argument is not24
specified, a data-environment attribute clause must be present.25

• A variable for which nohost is specified must not appear in a link clause.26

• A groupprivate variable must not appear in any enter clauses or link clauses.27

C / C++
• If the directive is not a declaration-associated directive, it must appear at the same scope as28

the declaration of every list item in its extended-list or in its data-environment attribute29
clauses.30

C / C++

CHAPTER 9. VARIANT DIRECTIVES 347

Fortran
• If a list item is a procedure name, it must not be a generic name, procedure pointer, entry1

name, or statement function name.2

• If the directive is a declaration-associated directive, the directive must appear in the3
specification part of a subroutine subprogram, function subprogram or interface body.4

• If a list item is a procedure name that is not declared via a procedure declaration statement,5
the directive must be in the specification part of the subprogram or interface body of that6
procedure.7

• If a list item in extended-list is a variable, the directive must appear in the specification part8
in which the variable is declared.9

• If a declare_target directive is specified for a procedure that has an explicit interface10
then the definition of the procedure must contain a declare_target directive with11
identical clauses with identical arguments and modifiers.12

• If an external procedure is a type-bound procedure of a derived type and the directive is13
specified in the definition of the external procedure, it must appear in the interface block that14
is accessible to the derived-type definition.15

• If any procedure is declared via a procedure declaration statement that is not in the16
type-bound procedure part of a derived-type definition, any declare_target directive17
with the procedure name must appear in the same specification part.18

• If a declare_target directive that specifies a common block name appears in one19
program unit, then such a directive must also appear in every other program unit that contains20
a COMMON statement that specifies the same name, after the last such COMMON statement in21
the program unit.22

• If a list item is declared with the BIND attribute, the corresponding C entities must also be23
specified in a declare_target directive in the C program.24

• A variable can only appear in a declare_target directive in the scope in which it is25
declared. It must not be an element of a common block or appear in an EQUIVALENCE26
statement.27

Fortran
Cross References28

• device_type Clause, see Section 15.129

• enter Clause, see Section 7.9.730

• Declare Target Directives, see Section 9.931

• indirect Clause, see Section 9.9.332

• link Clause, see Section 7.9.833

348 OpenMP API – Version 6.0 November 2024

• local Clause, see Section 7.141

C / C++

9.9.2 begin declare_target Directive2

Name: begin declare_target
Category: declarative

Association: delimited
Properties: declare-target, device,
variant-generating

3

Clauses4
device_type, indirect5

Additional information6
The begin declare_target directive may alternatively be specified with begin declare7
target as the directive-name.8

Semantics9
The begin declare_target directive is a declare target directive. The directive and its10
paired end directive form a delimited code region that defines an implicit extended-list and implicit11
local-list that is converted to an implicit enter clause with the extended-list as its argument and12
an implicit local clause with the local-list as its argument, respectively. The delimited code13
region is a declaration sequence.14

The implicit extended-list consists of the variable and procedure names of any variable or15
procedure declarations at file scope that appear in the delimited code region, excluding declarations16
of groupprivate variables. If any groupprivate variables are declared in the delimited code region,17
the effect is as if the variables appear in the implicit local-list.18

C++
Additionally, the implicit extended-list and local-list consist of the variable and procedure names of19
any variable or procedure declarations at namespace or class scope that appear in the delimited20
code region, including the operator() member function of the resulting closure type of any21
lambda expression that is defined in the delimited code region.22

C++
The delimited code region may contain declare target directives. If a device_type clause is23
present on the contained declare target directive, then its argument determines which versions are24
made available. If a list item appears both in an implicit and explicit list, the explicit list determines25
which versions are made available.26

CHAPTER 9. VARIANT DIRECTIVES 349

Restrictions1
Restrictions to the begin declare_target directive are as follows:2

C++
• The function names of overloaded functions or template functions may only be specified3

within an implicit extended-list.4

• If a lambda declaration and definition appears between a begin declare_target5
directive and the paired end directive, all variables that are captured by the lambda expression6
must also appear in an enter clause.7

• A module export or import statement may not appear between a begin8
declare_target directive and the paired end directive.9

C++
Cross References10

• device_type Clause, see Section 15.111

• enter Clause, see Section 7.9.712

• Declare Target Directives, see Section 9.913

• indirect Clause, see Section 9.9.314

C / C++

9.9.3 indirect Clause15

Name: indirect Properties: unique16

Arguments17
Name Type Properties
invoked-by-fptr expression of OpenMP

logical type
constant, optional18

Modifiers19
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique20

Directives21
begin declare_target, declare_target22

Semantics23
If invoked-by-fptr evaluates to true, any procedures that appear in an enter clause on the directive24
on which the indirect clause is specified may be called with an indirect device invocation. If the25

350 OpenMP API – Version 6.0 November 2024

invoked-by-fptr does not evaluate to true, any procedures that appear in an enter clause on the1
directive may not be called with an indirect device invocation. Unless otherwise specified by an2
indirect clause, procedures may not be called with an indirect device invocation. If the3
indirect clause is specified and invoked-by-fptr is not specified, the effect of the clause is as if4
invoked-by-fptr evaluates to true.5

C / C++
If a procedure appears in the implicit enter clause of a begin declare_target directive6
and in the enter clause of a declare target directive that is contained in the delimited code region7
of the begin declare_target directive, and if an indirect clause appears on both8
directives, then the indirect clause on the begin declare_target directive has no effect9
or that procedure.10

C / C++
Restrictions11
Restrictions to the indirect clause are as follows:12

• If invoked-by-fptr evaluates to true, a device_type clause must not appear on the same13
directive unless it specifies any for its device-type-description.14

Cross References15

• begin declare_target Directive, see Section 9.9.216

• declare_target Directive, see Section 9.9.117

CHAPTER 9. VARIANT DIRECTIVES 351

10 Informational and Utility Directives1

An informational directive conveys information about code properties to the compiler while a2
utility directive facilitates interactions with the compiler or supports code readability. A utility3
directive is informational unless the at clause implies it is an executable directive.4

10.1 error Directive5

Name: error
Category: utility

Association: unassociated
Properties: pure6

Clauses7
at, message, severity8

Semantics9
The error directive instructs the compiler or runtime to perform an error action. The error action10
displays an implementation defined message. The severity clause determines whether the error11
action is abortive following the display of the message. If sev-level is fatal and the action-time of12
the at clause is compilation, the message is displayed and compilation of the current13
compilation unit is aborted. If sev-level is fatal and action-time is execution, the message is14
displayed and program execution is aborted.15

Execution Model Events16
The runtime-error event occurs when a thread encounters an error directive for which the at17
clause specifies execution.18

Tool Callbacks19
A thread dispatches a registered error callback for each occurrence of a runtime-error event in20
the context of the encountering task.21

Restrictions22
Restrictions to the error directive are as follows:23

• The directive is pure only if action-time is compilation.24

Cross References25

• at Clause, see Section 10.226

• error Callback, see Section 34.227

352 OpenMP API – Version 6.0 November 2024

• message Clause, see Section 10.31

• severity Clause, see Section 10.42

10.2 at Clause3

Name: at Properties: unique4

Arguments5
Name Type Properties
action-time Keyword:

compilation,
execution

default
6

Modifiers7
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique8

Directives9
error10

Semantics11
The at clause determines when the implementation performs an action that is associated with a12
utility directive. If action-time is compilation, the action is performed during compilation if the13
directive appears in a declarative context or in an executable context that is reachable at runtime. If14
action-time is compilation and the directive appears in an executable context that is not15
reachable at runtime, the action may or may not be performed. If action-time is execution, the16
action is performed during program execution when a thread encounters the directive and the17
directive is considered to be an executable directive. If the at clause is not specified, the effect is as18
if action-time is compilation.19

Cross References20

• error Directive, see Section 10.121

10.3 message Clause22

Name: message Properties: unique23

Arguments24
Name Type Properties
msg-string expression of string type default25

CHAPTER 10. INFORMATIONAL AND UTILITY DIRECTIVES 353

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
error, parallel4

Semantics5
The message clause specifies that msg-string is included in the implementation defined message6
that is associated with the directive on which the clause appears.7

Restrictions8

• If the action-time is compilation, msg-string must be a constant expression.9

Cross References10

• error Directive, see Section 10.111

• parallel Construct, see Section 12.112

10.4 severity Clause13

Name: severity Properties: unique14

Arguments15
Name Type Properties
sev-level Keyword: fatal,

warning
default16

Modifiers17
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique18

Directives19
error, parallel20

Semantics21
The severity clause determines the action that the implementation performs if an error is22
encountered with respect to the directive on which the clause appears. If sev-level is warning, the23
implementation takes no action besides displaying the message that is associated with the directive.24
If sev-level is fatal, the implementation performs the abortive action associated with the25
directive on which the clause appears. If no severity clause is specified then the effect is as if26
sev-level is fatal.27

354 OpenMP API – Version 6.0 November 2024

Cross References1

• error Directive, see Section 10.12

• parallel Construct, see Section 12.13

10.5 requires Directive4

Name: requires
Category: informational

Association: unassociated
Properties: default5

Clause groups6
requirement7

Semantics8
The requires directive specifies features that an implementation must support for correct9
execution and requirements for the execution of all code in the current compilation unit. The10
behavior that a requirement clause specifies may override the normal behavior specified elsewhere11
in this document. Whether an implementation supports the feature that a given requirement clause12
specifies is implementation defined.13

The clauses of a requires directive are added to the requires trait in the OpenMP context for all14
program points that follow the directive.15

Restrictions16
Restrictions to the requires directive are as follows:17

• A requires directive must appear lexically after the specification of a context selector in18
which any clause of that requires directive is used, nor may the directive appear lexically19
after any code that depends on such a context selector.20

C
• The requires directive must only appear at file scope.21

C
C++

• The requires directive must only appear at file or namespace scope.22

C++
C / C++

• Any requires directive that specifies a device global requirement clause must appear23
lexically before any device constructs or device procedures.24

C / C++

CHAPTER 10. INFORMATIONAL AND UTILITY DIRECTIVES 355

Fortran
• The requires directive must appear in the specification part of a program unit, either after1

all USE statements, IMPORT statements, and IMPLICIT statements or by referencing a2
module. Additionally, it may appear in the specification part of an internal or module3
subprogram that appears by referencing a module if each clause already appeared with the4
same arguments in the specification part of the program unit.5

Fortran

10.5.1 requirement Clauses6

Clause groups7
Properties: required, unique Members:

Clauses
atomic_default_mem_order,
device_safesync,
dynamic_allocators,
reverse_offload,
self_maps, unified_address,
unified_shared_memory

8

Directives9
requires10

Semantics11
The requirement clause group defines a clause set that indicates the requirements that a program12
requires the implementation to support. If an implementation supports a given requirement clause13
then the use of that clause on a requires directive will cause the implementation to ensure the14
enforcement of a guarantee represented by the specific member of the clause group. If the15
implementation does not support the requirement then it must perform compile-time error16
termination.17

Restrictions18

• All compilation units of a program that contain declare target directives, device constructs or19
device procedures must specify the same set of requirements that are defined by clauses with20
the device global requirement property in the requirement clause group.21

Cross References22

• requires Directive, see Section 10.523

10.5.1.1 atomic_default_mem_order Clause24

Name: atomic_default_mem_order Properties: unique25

356 OpenMP API – Version 6.0 November 2024

Arguments1
Name Type Properties
memory-order Keyword: acq_rel,

acquire, relaxed,
release, seq_cst

default
2

Modifiers3
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique4

Directives5
requires6

Semantics7
The atomic_default_mem_order clause specifies the default memory ordering behavior for8
atomic constructs that an implementation must provide. The effect is as if its argument appears as9
a clause on any atomic construct that does not specify a memory-order clause.10

Restrictions11
Restrictions to the atomic_default_mem_order clause are as follows:12

• All requires directives in the same compilation unit that specify the13
atomic_default_mem_order requirement must specify the same argument.14

• Any directive that specifies the atomic_default_mem_order clause must not appear15
lexically after any atomic construct on which a memory-order clause is not specified.16

Cross References17

• atomic Construct, see Section 17.8.518

• memory-order Clauses, see Section 17.8.119

• requires Directive, see Section 10.520

10.5.1.2 dynamic_allocators Clause21

Name: dynamic_allocators Properties: unique22

Arguments23
Name Type Properties
required expression of OpenMP

logical type
constant, optional24

CHAPTER 10. INFORMATIONAL AND UTILITY DIRECTIVES 357

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
requires4

Semantics5
If required evaluates to true, the dynamic_allocators clause removes certain restrictions on6
the use of memory allocators in target regions. Specifically, allocators (including the default7
allocator that is specified by the def-allocator-var ICV) may be used in a target region or in an8
allocate clause on a target construct without specifying the uses_allocators clause on9
the target construct. Additionally, the implementation must support calls to the10
omp_init_allocator and omp_destroy_allocator API routines in target regions.11
If required is not specified, the effect is as if required evaluates to true.12

Cross References13

• allocate Clause, see Section 8.614

• def-allocator-var ICV, see Table 3.115

• omp_destroy_allocator Routine, see Section 27.716

• omp_init_allocator Routine, see Section 27.617

• requires Directive, see Section 10.518

• target Construct, see Section 15.819

• uses_allocators Clause, see Section 8.820

10.5.1.3 reverse_offload Clause21

Name: reverse_offload Properties: unique, device global require-
ment22

Arguments23
Name Type Properties
required expression of OpenMP

logical type
constant, optional24

Modifiers25
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique26

358 OpenMP API – Version 6.0 November 2024

Directives1
requires2

Semantics3
If required evaluates to true, the reverse_offload clause requires an implementation to4
guarantee that if a target construct specifies a device clause in which the ancestor5
device-modifier appears, the target region can execute on the parent device of an enclosing6
target region. If required is not specified, the effect is as if required evaluates to true.7

Cross References8

• device Clause, see Section 15.29

• requires Directive, see Section 10.510

• target Construct, see Section 15.811

10.5.1.4 unified_address Clause12

Name: unified_address Properties: unique, device global require-
ment13

Arguments14
Name Type Properties
required expression of OpenMP

logical type
constant, optional15

Modifiers16
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique17

Directives18
requires19

Semantics20
If required evaluates to true, the unified_address clause requires an implementation to21
guarantee that all devices accessible through OpenMP API routines and directives use a unified22
address space. In this address space, a pointer will always refer to the same location in memory23
from all devices accessible through OpenMP. Any OpenMP mechanism that returns a device24
pointer is guaranteed to return a device address that supports pointer arithmetic, and the25
is_device_ptr clause is not necessary to obtain device addresses from device pointers for use26
inside target regions. Host pointers may be passed as device pointer arguments to device27
memory routines and device pointers may be passed as host pointer arguments to device memory28
routines. Non-host devices may still have discrete memories and dereferencing a device pointer on29
the host device or a host pointer on a non-host device remains unspecified behavior. Memory local30

CHAPTER 10. INFORMATIONAL AND UTILITY DIRECTIVES 359

to a specific execution context may be exempt from the unified_address requirement,1
following the restrictions of locality to a given execution context, thread or contention group. If2
required is not specified, the effect is as if required evaluates to true.3

Cross References4

• is_device_ptr Clause, see Section 7.5.75

• requires Directive, see Section 10.56

• target Construct, see Section 15.87

10.5.1.5 unified_shared_memory Clause8

Name: unified_shared_memory Properties: unique, device global require-
ment9

Arguments10
Name Type Properties
required expression of OpenMP

logical type
constant, optional11

Modifiers12
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique13

Directives14
requires15

Semantics16
If required evaluates to true, the unified_shared_memory clause requires the implementation17
to guarantee that all devices share memory that is generally accessible to all threads.18

The unified_shared_memory clause implies the unified_address requirement,19
inheriting all of its behaviors.20

The implementation must guarantee that storage locations in memory are accessible to threads on21
all accessible devices, except for memory that is local to a specific execution context and exempt22
from the unified_address requirement (see Section 10.5.1.4). Every device address that23
refers to storage allocated through OpenMP API routines is a valid host pointer that may be24
dereferenced and may be used as a host address. Values stored into memory by one device may not25
be visible to another device until synchronization establishes a happens-before order between the26
memory accesses.27

The use of declare target directives in an OpenMP program is optional for referencing variables28
with static storage duration in device procedures.29

360 OpenMP API – Version 6.0 November 2024

Any data object that results from the declaration of a variable that has static storage duration is1
treated as if it is mapped with a persistent self map at the beginning of the program to the device2
data environments of all target devices if:3

• The variable is not a device-local variable;4

• The variable is not listed in an enter clause on a declare target directive; and5

• The variable is referenced in a device procedure.6

If required is not specified, the effect is as if required evaluates to true.7

Cross References8

• enter Clause, see Section 7.9.79

• requires Directive, see Section 10.510

• unified_address Clause, see Section 10.5.1.411

10.5.1.6 self_maps Clause12

Name: self_maps Properties: unique, device global require-
ment13

Arguments14
Name Type Properties
required expression of OpenMP

logical type
constant, optional15

Modifiers16
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique17

Directives18
requires19

Semantics20
If required evaluates to true, the self_maps clause implies the unified_shared_memory21
clause, inheriting all of its behaviors. Additionally, map-entering clauses in the compilation unit22
behave as if all resulting mapping operations are self maps, and all corresponding list items created23
by the enter clauses specified by declare target directives in the compilation unit share storage24
with the original list items. If required is not specified, the effect is as if required evaluates to true.25

CHAPTER 10. INFORMATIONAL AND UTILITY DIRECTIVES 361

Cross References1

• enter Clause, see Section 7.9.72

• requires Directive, see Section 10.53

• unified_shared_memory Clause, see Section 10.5.1.54

10.5.1.7 device_safesync Clause5

Name: device_safesync Properties: unique, device global require-
ment6

Arguments7
Name Type Properties
required expression of OpenMP

logical type
constant, optional8

Modifiers9
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique10

Directives11
requires12

Semantics13
If required evaluates to true, the device_safesync clause indicates that any two synchronizing14
divergent threads in a team that execute on a non-host device must be able to make progress, unless15
indicated otherwise by the use of a safesync clause. If required is not specified, the effect is as if16
required evaluates to true.17

Cross References18

• requires Directive, see Section 10.519

• safesync Clause, see Section 12.1.520

10.6 Assumption Directives21

Different assumption directives facilitate definition of assumptions for a scope that is appropriate to22
each base language. The assumption scope of a particular format is defined in the section that23
defines that directive. If the invariants specified by the assumption directive do not hold at runtime,24
the behavior is unspecified.25

362 OpenMP API – Version 6.0 November 2024

10.6.1 assumption Clauses1

Clause groups2
Properties: required, unique Members:

Clauses
absent, contains, holds,
no_openmp, no_openmp_constructs,
no_openmp_routines, no_parallelism

3

Directives4
assume, assumes, begin assumes5

Semantics6
The assumption clause group defines a clause set that indicates the invariants that a program7
ensures the implementation can exploit.8

The absent and contains clauses accept a directive-name list that may match a construct that9
is encountered within the assumption scope. An encountered construct matches the directive name10
if it or one of its constituent constructs has the same directive-name as one of the list items.11

Restrictions12
The restrictions to assumption clauses are as follows:13

• A directive-name list item must not specify a directive that is a declarative directive, an14
informational directive, or a metadirective.15

Cross References16

• assume Directive, see Section 10.6.317

• assumes Directive, see Section 10.6.218

• begin assumes Directive, see Section 10.6.419

10.6.1.1 absent Clause20

Name: absent Properties: unique21

Arguments22
Name Type Properties
directive-name-list list of directive-name list

item type
default23

Modifiers24
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique25

CHAPTER 10. INFORMATIONAL AND UTILITY DIRECTIVES 363

Directives1
assume, assumes, begin assumes2

Semantics3
The absent clause specifies that the program guarantees that no construct that matches a4
directive-name list item is encountered in the assumption scope.5

Cross References6

• assume Directive, see Section 10.6.37

• assumes Directive, see Section 10.6.28

• begin assumes Directive, see Section 10.6.49

10.6.1.2 contains Clause10

Name: contains Properties: unique11

Arguments12
Name Type Properties
directive-name-list list of directive-name list

item type
default13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique15

Directives16
assume, assumes, begin assumes17

Semantics18
The contains clause specifies that constructs that match the directive-name list items are likely19
to be encountered in the assumption scope.20

Cross References21

• assume Directive, see Section 10.6.322

• assumes Directive, see Section 10.6.223

• begin assumes Directive, see Section 10.6.424

10.6.1.3 holds Clause25

Name: holds Properties: unique26

364 OpenMP API – Version 6.0 November 2024

Arguments1
Name Type Properties
hold-expr expression of OpenMP

logical type
default2

Modifiers3
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique4

Directives5
assume, assumes, begin assumes6

Semantics7
When the holds clause appears on an assumption directive, the program guarantees that the listed8
expression evaluates to true in the assumption scope. The effect of the clause does not include any9
evaluation of the expression that affects the behavior of the program.10

Cross References11

• assume Directive, see Section 10.6.312

• assumes Directive, see Section 10.6.213

• begin assumes Directive, see Section 10.6.414

10.6.1.4 no_openmp Clause15

Name: no_openmp Properties: unique16

Arguments17
Name Type Properties
can_assume expression of OpenMP

logical type
constant, optional18

Modifiers19
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique20

Directives21
assume, assumes, begin assumes22

Semantics23
If can_assume evaluates to true, the no_openmp clause implies the no_openmp_constructs24
clause and the no_openmp_routines clause. If can_assume is not specified, the effect is as if25
can_assume evaluates to true.26

CHAPTER 10. INFORMATIONAL AND UTILITY DIRECTIVES 365

C++
The no_openmp clause also guarantees that no thread will throw an exception in the assumption1
scope if it is contained in a region that arises from an exception-aborting directive.2

C++
Cross References3

• assume Directive, see Section 10.6.34

• assumes Directive, see Section 10.6.25

• begin assumes Directive, see Section 10.6.46

10.6.1.5 no_openmp_constructs Clause7

Name: no_openmp_constructs Properties: unique8

Arguments9
Name Type Properties
can_assume expression of OpenMP

logical type
constant, optional10

Modifiers11
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique12

Directives13
assume, assumes, begin assumes14

Semantics15
If can_assume evaluates to true, the no_openmp_constructs clause guarantees that no16
constructs are encountered in the assumption scope. If can_assume is not specified, the effect is as17
if can_assume evaluates to true.18

Cross References19

• assume Directive, see Section 10.6.320

• assumes Directive, see Section 10.6.221

• begin assumes Directive, see Section 10.6.422

10.6.1.6 no_openmp_routines Clause23

Name: no_openmp_routines Properties: unique24

366 OpenMP API – Version 6.0 November 2024

Arguments1
Name Type Properties
can_assume expression of OpenMP

logical type
constant, optional2

Modifiers3
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique4

Directives5
assume, assumes, begin assumes6

Semantics7
If can_assume evaluates to true, the no_openmp_routines clause guarantees that no OpenMP8
API routines are executed in the assumption scope. If can_assume is not specified, the effect is as if9
can_assume evaluates to true.10

Cross References11

• assume Directive, see Section 10.6.312

• assumes Directive, see Section 10.6.213

• begin assumes Directive, see Section 10.6.414

10.6.1.7 no_parallelism Clause15

Name: no_parallelism Properties: unique16

Arguments17
Name Type Properties
can_assume expression of OpenMP

logical type
constant, optional18

Modifiers19
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique20

Directives21
assume, assumes, begin assumes22

Semantics23
If can_assume evaluates to true, the no_parallelism clause guarantees that no24
parallelism-generating constructs will be encountered in the assumption scope. If can_assume is25
not specified, the effect is as if can_assume evaluates to true.26

CHAPTER 10. INFORMATIONAL AND UTILITY DIRECTIVES 367

Cross References1

• assume Directive, see Section 10.6.32

• assumes Directive, see Section 10.6.23

• begin assumes Directive, see Section 10.6.44

10.6.2 assumes Directive5

Name: assumes
Category: informational

Association: unassociated
Properties: pure6

Clause groups7
assumption8

Semantics9
The assumption scope of the assumes directive is the code executed and reached from the current10
compilation unit.11

Fortran
Referencing a module that has an assumes directive in its specification part does not have the12
effect as if the assumes directive appeared in the specification part of the referencing scope.13

Fortran
Restrictions14
The restrictions to the assumes directive are as follows:15

C
• The assumes directive must only appear at file scope.16

C
C++

• The assumes directive must only appear at file or namespace scope.17

C++
Fortran

• The assumes directive must only appear in the specification part of a module or18
subprogram, after all USE statements, IMPORT statements, and IMPLICIT statements.19

Fortran

368 OpenMP API – Version 6.0 November 2024

10.6.3 assume Directive1

Name: assume
Category: informational

Association: block
Properties: pure2

Clause groups3
assumption4

Semantics5
The assumption scope of the assume directive is the corresponding region and any nested region6
of that region.7

C / C++

10.6.4 begin assumes Directive8

Name: begin assumes
Category: informational

Association: delimited
Properties: default9

Clause groups10
assumption11

Semantics12
The assumption scope of the begin assumes directive is the code that is executed and reached13
from any of the declared functions in the delimited code region. The delimited code region is a14
declaration sequence.15

C / C++

10.7 nothing Directive16

Name: nothing
Category: utility

Association: unassociated
Properties: pure, loop-transforming17

Clauses18
apply19

Loop Modifiers for the apply Clause20
loop-modifier Number of Generated Loops Description
identity (default) 1 the copy of the transformation-

affected loop
21

22

CHAPTER 10. INFORMATIONAL AND UTILITY DIRECTIVES 369

Semantics1
The nothing directive has no effect on the execution of the OpenMP program unless otherwise2
specified by the apply clause.3

If the nothing directive immediately precedes a canonical loop nest then it forms a4
loop-transforming construct. It is associated with the outermost loop and generates one loop that5
has the same logical iterations in the same order as the transformation-affected loop.6

Restrictions7
• The apply clause can be specified if and only if the nothing directive forms a8

loop-transforming construct.9

Cross References10

• apply Clause, see Section 11.111

• Loop-Transforming Constructs, see Chapter 1112

370 OpenMP API – Version 6.0 November 2024

11 Loop-Transforming Constructs1

A loop-transforming construct replaces itself, including its associated loop nest (see Section 6.4.1)2
or associated loop sequence (see Section 6.4.2), with a structured block that may be another loop3
nest or loop sequence. If the replacement of a loop-transforming construct is another loop nest or4
sequence, that loop nest or sequence, possibly as part of an enclosing loop nest or sequence, may be5
associated with another loop-nest-associated directive or loop-sequence-associated directive. A6
nested loop-transforming construct and any loop-transforming constructs that result from its7
apply clauses are replaced before any enclosing loop-transforming construct.8

A loop-sequence-transforming construct generates a canonical loop sequence from its associated9
canonical loop sequence. The canonical loop nests that precede or follow the affected loop nests in10
the associated canonical loop sequence will respectively precede or follow, in the generated11
canonical loop sequence, the generated loop nest or generated loop sequence that replaces the12
affected loop nests.13

All generated loops have canonical loop nest form, unless otherwise specified. Loop-iteration14
variables of generated loops are always private in the innermost enclosing parallelism-generating15
construct.16

At the beginning of each logical iteration, the loop-iteration variable or the variable declared by17
range-decl has the value that it would have if the transformation-affected loop was not associated18
with any directive. After the execution of the loop-transforming construct, the loop-iteration19
variables of any of its transformation-affected loops have the values that they would have without20
the loop-transforming directive.21

Restrictions22
The following restrictions apply to loop-transforming constructs:23

• The replacement of a loop-transforming construct with its generated loop nests or generated24
loop sequences must result in a conforming program.25

• A generated loop of a loop-transforming construct must not be a doacross-affected loop.26

• The arguments of any clauses on a loop-transforming construct must not refer to27
loop-iteration variables of surrounding loops in the same canonical loop nest.28

• The lb and ub expressions of an affected loop (see Section 6.4.1) may only reference the29
loop-iteration variable of an enclosing loop affected by a loop-transforming construct if that30
loop-transforming construct has the nonrectangular-compatible property.31

CHAPTER 11. LOOP-TRANSFORMING CONSTRUCTS 371

• A generated loop of a loop-transforming construct may only be a non-rectangular affected1
loop of an enclosing loop-nest-associated directive if that loop-transforming construct has the2
nonrectangular-compatible property.3

Cross References4

• Canonical Loop Nest Form, see Section 6.4.15

11.1 apply Clause6

Name: apply Properties: default7

Arguments8
Name Type Properties
applied-directives list of directive specifi-

cation list item type
default9

Modifiers10
Name Modifies Type Properties
loop-modifier applied-directives Complex, Keyword:

fused, grid, identity,
interchanged,
intratile, offsets,
reversed, split,
unrolled
Arguments:
indices list of expression of

integer type (optional)

optional

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

11

Directives12
fuse, interchange, nothing, reverse, split, stripe, tile, unroll13

Semantics14
The apply clause applies loop-nest-associated constructs, specified by the applied-directives list,15
to generated loops of a loop-transforming construct. The loop-modifier specifies to which generated16
loops the directives are applied. If the loop-transforming construct generates a canonical loop17
sequence, the generated loops to which the directives are applied are the outermost loops of each18
generated loop nest. An applied loop-transforming construct may also specify apply clauses.19

The valid loop-modifier keywords, the default loop-modifier if it exists, the number of20
applied-directives list items, and the target of each applied-directives list item is defined by the21
loop-transforming construct to which it applies. Each of the indices in the argument of the22
loop-modifier specifies the position of the generated loop to which the respective applied-directives23
item is applied.24

372 OpenMP API – Version 6.0 November 2024

If the loop-modifier is specified with no argument, the behavior is as if the list 1, 2, . . . , m is1
specified, where m is the number of generated loops according to the specification of the2
loop-modifier keyword. If the loop-modifier is omitted and a default loop-modifier exists for the3
apply clause on the construct, the behavior is as if the default loop-modifier with the argument 1,4
2, . . . , m is specified.5

The list items of the apply clause arguments are not required to be directive-wide unique.6

Restrictions7
Restrictions to the apply clause are as follows:8

• Each list item in the applied-directives list of any apply clause must be nothing or the9
directive-specification of a loop-nest-associated construct.10

• The loop-transforming construct on which the apply clause is specified must either have the11
generally-composable property or every list item in the applied-directives list of any apply12
clause must be the directive-specification of a loop-transforming directive.13

• Every list item in the applied-directives list of any apply clause that is specified on a14
loop-transforming construct that is itself specified as a list item in the applied-directives list15
of another apply clause must be the directive-specification of a loop-transforming directive.16

• For a given loop-modifier keyword, every indices list item may appear at most once in any17
apply clause on the directive.18

• Every indices list item must be a positive constant less than or equal to m, the number of19
generated loops according to the specification of the loop-modifier keyword.20

• The list items in indices must be in ascending order.21

• If a directive does not define a default loop-modifier keyword, a loop-modifier is required.22

Cross References23

• fuse Construct, see Section 11.324

• interchange Construct, see Section 11.425

• metadirective, see Section 9.4.326

• nothing Directive, see Section 10.727

• reverse Construct, see Section 11.528

• split Construct, see Section 11.629

• stripe Construct, see Section 11.730

• tile Construct, see Section 11.831

• unroll Construct, see Section 11.932

CHAPTER 11. LOOP-TRANSFORMING CONSTRUCTS 373

11.2 sizes Clause1

Name: sizes Properties: unique, required2

Arguments3
Name Type Properties
size-list list of OpenMP integer

expression type
positive4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
stripe, tile8

Semantics9
For a given loop-transforming directive on which the clause appears, the sizes clause specifies10
the manner in which the logical iteration space of the affected canonical loop nest is subdivided into11
m-dimensional grid cells that are relevant to the loop transformation, where m is the number of list12
items in size-list. Specificially, each list item in size-list specifies the size of the grid cells along the13
corresponding dimension. List items in size-list are not required to be unique.14

Restrictions15
Restrictions to the sizes clause are as follows:16

• The loop nest depth of the associated loop nest of the loop-transforming construct on which17
the clause is specified must be greater than or equal to m.18

Cross References19

• stripe Construct, see Section 11.720

• tile Construct, see Section 11.821

11.3 fuse Construct22

Name: fuse
Category: executable

Association: loop sequence
Properties: loop-transforming, order-
concurrent-nestable, pure, simdizable,
teams-nestable

23

Clauses24
apply, looprange25

374 OpenMP API – Version 6.0 November 2024

Loop Modifiers for the apply Clause1
loop-modifier Number of Generated Loops Description
fused (default) 1 the fused loop2

3

Semantics4
The fuse construct merges the affected loop nests specified by the looprange clause into a5
single canonical loop nest where execution of each logical iteration of the generated loop executes a6
logical iteration of each affected loop nest. Let ℓ1, . . . , ℓn be the affected loop nests with m1, . . . ,7
mn logical iterations each, and ikj the jth logical iteration of loop ℓk. Let ikj be an empty iteration if8
j ≥ mk. Let mmax be the number of logical iterations of the affected loop nest with the most logical9
iterations. The loop generated by the fuse construct has mmax logical iterations, where execution10
of the jth logical iteration executes the logical iterations i1j , . . . , inj , in that order.11

Cross References12

• apply Clause, see Section 11.113

• looprange Clause, see Section 6.4.714

11.4 interchange Construct15

Name: interchange
Category: executable

Association: loop nest
Properties: loop-transforming,
nonrectangular-compatible, order-
concurrent-nestable, pure, simdizable,
teams-nestable

16

Clauses17
apply, permutation18

Loop Modifiers for the apply Clause19
loop-modifier Number of Generated Loops Description
interchanged (de-
fault)

n the generated loops, in the new
order

20

21

Semantics22
The interchange construct has n transformation-affected loops, where s1, . . . , sn are the n23
items in the permutation-list argument of the permutation clause. Let ℓ1, . . . , ℓn be the24
transformation-affected loops, from outermost to innermost. The original transformation-affected25
loops are replaced with the loops in the order ℓs1 , . . . , ℓsn . If the permutation clause is not26
specified, the effect is as if permutation(2,1) was specified.27

CHAPTER 11. LOOP-TRANSFORMING CONSTRUCTS 375

Restrictions1
Restrictions to the interchange clause are as follows:2

• No transformation-affected loops may be a non-rectangular loop.3

• The transformation-affected loops must be perfectly nested loops.4

Cross References5

• apply Clause, see Section 11.16

• permutation Clause, see Section 11.4.17

11.4.1 permutation Clause8

Name: permutation Properties: unique9

Arguments10
Name Type Properties
permutation-list list of OpenMP integer

expression type
constant, positive11

Modifiers12
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique13

Directives14
interchange15

Semantics16
The permutation clause specifies a list of n positive constant expressions of integer OpenMP17
type.18

Restrictions19
Restrictions to the permutation clause are as follows:20

• Every integer from 1 to n must appear exactly once in permutation-list.21

• n must be at least 2.22

Cross References23

• interchange Construct, see Section 11.424

376 OpenMP API – Version 6.0 November 2024

11.5 reverse Construct1

Name: reverse
Category: executable

Association: loop nest
Properties: generally-composable,
loop-transforming, order-concurrent-
nestable, pure, simdizable, teams-
nestable

2

Clauses3
apply4

Loop Modifiers for the apply Clause5
loop-modifier Number of Generated Loops Description
reversed (default) 1 the reversed loop6

7

Semantics8
The reverse construct has one transformation-affected loop, the outermost loop, where9
0, 1, . . . , n− 2, n− 1 are the logical iteration numbers of that loop. The construct transforms that10
loop into a loop in which iterations occur in the order n− 1, n− 2, . . . , 1, 0.11

Cross References12

• apply Clause, see Section 11.113

11.6 split Construct14

Name: split
Category: executable

Association: loop nest
Properties: generally-composable,
loop-transforming, order-concurrent-
nestable, pure, simdizable, teams-
nestable

15

Clauses16
apply, counts17

Loop Modifiers for the apply Clause18
loop-modifier Number of Generated Loop

Nests
Description

split m the loops of each logical itera-
tion space partition

19

20

CHAPTER 11. LOOP-TRANSFORMING CONSTRUCTS 377

Semantics1
The split loop-transforming construct implements index-set splitting, which partitions a logical2
iteration space into a sequence of smaller logical iteration spaces. It has one3
transformation-affected loop and generates a canonical loop sequence with m loop nests where m is4
the number of list items in the count-list argument of the counts clause. Let n be the number of5
logical iterations of the affected loop and c1, . . . , cm be the list items of the count-list argument.6
Let the kth list item be the list item with the predefined identifier omp_fill. ck is defined as7

ck = max(0, n−
m∑
t=1
t̸=k

ct)

Each generated loop in the sequence contains a copy of the loop body of the affected loop. The ith8
generated loop executes the next ci logical iterations except any logical iteration beyond the n9
original logical iterations.10

Restrictions11
The following restrictions apply to the split construct:12

• Exactly one list item in the counts clause must be the predefined identifier omp_fill.13

Cross References14

• apply Clause, see Section 11.115

• counts Clause, see Section 11.6.116

11.6.1 counts Clause17

Name: counts Properties: unique, required18

Arguments19
Name Type Properties
count-list list of OpenMP integer

expression type
non-negative20

Modifiers21
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique22

Directives23
split24

378 OpenMP API – Version 6.0 November 2024

Semantics1
For a given loop-transforming directive on which the clause appears, the counts clause specifies2
the manner in which the logical iteration space of the transformation-affected loop is subdivided3
into n partitions, where m is the number of list items in count-list and where each partition is4
associated with a generated loop of the directive. Specifically, each list item in count-list specifies5
the iteration count of one of the generated loops. List items in count-list are not required to be6
unique.7

Restrictions8
Restrictions to the counts clause are as follows:9

• A list item in count-list must be constant or omp_fill.10

Cross References11

• split Construct, see Section 11.612

11.7 stripe Construct13

Name: stripe
Category: executable

Association: loop nest
Properties: loop-transforming, order-
concurrent-nestable, pure, simdizable,
teams-nestable

14

Clauses15
apply, sizes16

Loop Modifiers for the apply Clause17
loop-modifier Number of Generated Loops Description
offsets m the offsetting loops o1, . . . , om
grid m the grid loops g1, . . . , gm

18

19

Semantics20
The stripe construct has m transformation-affected loops, where m is the number of list items in21
the size-list argument of the sizes clause, which consists of the list items s1, . . . , sm. The22
construct has the effect of striping the execution order of the logical iterations across the grid cells23
of the logical iteration space that result from the sizes clause. Let ℓ1, . . . , ℓm be the24
transformation-affected loops, from outermost to innermost, which the construct replaces with a25
canonical loop nest that consists of 2m perfectly nested loops. Let o1, . . . , om, g1, . . . , gm be the26
generated loops, from outermost to innermost. The loops o1, . . . , om are the offsetting loops and27
the loops g1, . . . , gm are the grid loops.28

Let n1, . . . , nm be number of logical iterations of each affected loop and29
O = {Gα1,...,αm

| ∀k ∈ {1, . . . ,m} : 0 ≤ α1 < sk} the logical iteration vector space of the30

CHAPTER 11. LOOP-TRANSFORMING CONSTRUCTS 379

offsetting loops. The logical iteration (i1, . . . , im) is executed in the logical iteration space of1
Gi1 mod s1,...,im mod sm .2

The offsetting loops iterate over all Gα1,...,αm in lexicographic order of their indices and the grid3
loops iterate over the logical iteration space in the lexicographic order of the corresponding logical4
iteration vectors.5

If an offsetting loop and a grid loop that are generated from the same stripe construct are6
affected loops of the same loop-nest-associated construct, the grid loops may execute additional7
empty logical iterations. The number of empty logical iterations is implementation defined.8

Restrictions9
Restrictions to the stripe construct are as follows:10

• The transformation-affected loops must be perfectly nested loops.11

• No transformation-affected loops may be a non-rectangular loop.12

Cross References13

• apply Clause, see Section 11.114

• Consistent Loop Schedules, see Section 6.4.415

• sizes Clause, see Section 11.216

11.8 tile Construct17

Name: tile
Category: executable

Association: loop nest
Properties: loop-transforming, order-
concurrent-nestable, pure, simdizable,
teams-nestable

18

Clauses19
apply, sizes20

Loop Modifiers for the apply Clause21
loop-modifier Number of Generated Loops Description
grid m the grid loops g1, . . . , gm
intratile m the tile loops t1, . . . , tm

22

23

Semantics24
The tile construct has m transformation-affected loops, where m is the number of list items in25
the size-list argument of the sizes clause, which consists of list items s1, . . . , sm. Let ℓ1, . . . , ℓm26
be the transformation-affected loops, from outermost to innermost, which the construct replaces27
with a canonical loop nest that consists of 2m perfectly nested loops. Let g1, . . . , gm, t1, . . . , tm be28

380 OpenMP API – Version 6.0 November 2024

the generated loops, from outermost to innermost. The loops g1, . . . , gm are the grid loops and the1
loops t1, . . . , tm are the tile loops.2

Let Ω be the logical iteration vector space of the transformation-affected loops. For any3
(α1, . . . , αm) ∈ Nm, define the set of iterations4
{(i1, . . . , im) ∈ Ω | ∀k ∈ {1, . . . ,m} : skαk ≤ ik < skαk + sk} to be tile Tα1,...,αm

and5
G = {Tα1,...,αm

| Tα1,...,αm
̸= ∅} to be the set of tiles with at least one iteration. Tiles that6

contain
∏m

k=1 sk iterations are complete tile. Otherwise, they are partial tiles.7

The grid loops iterate over all tiles {Tα1,...,αm
∈ G} in lexicographic order with respect to their8

indices (α1, . . . , αm) and the tile loops iterate over the iterations in Tα1,...,αm
in the lexicographic9

order of the corresponding iteration vectors. An implementation may reorder the sequential10
execution of two iterations if at least one is from a partial tile and if their respective logical iteration11
vectors in loop-nest do not have a product order relation.12

If a grid loop and a tile loop that are generated from the same tile construct are affected loops of13
the same loop-nest-associated construct, the tile loops may execute additional empty logical14
iterations. The number of empty logical iterations is implementation defined.15

Restrictions16
Restrictions to the tile construct are as follows:17

• The transformation-affected loops must be perfectly nested loops.18

• No transformation-affected loops may be a non-rectangular loop.19

Cross References20

• apply Clause, see Section 11.121

• Consistent Loop Schedules, see Section 6.4.422

• sizes Clause, see Section 11.223

11.9 unroll Construct24

Name: unroll
Category: executable

Association: loop nest
Properties: generally-composable,
loop-transforming, order-concurrent-
nestable, pure, simdizable, teams-
nestable

25

Clauses26
apply, full, partial27

Clause set28
Properties: exclusive Members: full, partial29

CHAPTER 11. LOOP-TRANSFORMING CONSTRUCTS 381

Loop Modifiers for the apply Clause1
loop-modifier Number of Generated Loops Description
unrolled (default) 1 the grid loop g1 of the tiling step2

3

Semantics4
The unroll construct has one transformation-affected loop, which is unrolled according to its5
specified clauses. If no clauses are specified, if and how the loop is unrolled is implementation6
defined. The unroll construct results in a generated loop that has canonical loop nest form if and7
only if the partial clause is specified.8

Restrictions9
Restrictions to the unroll directive are as follows:10

• The apply clause can only be specified if the partial clause is specified.11

Cross References12

• apply Clause, see Section 11.113

• full Clause, see Section 11.9.114

• partial Clause, see Section 11.9.215

11.9.1 full Clause16

Name: full Properties: unique17

Arguments18
Name Type Properties
fully_unroll expression of OpenMP

logical type
constant, optional19

Modifiers20
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique21

Directives22
unroll23

Semantics24
If fully_unroll evaluates to true, the full clause specifies that the transformation-affected loop is25
fully unrolled. The construct is replaced by a structured block that only contains n instances of its26
loop body, one for each of the n affected iterations and in their logical iteration order. If27
fully_unroll evaluates to false, the full clause has no effect. If fully_unroll is not specified, the28
effect is as if fully_unroll evaluates to true.29

382 OpenMP API – Version 6.0 November 2024

Restrictions1
Restrictions to the full clause are as follows:2

• The iteration count of the transformation-affected loop must be constant.3

Cross References4

• unroll Construct, see Section 11.95

11.9.2 partial Clause6

Name: partial Properties: unique7

Arguments8
Name Type Properties
unroll-factor expression of integer

type
optional, constant, posi-
tive

9

Modifiers10
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique11

Directives12
unroll13

Semantics14
The partial clause specifies that the transformation-affected loop is first tiled with a tile size of15
unroll-factor. Then, the generated tile loop is fully unrolled. If the partial clause is used16
without an unroll-factor argument then unroll-factor is an implementation defined positive integer.17

Cross References18

• unroll Construct, see Section 11.919

CHAPTER 11. LOOP-TRANSFORMING CONSTRUCTS 383

12 Parallelism Generation and Control1

This chapter defines constructs for generating and controlling parallelism.2

12.1 parallel Construct3

Name: parallel
Category: executable

Association: block
Properties: cancellable, context-
matching, order-concurrent-nestable,
parallelism-generating, team-
generating, teams-nestable, thread-
limiting

4

Clauses5
allocate, copyin, default, firstprivate, if, message, num_threads, private,6
proc_bind, reduction, safesync, severity, shared7

Binding8
The binding thread set for a parallel region is the encountering thread. The encountering thread9
becomes the primary thread of the new team.10

Semantics11
When a thread encounters a parallel construct, a team is formed to execute the parallel12
region. The thread that encountered the parallel construct becomes the primary thread of the13
new team, with a thread number of zero for the duration of the new parallel region. All threads14
in the new team, including the primary thread, execute the region. Once the team is formed, the15
number of threads in the team is region-invariant and, so, does not change for the duration of that16
parallel region.17

Within a parallel region, thread numbers uniquely identify each thread. Thread numbers are18
consecutive non-negative integers ranging from zero for the primary thread up to one less than the19
number of threads in the team. A thread may obtain its own thread number by a call to the20
omp_get_thread_num library routine.21

A set of implicit tasks, equal in number to the number of threads in the team, is generated by the22
encountering thread. The structured block of the parallel construct determines the code that23
will be executed in each implicit task. Each task is assigned to a different thread in the team and24
becomes a tied. The task region of the task that the encountering thread is executing is suspended25

384 OpenMP API – Version 6.0 November 2024

and each thread in the team executes its implicit task. Each thread can execute a path of statements1
that is different from that of the other threads.2

The implementation may cause any thread to suspend execution of its implicit task at a task3
scheduling point, and to switch to execution of any explicit task generated by any of the threads in4
the team, before eventually resuming execution of the implicit task.5

An implicit barrier occurs at the end of a parallel region. After the end of a parallel region,6
only the primary thread of the team resumes execution of the enclosing task region.7

If a thread in a team that is executing a parallel region encounters another parallel8
directive, it forms a new team and becomes the primary thread of that new team.9

If execution of a thread terminates while inside a parallel region, execution of all threads in all10
teams terminates. The order of termination of threads is unspecified. All work done by a team prior11
to any barrier that the team has passed in the program is guaranteed to be complete. The amount of12
work done by each thread after the last barrier that it passed and before it terminates is unspecified.13

Unless a requires directive is specified on which the device_safesync clause appears, if14
the parallel construct is encountered on a non-host device and the safesync clause is not15
present then the behavior is as if the safesync clause appears on the directive with a width value16
that is implementation defined.17

Execution Model Events18
The parallel-begin event occurs in a thread that encounters a parallel construct before any19
implicit task is generated for the corresponding parallel region.20

Upon generation of each implicit task, an implicit-task-begin event occurs in the thread that21
executes the implicit task after the implicit task is fully initialized but before the thread begins to22
execute the structured block of the parallel construct.23

If a new native thread is created for the team that executes the parallel region upon24
encountering the construct, a native-thread-begin event occurs as the first event in the context of the25
new thread prior to the implicit-task-begin event.26

Events associated with implicit barriers occur at the end of a parallel region. Section 17.3.227
describes events associated with implicit barriers.28

When a thread completes an implicit task, an implicit-task-end event occurs in the thread after29
events associated with the implicit barrier synchronization in the implicit task.30

The parallel-end event occurs in the thread that encounters the parallel construct after the31
thread executes its implicit-task-end event but before the thread resumes execution of the32
encountering task.33

If a native thread is destroyed at the end of a parallel region, a native-thread-end event occurs34
in the worker thread that uses the native thread as the last event prior to destruction of the native35
thread.36

CHAPTER 12. PARALLELISM GENERATION AND CONTROL 385

Tool Callbacks1
A thread dispatches a registered parallel_begin callback for each occurrence of a2
parallel-begin event in that thread. The callback occurs in the task that encounters the parallel3
construct. In the dispatched callback, (flags & ompt_parallel_team) evaluates to true.4

A thread dispatches a registered implicit_task callback with ompt_scope_begin as its5
endpoint argument for each occurrence of an implicit-task-begin event in that thread. Similarly, a6
thread dispatches a registered implicit_task callback with ompt_scope_end as its7
endpoint argument for each occurrence of an implicit-task-end event in that thread. The callbacks8
occur in the context of the implicit task. In the dispatched callback,9
(flags & ompt_task_implicit) evaluates to true.10

A thread dispatches a registered parallel_end callback for each occurrence of a parallel-end11
event in that thread. The callback occurs in the task that encounters the parallel construct.12

A thread dispatches a registered thread_begin callback for any native-thread-begin event in13
that thread. The callback occurs in the context of the thread.14

A thread dispatches a registered thread_end callback for any native-thread-end event in that15
thread. The callback occurs in the context of the thread.16

Cross References17

• allocate Clause, see Section 8.618

• copyin Clause, see Section 7.8.119

• default Clause, see Section 7.5.120

• firstprivate Clause, see Section 7.5.421

• if Clause, see Section 5.522

• implicit_task Callback, see Section 34.5.323

• message Clause, see Section 10.324

• num_threads Clause, see Section 12.1.225

• omp_get_thread_num Routine, see Section 21.326

• Determining the Number of Threads for a parallel Region, see Section 12.1.127

• parallel_begin Callback, see Section 34.3.128

• parallel_end Callback, see Section 34.3.229

• OMPT parallel_flag Type, see Section 33.2230

• private Clause, see Section 7.5.331

• proc_bind Clause, see Section 12.1.432

• reduction Clause, see Section 7.6.1033

386 OpenMP API – Version 6.0 November 2024

Algorithm 12.1 Determine Number of Threads
let ThreadsBusy be the number of threads currently executing tasks in this contention group;
let StructuredThreadsBusy be the number of structured threads currently executing tasks in

this contention group;
if an if clause is specified then let IfClauseValue be the value of if-expression;
else let IfClauseValue = true;
if a num_threads clause is specified then let ThreadsRequested be the value of the first item of

the nthreads list;
else let ThreadsRequested = value of the first element of nthreads-var;
let ThreadsAvailable = min(thread-limit-var - ThreadsBusy,

structured-thread-limit-var - StructuredThreadsBusy) + 1;
if (IfClauseValue = false) then number of threads = 1;
else if (active-levels-var ≥ max-active-levels-var) then number of threads = 1;
else if (dyn-var = true) and (ThreadsRequested ≤ ThreadsAvailable)

then 1 ≤ number of threads ≤ ThreadsRequested;
else if (dyn-var = true) and (ThreadsRequested > ThreadsAvailable)

then 1 ≤ number of threads ≤ ThreadsAvailable;
else if (dyn-var = false) and (ThreadsRequested ≤ ThreadsAvailable)

then number of threads = ThreadsRequested;
else if (dyn-var = false) and (ThreadsRequested > ThreadsAvailable)

then behavior is implementation defined

• safesync Clause, see Section 12.1.51

• OMPT scope_endpoint Type, see Section 33.272

• severity Clause, see Section 10.43

• shared Clause, see Section 7.5.24

• OMPT task_flag Type, see Section 33.375

• thread_begin Callback, see Section 34.1.36

• thread_end Callback, see Section 34.1.47

CHAPTER 12. PARALLELISM GENERATION AND CONTROL 387

12.1.1 Determining the Number of Threads for a parallel1

Region2

When execution encounters a parallel directive, the value of the if clause or the first item of3
the nthreads list of the num_threads clause (if any) on the directive, the current parallel context,4
and the values of the nthreads-var, dyn-var, thread-limit-var, and max-active-levels-var ICVs are5
used to determine the number of threads to use in the region. When a thread encounters a6
parallel construct, the number of threads is determined according to Algorithm 12.1.7

Using a variable in an if-expression of an if clause or in an element of the nthreads list of a8
num_threads clause of a parallel construct causes an implicit reference to the variable in all9
enclosing constructs. The if-expression and the nthreads list items are evaluated in the context10
outside of the parallel construct, and no ordering of those evaluations is specified. In what11
order or how many times any side effects of the evaluation of the nthreads list items or an12
if-expression occur is also unspecified.13

Cross References14

• dyn-var ICV, see Table 3.115

• max-active-levels-var ICV, see Table 3.116

• nthreads-var ICV, see Table 3.117

• thread-limit-var ICV, see Table 3.118

• if Clause, see Section 5.519

• num_threads Clause, see Section 12.1.220

• parallel Construct, see Section 12.121

12.1.2 num_threads Clause22

Name: num_threads Properties: unique23

Arguments24
Name Type Properties
nthreads list of OpenMP integer

expression type
positive25

Modifiers26
Name Modifies Type Properties
prescriptiveness nthreads Keyword: strict default
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique27

388 OpenMP API – Version 6.0 November 2024

Directives1
parallel2

Semantics3
The num_threads clause specifies the desired number of threads to execute a parallel4
region. Algorithm 12.1 determines the number of threads that execute the parallel region. If5
prescriptiveness is specified as strict and an implementation determines that Algorithm 12.16
would always result in a number of threads other than the value of the first item of the nthreads list7
then compile-time error termination may be performed in which case the effect of any message8
clause associated with the directive is implementation defined. Otherwise, if prescriptiveness is9
specified as strict and Algorithm 12.1 would result in a number of threads other than the value10
of the first item of the nthreads list then runtime error termination is performed. In both error11
termination scenarios, the effect is as if an error directive has been encountered on which any12
specified message and severity clauses and an at clause with execution as action-time13
are specified.14

Cross References15

• at Clause, see Section 10.216

• error Directive, see Section 10.117

• message Clause, see Section 10.318

• parallel Construct, see Section 12.119

12.1.3 Controlling OpenMP Thread Affinity20

When a thread encounters a parallel directive without a proc_bind clause, the bind-var ICV21
is used to determine the policy for assigning threads to places within the input place partition, as22
defined in the following paragraph. If the parallel directive has a proc_bind clause then the23
thread affinity policy specified by the proc_bind clause overrides the policy specified by the first24
element of the bind-var ICV. Once a thread in the team is assigned to a place, the OpenMP25
implementation should not move it to another place.26

If the encountering thread is a free-agent thread that is executing an explicit task that was created in27
an implicit parallel region, the input place partition for all thread affinity policies is the value of the28
place-partition-var ICV of the initial task. If the encountering thread is a free-agent thread that is29
executing an explicit task that was created in an explicit parallel region, the input place partition for30
all thread affinity policies is the input place partition of that parallel region. If the encountering31
thread is not a free-agent thread, the input place partition for all thread affinity policies is the value32
of the place-partition-var ICV of its binding implicit task.33

Under the primary and close thread affinity policies, the place-partition-var ICV of each34
implicit task is assigned the input place partition. As discussed below, under the spread thread35

CHAPTER 12. PARALLELISM GENERATION AND CONTROL 389

affinity policy, the place-partition-var ICV of each implicit task is derived from the value of the1
input place partition.2

TABLE 12.1: Affinity-related Symbols used in this Section

Symbol Symbol Description

L the value of the thread-limit-var ICV

NG the total number of place-assignment groups

gi the ith place-assignment group

P the number of places in the input place partition

T the number of threads in the team

AT ⌈⌈T/NG⌉⌉ ("above-thread" count)

BT ⌊⌊T/NG⌋⌋ ("below-thread" count)

ET T mod NG ("excess-thread" count)

The place-assignment-var ICV is a list of L place numbers, where L is the value of the3
thread-limit-var ICV, that defines the place assignment of threads that participate in the execution4
of tasks bound to a given team. Any such thread corresponds to a position in the list, meaning it will5
be assigned to the place given by the place number at that position. If a thread is an assigned thread6
of the team with thread number i, it corresponds to position i in the place-assignment-var list. If a7
thread is a free-agent thread, it corresponds to the first position for which another thread has not yet8
been assigned to the associated place. If another thread is already assigned to the place associated9
with that position, the place to which the free-agent thread is assigned is implementation defined.10

Each thread affinity policy determines how threads are assigned to places. A policy assigns each11
place in the input place partition to one of NG place-assignment groups, g0, . . . , gNG−1;12
additionally, it assigns each position from the place-assignment-var ICV to one of these groups. In13
a given group, the place number of each place is then assigned to a place-assignment-var position,14
in round robin fashion, starting with the first place. Threads are thus assigned to places according to15
the resulting place-assignment-var of the policy.16

Under the primary thread affinity policy, NG = 1 and place-assignment group g0 is assigned the17
place to which the encountering thread is assigned, and all positions of place-assignment-var are18
assigned to the same group. Thus, the corresponding threads of all positions of the19
place-assignment-var ICV are assigned to the same place as the primary thread.20

For the close and spread thread affinity policies, let P be the number of places in the input21
place partition and let T be the number of assigned threads in the team. The following paragraphs22
describe how places in the input place partition are subdivided into place-assignment groups for23
these policies. A general description of how positions in place-assignment-var are assigned to24
these places, and thus how place assignment for threads under the policies is determined, then25

390 OpenMP API – Version 6.0 November 2024

follows these descriptions.1

The close thread affinity policy distributes assignment of places evenly across a team of threads,2
while ensuring threads with consecutive numbers are assigned to the same place or adjacent places.3
Each place in the input place partition is assigned to one place-assignment group (so, NG = P).4
Place-assignment group g0 is assigned the place to which the encountering thread is assigned. The5
place assigned to group gi is then the next place in the place partition of the one assigned to group6
gi−1, with wrap around with respect to the input place partition.7

The spread thread affinity policy creates a sparse distribution for a team of T threads among the8
P places of the input place partition. A sparse distribution is achieved by first subdividing the input9
place partition into T subpartitions if T ≤ P (in which case NG = T), or P subpartitions if10
T > P (in which case NG = P). The subpartitions are determined as follows:11

• T ≤ P : The input place partition is split into T subpartitions, where each subpartition12
contains ⌊⌊P/T⌋⌋ or ⌈⌈P/T⌉⌉ consecutive places; if PmodT is not zero, which subpartitions13
contain ⌈⌈P/T⌉⌉ places is implementation defined;14

• T > P : The input place partition is split into P subpartitions, each with a single place.15

In either case, the places from each subpartition are assigned to a place-assignment group that16
corresponds to the subpartition. The subpartition that corresponds to group g0 is the one that17
includes the place on which the encountering thread is executing. The subpartition that corresponds18
to group gi is the one that includes the next place to those in the subpartition corresponding to19
group gi−1, with wrap around with respect to the input place partition. For a given implicit task and20
corresponding place-assignment-var position to its assigned thread, the place-partition-var ICV of21
the implicit task is set to the subpartition that corresponds to the group that includes the position.22
Thus, the subpartitioning is not only a mechanism for achieving a sparse distribution, it also defines23
a subset of places for a thread to use when creating a nested parallel region.24

Let AT equal ⌈⌈T/NG⌉⌉, BT equal ⌊⌊T/NG⌋⌋, and ET equal T mod NG. The close and the25
spread thread affinity policies assign the positions of the place-assignment-var ICV to26
place-assignment groups as follows.27

• For positions from 0 up to T − 1: The positions are partitioned into NG sets of consecutive28
positions, ET of which have AT positions and NG− ET of which have only BT positions29
(when ET is not zero, which sets have which count is implementation defined unless the30
thread affinity policy is close and T < P , in which case the first T groups are assigned the31
sets with AT positions). The sets are assigned to each group, with the first set, starting at32
position 0, assigned to group g0, and with each successive set i, starting at the position33
immediately after the last position in the set assigned to group gi−1, assigned to the next34
group gi;35

• If ET ̸= 0, for the positions from T up to (AT ∗NG)− 1: Each of these positions is36
assigned to a group gi that received only BT positions in the above step, such that each such37
gi is then assigned AT positions (which positions are assigned to which group is38
implementation defined);39

CHAPTER 12. PARALLELISM GENERATION AND CONTROL 391

• For the remaining positions from AT ∗NG up to L: Each position is assigned to a group in1
round robin fashion, starting with the first group g0.2

The determination of whether the thread affinity request can be fulfilled is implementation defined.3
If it cannot be fulfilled, then the affinity of threads in the team is implementation defined.4

5

Note – Wrap around is needed if the end of a place partition is reached before all thread6
assignments are done. For example, wrap around may be needed in the case of close and T ≤ P ,7
if the primary thread is assigned to a place other than the first place in the place partition. In this8
case, thread 1 is assigned to the place after the place of the primary thread, thread 2 is assigned to9
the place after that, and so on. The end of the place partition may be reached before all threads are10
assigned. In this case, assignment of threads is resumed with the first place in the place partition.11

12

Cross References13

• bind-var ICV, see Table 3.114

• place-assignment-var ICV, see Table 3.115

• place-partition-var ICV, see Table 3.116

• thread-limit-var ICV, see Table 3.117

• parallel Construct, see Section 12.118

• proc_bind Clause, see Section 12.1.419

12.1.4 proc_bind Clause20

Name: proc_bind Properties: unique21

Arguments22
Name Type Properties
affinity-policy Keyword: close,

primary, spread
default23

Modifiers24
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique25

Directives26
parallel27

392 OpenMP API – Version 6.0 November 2024

Semantics1
The proc_bind clause specifies the mapping of threads to places within the input place partition.2
The effect of the possible values for affinity-policy are described in Section 12.1.33

Cross References4

• Controlling OpenMP Thread Affinity, see Section 12.1.35

• parallel Construct, see Section 12.16

12.1.5 safesync Clause7

Name: safesync Properties: unique8

Arguments9
Name Type Properties
width expression of integer

type
positive, optional10

Modifiers11
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique12

Directives13
parallel14

Semantics15
The safesync clause determines whether two synchronizing threads in a team can make progress16
(see Section 1.2). The clause specifies that threads in the new team are partitioned, in thread17
number order, into progress groups of size width, except for the last progress group, which may18
contain less than width threads. Among threads that are executing tasks in the same contention19
group in parallel, only threads that are in the same progress group may execute in the same progress20
unit. If the width argument is not specified, the behavior is as if the width argument is one.21

Restrictions22
Restrictions to the safesync clause are as follows:23

• The width argument must be a safesync-compatible expression.24

Cross References25

• parallel Construct, see Section 12.126

CHAPTER 12. PARALLELISM GENERATION AND CONTROL 393

12.2 teams Construct1

Name: teams
Category: executable

Association: block
Properties: parallelism-generating,
team-generating, thread-limiting,
context-matching

2

Clauses3
allocate, default, firstprivate, if, num_teams, private, reduction, shared,4
thread_limit5

Binding6
The binding thread set for a teams region is the encountering thread.7

Semantics8
When a thread encounters a teams construct, a league of teams is created. Each team is an initial9
team, and the initial thread in each team executes the teams region. The number of teams created10
is determined by evaluating the if and num_teams clauses. Once the teams are created, the11
number of initial teams are region-invariant , thus do not change for the duration of the teams12
region. Within a teams region, initial team numbers uniquely identify each initial team. Initial13
teams numbers are consecutive non-negative integers ranging from zero to one less than the number14
of initial teams.15

When an if clause is present on a teams construct and the if clause expression evaluates to16
false, the number of formed teams is one. The use of a variable in an if clause expression of a17
teams construct causes an implicit reference to the variable in all enclosing constructs. The if18
clause expression is evaluated in the context outside of the teams construct.19

If a thread_limit clause is not present on the teams construct, but the construct is closely20
nested inside a target construct on which the thread_limit clause is specified, the behavior21
is as if that thread_limit clause is also specified for the teams construct.22

The place list, given by the place-partition-var ICV of the encountering thread, is split into23
subpartitions in an implementation defined manner, and each team is assigned to a subpartition by24
setting the place-partition-var of its initial thread to the subpartition.25

The teams construct sets the default-device-var ICV for each initial thread to an implementation26
defined value.27

After the teams have completed execution of the teams region, the encountering task resumes28
execution of the enclosing task region.29

Execution Model Events30
The teams-begin event occurs in a thread that encounters a teams construct before any initial task31
is generated for the corresponding teams region.32

394 OpenMP API – Version 6.0 November 2024

Upon generation of each initial task, an initial-task-begin event occurs in the thread that executes1
the initial task after the initial task is fully initialized but before the thread begins to execute the2
structured block of the teams construct.3

If a new native thread is created for the league of teams that executes the teams region upon4
encountering the construct, a native-thread-begin event occurs as the first event in the context of the5
new thread prior to the initial-task-begin event.6

When a thread completes an initial task, an initial-task-end event occurs in the thread.7

The teams-end event occurs in the thread that encounters the teams construct after the thread8
executes its initial-task-end event but before it resumes execution of the encountering task.9

If a native thread is destroyed at the end of a teams region, a native-thread-end event occurs in the10
initial thread that uses the native thread as the last event prior to destruction of the native thread.11

Tool Callbacks12
A thread dispatches a registered parallel_begin callback for each occurrence of a13
teams-begin event in that thread. The callback occurs in the task that encounters the teams14
construct. In the dispatched callback, (flags & ompt_parallel_league) evaluates to true.15

A thread dispatches a registered implicit_task callback with ompt_scope_begin as its16
endpoint argument for each occurrence of an initial-task-begin event in that thread. Similarly, a17
thread dispatches a registered implicit_task callback with ompt_scope_end as its18
endpoint argument for each occurrence of an initial-task-end event in that thread. The callbacks19
occur in the context of the initial task. In the dispatched callback,20
(flags & ompt_task_initial) and (flags & ompt_task_implicit) evaluate to true.21

A thread dispatches a registered parallel_end callback for each occurrence of a teams-end22
event in that thread. The callback occurs in the task that encounters the teams construct.23

A thread dispatches a registered thread_begin callback for each native-thread-begin event in24
that thread. The callback occurs in the context of the thread.25

A thread dispatches a registered thread_end callback for each native-thread-end event in that26
thread. The callback occurs in the context of the thread.27

Restrictions28
Restrictions to the teams construct are as follows:29

• If a reduction-modifier is specified in a reduction clause that appears on the directive then30
the reduction-modifier must be default.31

• A teams region must be a strictly nested region of the implicit parallel region that surrounds32
the whole OpenMP program or a target region. If a teams region is nested inside a33
target region, the corresponding target construct must not contain any statements,34
declarations or directives outside of the corresponding teams construct.35

• For a teams construct that is an immediately nested construct of a target construct, the36
bounds expressions of any array sections and the index expressions of any array elements37

CHAPTER 12. PARALLELISM GENERATION AND CONTROL 395

used in any clause on the construct, as well as all expressions of any target-consistent1
clauses on the construct, must be target-consistent expressions.2

• Only regions that are generated by teams-nestable constructs or teams-nestable routines3
may be strictly nested regions of teams regions.4

Cross References5

• allocate Clause, see Section 8.66

• default Clause, see Section 7.5.17

• distribute Construct, see Section 13.78

• firstprivate Clause, see Section 7.5.49

• default-device-var ICV, see Table 3.110

• place-partition-var ICV, see Table 3.111

• if Clause, see Section 5.512

• implicit_task Callback, see Section 34.5.313

• num_teams Clause, see Section 12.2.114

• omp_get_num_teams Routine, see Section 22.115

• omp_get_team_num Routine, see Section 22.316

• parallel Construct, see Section 12.117

• parallel_begin Callback, see Section 34.3.118

• parallel_end Callback, see Section 34.3.219

• OMPT parallel_flag Type, see Section 33.2220

• private Clause, see Section 7.5.321

• reduction Clause, see Section 7.6.1022

• OMPT scope_endpoint Type, see Section 33.2723

• shared Clause, see Section 7.5.224

• target Construct, see Section 15.825

• OMPT task_flag Type, see Section 33.3726

• thread_begin Callback, see Section 34.1.327

• thread_end Callback, see Section 34.1.428

• thread_limit Clause, see Section 15.329

396 OpenMP API – Version 6.0 November 2024

12.2.1 num_teams Clause1

Name: num_teams Properties: target-consistent, unique2

Arguments3
Name Type Properties
upper-bound expression of integer

type
positive4

Modifiers5
Name Modifies Type Properties
lower-bound upper-bound OpenMP integer expression positive, ultimate,

unique
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique
6

Directives7
teams8

Semantics9
The num_teams clause specifies the bounds on the number of teams formed by the construct on10
which it appears. lower-bound specifies the lower bound and upper-bound specifies the upper11
bound on the number of teams requested. If lower-bound is not specified, the effect is as if12
lower-bound is specified as equal to upper-bound. The number of teams formed is implementation13
defined, but it will be greater than or equal to the lower bound and less than or equal to the upper14
bound.15

If the num_teams clause is not specified on a construct then the effect is as if upper-bound was16
specified as follows. If the value of the nteams-var ICV is greater than zero, the effect is as if17
upper-bound was specified as an implementation defined value greater than zero but less than or18
equal to the value of the nteams-var ICV. Otherwise, the effect is as if upper-bound was specified19
as an implementation defined value greater than or equal to one.20

Restrictions21

• lower-bound must be less than or equal to upper-bound.22

Cross References23

• nteams-var ICV, see Table 3.124

• teams Construct, see Section 12.225

12.3 order Clause26

Name: order Properties: schedule-specification, unique27

CHAPTER 12. PARALLELISM GENERATION AND CONTROL 397

Arguments1
Name Type Properties
ordering Keyword:

concurrent
default2

Modifiers3
Name Modifies Type Properties
order-modifier ordering Keyword: reproducible,

unconstrained
default

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique
4

Directives5
distribute, do, for, loop, simd6

Semantics7
The order clause specifies an ordering of execution for the collapsed iterations of a8
loop-collapsing construct. If ordering is concurrent, different collapsed iterations may execute9
in any order, including in parallel, as if by the binding thread set of the region. The binding thread10
set may recruit or create additional native threads to participate in the parallel execution of any11
collapsed iterations.12

The order-modifier on the order clause affects the schedule specification for the purpose of13
determining its consistency with other schedules (see Section 6.4.4). If order-modifier is14
reproducible, the loop schedule for the construct on which the clause appears is reproducible,15
whereas if order-modifier is unconstrained, the loop schedule is not reproducible.16

Restrictions17
Restrictions to the order clause are as follows:18

• The only routines for which a call may be nested inside a region that corresponds to a19
construct on which the order clause is specified with concurrent as the ordering20
argument are order-concurrent-nestable routines.21

• Only regions that correspond to order-concurrent-nestable constructs or22
order-concurrent-nestable routines may be strictly nested regions of regions that23
correspond to constructs on which the order clause is specified with concurrent as the24
ordering argument.25

• If a threadprivate variable is referenced inside a region that corresponds to a construct with26
an order clause that specifies concurrent, the behavior is unspecified.27

Cross References28

• distribute Construct, see Section 13.729

• do Construct, see Section 13.6.230

398 OpenMP API – Version 6.0 November 2024

• for Construct, see Section 13.6.11

• loop Construct, see Section 13.82

• simd Construct, see Section 12.43

12.4 simd Construct4

Name: simd
Category: executable

Association: loop nest
Properties: context-matching, order-
concurrent-nestable, parallelism-
generating, pure, simdizable

5

Separating directives6
scan7

Clauses8
aligned, collapse, if, induction, lastprivate, linear, nontemporal, order,9
private, reduction, safelen, simdlen10

Binding11
A simd region binds to the current task region. The binding thread set of the simd region is the12
current team.13

Semantics14
The simd construct enables the execution of multiple collapsed iterations concurrently by using15
SIMD instructions. The number of collapsed iterations that are executed concurrently at any given16
time is implementation defined. Each concurrent iteration will be executed by a different SIMD17
lane. Each set of concurrent iterations is a SIMD chunk. Lexical forward dependences in the18
iterations of the original loop must be preserved within each SIMD chunk, unless an order clause19
that specifies concurrent is present.20

When an if clause is present with an if-expression that evaluates to false, the preferred number of21
iterations to be executed concurrently is one, regardless of whether a simdlen clause is specified.22

Restrictions23
Restrictions to the simd construct are as follows:24

• If both simdlen and safelen clauses are specified, the value of the simdlen length25
must be less than or equal to the value of the safelen length.26

• Only SIMDizable constructs may be encountered during execution of a simd region.27

• If an order clause that specifies concurrent appears on a simd directive, the safelen28
clause must not also appear.29

C / C++
• The simd region cannot contain calls to the longjmp or setjmp functions.30

C / C++

CHAPTER 12. PARALLELISM GENERATION AND CONTROL 399

C++
• No exceptions can be raised in the simd region.1

• The only random access iterator types that are allowed for the collapsed loops are pointer2
types.3

C++
Cross References4

• aligned Clause, see Section 7.125

• collapse Clause, see Section 6.4.56

• if Clause, see Section 5.57

• induction Clause, see Section 7.6.138

• lastprivate Clause, see Section 7.5.59

• linear Clause, see Section 7.5.610

• nontemporal Clause, see Section 12.4.111

• order Clause, see Section 12.312

• private Clause, see Section 7.5.313

• reduction Clause, see Section 7.6.1014

• safelen Clause, see Section 12.4.215

• scan Directive, see Section 7.716

• simdlen Clause, see Section 12.4.317

12.4.1 nontemporal Clause18

Name: nontemporal Properties: default19

Arguments20
Name Type Properties
list list of variable list item

type
default21

Modifiers22
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique23

Directives24
simd25

400 OpenMP API – Version 6.0 November 2024

Semantics1
The nontemporal clause specifies that accesses to the storage locations to which the list items2
refer have low temporal locality across the logical iterations in which those storage locations are3
accessed. The list items of the nontemporal clause may also appear as list items of4
data-environment attribute clauses.5

Cross References6

• simd Construct, see Section 12.47

12.4.2 safelen Clause8

Name: safelen Properties: unique9

Arguments10
Name Type Properties
length expression of integer

type
positive, constant11

Modifiers12
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique13

Directives14
simd15

Semantics16
The safelen clause specifies that no two concurrent logical iterations within a SIMD chunk can17
have a distance in the collapsed iteration space that is greater than or equal to the length argument.18

Cross References19

• simd Construct, see Section 12.420

12.4.3 simdlen Clause21

Name: simdlen Properties: unique22

Arguments23
Name Type Properties
length expression of integer

type
positive, constant24

CHAPTER 12. PARALLELISM GENERATION AND CONTROL 401

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
declare_simd, simd4

Semantics5
When the simdlen clause appears on a simd construct, length is treated as a hint that specifies6
the preferred number of collapsed iterations to be executed concurrently. When the simdlen7
clause appears on a declare_simd directive, if a SIMD version of the associated procedure is8
created, length corresponds to the number of concurrent arguments of the procedure.9

Cross References10

• declare_simd Directive, see Section 9.811

• simd Construct, see Section 12.412

12.5 masked Construct13

Name: masked
Category: executable

Association: block
Properties: thread-limiting, thread-
selecting

14

Clauses15
filter16

Binding17
The binding thread set for a masked region is the current team. A masked region binds to the18
innermost enclosing parallel region.19

Semantics20
The masked construct specifies a structured block that is executed by a subset of the threads of the21
current team. The filter clause selects a subset of the threads of the team that executes the22
binding parallel region to execute the structured block of the masked region. Other threads in the23
team do not execute the associated structured block. No implied barrier occurs either on entry to or24
exit from the masked construct. The result of evaluating the thread_num argument of the filter25
clause may vary across threads.26

If more than one thread in the team executes the structured block of a masked region, the27
structured block must include any synchronization required to ensure that data races do not occur.28

402 OpenMP API – Version 6.0 November 2024

Execution Model Events1
The masked-begin event occurs in any thread of a team that executes the masked region on entry2
to the region. The masked-end event occurs in any thread of a team that executes the masked3
region on exit from the region.4

Tool Callbacks5
A thread dispatches a registered masked callback with ompt_scope_begin as its endpoint6
argument for each occurrence of a masked-begin event in that thread. Similarly, a thread dispatches7
a registered masked callback with ompt_scope_end as its endpoint argument for each8
occurrence of a masked-end event in that thread. These callbacks occur in the context of the task9
executed by the encountering thread.10

Cross References11

• filter Clause, see Section 12.5.112

• masked Callback, see Section 34.3.313

• OMPT scope_endpoint Type, see Section 33.2714

12.5.1 filter Clause15

Name: filter Properties: unique16

Arguments17
Name Type Properties
thread_num expression of integer

type
default18

Modifiers19
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique20

Directives21
masked22

Semantics23
If thread_num specifies the thread number of the encountering thread in the current team then the24
filter clause selects the encountering thread. If the filter clause is not specified, the effect is25
as if the clause is specified with thread_num equal to zero, so that the filter clause selects the26
primary thread. The use of a variable in a thread_num argument expression causes an implicit27
reference to the variable in all enclosing constructs.28

Cross References29

• masked Construct, see Section 12.530

CHAPTER 12. PARALLELISM GENERATION AND CONTROL 403

13 Work-Distribution Constructs1

A work-distribution construct distributes the execution of the corresponding region among the2
threads in its binding thread set. Threads execute portions of the region in the context of the3
implicit tasks that each thread is executing.4

A work-distribution construct is a worksharing construct if the binding thread set is a team. A5
worksharing region has no barrier on entry. However, an implied barrier exists at the end of the6
worksharing region, unless a nowait clause is specified with do_not_synchronize specified as7
true, in which case an implementation may omit the barrier at the end of the worksharing region. In8
this case, threads that finish early may proceed straight to the instructions that follow the9
worksharing region without waiting for the other members of the team to finish the worksharing10
region, and without performing a flush operation.11

If a work-distribution construct is a partitioned construct then all user code encountered in the12
region, but not in a nested region that is not a closely nested region, is executed by one thread from13
the binding thread set.14

For loop-nest-associated constructs, the loop schedule is determined by a schedule specification for15
the construct, which is defined by schedule-specification clauses and (where applicable) the16
run-sched-var ICV. OpenMP programs can only depend on which thread executes a particular17
collapsed iteration if the construct specifies a reproducible schedule. Schedule reproducibility also18
determines whether constructs with the same schedule specification will have consistent schedules19
(see Section 6.4.4).20

Restrictions21
The following restrictions apply to work-distribution constructs:22

• Each work-distribution region must be encountered by all threads in the binding thread set or23
by none at all unless cancellation has been requested for the innermost enclosing parallel24
region.25

• The sequence of encountered work-distribution regions that have the same binding thread set26
must be the same for every thread in the binding thread set.27

• The sequence of encountered worksharing regions and barrier regions that bind to the28
same team must be the same for every thread in the team.29

Fortran
• A variable must not be private within a teams or parallel region if it has either30
LOCAL_INIT or SHARED locality in a DO CONCURRENT loop that is associated with a31

404 OpenMP API – Version 6.0 November 2024

work-distribution construct, where the teams or parallel region is a binding region of1
the corresponding work-distribution region.2

Fortran

13.1 single Construct3

Name: single
Category: executable

Association: block
Properties: work-distribution, team-
executed, partitioned, worksharing,
thread-limiting, thread-selecting

4

Clauses5
allocate, copyprivate, firstprivate, nowait, private6

Clause set7
Properties: exclusive Members: copyprivate, nowait8

Binding9
The binding thread set for a single region is the current team. A single region binds to the10
innermost enclosing parallel region. Only the threads of the team that executes the binding parallel11
region participate in the execution of the structured block and the implied barrier of the single12
region if the barrier is not eliminated by a nowait clause.13

Semantics14
The single construct specifies that the associated structured block is executed by only one of the15
threads in the team (not necessarily the primary thread), in the context of its implicit task. The16
method of choosing a thread to execute the structured block each time the team encounters the17
construct is implementation defined. An implicit barrier occurs at the end of a single region if18
the nowait clause does not specify otherwise.19

Execution Model Events20
The single-begin event occurs after an implicit task encounters a single construct but before the21
task starts to execute the structured block of the single region. The single-end event occurs after22
an implicit task finishes execution of a single region but before it resumes execution of the23
enclosing region.24

Tool Callbacks25
A thread dispatches a registered work callback with ompt_scope_begin as its endpoint26
argument for each occurrence of a single-begin event in that thread. Similarly, a thread dispatches a27
registered work callback with ompt_scope_end as its endpoint argument for each occurrence28
of a single-end event in that thread. For each of these callbacks, the work_type argument is29
ompt_work_single_executor if the thread executes the structured block associated with the30
single region; otherwise, the work_type argument is ompt_work_single_other.31

CHAPTER 13. WORK-DISTRIBUTION CONSTRUCTS 405

Cross References1

• allocate Clause, see Section 8.62

• copyprivate Clause, see Section 7.8.23

• firstprivate Clause, see Section 7.5.44

• nowait Clause, see Section 17.65

• private Clause, see Section 7.5.36

• OMPT scope_endpoint Type, see Section 33.277

• work Callback, see Section 34.4.18

• OMPT work Type, see Section 33.419

13.2 scope Construct10

Name: scope
Category: executable

Association: block
Properties: work-distribution, team-
executed, worksharing, thread-limiting

11

Clauses12
allocate, firstprivate, nowait, private, reduction13

Binding14
The binding thread set for a scope region is the current team. A scope region binds to the15
innermost enclosing parallel region. Only the threads of the team that executes the binding parallel16
region participate in the execution of the structured block and the implied barrier of the scope17
region if the barrier is not eliminated by a nowait clause.18

Semantics19
The scope construct specifies that all threads in a team execute the associated structured block and20
any additionally specified OpenMP operations. An implicit barrier occurs at the end of a scope21
region if the nowait clause does not specify otherwise.22

Execution Model Events23
The scope-begin event occurs after an implicit task encounters a scope construct but before the24
task starts to execute the structured block of the scope region. The scope-end event occurs after25
an implicit task finishes execution of a scope region but before it resumes execution of the26
enclosing region.27

Tool Callbacks28
A thread dispatches a registered work callback with ompt_scope_begin as its endpoint29
argument and ompt_work_scope as its work_type argument for each occurrence of a30
scope-begin event in that thread. Similarly, a thread dispatches a registered work callback with31

406 OpenMP API – Version 6.0 November 2024

ompt_scope_end as its endpoint argument and ompt_work_scope as its work_type1
argument for each occurrence of a scope-end event in that thread. The callbacks occur in the2
context of the implicit task.3

Cross References4

• allocate Clause, see Section 8.65

• firstprivate Clause, see Section 7.5.46

• nowait Clause, see Section 17.67

• private Clause, see Section 7.5.38

• reduction Clause, see Section 7.6.109

• OMPT scope_endpoint Type, see Section 33.2710

• work Callback, see Section 34.4.111

• OMPT work Type, see Section 33.4112

13.3 sections Construct13

Name: sections
Category: executable

Association: block
Properties: work-distribution, team-
executed, partitioned, worksharing,
thread-limiting, cancellable

14

Separating directives15
section16

Clauses17
allocate, firstprivate, lastprivate, nowait, private, reduction18

Binding19
The binding thread set for a sections region is the current team. A sections region binds to20
the innermost enclosing parallel region. Only the threads of the team that executes the binding21
parallel region participate in the execution of the structured block sequences and the implied barrier22
of the sections region if the barrier is not eliminated by a nowait clause.23

Semantics24
The sections construct is a non-iterative worksharing construct that contains a structured block25
that consists of a set of structured block sequences that are to be distributed among and executed by26
the threads in a team. Each structured block sequence is executed by one of the threads in the team27
in the context of its implicit task. An implicit barrier occurs at the end of a sections region if the28
nowait clause does not specify otherwise.29

CHAPTER 13. WORK-DISTRIBUTION CONSTRUCTS 407

Each structured block sequence in the sections construct is preceded by a section subsidiary1
directive except possibly the first sequence, for which a preceding section subsidiary directive is2
optional. The method of scheduling the structured block sequences among the threads in the team3
is implementation defined.4

Execution Model Events5
The sections-begin event occurs after an implicit task encounters a sections construct but before6
the task executes any structured block sequences of the sections region. The sections-end event7
occurs after an implicit task finishes execution of a sections region but before it resumes8
execution of the enclosing context.9

Tool Callbacks10
A thread dispatches a registered work callback with ompt_scope_begin as its endpoint11
argument and ompt_work_sections as its work_type argument for each occurrence of a12
sections-begin event in that thread. Similarly, a thread dispatches a registered work callback with13
ompt_scope_end as its endpoint argument and ompt_work_sections as its work_type14
argument for each occurrence of a sections-end event in that thread. The callbacks occur in the15
context of the implicit task.16

Cross References17

• allocate Clause, see Section 8.618

• firstprivate Clause, see Section 7.5.419

• lastprivate Clause, see Section 7.5.520

• nowait Clause, see Section 17.621

• private Clause, see Section 7.5.322

• reduction Clause, see Section 7.6.1023

• OMPT scope_endpoint Type, see Section 33.2724

• section Directive, see Section 13.3.125

• work Callback, see Section 34.4.126

• OMPT work Type, see Section 33.4127

13.3.1 section Directive28

Name: section
Category: subsidiary

Association: separating
Properties: default29

Separated directives30
sections31

408 OpenMP API – Version 6.0 November 2024

Semantics1
The section directive splits a structured block sequence that is associated with a sections2
construct into two structured block sequences.3

Execution Model Events4
The section-begin event occurs before an implicit task starts to execute a structured block sequence5
in the sections construct for each of those structured block sequences that the task executes.6

Tool Callbacks7
A thread dispatches a registered dispatch callback for each occurrence of a section-begin event8
in that thread. The callback occurs in the context of the implicit task.9

Cross References10

• dispatch Callback, see Section 34.4.211

• sections Construct, see Section 13.312

Fortran

13.4 workshare Construct13

Name: workshare
Category: executable

Association: block
Properties: work-distribution, team-
executed, partitioned, worksharing

14

Clauses15
nowait16

Binding17
The binding thread set for a workshare region is the current team. A workshare region binds18
to the innermost enclosing parallel region. Only the threads of the team that executes the binding19
parallel region participate in the execution of the units of work and the implied barrier of the20
workshare region if the barrier is not eliminated by a nowait clause.21

Semantics22
The workshare construct divides the execution of the associated structured block into separate23
units of work and causes the threads of the team to share the work such that each unit of work is24
executed only once by one thread, in the context of its implicit task. An implicit barrier occurs at25
the end of a workshare region if a nowait clause does not specify otherwise.26

An implementation of the workshare construct must insert any synchronization that is required27
to maintain Fortran semantics. For example, the effects of each statement within the structured28
block must appear to occur before the execution of the following statements, and the evaluation of29
the right hand side of an assignment must appear to complete prior to the effects of assigning to the30
left hand side.31

CHAPTER 13. WORK-DISTRIBUTION CONSTRUCTS 409

Fortran (cont.)

The statements in the workshare construct are divided into units of work as follows:1

• For array expressions within each statement, including transformational array intrinsic2
functions that compute scalar values from arrays:3

– Evaluation of each element of the array expression, including any references to4
elemental functions, is a unit of work.5

– Evaluation of transformational array intrinsic functions may be subdivided into any6
number of units of work.7

• For array assignment statements, assignment of each element is a unit of work.8

• For scalar assignment statements, each assignment operation is a unit of work.9

• For WHERE statements or constructs, evaluation of the mask expression and the masked10
assignments are each a unit of work.11

• For FORALL statements or constructs, evaluation of the mask expression, expressions12
occurring in the specification of the iteration space, and the masked assignments are each a13
unit of work.14

• For atomic constructs, critical constructs, and parallel constructs, the construct is15
a unit of work. A new team executes the statements contained in a parallel construct.16

• If none of the rules above apply to a portion of a statement in the structured block, then that17
portion is a unit of work.18

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM, PRODUCT,19
MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, RESHAPE, TRANSPOSE,20
EOSHIFT, CSHIFT, MINLOC, and MAXLOC.21

The units of work are assigned to the threads that execute a workshare region such that each unit22
of work is executed once.23

If an array expression in the structured block references the value, association status, or allocation24
status of private variables, the value of the expression is undefined, unless the same value would be25
computed by every thread.26

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL assignment27
assigns to a private variable in the structured block, the result is unspecified.28

The workshare directive causes the sharing of work to occur only in the workshare construct,29
and not in the remainder of the workshare region.30

Execution Model Events31
The workshare-begin event occurs after an implicit task encounters a workshare construct but32
before the task starts to execute the structured block of the workshare region. The33
workshare-end event occurs after an implicit task finishes execution of a workshare region but34
before it resumes execution of the enclosing context.35

410 OpenMP API – Version 6.0 November 2024

Fortran (cont.)

Tool Callbacks1
A thread dispatches a registered work callback with ompt_scope_begin as its endpoint2
argument and ompt_work_workshare as its work_type argument for each occurrence of a3
workshare-begin event in that thread. Similarly, a thread dispatches a registered work callback4
with ompt_scope_end as its endpoint argument and ompt_work_workshare as its5
work_type argument for each occurrence of a workshare-end event in that thread. The callbacks6
occur in the context of the implicit task.7

Restrictions8
Restrictions to the workshare construct are as follows:9

• The only OpenMP constructs that may be closely nested constructs of a workshare10
construct are the atomic, critical, and parallel constructs.11

• Base language statements that are encountered inside a workshare construct but that are12
not enclosed within a parallel or atomic construct that is nested inside the13
workshare construct must consist of only the following:14

– array assignments;15

– scalar assignments;16

– FORALL statements;17

– FORALL constructs;18

– WHERE statements;19

– WHERE constructs; and20

– BLOCK constructs that are strictly structured blocks associated with directives.21

• All array assignments, scalar assignments, and masked array assignments that are22
encountered inside a workshare construct but are not nested inside a parallel construct23
that is nested inside the workshare construct must be intrinsic assignments.24

• The construct must not contain any user-defined function calls unless either the function is25
pure and elemental or the function call is contained inside a parallel construct that is26
nested inside the workshare construct.27

Cross References28

• atomic Construct, see Section 17.8.529

• critical Construct, see Section 17.230

• nowait Clause, see Section 17.631

• parallel Construct, see Section 12.132

• OMPT scope_endpoint Type, see Section 33.2733

CHAPTER 13. WORK-DISTRIBUTION CONSTRUCTS 411

• work Callback, see Section 34.4.11

• OMPT work Type, see Section 33.412

Fortran

Fortran

13.5 workdistribute Construct3

Name: workdistribute
Category: executable

Association: block
Properties: work-distribution, parti-
tioned

4

Binding5
The binding region is the innermost enclosing teams region. The binding thread set is the set of6
initial threads executing the enclosing teams region.7

Semantics8
The workdistribute construct divides the execution of the associated structured block into9
separate units of work and causes the threads of the binding thread set to share the work such that10
each unit of work is executed only once by one thread, in the context of its implicit task. No implicit11
barrier occurs at the end of a workdistribute region.12

An implementation must enforce ordering of statements that is required to maintain Fortran13
semantics. For example, the effects of each statement within the structured block must appear to14
occur before the execution of the subsequent statements, and the evaluation of the right hand side of15
an assignment must appear to complete prior to the effects of assigning to the left hand side.16

The statements in the workdistribute construct are divided into units of work as follows:17

• For array expressions within each statement, including transformational array intrinsic18
functions that compute scalar values from arrays:19

– Evaluation of each element of the array expression, including any references to pure20
elemental procedures, is a unit of work.21

– Evaluation of transformational array intrinsic functions may be subdivided into any22
number of units of work.23

• For array assignment statements, assignment of each element is a unit of work.24

• For scalar assignment statements, each assignment operation is a unit of work.25

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM, PRODUCT,26
MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, RESHAPE, TRANSPOSE,27
EOSHIFT, CSHIFT, MINLOC, and MAXLOC.28

412 OpenMP API – Version 6.0 November 2024

Fortran (cont.)

The units of work are assigned to the binding thread set that execute a workdistribute region1
such that each unit of work is executed once.2

If an array expression in the structured block references the value, association status, or allocation3
status of private variables, the value of the expression is undefined, unless the same value would be4
computed by every thread.5

Execution Model Events6
The workdistribute-begin event occurs after an initial task encounters a workdistribute7
construct but before the task starts to execute the structured block of the workdistribute8
region. The workdistribute-end event occurs after an initial task finishes execution of a9
workdistribute region but before it resumes execution of the enclosing context.10

Tool Callbacks11
A thread dispatches a registered work callback with ompt_scope_begin as its endpoint12
argument and ompt_work_workdistribute as its work_type argument for each occurrence13
of a workdistribute-begin event in that thread. Similarly, a thread dispatches a registered work14
callback with ompt_scope_end as its endpoint argument and15
ompt_work_workdistribute as its work_type argument for each occurrence of a16
workdistribute-end event in that thread. The callbacks occur in the context of the implicit task.17

Restrictions18
Restrictions to the workdistribute construct are as follows:19

• The workdistribute construct must be a closely nested construct inside a teams20
construct.21

• No explicit region may be nested inside a workdistribute region.22

• Base language statements that are encountered inside a workdistribute must consist of23
only the following:24

– array assignments;25

– scalar assignments; and26

– calls to pure and elemental procedures.27

• All array assignments and scalar assignments that are encountered inside a28
workdistribute construct must be intrinsic assignments.29

• The construct must not contain any calls to procedures that are not pure and elemental.30

• If a threadprivate variable or groupprivate variable is referenced inside a31
workdistribute region, the behavior is unspecified.32

Cross References33

• OMPT scope_endpoint Type, see Section 33.2734

CHAPTER 13. WORK-DISTRIBUTION CONSTRUCTS 413

• target Construct, see Section 15.81

• teams Construct, see Section 12.22

• work Callback, see Section 34.4.13

• OMPT work Type, see Section 33.414

Fortran

13.6 Worksharing-Loop Constructs5

Binding6
The binding thread set for a worksharing-loop region is the current team. A worksharing-loop7
region binds to the innermost enclosing parallel region. Only those threads participate in execution8
of the collapsed iterations and the implied barrier of the worksharing-loop region when that barrier9
is not eliminated by a nowait clause.10

Semantics11
The worksharing-loop construct is a worksharing construct that specifies that the collapsed12
iterations will be executed in parallel by threads in the team in the context of their implicit tasks.13
The collapsed iterations are distributed across the assigned threads of the team that is executing the14
parallel region to which the worksharing-loop region binds. Each thread executes its assigned15
chunks in the context of its implicit task. The execution of the collapsed iterations of a given chunk16
is consistent with their sequential order.17

At the beginning of each collapsed iteration, the loop iteration variable or the variable declared by18
range-decl of each collapsed loop has the value that it would have if the collapsed loops were19
executed sequentially.20

The loop schedule is reproducible if one of the following conditions is true:21

• The order clause is specified with the reproducible order-modifier modifier; or22

• The schedule clause is specified with static as the kind argument but not with the23
simd ordering-modifier and the order clause is not specified with the unconstrained24
order-modifier.25

Execution Model Events26
The ws-loop-begin event occurs after an implicit task encounters a worksharing-loop construct but27
before the task starts execution of the structured block of the worksharing-loop region. The28
ws-loop-end event occurs after a worksharing-loop region finishes execution but before resuming29
execution of the encountering task.30

The ws-loop-iteration-begin event occurs at the beginning of each collapsed iteration of a31
worksharing-loop region. The ws-loop-chunk-begin event occurs for each scheduled chunk of a32
worksharing-loop region before the implicit task executes any of the collapsed iterations.33

414 OpenMP API – Version 6.0 November 2024

Tool Callbacks1
A thread dispatches a registered work callback with ompt_scope_begin as its endpoint2
argument for each occurrence of a ws-loop-begin event in that thread. Similarly, a thread dispatches3
a registered work callback with ompt_scope_end as its endpoint argument for each occurrence4
of a ws-loop-end event in that thread. The callbacks occur in the context of the implicit task. The5
work_type argument indicates the schedule type as shown in Table 13.1.6

A thread dispatches a registered dispatch callback for each occurrence of a7
ws-loop-iteration-begin or ws-loop-chunk-begin event in that thread. The callback occurs in the8
context of the implicit task.9

TABLE 13.1: work OMPT types for Worksharing-Loop

Value of work_type If determined schedule is

ompt_work_loop unknown at runtime

ompt_work_loop_static static

ompt_work_loop_dynamic dynamic

ompt_work_loop_guided guided

ompt_work_loop_other implementation defined

Restrictions10
Restrictions to the worksharing-loop construct are as follows:11

• The collapsed iteration space must be the same for all threads in the team.12

• The value of the run-sched-var ICV must be the same for all threads in the team.13

Cross References14

• dispatch Callback, see Section 34.4.215

• run-sched-var ICV, see Table 3.116

• nowait Clause, see Section 17.617

• order Clause, see Section 12.318

• schedule Clause, see Section 13.6.319

• OMPT scope_endpoint Type, see Section 33.2720

• work Callback, see Section 34.4.121

• OMPT work Type, see Section 33.4122

CHAPTER 13. WORK-DISTRIBUTION CONSTRUCTS 415

C / C++

13.6.1 for Construct1

Name: for
Category: executable

Association: loop nest
Properties: work-distribution,
team-executed, partitioned,
SIMD-partitionable, worksharing,
worksharing-loop, cancellable, context-
matching

2

Separating directives3
scan4

Clauses5
allocate, collapse, firstprivate, induction, lastprivate, linear, nowait,6
order, ordered, private, reduction, schedule7

Semantics8
The for construct is a worksharing-loop construct.9

Cross References10

• allocate Clause, see Section 8.611

• collapse Clause, see Section 6.4.512

• firstprivate Clause, see Section 7.5.413

• Worksharing-Loop Constructs, see Section 13.614

• induction Clause, see Section 7.6.1315

• lastprivate Clause, see Section 7.5.516

• linear Clause, see Section 7.5.617

• nowait Clause, see Section 17.618

• order Clause, see Section 12.319

• ordered Clause, see Section 6.4.620

• private Clause, see Section 7.5.321

• reduction Clause, see Section 7.6.1022

• scan Directive, see Section 7.723

• schedule Clause, see Section 13.6.324

C / C++

416 OpenMP API – Version 6.0 November 2024

Fortran

13.6.2 do Construct1

Name: do
Category: executable

Association: loop nest
Properties: work-distribution,
team-executed, partitioned,
SIMD-partitionable, worksharing,
worksharing-loop, cancellable, context-
matching

2

Separating directives3
scan4

Clauses5
allocate, collapse, firstprivate, induction, lastprivate, linear, nowait,6
order, ordered, private, reduction, schedule7

Semantics8
The do construct is a worksharing-loop construct.9

Cross References10

• allocate Clause, see Section 8.611

• collapse Clause, see Section 6.4.512

• firstprivate Clause, see Section 7.5.413

• Worksharing-Loop Constructs, see Section 13.614

• induction Clause, see Section 7.6.1315

• lastprivate Clause, see Section 7.5.516

• linear Clause, see Section 7.5.617

• nowait Clause, see Section 17.618

• order Clause, see Section 12.319

• ordered Clause, see Section 6.4.620

• private Clause, see Section 7.5.321

• reduction Clause, see Section 7.6.1022

• scan Directive, see Section 7.723

• schedule Clause, see Section 13.6.324

Fortran

CHAPTER 13. WORK-DISTRIBUTION CONSTRUCTS 417

13.6.3 schedule Clause1

Name: schedule Properties: schedule-specification, unique2

Arguments3
Name Type Properties
kind Keyword: auto,

dynamic, guided,
runtime, static

default

chunk_size expression of integer
type

ultimate, optional, posi-
tive, region-invariant

4

Modifiers5
Name Modifies Type Properties
ordering-modifier kind Keyword: monotonic,

nonmonotonic
unique

chunk-modifier kind Keyword: simd unique
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

6

Directives7
do, for8

Semantics9
The schedule clause specifies how collapsed iterations of a worksharing-loop construct are10
divided into chunks, and how these chunks are distributed among threads of the team.11

The chunk_size expression is evaluated using the original list items of any variables that are made12
private variables in the worksharing-loop construct. Whether, in what order, or how many times,13
any side effects of the evaluation of this expression occur is unspecified. The use of a variable in a14
schedule clause expression of a worksharing-loop construct causes an implicit reference to the15
variable in all enclosing constructs.16

If the kind argument is static, chunks of increasing collapsed iteration numbers are assigned to17
the threads of the team in a round-robin fashion in the order of the thread number. Each chunk18
includes chunk_size collapsed iterations, except possibly for the chunk that contains the19
sequentially last iteration, which may have fewer iterations. If chunk_size is not specified, the20
collapsed iteration space is divided into chunks that are approximately equal in size, and at most21
one chunk is distributed to each thread.22

If the kind argument is dynamic, each thread executes a chunk, then requests another chunk, until23
no chunks remain to be assigned. Each chunk contains chunk_size collapsed iterations, except for24
the chunk that contains the sequentially last iteration, which may have fewer iterations. If25
chunk_size is not specified, it defaults to 1.26

If the kind argument is guided, each thread executes a chunk, then requests another chunk, until27
no chunks remain to be assigned. For a chunk_size of 1, the size of each chunk is proportional to28

418 OpenMP API – Version 6.0 November 2024

the number of unassigned collapsed iterations divided by the number of threads in the team,1
decreasing to 1. For a chunk_size with value k > 1, the size of each chunk is determined in the2
same way, with the restriction that the chunks do not contain fewer than k collapsed iterations3
(except for the chunk that contains the sequentially last iteration, which may have fewer than k4
iterations). If chunk_size is not specified, it defaults to 1.5

If the kind argument is auto, the decision regarding scheduling is implementation defined. If the6
schedule clause is not specified on a worksharing-loop construct then the effect is as if the7
schedule clause was specified with auto as its kind argument.8

If the kind argument is runtime, the decision regarding scheduling is deferred until runtime, and9
the behavior is as if the clause specifies kind, chunk-size and ordering-modifier as set in the10
run-sched-var ICV. If the schedule clause explicitly specifies any modifiers then they override11
any corresponding modifiers that are specified in the run-sched-var ICV.12

If the simd chunk-modifier is specified and the canonical loop nest is associated with a SIMD13
construct, new_chunk_size = ⌈⌈chunk_size/simd_width⌉⌉ ∗ simd_width is the chunk_size for14
all chunks except the first and last chunks, where simd_width is an implementation defined value.15
The first chunk will have at least new_chunk_size collapsed iterations except if it is also the last16
chunk. The last chunk may have fewer collapsed iterations than new_chunk_size. If the simd17
chunk-modifier is specified and the canonical loop nest is not associated with a SIMD construct, the18
modifier is ignored.19

20

Note – For a team of p threads and collapsed loops of n collapsed iterations, let ⌈⌈n/p⌉⌉ be the21
integer q that satisfies n = p ∗ q − r, with 0 <= r < p. One compliant implementation of the22
static schedule type (with no specified chunk_size) would behave as though chunk_size had23
been specified with value q. Another compliant implementation would assign q collapsed iterations24
to the first p− r threads, and q − 1 collapsed iterations to the remaining r threads. This illustrates25
why a conforming program must not rely on the details of a particular implementation.26

A compliant implementation of the guided schedule type with a chunk_size value of k would27
assign q = ⌈⌈n/p⌉⌉ collapsed iterations to the first available thread and set n to the larger of n− q28
and p ∗ k. It would then repeat this process until q is greater than or equal to the number of29
remaining collapsed iterations, at which time the remaining iterations form the final chunk.30
Another compliant implementation could use the same method, except with q = ⌈⌈n/(2p)⌉⌉, and set31
n to the larger of n− q and 2 ∗ p ∗ k.32

33

If the monotonic ordering-modifier is specified then each thread executes the chunks that it is34
assigned in increasing collapsed iteration order. When the nonmonotonic ordering-modifier is35
specified then chunks may be assigned to threads in any order and the behavior of an application36
that depends on any execution order of the chunks is unspecified. If an ordering-modifier is not37
specified, the effect is as if the monotonic ordering-modifier is specified if the kind argument is38
static or an ordered clause is specified on the construct; otherwise, the effect is as if the39
nonmonotonic ordering-modifier is specified.40

CHAPTER 13. WORK-DISTRIBUTION CONSTRUCTS 419

Restrictions1
Restrictions to the schedule clause are as follows:2

• The schedule clause cannot be specified if any of the collapsed loops is a non-rectangular3
loop.4

• The value of the chunk_size expression must be the same for all threads in the team.5

• If runtime or auto is specified for kind, chunk_size must not be specified.6

• The nonmonotonic ordering-modifier cannot be specified if an ordered clause is7
specified on the same construct.8

Cross References9

• do Construct, see Section 13.6.210

• for Construct, see Section 13.6.111

• run-sched-var ICV, see Table 3.112

• ordered Clause, see Section 6.4.613

13.7 distribute Construct14

Name: distribute
Category: executable

Association: loop nest
Properties: SIMD-partitionable,
teams-nestable, work-distribution, par-
titioned

15

Clauses16
allocate, collapse, dist_schedule, firstprivate, induction, lastprivate,17
order, private18

Binding19
The binding thread set for a distribute region is the set of initial threads executing an20
enclosing teams region. A distribute region binds to this teams region.21

Semantics22
The distribute construct specifies that the collapsed iterations will be executed by the initial23
teams in the context of their implicit tasks. The collapsed iterations are distributed across the initial24
threads of all initial teams that execute the teams region to which the distribute region binds.25
No implicit barrier occurs at the end of a distribute region. To avoid data races the original list26
items that are modified due to lastprivate clauses should not be accessed between the end of27
the distribute construct and the end of the teams region to which the distribute binds.28

If the dist_schedule clause is not specified, the loop schedule is implementation defined.29

The schedule is reproducible if one of the following conditions is true:30

420 OpenMP API – Version 6.0 November 2024

• The order clause is specified with the reproducible order-modifier modifier; or1

• The dist_schedule clause is specified with static as the kind argument and the2
order clause is not specified with the unconstrained order-modifier.3

Execution Model Events4
The distribute-begin event occurs after an initial task encounters a distribute construct but5
before the task starts to execute the structured block of the distribute region. The6
distribute-end event occurs after an initial task finishes execution of a distribute region but7
before it resumes execution of the enclosing context.8

The distribute-chunk-begin event occurs for each scheduled chunk of a distribute region9
before execution of any collapsed iteration.10

Tool Callbacks11
A thread dispatches a registered work callback with ompt_scope_begin as its endpoint12
argument and ompt_work_distribute as its work_type argument for each occurrence of a13
distribute-begin event in that thread. Similarly, a thread dispatches a registered work callback with14
ompt_scope_end as its endpoint argument and ompt_work_distribute as its work_type15
argument for each occurrence of a distribute-end event in that thread. The callbacks occur in the16
context of the implicit task.17

A thread dispatches a registered dispatch callback for each occurrence of a18
distribute-chunk-begin event in that thread. The callback occurs in the context of the initial task.19

Restrictions20
Restrictions to the distribute construct are as follows:21

• The collapsed iteration space must the same for all teams in the league.22

• The region that corresponds to the distribute construct must be a strictly nested region23
of a teams region.24

• A list item may appear in a firstprivate or lastprivate clause, but not in both.25

• The conditional lastprivate-modifier must not be specified.26

• All list items that appear in an induction clause must be private variables in the enclosing27
context.28

Cross References29

• allocate Clause, see Section 8.630

• collapse Clause, see Section 6.4.531

• dispatch Callback, see Section 34.4.232

• dist_schedule Clause, see Section 13.7.133

• firstprivate Clause, see Section 7.5.434

CHAPTER 13. WORK-DISTRIBUTION CONSTRUCTS 421

• Consistent Loop Schedules, see Section 6.4.41

• induction Clause, see Section 7.6.132

• lastprivate Clause, see Section 7.5.53

• order Clause, see Section 12.34

• private Clause, see Section 7.5.35

• OMPT scope_endpoint Type, see Section 33.276

• teams Construct, see Section 12.27

• work Callback, see Section 34.4.18

• OMPT work Type, see Section 33.419

13.7.1 dist_schedule Clause10

Name: dist_schedule Properties: schedule-specification, unique11

Arguments12
Name Type Properties
kind Keyword: static default
chunk_size expression of integer

type
ultimate, optional, posi-
tive, region-invariant

13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique15

Directives16
distribute17

Semantics18
The dist_schedule clause specifies how collapsed iterations of a distribute construct are19
divided into chunks, and how these chunks are distributed among the teams of the league. If20
chunk_size is not specified, the collapsed iteration space is divided into chunks that are21
approximately equal in size, and at most one chunk is distributed to each initial team of the league.22
If the chunk_size argument is specified, collapsed iterations are divided into chunks of chunk_size23
iterations. The chunk_size expression is evaluated using the original list items of any variables that24
become private variables in the distribute construct. Whether, in what order, or how many25
times, any side effects of the evaluation of this expression occur is unspecified. The use of a26
variable in a dist_schedule clause expression of a distribute construct causes an implicit27
reference to the variable in all enclosing constructs. These chunks are assigned to the initial teams28
of the league in a round-robin fashion in the order of their team number.29

422 OpenMP API – Version 6.0 November 2024

Restrictions1
Restrictions to the dist_schedule clause are as follows:2

• The value of the chunk_size expression must be the same for all teams in the league.3

• The dist_schedule clause cannot be specified if any of the collapsed loops is a4
non-rectangular loop.5

Cross References6

• distribute Construct, see Section 13.77

13.8 loop Construct8

Name: loop
Category: executable

Association: loop nest
Properties: order-concurrent-nestable,
partitioned, simdizable, team-executed,
teams-nestable, work-distribution,
worksharing

9

Clauses10
bind, collapse, lastprivate, order, private, reduction11

Binding12
The bind clause determines the binding region, which determines the binding thread set.13

Semantics14
A loop construct specifies that the collapsed iterations execute in the context of the binding thread15
set, in an order specified by the order clause. If the order clause is not specified, the behavior is16
as if the order clause is present and specifies the concurrent ordering. The collapsed17
iterations are executed as if by the binding thread set, once per instance of the loop region that is18
encountered by the binding thread set.19

The loop schedule for a loop construct is reproducible unless the order clause is present with the20
unconstrained order-modifier.21

If the loop region binds to a teams region, the threads in the binding thread set may continue22
execution after the loop region without waiting for all collapsed iterations to complete. The23
collapsed iterations are guaranteed to complete before the end of the teams region. If the loop24
region does not bind to a teams region, all collapsed iterations must complete before the25
encountering threads continue execution after the loop region.26

While a loop construct is always a work-distribution construct, it is a worksharing construct if and27
only if its binding region is the innermost enclosing parallel region. Further, the loop construct28
has the SIMDizable property if and only if its binding region is not defined.29

CHAPTER 13. WORK-DISTRIBUTION CONSTRUCTS 423

Fortran
The collapsed loop may be a DO CONCURRENT loop.1

Fortran
Restrictions2
Restrictions to the loop construct are as follows:3

• A list item must not appear in a lastprivate clause unless it is the loop-iteration variable4
of an affected loop.5

• If a reduction-modifier is specified in a reduction clause that appears on the directive then6
the reduction-modifier must be default.7

• If a loop construct is not nested inside another construct then the bind clause must be8
present.9

• If a loop region binds to a teams region or parallel region, it must be encountered by all10
threads in the binding thread set or by none of them.11

Fortran
• If the collapsed loop is a DO CONCURRENT loop, neither the data-sharing attribute clauses12

nor the collapse clause may be specified.13

• If a variable is accessed in more than one iteration of a DO CONCURRENT loop that is14
associated with a loop construct and at least one of the accesses modifies the variable, the15
variable must have locality specified in the DO CONCURRENT loop.16

Fortran
Cross References17

• bind Clause, see Section 13.8.118

• collapse Clause, see Section 6.4.519

• Consistent Loop Schedules, see Section 6.4.420

• lastprivate Clause, see Section 7.5.521

• order Clause, see Section 12.322

• private Clause, see Section 7.5.323

• reduction Clause, see Section 7.6.1024

• teams Construct, see Section 12.225

13.8.1 bind Clause26

Name: bind Properties: unique27

424 OpenMP API – Version 6.0 November 2024

Arguments1
Name Type Properties
binding Keyword: parallel,

teams, thread
default2

Modifiers3
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique4

Directives5
loop6

Semantics7
The bind clause specifies the binding region of the construct on which it appears. Specifically, if8
binding is teams and an innermost enclosing teams region exists then the binding region is that9
teams region; if binding is parallel then the binding region is the innermost enclosing parallel10
region, which may be an implicit parallel region; and if binding is thread then the binding region11
is not defined. If the bind clause is not specified on a construct for which it may be specified and12
the construct is a closely nested construct of a teams or parallel construct, the effect is as if13
binding is teams or parallel. If none of those conditions hold, the binding region is not14
defined.15

The specified binding region determines the binding thread set. Specifically, if the binding region is16
a teams region, then the binding thread set is the set of initial threads that are executing that17
region while if the binding region is a parallel region, then the binding thread set is the team of18
threads that are executing that region. If the binding region is not defined, then the binding thread19
set is the encountering thread.20

Restrictions21
Restrictions to the bind clause are as follows:22

• If teams is specified as binding then the corresponding loop region must be a strictly23
nested region of a teams region.24

• If teams is specified as binding and the corresponding loop region executes on a non-host25
device then the behavior of a reduction clause that appears on the corresponding loop26
construct is unspecified if the construct is not nested inside a teams construct.27

• If parallel is specified as binding, the behavior is unspecified if the corresponding loop28
region is a closely nested region of a simd region.29

Cross References30

• loop Construct, see Section 13.831

CHAPTER 13. WORK-DISTRIBUTION CONSTRUCTS 425

14 Tasking Constructs1

This chapter defines directives and concepts related to explicit tasks.2

14.1 task Construct3

Name: task
Category: executable

Association: block
Properties: parallelism-generating,
thread-limiting, task-generating

4

Clauses5
affinity, allocate, default, depend, detach, final, firstprivate, if,6
in_reduction, mergeable, priority, private, replayable, shared,7
threadset, transparent, untied8

Clause set9
Properties: exclusive Members: detach, mergeable10

Binding11
The binding thread set of the task region is the set of threads specified in the threadset clause.12
A task region binds to the innermost enclosing parallel region.13

Semantics14
When a thread encounters a task construct, an explicit task is generated from the code for the15
associated structured block. The data environment of the task is created according to the16
data-sharing attribute clauses on the task construct, per-data environment ICVs, and any defaults17
that apply. The data environment of the task is destroyed when the execution code of the associated18
structured block is completed.19

The encountering thread may immediately execute the task, or defer its execution. In the latter case,20
any thread of the current binding thread set may be assigned the task. Task completion of the task21
can be guaranteed using task synchronization constructs and clauses. If a task construct is22
encountered during execution of an outer task, the generated task region that corresponds to this23
construct is not a part of the outer task region unless the generated task is an included task.24

A detachable task is completed when the execution of its associated structured block is completed25
and the allow-completion event is fulfilled. If no detach clause is present on a task construct,26
the generated task is completed when the execution of its associated structured block is completed.27

426 OpenMP API – Version 6.0 November 2024

A thread that encounters a task scheduling point within the task region may temporarily suspend1
the task region.2

The task construct includes a task scheduling point in the task region of its generating task,3
immediately following the generation of the explicit task. Each explicit task region includes a task4
scheduling point at the end of its associated structured block.5

When storage is shared by an explicit task region, the programmer must ensure, by adding proper6
synchronization, that the storage does not reach the end of its lifetime before the explicit task region7
completes its execution.8

When an if clause is present on a task construct and the if clause expression evaluates to false,9
an undeferred task is generated, and the encountering thread must suspend the current task region,10
for which execution cannot be resumed until execution of the structured block that is associated11
with the generated task is completed. The use of a variable in an if clause expression of a task12
construct causes an implicit reference to the variable in all enclosing constructs. The if clause13
expression is evaluated in the context outside of the task construct.14

Execution Model Events15
The task-create event occurs when a thread encounters a task-generating construct. The event16
occurs after the task is initialized but before its execution begins and before the encountering thread17
resumes execution of any task.18

Tool Callbacks19
A thread dispatches a registered task_create callback for each occurrence of a task-create20
event in the context of the encountering task. The flags argument of this callback indicates the task21
types shown in Table 14.1.22

TABLE 14.1: task_create Callback Flags Evaluation

Operation Evaluates to true

(flags & ompt_task_explicit) Always in the dispatched callback

(flags & ompt_task_importing) If the task is an importing task

(flags & ompt_task_exporting) If the task is an exporting task

(flags & ompt_task_undeferred) If the task is an undeferred task

(flags & ompt_task_final) If the task is a final task

(flags & ompt_task_untied) If the task is an untied task

(flags & ompt_task_mergeable) If the task is a mergeable task

table continued on next page

CHAPTER 14. TASKING CONSTRUCTS 427

table continued from previous page

Operation Evaluates to true

(flags & ompt_task_merged) If the task is a merged task

Cross References1

• affinity Clause, see Section 14.102

• allocate Clause, see Section 8.63

• default Clause, see Section 7.5.14

• depend Clause, see Section 17.9.55

• detach Clause, see Section 14.116

• final Clause, see Section 14.77

• firstprivate Clause, see Section 7.5.48

• Task Scheduling, see Section 14.149

• if Clause, see Section 5.510

• in_reduction Clause, see Section 7.6.1211

• mergeable Clause, see Section 14.512

• omp_fulfill_event Routine, see Section 23.2.113

• priority Clause, see Section 14.914

• private Clause, see Section 7.5.315

• replayable Clause, see Section 14.616

• shared Clause, see Section 7.5.217

• task_create Callback, see Section 34.5.118

• OMPT task_flag Type, see Section 33.3719

• threadset Clause, see Section 14.820

• transparent Clause, see Section 17.9.621

• untied Clause, see Section 14.422

428 OpenMP API – Version 6.0 November 2024

14.2 taskloop Construct1

Name: taskloop
Category: executable

Association: loop nest
Properties: parallelism-generating,
SIMD-partitionable, task-generating

2

Subsidiary directives3
task_iteration4

Clauses5
allocate, collapse, default, final, firstprivate, grainsize, if,6
in_reduction, induction, lastprivate, mergeable, nogroup, num_tasks,7
priority, private, reduction, replayable, shared, threadset, transparent,8
untied9

Clause set10
synchronization-clause11

Properties: exclusive Members: nogroup, reduction12

Clause set13
granularity-clause14

Properties: exclusive Members: grainsize, num_tasks15

Binding16
The binding thread set of the taskloop region is the set of threads specified in the threadset17
clause. A taskloop region binds to the innermost enclosing parallel region.18

Semantics19
When a thread encounters a taskloop construct, the construct partitions the collapsed iterations20
into chunks, each of which is assigned to an explicit task for parallel execution. The data21
environment of each generated task is created according to the data-sharing attribute clauses on the22
taskloop construct, per-data environment ICVs, and any defaults that apply. Tasks created by a23
taskloop directive can be affected by task_iteration directives that are subsidiary24
directives of that taskloop directive. If a task_iteration directive on which a depend25
clause appears is a subsidiary directive of the taskloop construct then the behavior is as if the26
order of the creation of the generated tasks is in increasing collapsed iteration order with respect to27
their assigned chunks. Otherwise, the order of the creation of the generated tasks is unspecified and28
programs that rely on the execution order of the logical iterations are non-conforming.29

If the nogroup clause is not present, the taskloop construct executes as if it was enclosed in a30
taskgroup construct with no statements or directives outside of the taskloop construct. Thus,31
the taskloop construct creates an implicit taskgroup region. If the nogroup clause is32
present, no implicit taskgroup region is created.33

CHAPTER 14. TASKING CONSTRUCTS 429

If a reduction clause is present, the behavior is as if a task_reduction clause with the1
same reduction identifier and list items was applied to the implicit taskgroup construct that2
encloses the taskloop construct. The taskloop construct executes as if each generated task3
was defined by a task construct on which an in_reduction clause with the same reduction4
identifier and list items is present. Thus, the generated tasks are participants of the reduction5
defined by the task_reduction clause that was applied to the implicit taskgroup construct.6

If an in_reduction clause is present, the behavior is as if each generated task was defined by a7
task construct on which an in_reduction clause with the same reduction identifier and list8
items is present. Thus, the generated tasks are participants of a reduction previously defined by a9
reduction-scoping clause.10

If a threadset clause is present, the behavior is as if each generated task was defined by a task11
construct on which a threadset clause with the same set of threads is present. Thus, the binding12
thread set of the generated tasks is the same as that of the taskloop region.13

If a transparent clause is present, the behavior is as if each generated task was defined by a14
task construct on which a transparent clause with the same impex-type argument is present.15

If no clause from the granularity-clause clause set is present, the number of loop tasks generated16
and the number of logical iterations assigned to these tasks is implementation defined.17

When an if clause is present and the if clause expression evaluates to false, undeferred tasks are18
generated. The use of a variable in an if clause expression causes an implicit reference to the19
variable in all enclosing constructs.20

C++
For firstprivate variables of class type, the number of invocations of copy constructors that perform21
the initialization is implementation defined.22

C++
When storage is shared by a taskloop region, the programmer must ensure, by adding proper23
synchronization, that the storage does not reach the end of its lifetime before the taskloop region24
and its descendent tasks complete their execution.25

Execution Model Events26
The taskloop-begin event occurs upon entering the taskloop region. A taskloop-begin will27
precede any task-create events for the generated tasks. The taskloop-end event occurs upon28
completion of the taskloop region.29

Events for an implicit taskgroup region that surrounds the taskloop region are the same as30
for the taskgroup construct.31

The taskloop-iteration-begin event occurs at the beginning of each logical-iteration of a32
taskloop region before an explicit task executes the logical iteration. The taskloop-chunk-begin33
event occurs before an explicit task executes any of its associated logical iterations in a taskloop34
region.35

430 OpenMP API – Version 6.0 November 2024

Tool Callbacks1
A thread dispatches a registered work callback for each occurrence of a taskloop-begin and2
taskloop-end event in that thread. The callback occurs in the context of the encountering task. The3
callback receives ompt_scope_begin or ompt_scope_end as its endpoint argument, as4
appropriate, and ompt_work_taskloop as its work_type argument.5

A thread dispatches a registered dispatch callback for each occurrence of a6
taskloop-iteration-begin or taskloop-chunk-begin event in that thread. The callback binds to the7
explicit task executing the logical iterations.8

Restrictions9
Restrictions to the taskloop construct are as follows:10

• The reduction-modifier must be default.11

• The conditional lastprivate-modifier must not be specified.12

• If the taskloop construct is associated with a task_iteration directive, none of the13
taskloop-affected loops may be the generated loop of a loop-transforming construct.14

Cross References15

• allocate Clause, see Section 8.616

• collapse Clause, see Section 6.4.517

• default Clause, see Section 7.5.118

• dispatch Callback, see Section 34.4.219

• final Clause, see Section 14.720

• firstprivate Clause, see Section 7.5.421

• Canonical Loop Nest Form, see Section 6.4.122

• grainsize Clause, see Section 14.2.123

• if Clause, see Section 5.524

• in_reduction Clause, see Section 7.6.1225

• induction Clause, see Section 7.6.1326

• lastprivate Clause, see Section 7.5.527

• mergeable Clause, see Section 14.528

• nogroup Clause, see Section 17.729

• num_tasks Clause, see Section 14.2.230

• priority Clause, see Section 14.931

CHAPTER 14. TASKING CONSTRUCTS 431

• private Clause, see Section 7.5.31

• reduction Clause, see Section 7.6.102

• replayable Clause, see Section 14.63

• OMPT scope_endpoint Type, see Section 33.274

• shared Clause, see Section 7.5.25

• task Construct, see Section 14.16

• task_iteration Directive, see Section 14.2.37

• taskgroup Construct, see Section 17.48

• threadset Clause, see Section 14.89

• transparent Clause, see Section 17.9.610

• untied Clause, see Section 14.411

• work Callback, see Section 34.4.112

• OMPT work Type, see Section 33.4113

14.2.1 grainsize Clause14

Name: grainsize Properties: taskgraph-altering, unique15

Arguments16
Name Type Properties
grain-size expression of integer

type
positive17

Modifiers18
Name Modifies Type Properties
prescriptiveness grain-size Keyword: strict unique
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique19

Directives20
taskloop21

Semantics22
The grainsize clause specifies the number of logical iterations, Lt, that are assigned to each23
generated task t. If prescriptiveness is not specified as strict, other than possibly for the24
generated task that contains the sequentially last iteration, Lt is greater than or equal to the25
minimum of the value of the grain-size expression and the number of logical iterations, but less than26
two times the value of the grain-size expression. If prescriptiveness is specified as strict, other27

432 OpenMP API – Version 6.0 November 2024

than possibly for the generated task that contains the sequentially last iteration, Lt is equal to the1
value of the grain-size expression. In both cases, the generated task that contains the sequentially2
last iteration may have fewer logical iterations than the value of the grain-size expression.3

Restrictions4
Restrictions to the grainsize clause are as follows:5

• None of the collapsed loops may be non-rectangular loops.6

Cross References7

• taskloop Construct, see Section 14.28

14.2.2 num_tasks Clause9

Name: num_tasks Properties: taskgraph-altering, unique10

Arguments11
Name Type Properties
num-tasks expression of integer

type
positive12

Modifiers13
Name Modifies Type Properties
prescriptiveness num-tasks Keyword: strict unique
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique14

Directives15
taskloop16

Semantics17
The num_tasks clause specifies that the taskloop construct create as many tasks as the18
minimum of the num-tasks expression and the number of logical iterations. Each task must have at19
least one logical iteration. If prescriptiveness is specified as strict for a taskloop region with20
N logical iterations, the logical iterations are partitioned in a balanced manner and each partition is21
assigned, in order, to a generated task. The partition size is ⌈⌈N/num-tasks⌉⌉ until the number of22
remaining logical iterations divides the number of remaining tasks evenly, at which point the23
partition size becomes ⌊⌊N/num-tasks⌋⌋.24

Restrictions25
Restrictions to the num_tasks clause are as follows:26

• None of the collapsed loops may be non-rectangular loops.27

Cross References28

• taskloop Construct, see Section 14.229

CHAPTER 14. TASKING CONSTRUCTS 433

14.2.3 task_iteration Directive1

Name: task_iteration
Category: subsidiary

Association: unassociated
Properties: default2

Enclosing directives3
taskloop4

Clauses5
affinity, depend, if6

Semantics7
The task_iteration directive is a subsidiary directive that controls the per-iteration8
task-execution attributes of the generated tasks of its associated taskloop construct, which is the9
innermost enclosing taskloop construct, as described below.10

For each task-inherited clause specified on the task_iteration directive, the behavior is as if11
each task generated by the enclosing taskloop construct is specified with a corresponding clause12
that has the same clause-specification, but adjusted as follows. These clauses are instantiated for13
each instance of the loop-iteration variables for which the if-expression of the if clause evaluates14
to true. If an if clause is not specified on the task_iteration directive, the behavior is as if15
the if-expression evaluates to true.16

Restrictions17
The restrictions to the task_iteration directive are as follows:18

• Each task_iteration directive must appear in the loop body of one of the19
taskloop-affected loops and must precede all statements and directives (except other20
task_iteration directives) in that loop body.21

• If a task_iteration directive appears in the loop body of one of the22
taskloop-affected loops, no intervening code may occur between any two collapsed loops23
of the taskloop-affected loops.24

Cross References25

• affinity Clause, see Section 14.1026

• depend Clause, see Section 17.9.527

• if Clause, see Section 5.528

• iterator Modifier, see Section 5.2.629

• task Construct, see Section 14.130

• taskloop Construct, see Section 14.231

434 OpenMP API – Version 6.0 November 2024

14.3 taskgraph Construct1

Name: taskgraph
Category: executable

Association: block
Properties: default2

Clauses3
graph_id, graph_reset, if, nogroup4

Binding5
The binding thread set of a taskgraph region is all threads on the current device. The binding6
task set of a taskgraph region is all tasks of the current team that are generated in the region.7

Semantics8
When a thread encounters a taskgraph construct, a taskgraph region is generated for which9
execution entails one of the following:10

• Execution of the structured block associated with the construct, while optionally creating a11
taskgraph record of all encountered replayable constructs and the sequence in which they are12
encountered; or13

• A replay execution of the last matching taskgraph record of the construct.14

If a taskloop construct is encountered in the taskgraph region, the behavior is as if each task15
that it generates is instead generated by a task construct. If a task-generating construct is16
encountered in the taskgraph construct as part of its corresponding region, then it is a replayable17
construct of the region unless otherwise specified by the replayable clause. If a depend18
clause with a depobj task-dependence-type is present on a replayable construct then for each19
listed depend object the behavior is as if a depend clause with the dependence type and locator list20
item represented by the depend object is instead present on the construct. Whether a21
task-generating construct that is encountered as part of the taskgraph region, but not in the22
taskgraph construct, is a replayable construct of the region is unspecified, unless the23
replayable clause is present on that construct. For the purposes of the taskgraph region, a24
taskwait construct on which the depend clause appears is a task-generating construct.25

A taskgraph record contains a record of the following:26

• The graph-id-value specified in the graph_id clause upon encountering the construct;27

• The sequence of encountered replayable constructs in the taskgraph region, along with28
their subsidiary directives; and29

• For each replayable construct, a saved data environment.30

A clause or modifier argument for a replayable construct is recorded after evaluating all expressions31
that compose the argument and substituting the resulting values for those expressions. Additionally,32
if a clause argument or a modifier argument specification requires a locator list item or a variable33
list item, then:34

• For a locator list item of a taskgraph-altering clause, only the storage locations are recorded;35

CHAPTER 14. TASKING CONSTRUCTS 435

• Otherwise, the identifier that designates the base variable or base pointer of the list item is1
recorded along with any values that are needed to reconstruct the list item.2

The saved data environment of each replayable construct in the taskgraph record includes copies of3
all variables that do not have static storage duration and that are firstprivate in the replayable4
construct, with values that are captured from the enclosing data environment when the construct is5
encountered. Additionally, it includes copies of all variables that have static storage duration and6
that appear in a firstprivate clause that has the saved modifier on the construct. Finally, it7
includes references to any other variables that have static storage duration, exist in the enclosing8
data environment of the replayable construct, and do not exist in the enclosing data environment of9
the taskgraph construct.10

The taskgraph record becomes a finalized taskgraph record on exit from the taskgraph region in11
which it is created. An implementation may create a finalized taskgraph record prior to the first12
execution of the taskgraph region, if it can guarantee that the contents of the record would match13
the record that would have been created during an execution of the region. In this case, a replay14
execution of that taskgraph record may occur upon first encountering the taskgraph construct.15

If the graph_id clause is not present, an existing finalized taskgraph record that was generated16
for the construct when encountered on the same device is the matching taskgraph record.17
Otherwise, an existing finalized taskgraph record that was generated for the construct when18
encountered on the same device is the matching taskgraph record if the graph-id-value specified in19
the graph_id clause matches the value in the graph_id clause that was saved in the record.20

Each finalized taskgraph record has an associated replay count that is initialized to zero. If the21
graph_reset clause is not present or its argument evalutes to false, the encountering task of the22
taskgraph region is not a final task, and a matching taskgraph record exists, the matching23
taskgraph record is replayed and its replay count is incremented by one. A replay execution of a24
taskgraph record has the effect of encountering the recorded replayable constructs, with their25
recorded clause and modifier arguments unless otherwise specified, in their recorded sequence and26
implies all semantics defined for those constructs except as otherwise specified in this section. A27
replay execution does not entail execution of any code that is part of both the taskgraph region28
and the encountering task region. Any changes from when the matching taskgraph record was29
created to the arguments or modifiers of a taskgraph-altering clause that appears on a replayable30
construct does not alter the behavior of a replay execution of that taskgraph record. The replay31
count is decremented by one once all tasks that are generated by the replayable constructs have32
completed.33

If completion of a taskgraph region results in a new finalized taskgraph record when a matching34
taskgraph record already exists, the behavior is as if the new record replaces the old record, with the35
old record being discarded once its replay count reaches zero.36

When executing a replayable construct during a replay execution, unless otherwise specified by a37
saved modifier on a data-environment attribute clause, its enclosing data environment (inclusive of38
ICVs with data environment ICV scope) is the enclosing data environment of the taskgraph39
construct. If a variable does not exist in the enclosing data environment of the taskgraph40

436 OpenMP API – Version 6.0 November 2024

construct then the saved data environment in the taskgraph record is used as the enclosing data1
environment for that variable. If the replayable construct permits an ICV-defaulted clause and the2
clause is not present, in a replay execution of the construct the ICV in the enclosing data3
environment of the taskgraph construct determines the value of the clause argument.4

If the if clause is present and its argument evaluates to false, execution of the taskgraph region5
will not create a taskgraph record or entail replaying a matching taskgraph record of the construct.6

If the nogroup clause is not present, the taskgraph region executes as if enclosed by a7
taskgroup region.8

Whether foreign tasks are recorded or not in a taskgraph record and the manner in which they are9
executed during a replay execution if they are recorded is implementation defined.10

Execution Model Events11
Events for the implicit taskgroup region that surrounds the taskgraph region when no12
nogroup clause is specified are the same as for the taskgroup construct.13

The events that occur during a replay execution of a taskgraph region is unspecified.14

Tool Callbacks15
Callbacks associated with events for the taskgroup region are the same as for the taskgroup16
construct as defined in Section 17.4.17

Restrictions18
Restrictions to the taskgraph construct are as follows:19

• Task-generating constructs are the only constructs that may be encountered as part of the20
taskgraph region.21

• A taskgraph construct must not be encountered in a final task region.22

• A replayable construct that generates an importing or exporting transparent task, a detachable23
task, or an undeferred task must not be encountered in a taskgraph region.24

• Any variable referenced in a replayable construct that does not have static storage duration25
and that does not exist in the enclosing data environment of the taskgraph construct must26
be a private-only or firstprivate variable in the replayable construct.27

• A list item of a clause on a replayable construct that accepts a locator list and is not a28
taskgraph-altering clause must have a base variable or base pointer.29

• Any variable that appears in an expression of a variable list item or locator list item for a30
clause on a replayable construct and does not designate the base variable or base pointer of31
that list item must be listed in a data-environment attribute clause with the saved modifier on32
that construct.33

• If a construct that permits the nogroup clause is encountered in a taskgraph region then34
the nogroup clause must be specified with the do_not_synchronize argument evaluating to35
true.36

CHAPTER 14. TASKING CONSTRUCTS 437

Cross References1

• graph_id Clause, see Section 14.3.12

• graph_reset Clause, see Section 14.3.23

• if Clause, see Section 5.54

• nogroup Clause, see Section 17.75

• task Construct, see Section 14.16

• taskgroup Construct, see Section 17.47

14.3.1 graph_id Clause8

Name: graph_id Properties: unique9

Arguments10
Name Type Properties
graph-id-value expression of OpenMP

integer type
default11

Directives12
taskgraph13

Semantics14
The graph_id clause specifies the graph-id-value that identifies a taskgraph record. At most, one15
matching taskgraph record exists for a given graph-id-value.16

Cross References17

• taskgraph Construct, see Section 14.318

14.3.2 graph_reset Clause19

Name: graph_reset Properties: unique20

Arguments21
Name Type Properties
graph-reset-expression expression of OpenMP

logical type
default22

Directives23
taskgraph24

438 OpenMP API – Version 6.0 November 2024

Semantics1
If graph-reset-expression evaluates to true, any existing matching taskgraph record is discarded if a2
replay of the record is not in progress (i.e., if its replay count equals zero). If the replay count is3
non-zero, the matching taskgraph record is not replayed and instead the structured block associated4
with the taskgraph construct is executed; in this case, the matching taskgraph record is5
discarded once its replay count reaches zero. If graph-reset-expression is not specified, the effect is6
as if graph-reset-expression evaluates to true.7

Cross References8

• taskgraph Construct, see Section 14.39

14.4 untied Clause10

Name: untied Properties: unique11

Arguments12
Name Type Properties
can_change_threads expression of OpenMP

logical type
constant, optional13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique15

Directives16
task, taskloop17

Semantics18
If can-change-threads evaluates to true, the untied clause specifies that tasks generated by the19
construct on which it appears are untied tasks, which means that any thread in the binding thread set20
can resume the task region after a suspension. If can-change-threads evaluates to false or if the21
untied clause is not specified on a construct on which it may appear, generated tasks are tied; if a22
tied task is suspended, its task region can only be resumed by the thread that started its execution.23
If a generated task is a final task or an included task, the untied clause is ignored and the task is24
tied. If can-change-threads is not specified, the effect is as if can-change-threads evaluates to true.25

Cross References26

• task Construct, see Section 14.127

• taskloop Construct, see Section 14.228

CHAPTER 14. TASKING CONSTRUCTS 439

14.5 mergeable Clause1

Name: mergeable Properties: unique2

Arguments3
Name Type Properties
can_merge expression of OpenMP

logical type
constant, optional4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
target_data, task, taskloop8

Semantics9
If can_merge evaluates to true, the mergeable clause specifies that tasks generated by the10
construct on which it appears are mergeable tasks. If can_merge evaluates to false, the11
mergeable clause specifies that tasks generated by the construct on which it appears are not12
mergeable tasks. If can_merge is not specified, the effect is as if can_merge evaluates to true. If the13
generated task is a mergeable task that is also an undeferred task, the implementation may generate14
a merged task instead.15

Cross References16

• target_data Construct, see Section 15.717

• task Construct, see Section 14.118

• taskloop Construct, see Section 14.219

14.6 replayable Clause20

Name: replayable Properties: default21

Arguments22
Name Type Properties
replayable-expression expression of OpenMP

logical type
constant, optional23

Modifiers24
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique25

440 OpenMP API – Version 6.0 November 2024

Directives1
target, target_enter_data, target_exit_data, target_update, task,2
taskloop, taskwait3

Semantics4
If replayable-expression evaluates to true, the replayable clause specifies that the construct on5
which it appears is a replayable construct. If replayable-expression evaluates to false, the6
replayable clause specifies that the construct on which it appears is not a replayable construct.7
If replayable-expression is not specified, the effect is as if replayable-expression evaluates to true.8

Cross References9

• target Construct, see Section 15.810

• target_enter_data Construct, see Section 15.511

• target_exit_data Construct, see Section 15.612

• target_update Construct, see Section 15.913

• task Construct, see Section 14.114

• taskloop Construct, see Section 14.215

• taskwait Construct, see Section 17.516

14.7 final Clause17

Name: final Properties: unique18

Arguments19
Name Type Properties
finalize expression of OpenMP

logical type
default20

Modifiers21
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique22

Directives23
task, taskloop24

Semantics25
The final clause specifies that tasks generated by the construct on which it appears are final tasks26
if the finalize expression evaluates to true. All task-generating constructs on which the final27
clause may be specified that are encountered during execution of a final task generate included final28
tasks. The use of a variable in a finalize expression causes an implicit reference to the variable in all29

CHAPTER 14. TASKING CONSTRUCTS 441

enclosing constructs. The finalize expression is evaluated in the context outside of the construct on1
which the clause appears, If finalize is not specified, the effect is as if finalize evaluates to true.2

Cross References3

• task Construct, see Section 14.14

• taskloop Construct, see Section 14.25

14.8 threadset Clause6

Name: threadset Properties: unique7

Arguments8
Name Type Properties
set Keyword: omp_pool,

omp_team
default9

Modifiers10
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique11

Directives12
task, taskloop13

Semantics14
The threadset clause specifies the set of threads that may execute tasks that are generated by the15
construct on which it appears. If the set argument is omp_team, the generated tasks may only be16
scheduled onto threads of the current team. If the set argument is omp_pool, the generated tasks17
may be scheduled onto unassigned threads of the current OpenMP thread pool in addition to18
threads of the current team. If the threadset clause is not specified on a construct on which it19
may appear, then the effect is as if the threadset clause was specified with omp_team as its set20
argument. If the encountering task is a final task, the threadset clause is ignored.21

Cross References22

• task Construct, see Section 14.123

• taskloop Construct, see Section 14.224

442 OpenMP API – Version 6.0 November 2024

14.9 priority Clause1

Name: priority Properties: unique2

Arguments3
Name Type Properties
priority-value expression of integer

type
constant, non-negative4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
target, target_data, target_enter_data, target_exit_data,8
target_update, task, taskgraph, taskloop9

Semantics10
The priority clause specifies, in the priority-value argument, a task priority for the construct on11
which it appears . Among all tasks ready to be executed, higher priority tasks (those with a higher12
numerical priority-value) are recommended to execute before lower priority ones. The default13
priority-value when no priority clause is specified is zero (the lowest task priority). If a14
specified priority-value is higher than the max-task-priority-var ICV then the implementation will15
use the value of that ICV. An OpenMP program that relies on the task execution order being16
determined by the task priorities may have unspecified behavior.17

Cross References18

• max-task-priority-var ICV, see Table 3.119

• target Construct, see Section 15.820

• target_data Construct, see Section 15.721

• target_enter_data Construct, see Section 15.522

• target_exit_data Construct, see Section 15.623

• target_update Construct, see Section 15.924

• task Construct, see Section 14.125

• taskgraph Construct, see Section 14.326

• taskloop Construct, see Section 14.227

CHAPTER 14. TASKING CONSTRUCTS 443

14.10 affinity Clause1

Name: affinity Properties: task-inherited2

Arguments3
Name Type Properties
locator-list list of locator list item

type
default4

Modifiers5
Name Modifies Type Properties
iterator locator-list Complex, name: iterator

Arguments:
iterator-specifier list of iter-

ator specifier list item
type (default)

unique

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

6

Directives7
target_data, task, task_iteration8

Semantics9
The affinity clause specifies a hint to indicate data affinity of tasks generated by the construct10
on which it appears. The hint recommends to execute generated tasks close to the location of the11
original list items. A program that relies on the task execution location being determined by this list12
may have unspecified behavior.13

The list items that appear in the affinity clause may also appear in data-environment clauses.14
The list items may reference any iterators-identifier that is defined in the same clause and may15
include array sections.16

C / C++
The list items that appear in the affinity clause may use shape-operators.17

C / C++
Cross References18

• iterator Modifier, see Section 5.2.619

• target_data Construct, see Section 15.720

• task Construct, see Section 14.121

• task_iteration Directive, see Section 14.2.322

444 OpenMP API – Version 6.0 November 2024

14.11 detach Clause1

Name: detach Properties: data-sharing attribute, innermost-
leaf, privatization, unique2

Arguments3
Name Type Properties
event-handle variable of event_handle

type
default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
target_data, task8

Semantics9
The detach clause specifies that the task generated by the construct on which it appears is a10
detachable task. The clause provides a superset of the functionality provided by the private11
clause. A new allow-completion event is created and connected to the completion of the associated12
task region. The original event-handle is updated to represent that allow-completion event before13
the task data environment is created. The use of a variable in a detach clause expression of a14
task construct causes an implicit reference to the variable in all enclosing constructs.15

Restrictions16
Restrictions to the detach clause are as follows:17

• If a detach clause appears on a directive, then the encountering task must not be a final task.18

• A variable that appears in a detach clause cannot appear as a list item on any19
data-environment attribute clause on the same construct.20

• A variable that is part of an aggregate variable cannot appear in a detach clause.21

Fortran
• event-handle must not have the POINTER attribute.22

• If event-handle has the ALLOCATABLE attribute, the allocation status must be allocated23
when the task construct is encountered, and the allocation status must not be changed,24
either explicitly or implicitly, in the task region.25

Fortran

CHAPTER 14. TASKING CONSTRUCTS 445

Cross References1

• OpenMP event_handle Type, see Section 20.6.12

• target_data Construct, see Section 15.73

• task Construct, see Section 14.14

14.12 taskyield Construct5

Name: taskyield
Category: executable

Association: unassociated
Properties: default6

Binding7
A taskyield region binds to the current task region. The binding thread set of the taskyield8
region is the current team.9

Semantics10
The taskyield region includes an explicit task scheduling point in the current task region.11

Cross References12

• Task Scheduling, see Section 14.1413

14.13 Initial Task14

Execution Model Events15
While no events are associated with the implicit parallel region in each initial thread, several events16
are associated with initial tasks. The initial-thread-begin event occurs in an initial thread after the17
OpenMP runtime invokes the OMPT-tool initializer but before the initial thread begins to execute18
the first explicit region in the initial task. The initial-task-begin event occurs after an19
initial-thread-begin event but before the first explicit region in the initial task begins to execute.20
The initial-task-end event occurs before an initial-thread-end event but after the last region in the21
initial task finishes execution. The initial-thread-end event occurs as the final event in an initial22
thread at the end of an initial task immediately prior to invocation of the OMPT-tool finalizer.23

Tool Callbacks24
A thread dispatches a registered thread_begin callback for the initial-thread-begin event in an25
initial thread. The callback occurs in the context of the initial thread. The callback receives26
ompt_thread_initial as its thread_type argument.27

A thread dispatches a registered implicit_task callback with ompt_scope_begin as its28
endpoint argument for each occurrence of an initial-task-begin event in that thread. Similarly, a29
thread dispatches a registered implicit_task callback with ompt_scope_end as its30
endpoint argument for each occurrence of an initial-task-end event in that thread. The callbacks31

446 OpenMP API – Version 6.0 November 2024

occur in the context of the initial task. In the dispatched callback,1
(flags & ompt_task_initial) and (flags & ompt_task_implicit) evaluate to true.2

A thread dispatches a registered thread_end callback for the initial-thread-end event in that3
thread. The callback occurs in the context of the thread. The implicit parallel region does not4
dispatch a parallel_end callback; however, the implicit parallel region can be finalized within5
this thread_end callback.6

Cross References7

• implicit_task Callback, see Section 34.5.38

• parallel_end Callback, see Section 34.3.29

• OMPT scope_endpoint Type, see Section 33.2710

• OMPT task_flag Type, see Section 33.3711

• OMPT thread Type, see Section 33.3912

• thread_begin Callback, see Section 34.1.313

• thread_end Callback, see Section 34.1.414

14.14 Task Scheduling15

Whenever a thread reaches a task scheduling point, it may begin or resume execution of a task from16
its schedulable task set. An idle thread is treated as if it is always at a task scheduling point. For17
other threads, task scheduling points are implied at the following locations:18

• During the generation of an explicit task;19

• The point immediately following the generation of an explicit task;20

• After the point of completion of the structured block associated with a task;21

• In a taskyield region;22

• In a taskwait region;23

• At the end of a taskgroup region;24

• At the beginning and end of a taskgraph region;25

• In an implicit barrier region;26

• In an explicit barrier region;27

• During the generation of a target region;28

• The point immediately following the generation of a target region;29

• In a target_update region;30

CHAPTER 14. TASKING CONSTRUCTS 447

• In a target_enter_data region;1

• In a target_exit_data region;2

• In each instance of any memory-copying routine;and3

• In each instance of any memory-setting routine.4

When a thread encounters a task scheduling point it may do one of the following, subject to the task5
scheduling constraints specified below:6

• Begin execution of a tied task in its schedulable task set;7

• Resume the suspended task region of any task to which it is tied;8

• Begin execution of an untied task in its schedulable task set; or9

• Resume the suspended task region of any untied task in its schedulable task set.10

If more than one of the above choices is available, which one is chosen is unspecified.11

Task Scheduling Constraints are as follows:12

1. If any suspended tasks are tied to the thread and are not suspended in a barrier region, a new13
explicit tied task may be scheduled only if it is a descendent task of all of those suspended14
tasks. Otherwise, any new explicit tied task may be scheduled.15

2. A dependent task shall not start its execution until its task dependences are fulfilled.16

3. A task shall not be scheduled while another task has been scheduled but has not yet17
completed, if they are mutually exclusive tasks.18

4. A task shall not start or resume execution on an unassigned thread if it would result in the19
total number of free-agent threads in the OpenMP thread pool exceeding20
free-agent-thread-limit-var.21

Task scheduling points dynamically divide task regions into subtasks. Each subtask is executed22
uninterrupted from start to end. Different subtasks of the same task region are executed in the order23
in which they are encountered. In the absence of task synchronization constructs, the order in24
which a thread executes subtasks of different tasks in its schedulable task set is unspecified.25

A program must behave correctly and consistently with all conceivable scheduling sequences that26
are compatible with the rules above. A program that relies on any other assumption about task27
scheduling is a non-conforming program.28

29

Note – For example, if threadprivate memory is accessed (explicitly in the source code or30
implicitly in calls to library procedures) in one subtask of a task region, its value cannot be assumed31
to be preserved into the next subtask of the same task region if another schedulable task exists that32
modifies it.33

448 OpenMP API – Version 6.0 November 2024

As another example, if different subtasks of a task region invoke a lock-acquiring routine and its1
corresponding lock-releasing routine, no invocation of a lock-acquiring routine for the same lock2
should be made in any subtask of another task that the executing thread may schedule. Otherwise,3
deadlock is possible. A similar situation can occur when a critical region spans multiple4
subtasks of a task and another schedulable task contains a critical region with the same name.5

6

Execution Model Events7
The task-schedule event occurs in a thread when the thread switches tasks at a task scheduling8
point; no event occurs when switching to or from a merged task.9

Tool Callbacks10
A thread dispatches a registered task_schedule callback for each occurrence of a task-schedule11
event in the context of the task that begins or resumes. The prior_task_status argument is used to12
indicate the cause for suspending the prior task. This cause may be the completion of the prior task13
region, the encountering of a taskyield construct, or the encountering of an active cancellation14
point.15

Cross References16

• task_schedule Callback, see Section 34.5.217

CHAPTER 14. TASKING CONSTRUCTS 449

15 Device Directives and Clauses1

This chapter defines constructs and concepts related to device execution.2

15.1 device_type Clause3

Name: device_type Properties: unique4

Arguments5
Name Type Properties
device-type-description Keyword: any, host,

nohost
default6

Modifiers7
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique8

Directives9
begin declare_target, declare_target, groupprivate, target10

Semantics11
If the device_type clause appears on a declarative directive, the device-type-description12
argument specifies the type of devices for which a version of the procedure or variable should be13
made available. If the device_type clause appears on a target construct, the argument14
specifies the type of devices for which the implementation should support execution of the15
corresponding target region.16

The host device-type-description specifies the host device. The nohost device-type-description17
specifies any supported non-host device. The any device-type-description specifies any supported18
device. If the device_type clause is not specified, the behavior is as if the device_type19
clause appears with any specified.20

If the device_type clause specifies the host device on a target construct for which the target21
device is a non-host device, the corresponding region executes on the host device. Otherwise, if the22
devices specified by the device_type clause does not include the target device then runtime23
error termination is performed.24

450 OpenMP API – Version 6.0 November 2024

Cross References1

• begin declare_target Directive, see Section 9.9.22

• declare_target Directive, see Section 9.9.13

• groupprivate Directive, see Section 7.134

• target Construct, see Section 15.85

15.2 device Clause6

Name: device Properties: ICV-defaulted, unique7

Arguments8
Name Type Properties
device-description expression of integer

type
default9

Modifiers10
Name Modifies Type Properties
device-modifier device-description Keyword: ancestor,

device_num
default

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique
11

Directives12
dispatch, interop, target, target_data, target_enter_data,13
target_exit_data, target_update14

Semantics15
The device clause identifies the target device that is associated with a device construct.16

If device_num is specified as the device-modifier, the device-description specifies the device17
number of the target device. If device-modifier does not appear in the clause, the behavior of the18
clause is as if device-modifier is device_num. If the device-description evaluates to19
omp_invalid_device, runtime error termination is performed.20

If ancestor is specified as the device-modifier, the device-description specifies the number of21
target nesting levels of the target device. Specifically, if the device-description evaluates to 1, the22
target device is the parent device of the enclosing target region. If the construct on which the23
device clause appears is not encountered in a target region, the current device is treated as the24
parent device.25

Unless otherwise specified, for directives that accept the device clause, if no device clause is26
present, the behavior is as if the device clause appears with device_num as device-modifier27
and with a device-description that evaluates to the value of the default-device-var ICV.28

CHAPTER 15. DEVICE DIRECTIVES AND CLAUSES 451

Restrictions1

• The ancestor device-modifier must not appear on the device clause on any directive2
other than the target construct.3

• If the ancestor device-modifier is specified, the device-description must evaluate to 1 and4
a requires directive with the reverse_offload clause must be specified;5

• If the device_num device-modifier is specified and target-offload-var is not mandatory,6
device-description must evaluate to a conforming device number.7

Cross References8

• dispatch Construct, see Section 9.79

• target-offload-var ICV, see Table 3.110

• interop Construct, see Section 16.111

• target Construct, see Section 15.812

• target_data Construct, see Section 15.713

• target_enter_data Construct, see Section 15.514

• target_exit_data Construct, see Section 15.615

• target_update Construct, see Section 15.916

15.3 thread_limit Clause17

Name: thread_limit Properties: ICV-modifying, target-
consistent, unique18

Arguments19
Name Type Properties
threadlim expression of integer

type
positive20

Modifiers21
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique22

Directives23
target, teams24

452 OpenMP API – Version 6.0 November 2024

Semantics1
As described in Section 3.4, some constructs limit the number of threads that may participate in the2
parallel execution of tasks in a contention group initiated by each team by setting the value of the3
thread-limit-var ICV for the initial task to an implementation defined value greater than zero. If the4
thread_limit clause is specified, the number of threads will be less than or equal to threadlim.5
Otherwise, if the teams-thread-limit-var ICV is greater than zero, the effect on a teams construct6
is as if the thread_limit clause was specified with a threadlim that evaluates to an7
implementation defined value less than or equal to the teams-thread-limit-var ICV.8

Cross References9

• target Construct, see Section 15.810

• teams Construct, see Section 12.211

15.4 Device Initialization12

Execution Model Events13
The device-initialize event occurs in a thread that begins initialization of OpenMP on the device,14
after OpenMP initialization of the device, which may include device-side tool initialization,15
completes. The device-load event for a code block for a target device occurs in some thread before16
any thread executes code from that code block on that target device. The device-unload event for a17
target device occurs in some thread whenever a code block is unloaded from the device. The18
device-finalize event for a target device that has been initialized occurs in some thread before an19
OpenMP implementation shuts down.20

Tool Callbacks21
A thread dispatches a registered device_initialize callback for each occurrence of a22
device-initialize event in that thread. A thread dispatches a registered device_load callback for23
each occurrence of a device-load event in that thread. A thread dispatches a registered24
device_unload callback for each occurrence of a device-unload event in that thread. A thread25
dispatches a registered device_finalize callback for each occurrence of a device-finalize26
event in that thread.27

Restrictions28
Restrictions to OpenMP device initialization are as follows:29

• No thread may offload execution of a construct to a device until a dispatched30
device_initialize callback completes.31

• No thread may offload execution of a construct to a device after a dispatched32
device_finalize callback occurs.33

Cross References34

• device_finalize Callback, see Section 35.235

CHAPTER 15. DEVICE DIRECTIVES AND CLAUSES 453

• device_initialize Callback, see Section 35.11

• device_load Callback, see Section 35.32

• device_unload Callback, see Section 35.43

15.5 target_enter_data Construct4

Name: target_enter_data
Category: executable

Association: unassociated
Properties: parallelism-generating,
task-generating, device, device-
affecting, data-mapping, map-entering

5

Clauses6
depend, device, if, map, nowait, priority, replayable7

Additional information8
The target_enter_data directive may alternatively be specified with target enter9
data as the directive-name.10

Binding11
The binding task set for a target_enter_data region is the generating task, which is the target12
task generated by the target_enter_data construct. The target_enter_data region13
binds to the corresponding target task region.14

Semantics15
When a target_enter_data construct is encountered, the list items in the map clause are16
mapped to the device data environment according to the map clause semantics. The17
target_enter_data construct generates a target task. The generated task region encloses the18
target_enter_data region. If a depend clause is present, it is associated with the target19
task. If the nowait clause is present, execution of the target task may be deferred. If the nowait20
clause is not present, the target task is an included task.21

All clauses are evaluated when the target_enter_data construct is encountered. The data22
environment of the target task is created according to the data-mapping attribute clauses on the23
target_enter_data construct, ICVs with data environment ICV scope, and any default24
data-sharing attribute rules that apply to the target_enter_data construct. If a variable or25
part of a variable is mapped by the target_enter_data construct, the variable has a default26
data-sharing attribute of shared in the data environment of the target task.27

Assignment operations associated with mapping a variable (see Section 7.9.6) occur when the28
target task executes.29

When an if clause is present and if-expression evaluates to false, the target device is the host30
device.31

454 OpenMP API – Version 6.0 November 2024

Execution Model Events1
Events associated with a target task are the same as for the task construct defined in Section 14.1.2

The target-enter-data-begin event occurs after creation of the target task and completion of all3
predecessor tasks that are not target tasks for the same device. The target-enter-data-begin event is4
a target-task-begin event. The target-enter-data-end event occurs after all other events associated5
with the target_enter_data construct.6

Tool Callbacks7
Callbacks associated with events for target tasks are the same as for the task construct defined in8
Section 14.1; (flags & ompt_task_target) always evaluates to true in the dispatched callback.9

A thread dispatches a registered target_emi callback with ompt_scope_begin as its10
endpoint argument and ompt_target_enter_data or11
ompt_target_enter_data_nowait if the nowait clause is present as its kind argument12
for each occurrence of a target-enter-data-begin event in that thread in the context of the target task13
on the host device. Similarly, a thread dispatches a registered target_emi callback with14
ompt_scope_end as its endpoint argument and ompt_target_enter_data or15
ompt_target_enter_data_nowait if the nowait clause is present as its kind argument16
for each occurrence of a target-enter-data-end event in that thread in the context of the target task17
on the host device.18

Restrictions19
Restrictions to the target_enter_data construct are as follows:20

• At least one map clause must appear on the directive.21

• All map clauses must be map-entering clauses.22

Cross References23

• depend Clause, see Section 17.9.524

• device Clause, see Section 15.225

• if Clause, see Section 5.526

• map Clause, see Section 7.9.627

• nowait Clause, see Section 17.628

• priority Clause, see Section 14.929

• replayable Clause, see Section 14.630

• OMPT scope_endpoint Type, see Section 33.2731

• OMPT target Type, see Section 33.3432

• target_emi Callback, see Section 35.833

CHAPTER 15. DEVICE DIRECTIVES AND CLAUSES 455

• task Construct, see Section 14.11

• OMPT task_flag Type, see Section 33.372

15.6 target_exit_data Construct3

Name: target_exit_data
Category: executable

Association: unassociated
Properties: parallelism-generating,
task-generating, device, device-
affecting, data-mapping, map-exiting

4

Clauses5
depend, device, if, map, nowait, priority, replayable6

Additional information7
The target_exit_data directive may alternatively be specified with target exit data8
as the directive-name.9

Binding10
The binding task set for a target_exit_data region is the generating task, which is the target11
task generated by the target_exit_data construct. The target_exit_data region binds12
to the corresponding target task region.13

Semantics14
When a target_exit_data construct is encountered, the list items in the map clauses are15
unmapped from the device data environment according to the map clause semantics. The16
target_exit_data construct generates a target task. The generated task region encloses the17
target_exit_data region. If a depend clause is present, it is associated with the target task.18
If the nowait clause is present, execution of the target task may be deferred. If the nowait19
clause is not present, the target task is an included task.20

All clauses are evaluated when the target_exit_data construct is encountered. The data21
environment of the target task is created according to the data-mapping attribute clauses on the22
target_exit_data construct, ICVs with data environment ICV scope, and any default23
data-sharing attribute rules that apply to the target_exit_data construct. If a variable or part24
of a variable is mapped by the target_exit_data construct, the variable has a default25
data-sharing attribute of shared in the data environment of the target task.26

Assignment operations associated with mapping a variable (see Section 7.9.6) occur when the27
target task executes.28

When an if clause is present and if-expression evaluates to false, the target device is the host29
device.30

Execution Model Events31
Events associated with a target task are the same as for the task construct defined in Section 14.1.32

456 OpenMP API – Version 6.0 November 2024

The target-exit-data-begin event occurs after creation of the target task and completion of all1
predecessor tasks that are not target tasks for the same device. The target-exit-data-begin event is a2
target-task-begin event. The target-exit-data-end event occurs after all other events associated with3
the target_exit_data construct.4

Tool Callbacks5
Callbacks associated with events for target tasks are the same as for the task construct defined in6
Section 14.1; (flags & ompt_task_target) always evaluates to true in the dispatched callback.7

A thread dispatches a registered target_emi callback with ompt_scope_begin as its8
endpoint argument and ompt_target_exit_data or9
ompt_target_exit_data_nowait if the nowait clause is present as its kind argument for10
each occurrence of a target-exit-data-begin event in that thread in the context of the target task on11
the host device. Similarly, a thread dispatches a registered target_emi callback with12
ompt_scope_end as its endpoint argument and ompt_target_exit_data or13
ompt_target_exit_data_nowait if the nowait clause is present as its kind argument for14
each occurrence of a target-exit-data-end event in that thread in the context of the target task on the15
host device.16

Restrictions17
Restrictions to the target_exit_data construct are as follows:18

• At least one map clause must appear on the directive.19

• All map clauses must be map-exiting clauses.20

Cross References21

• depend Clause, see Section 17.9.522

• device Clause, see Section 15.223

• if Clause, see Section 5.524

• map Clause, see Section 7.9.625

• nowait Clause, see Section 17.626

• priority Clause, see Section 14.927

• replayable Clause, see Section 14.628

• OMPT scope_endpoint Type, see Section 33.2729

• OMPT target Type, see Section 33.3430

• target_emi Callback, see Section 35.831

• task Construct, see Section 14.132

• OMPT task_flag Type, see Section 33.3733

CHAPTER 15. DEVICE DIRECTIVES AND CLAUSES 457

15.7 target_data Construct1

Name: target_data
Category: executable

Association: block
Properties: device, device-affecting,
data-mapping, map-entering, map-
exiting, parallelism-generating,
sharing-task, task-generating

2

Clauses3
affinity, allocate, default, depend, detach, device, firstprivate, if,4
in_reduction, map, mergeable, nogroup, nowait, priority, private, shared,5
transparent, use_device_addr, use_device_ptr6

Clause set7
data-environment-clause8

Properties: required Members: map, use_device_addr,
use_device_ptr

9

Additional information10
The target_data directive may alternatively be specified with target data as the11
directive-name.12

Binding13
The binding task set for a target_data region is the generating task. The target_data14
region binds to the region of the generating task.15

Semantics16
The target_data construct is a composite directive that provides a superset of the functionality17
provided by the target_enter_data and target_exit_data directives. The functionality18
added by the target_data directive is the inclusion of a task region for which data-sharing19
attributes may be specified. The effect of a target_data directive is equivalent to that of20
specifying three constituent directives, as described in the following, except expressions in all21
clauses are evaluated when the target_data construct is encountered.22

The first constituent directive is a target_enter_data directive that is specified in the same23
code location as the target_data directive. The second constituent directive is a task directive24
that is specified immediately after the target_enter_data directive and that is associated with25
the structured block associated with the target_data directive. This task directive generates a26
sharing task. The third constituent directive is a target_exit_data directive that is specified27
immediately following the structured block that is associated with the target_data directive.28

Since each constituent directive is a task-generating construct, the target_data directive29
generates three tasks. The task that is generated by the constituent target_exit_data directive30
is a dependent task of the task that is generated by the constituent task directive, which is a31
dependent task of the task that is generated by the constituent target_enter_data directive.32

458 OpenMP API – Version 6.0 November 2024

When an if clause is present on a target_data construct, the effect is as if the clause is present1
only on the constituent data-mapping constructs.2

When a nowait clause is present on a target_data construct, the effect is as if the clause is3
present on the constituent data-mapping constructs. In addition, the task associated with the4
structured block may be deferred unless otherwise specified. If the nowait clause is not present,5
all tasks associated with the constituent directives are included tasks and, in addition, the task6
associated with the structured block is a merged task.7

If the transparent clause is not specified then the effect is as if a transparent clause is8
specified such that impex-type evaluates to omp_impex. If the mergeable clause is not specified9
then the effect is as if a mergeable clause is specified such that can_merge evaluates to true.10

When a map clause is present on a target_data construct, the effect is as if the clause is present11
on the constituent data-mapping constructs with substituted map-type modifiers that are determined12
according to the rules of map-type decay.13

A list item that appears in a map clause may also appear in a use_device_ptr clause or a14
use_device_addr clause. If one or more map clauses are present, the list item conversions that15
are performed for any use_device_ptr and use_device_addr clauses occur after all16
variables are mapped on entry to the region according to those map clauses.17

If the nogroup clause is not present, the target_data construct executes as if the structured18
block of the constituent task were enclosed in a taskgroup region. If the nogroup clause is19
present, no implicit taskgroup region is created.20

Execution Model Events21
The events associated with entering a target_data region are the same events as are associated22
with a target_enter_data construct, as described in Section 15.5, followed by the same23
events that are associated with a task construct, as described in Section 14.1.24

The events associated with exiting a target_data region are the same events as are associated25
with a target_exit_data construct, as described in Section 15.6.26

Tool Callbacks27
The tool callbacks dispatched when entering a target_data region are the same as the tool28
callbacks dispatched when encountering a target_enter_data construct, as described in29
Section 15.5, followed by the same tool callbacks that are dispatched when encountering a task30
construct, as described in Section 14.1.31

The tool callbacks dispatched when exiting a target_data region are the same as the tool32
callbacks dispatched when encountering a target_exit_data construct, as described in33
Section 15.6.34

Cross References35

• affinity Clause, see Section 14.1036

• allocate Clause, see Section 8.637

• default Clause, see Section 7.5.138

CHAPTER 15. DEVICE DIRECTIVES AND CLAUSES 459

• depend Clause, see Section 17.9.51

• detach Clause, see Section 14.112

• device Clause, see Section 15.23

• firstprivate Clause, see Section 7.5.44

• if Clause, see Section 5.55

• in_reduction Clause, see Section 7.6.126

• map Clause, see Section 7.9.67

• mergeable Clause, see Section 14.58

• nogroup Clause, see Section 17.79

• nowait Clause, see Section 17.610

• priority Clause, see Section 14.911

• private Clause, see Section 7.5.312

• shared Clause, see Section 7.5.213

• target_enter_data Construct, see Section 15.514

• target_exit_data Construct, see Section 15.615

• task Construct, see Section 14.116

• transparent Clause, see Section 17.9.617

• use_device_addr Clause, see Section 7.5.1018

• use_device_ptr Clause, see Section 7.5.819

15.8 target Construct20

Name: target
Category: executable

Association: block
Properties: parallelism-generating,
team-generating, thread-limiting,
exception-aborting, task-generating,
device, device-affecting, data-mapping,
map-entering, map-exiting, context-
matching

21

Clauses22
allocate, default, defaultmap, depend, device, device_type, firstprivate,23
has_device_addr, if, in_reduction, is_device_ptr, map, nowait, priority,24
private, replayable, thread_limit, uses_allocators25

460 OpenMP API – Version 6.0 November 2024

Binding1
The binding task set for a target region is the generating task, which is the target task generated2
by the target construct. The target region binds to the corresponding target task region.3

Semantics4
The target construct generates a target task that encloses a target region to be executed on a5
device. If a depend clause is present, it is associated with the target task. The device and6
device_type clauses determine the device on which to execute the target task region. If the7
nowait clause is present, execution of the target tasks may be deferred. If the nowait clause is8
not present, the target task is an included tasks. The effect of any map clauses occur on entry to and9
exit from the generated target region, as specified in Section 7.9.6.10

All clauses are evaluated when the target construct is encountered. The data environment of the11
target task is created according to the data-sharing attribute clauses and data-mapping attribute12
clauses on the target construct, ICVs with data environment ICV scope, and any default13
data-sharing attribute rules that apply to the target construct. If a variable or part of a variable is14
mapped by the target construct and does not appear as a list item in an in_reduction clause15
on the construct, the variable has a default data-sharing attribute of shared in the data environment16
of the target task. Assignment operations associated with mapping a variable (see Section 7.9.6)17
occur when the target task executes.18

If the device clause is specified with the ancestor device-modifier, the encountering thread19
waits for completion of the target region on the parent device before resuming. For any list item20
that appears in a map clause on the same construct, if the corresponding list item exists in the device21
data environment of the parent device, it is treated as if it has a reference count of positive infinity.22

When an if clause is present and if-expression evaluates to false, the effect is as if a device23
clause that specifies omp_initial_device as the device number is present, regardless of any24
other device clause on the directive.25

If a procedure is explicitly or implicitly referenced in a target construct that does not specify a26
device clause in which the ancestor device-modifier appears then that procedure is treated as27
if its name had appeared in an enter clause on a declare target directive.28

If a variable with static storage duration is declared in a target construct that does not specify a29
device clause in which the ancestor device-modifier appears then the named variable is treated30
as if it had appeared in an enter clause on a declare target directive if it is not a groupprivate31
variable and otherwise as if it had appeared in a local clause on a declare target directive.32

If a list item in a map clause has a base pointer that is predetermined firstprivate or a base33
referencing variable for which the referring pointer is predetermined firstprivate (see Section 7.1.1),34
and on entry to the target region the list item is mapped, the firstprivate pointer is updated via35
corresponding pointer initialization.36

Fortran
When an internal procedure is called in a target region, any references to variables that are host37
associated in the procedure have unspecified behavior.38

Fortran

CHAPTER 15. DEVICE DIRECTIVES AND CLAUSES 461

Execution Model Events1
Events associated with a target task are the same as for the task construct defined in Section 14.1.2
Events associated with the initial task that executes the target region are defined in3
Section 14.13. The target-submit-begin event occurs prior to initiating creation of an initial task on4
a target device for a target region. The target-submit-end event occurs after initiating creation of5
an initial task on a target device for a target region. The target-begin event occurs after creation6
of the target task and completion of all predecessor tasks that are not target tasks for the same7
device. The target-begin event is a target-task-begin event. The target-end event occurs after the8
target-submit-begin, target-submit-end and target-begin events associated with the target9
construct and any events associated with map clauses on the construct. If the nowait clause is not10
present, the target-end event also occurs after all events associated with the target task and initial11
task but before the thread resumes execution of the encountering task.12

Tool Callbacks13
Callbacks associated with events for target tasks are the same as for the task construct defined in14
Section 14.1; (flags & ompt_task_target) always evaluates to true in the dispatched callback.15

A thread dispatches a registered target_emi callback with ompt_scope_begin as its16
endpoint argument and ompt_target or ompt_target_nowait if the nowait clause is17
present as its kind argument for each occurrence of a target-begin event in that thread in the context18
of the target task on the host device. Similarly, a thread dispatches a registered target_emi19
callback with ompt_scope_end as its endpoint argument and ompt_target or20
ompt_target_nowait if the nowait clause is present as its kind argument for each21
occurrence of a target-end event in that thread in the context of the target task on the host device.22

A thread dispatches a registered target_submit_emi callback with ompt_scope_begin as23
its endpoint argument for each occurrence of a target-submit-begin event in that thread. Similarly, a24
thread dispatches a registered target_submit_emi callback with ompt_scope_end as its25
endpoint argument for each occurrence of a target-submit-end event in that thread. These callbacks26
occur in the context of the target task.27

Restrictions28
Restrictions to the target construct are as follows:29

• Device-affecting constructs, other than target constructs for which the ancestor30
device-modifier is specified, must not be encountered during execution of a target region.31

• The result of an omp_set_default_device, omp_get_default_device, or32
omp_get_num_devices routine called within a target region is unspecified.33

• The effect of an access to a threadprivate variable in a target region is unspecified.34

• If a list item in a map clause is a structure element, any other element of that structure that is35
referenced in the target construct must also appear as a list item in a map clause.36

• A list item in a map clause that is specified on a target construct must have a base variable37
or base pointer.38

462 OpenMP API – Version 6.0 November 2024

• A list item in a data-sharing attribute clause that is specified on a target construct must not1
have the same base variable as a list item in a map clause on the construct.2

• A variable referenced in a target region but not the target construct that is not declared3
in the target region must appear in a declare target directive.4

• If a device clause is specified with the ancestor device-modifier, only the device,5
firstprivate, private, defaultmap, nowait, and map clauses may appear on the6
construct and no constructs or calls to routines are allowed inside the corresponding target7
region.8

• If a device clause is specified with the ancestor device-modifier, whether a storage9
block on the encountering device that has no corresponding storage on the specified device10
may be mapped is implementation defined.11

• Memory allocators that do not appear in a uses_allocators clause cannot appear as an12
allocator in an allocate clause or be used in the target region unless a requires13
directive with the dynamic_allocators clause is present in the same compilation unit.14

• Any IEEE floating-point exception status flag, halting mode, or rounding mode set prior to a15
target region is unspecified in the region.16

• Any IEEE floating-point exception status flag, halting mode, or rounding mode set in a17
target region is unspecified upon exiting the region.18

• An OpenMP program must not rely on the value of a function address in a target region19
except for assignments, pointer association queries, and indirect calls.20

C / C++
• Upon exit from a target region, the value of an attached pointer must not be different from21

the value when entering the region.22

C / C++
C++

• The run-time type information (RTTI) of an object can only be accessed from the device on23
which it was constructed.24

• Invoking a virtual member function of an object on a device other than the device on which25
the object was constructed results in unspecified behavior, unless the object is accessible and26
was constructed on the host device.27

• If an object of polymorphic class type is destructed, virtual member functions of any28
previously existing corresponding objects in other device data environments must not be29
invoked.30

C++
Fortran

• An attached pointer that is associated with a given pointer target must not be associated with31
a different pointer target upon exit from a target region.32

CHAPTER 15. DEVICE DIRECTIVES AND CLAUSES 463

• A reference to a coarray that is encountered on a non-host device must not be coindexed or1
appear as an actual argument to a procedure where the corresponding dummy argument is a2
coarray.3

• If the allocation status of a mapped variable or a list item that appears in a4
has_device_addr clause that has the ALLOCATABLE attribute is unallocated on entry to5
a target region, the allocation status of the corresponding variable in the device data6
environment must be unallocated upon exiting the region.7

• If the allocation status of a mapped variable or a list item that appears in a8
has_device_addr clause that has the ALLOCATABLE attribute is allocated on entry to a9
target region, the allocation status and shape of the corresponding variable in the device10
data environment may not be changed, either explicitly or implicitly, in the region after entry11
to it.12

• If the association status of a list item with the POINTER attribute that appears in a map or13
has_device_addr clause on the construct is disassociated upon entry to the target14
region, the list item must be disassociated upon exit from the region.15

• If the association status of a list item with the POINTER attribute that appears in a map or16
has_device_addr clause on the construct is associated upon entry to the target17
region, the list item must be associated with the same pointer target upon exit from the region.18

• An OpenMP program must not rely on the association status of a procedure pointer in a19
target region except for calls to the ASSOCIATED inquiry function without the optional20
proc-target argument, pointer assignments and indirect calls.21

Fortran
Cross References22

• allocate Clause, see Section 8.623

• default Clause, see Section 7.5.124

• defaultmap Clause, see Section 7.9.925

• depend Clause, see Section 17.9.526

• device Clause, see Section 15.227

• device_type Clause, see Section 15.128

• firstprivate Clause, see Section 7.5.429

• has_device_addr Clause, see Section 7.5.930

• if Clause, see Section 5.531

• in_reduction Clause, see Section 7.6.1232

• is_device_ptr Clause, see Section 7.5.733

464 OpenMP API – Version 6.0 November 2024

• map Clause, see Section 7.9.61

• nowait Clause, see Section 17.62

• priority Clause, see Section 14.93

• private Clause, see Section 7.5.34

• replayable Clause, see Section 14.65

• OMPT scope_endpoint Type, see Section 33.276

• OMPT target Type, see Section 33.347

• target_data Construct, see Section 15.78

• target_emi Callback, see Section 35.89

• target_submit_emi Callback, see Section 35.1010

• task Construct, see Section 14.111

• OMPT task_flag Type, see Section 33.3712

• thread_limit Clause, see Section 15.313

• uses_allocators Clause, see Section 8.814

15.9 target_update Construct15

Name: target_update
Category: executable

Association: unassociated
Properties: parallelism-generating,
task-generating, device, device-
affecting

16

Clauses17
depend, device, from, if, nowait, priority, replayable, to18

Clause set19
Properties: required Members: from, to20

Additional information21
The target_update directive may alternatively be specified with target update as the22
directive-name.23

Binding24
The binding task set for a target_update region is the generating task, which is the target task25
generated by the target_update construct. The target_update region binds to the26
corresponding target task region.27

CHAPTER 15. DEVICE DIRECTIVES AND CLAUSES 465

Semantics1
The target_update directive makes the corresponding list items in the device data2
environment consistent with their original list items, according to the specified data-motion clauses.3
The target_update construct generates a target task. The generated task region encloses the4
target_update region. If a depend clause is present, it is associated with the target task. If5
the nowait clause is present, execution of the target task may be deferred. If the nowait clause6
is not present, the target task is an included task.7

All clauses are evaluated when the target_update construct is encountered. The data8
environment of the target task is created according to data-motion clauses on the9
target_update construct, ICVs with data environment ICV scope, and any default data-sharing10
attribute rules that apply to the target_update construct. If a variable or part of a variable is a11
list item in a data-motion clause on the target_update construct, the variable has a default12
data-sharing attribute of shared in the data environment of the target task.13

Assignment operations associated with any data-motion clauses occur when the target task14
executes. When an if clause is present and if-expression evaluates to false, no assignments occur.15

Execution Model Events16
Events associated with a target task are the same as for the task construct defined in Section 14.1.17

The target-update-begin event occurs after creation of the target task and completion of all18
predecessor tasks that are not target tasks for the same device. The target-update-end event occurs19
after all other events associated with the target_update construct.20

The target-data-op-begin event occurs in the target_update region before a thread initiates a21
data operation on the target device. The target-data-op-end event occurs in the target_update22
region after a thread initiates a data operation on the target device.23

Tool Callbacks24
Callbacks associated with events for target tasks are the same as for the task construct defined in25
Section 14.1; (flags & ompt_task_target) always evaluates to true in the dispatched callback.26

A thread dispatches a registered target_emi callback with ompt_scope_begin as its27
endpoint argument and ompt_target_update or ompt_target_update_nowait if the28
nowait clause is present as its kind argument for each occurrence of a target-update-begin event29
in that thread in the context of the target task on the host device. Similarly, a thread dispatches a30
registered target_emi callback with ompt_scope_end as its endpoint argument and31
ompt_target_update or ompt_target_update_nowait if the nowait clause is32
present as its kind argument for each occurrence of a target-update-end event in that thread in the33
context of the target task on the host device.34

A thread dispatches a registered target_data_op_emi callback with ompt_scope_begin35
as its endpoint argument for each occurrence of a target-data-op-begin event in that thread.36
Similarly, a thread dispatches a registered target_data_op_emi callback with37
ompt_scope_end as its endpoint argument for each occurrence of a target-data-op-end event in38
that thread. These callbacks occur in the context of the target task.39

466 OpenMP API – Version 6.0 November 2024

Cross References1

• depend Clause, see Section 17.9.52

• device Clause, see Section 15.23

• from Clause, see Section 7.10.24

• if Clause, see Section 5.55

• nowait Clause, see Section 17.66

• priority Clause, see Section 14.97

• replayable Clause, see Section 14.68

• OMPT scope_endpoint Type, see Section 33.279

• OMPT target Type, see Section 33.3410

• target_data_op_emi Callback, see Section 35.711

• target_emi Callback, see Section 35.812

• task Construct, see Section 14.113

• OMPT task_flag Type, see Section 33.3714

• to Clause, see Section 7.10.115

CHAPTER 15. DEVICE DIRECTIVES AND CLAUSES 467

16 Interoperability1

An OpenMP implementation may interoperate with one or more foreign runtime environments2
through the use of the interop construct that is described in this chapter, the interop operation3
for a declared function variant and the interoperability routines.4

Cross References5

• Interoperability Routines, see Chapter 266

16.1 interop Construct7

Name: interop
Category: executable

Association: unassociated
Properties: device8

Clauses9
depend, destroy, device, init, nowait, use10

Clause set11
action-clause12

Properties: required Members: destroy, init, use13

Binding14
The binding task set for an interop region is the generating task. The interop region binds to15
the region of the generating task.16

Semantics17
The interop construct retrieves interoperability properties from the OpenMP implementation to18
enable interoperability with foreign execution contexts. When an interop construct is19
encountered, the encountering task executes the region.20

The interop-type set for an init clause is the set of specified interop-type modifiers. For any other21
action-clause and the interoperability object that its argument specifies, the interop-type set is the22
set of modifiers that were specified by the init clause that initialized that interoperability object.23

If the interop-type set includes targetsync, an empty mergeable task is generated. If the24
nowait clause is not present on the construct then the task is also an included task. If the25
interop-type set does not include targetsync, the nowait clause has no effect. Any depend26
clauses that are present on the construct apply to the generated task.27

468 OpenMP API – Version 6.0 November 2024

The interop construct ensures an ordered execution of the generated task relative to foreign tasks1
executed in the foreign execution context through the foreign synchronization object that is2
accessible through the targetsync property. When the creation of the foreign task precedes the3
encountering of an interop construct in happens-before order, the foreign task must complete4
execution before the generated task begins execution. Similarly, when the creation of a foreign task5
follows the encountering of an interop construct in between the encountering thread and either6
foreign tasks or OpenMP tasks by the interop construct.7

Restrictions8
Restrictions to the interop construct are as follows:9

• A depend clause must only appear on the directive if the interop-type includes10
targetsync.11

• An interoperability object must not be specified in more than one action-clause that appears12
on the interop construct.13

Cross References14

• depend Clause, see Section 17.9.515

• destroy Clause, see Section 5.716

• device Clause, see Section 15.217

• init Clause, see Section 5.618

• nowait Clause, see Section 17.619

• use Clause, see Section 16.1.220

16.1.1 OpenMP Foreign Runtime Identifiers21

Allowed values for foreign runtime identifiers include the names (as string literals) and integer22
values that the OpenMP Additional Definitions document specifies and the corresponding23
omp_ifr_name values of the interop_fr OpenMP type. Implementation defined values for24
foreign runtime identifiers may also be supported.25

16.1.2 use Clause26

Name: use Properties: default27

Arguments28
Name Type Properties
interop-var variable of interop

OpenMP type
default29

CHAPTER 16. INTEROPERABILITY 469

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
interop4

Semantics5
The use clause specifies the interop-var that is used for the effects of the directive on which the6
clause appears. However, interop-var is not initialized, destroyed or otherwise modified. The7
interop-type set is inferred based on the interop-type modifiers used to initialize interop-var.8

Restrictions9

• The state of interop-var must be initialized.10

Cross References11

• interop Construct, see Section 16.112

16.1.3 prefer-type Modifier13

Modifiers14
Name Modifies Type Properties
prefer-type init-var Complex, name:

prefer_type
Arguments:
prefer-type-specification

list of preference spec-
ification list item type
(default)

complex, unique

15

Clauses16
init17

Semantics18
The prefer-type modifier specifies a set of preferences to be used to initialize an interoperability19
object. Each preference specification list item specified in the prefer-type-specification argument is20
a preference specification that has the following syntax:21

preference-specification:22
{preference-selector[, preference-selector[, ...]]}23
foreign-runtime-identifier24

25
preference-selector:26

fr(foreign-runtime-identifier)27

470 OpenMP API – Version 6.0 November 2024

attr(preference-property-extension[, preference-property-extension[, ...]])1
2

preference-property-extension:3
ext-string-literal4

Where foreign-runtime-identifier is a foreign runtime identifier and an implementation defined5
ext-string-literal is a string literal that must start with the ompx_ prefix and must not include any6
commas (i.e., instances of the character ’,’).7

The fr preference-selector specifies a foreign runtime environment identified by its foreign8
runtime identifier. The attr preference-selector specifies a preference for the attributes specified9
as its arguments.10

If a preference-specification is a foreign-runtime-identifier, it is equivalent to specifying a11
preference-specification that uses the fr preference-selector and the foreign runtime identifier as12
its argument.13

The interoperability object specified by the init-var argument of the init clause is initialized14
based on the first supported preference specification, if any, in left-to-right order. If the15
implementation does not support any of the specified preference specifications, init-var is16
initialized based on an implementation defined preference specification.17

Restrictions18
Restrictions to the prefer-type modifier are as follows:19

• At most one fr preference-selector may be specified for each preference-specification.20

Cross References21

• init Clause, see Section 5.622

CHAPTER 16. INTEROPERABILITY 471

17 Synchronization Constructs and1

Clauses2

A synchronization construct imposes an order on the completion of code executed by different3
threads through synchronizing flushes that are executed as part of the region that corresponds to the4
construct. Section 1.3.4 and Section 1.3.6 describe synchronization through the use of5
synchronizing flushes and atomic operations. Section 17.8.7 defines the behavior of synchronizing6
flushes that are implied at various other locations in an OpenMP program.7

17.1 hint Clause8

Name: hint Properties: unique9

Arguments10
Name Type Properties
hint-expr expression of sync_hint

type
default11

Modifiers12
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique13

Directives14
atomic, critical15

Semantics16
The hint clause gives the implementation additional information about the expected runtime17
properties of the region that corresponds to the construct on which it appears and that can18
optionally be used to optimize the implementation. The presence of a hint clause does not affect19
the semantics of the construct. If no hint clause is specified for a construct that accepts it, the20
effect is as if omp_sync_hint_none had been specified as hint-expr.21

Restrictions22

• hint-expr must evaluate to a valid synchronization hint.23

472 OpenMP API – Version 6.0 November 2024

Cross References1

• atomic Construct, see Section 17.8.52

• critical Construct, see Section 17.23

• OpenMP sync_hint Type, see Section 20.9.54

17.2 critical Construct5

Name: critical
Category: executable

Association: block
Properties: mutual-exclusion, thread-
limiting, thread-exclusive

6

Arguments7
critical(name)8

Name Type Properties
name base language identifier optional9

Clauses10
hint11

Binding12
The binding thread set for a critical region is all threads executing tasks in the contention13
group.14

Semantics15
The name argument is used to identify the critical construct. For any critical construct for16
which name is not specified, the effect is as if an identical (unspecified) name was specified. The17
regions that correspond to any critical construct of a given name are executed as if only by a18
single thread at a time among all threads associated with the contention group that execute the19
regions, without regard to the teams to which the threads belong.20

C / C++
Identifiers used to identify a critical construct have external linkage and are in a name space21
that is separate from the name spaces used by labels, tags, members, and ordinary identifiers.22

C / C++
Fortran

The names of critical constructs are global entities of the OpenMP program. If a name23
conflicts with any other entity, the behavior of the program is unspecified.24

Fortran

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 473

Execution Model Events1
The critical-acquiring event occurs in a thread that encounters the critical construct on entry2
to the critical region before initiating synchronization for the region. The critical-acquired3
event occurs in a thread that encounters the critical construct after it enters the region, but4
before it executes the structured block of the critical region. The critical-released event occurs5
in a thread that encounters the critical construct after it completes any synchronization on exit6
from the critical region.7

Tool Callbacks8
A thread dispatches a registered mutex_acquire callback for each occurrence of a9
critical-acquiring event in that thread. A thread dispatches a registered mutex_acquired10
callback for each occurrence of a critical-acquired event in that thread. A thread dispatches a11
registered mutex_released callback for each occurrence of a critical-released event in that12
thread. These callbacks occur in the task that encounters the critical construct. The callbacks13
should receive ompt_mutex_critical as their kind argument if practical, but a less specific14
kind is acceptable.15

Restrictions16
Restrictions to the critical construct are as follows:17

• Unless omp_sync_hint_none is specified in a hint clause, the critical construct18
must specify a name.19

• The hint-expr that is specified in the hint clause on each critical construct with the20
same name must evaluate to the same value.21

• A critical region must not be nested (closely or otherwise) inside a critical region22
with the same name. This restriction is not sufficient to prevent deadlock.23

Fortran
• If a name is specified on a critical directive and a paired end directive is specified, the24

same name must also be specified on the end directive.25

• If no name appears on the critical directive and a paired end directive is specified, no26
name can appear on the end directive.27

Fortran
Cross References28

• hint Clause, see Section 17.129

• OMPT mutex Type, see Section 33.2030

• mutex_acquire Callback, see Section 34.7.831

• mutex_acquired Callback, see Section 34.7.1232

• mutex_released Callback, see Section 34.7.1333

• OpenMP sync_hint Type, see Section 20.9.534

474 OpenMP API – Version 6.0 November 2024

17.3 Barriers1

17.3.1 barrier Construct2

Name: barrier
Category: executable

Association: unassociated
Properties: team-executed3

Binding4
The binding thread set for a barrier region is the current team. A barrier region binds to the5
innermost enclosing parallel region.6

Semantics7
The barrier construct specifies an explicit barrier at the point at which the construct appears.8
Unless the binding region is canceled, all threads of the team that executes that binding region must9
enter the barrier region and complete execution of all explicit tasks bound to that binding region10
before any of the threads continue execution beyond the barrier.11

The barrier region includes an implicit task scheduling point in the current task region.12

Execution Model Events13
The explicit-barrier-begin event occurs in each thread that encounters the barrier construct on14
entry to the barrier region. The explicit-barrier-wait-begin event occurs when a task begins a15
waiting interval in a barrier region. The explicit-barrier-wait-end event occurs when a task ends16
a waiting interval and resumes execution in a barrier region. The explicit-barrier-end event17
occurs in each thread that encounters the barrier construct after the barrier synchronization on18
exit from the barrier region. A cancellation event occurs if cancellation is activated at an19
implicit cancellation point in a barrier region.20

Tool Callbacks21
A thread dispatches a registered sync_region callback with22
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_begin23
as its endpoint argument for each occurrence of an explicit-barrier-begin event. Similarly, a thread24
dispatches a registered sync_region callback with25
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_end as26
its endpoint argument for each occurrence of an explicit-barrier-end event. These callbacks occur27
in the context of the task that encountered the barrier construct.28

A thread dispatches a registered sync_region_wait callback with29
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_begin30
as its endpoint argument for each occurrence of an explicit-barrier-wait-begin event. Similarly, a31
thread dispatches a registered sync_region_wait callback with32
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_end as33
its endpoint argument for each occurrence of an explicit-barrier-wait-end event. These callbacks34
occur in the context of the task that encountered the barrier construct.35

A thread dispatches a registered cancel callback with ompt_cancel_detected as its flags36

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 475

argument for each occurrence of a cancellation event in that thread. The callback occurs in the1
context of the encountering task.2

Restrictions3
Restrictions to the barrier construct are as follows:4

• Each barrier region must be encountered by all threads in a team or by none at all, unless5
cancellation has been requested for the innermost enclosing parallel region.6

• The sequence of worksharing regions and barrier regions encountered must be the same7
for every thread in a team.8

Cross References9

• cancel Callback, see Section 34.610

• OMPT cancel_flag Type, see Section 33.711

• OMPT scope_endpoint Type, see Section 33.2712

• sync_region Callback, see Section 34.7.413

• OMPT sync_region Type, see Section 33.3314

• sync_region_wait Callback, see Section 34.7.515

17.3.2 Implicit Barriers16

This section describes the OMPT events and tool callbacks associated with implicit barriers, which17
occur at the end of various regions as defined in the description of the constructs to which they18
correspond. Implicit barriers are task scheduling points. For a description of task scheduling19
points, associated events, and tool callbacks, see Section 14.14.20

Execution Model Events21
The implicit-barrier-begin event occurs in each task that encounters an implicit barrier at the22
beginning of the implicit barrier region. The implicit-barrier-wait-begin event occurs when a task23
begins a waiting interval in an implicit barrier region. The implicit-barrier-wait-end event occurs24
when a task ends a waiting interval and resumes execution of an implicit barrier region. The25
implicit-barrier-end event occurs in a task that encounters an implicit barrier after the barrier26
synchronization on exit from an implicit barrier region. A cancellation event occurs if cancellation27
is activated at an implicit cancellation point in an implicit barrier region.28

Tool Callbacks29
A thread dispatches a registered sync_region callback for each implicit-barrier-begin and30
implicit-barrier-end event. Similarly, a thread dispatches a registered sync_region_wait31
callback for each implicit-barrier-wait-begin and implicit-barrier-wait-end event. All callbacks for32
implicit barrier events execute in the context of the encountering task.33

476 OpenMP API – Version 6.0 November 2024

For the implicit barrier at the end of a worksharing construct, the kind argument is1
ompt_sync_region_barrier_implicit_workshare. For the implicit barrier at the end2
of a parallel region, the kind argument is3
ompt_sync_region_barrier_implicit_parallel. For a barrier at the end of a4
teams region, the kind argument is ompt_sync_region_barrier_teams. For an extra5
barrier added by an OpenMP implementation, the kind argument is6
ompt_sync_region_barrier_implementation.7

A thread dispatches a registered cancel callback with ompt_cancel_detected as its flags8
argument for each occurrence of a cancellation event in that thread. The callback occurs in the9
context of the encountering task.10

Restrictions11
Restrictions to implicit barriers are as follows:12

• If a thread is in the ompt_state_wait_barrier_implicit_parallel state, a call13
to get_parallel_info may return a pointer to a copy of the data object associated with14
the parallel region rather than a pointer to the associated data object itself. Writing to the data15
object returned by get_parallel_info when a thread is in the16
ompt_state_wait_barrier_implicit_parallel state results in unspecified17
behavior.18

Cross References19

• cancel Callback, see Section 34.620

• OMPT cancel_flag Type, see Section 33.721

• get_parallel_info Entry Point, see Section 36.1422

• OMPT scope_endpoint Type, see Section 33.2723

• OMPT state Type, see Section 33.3124

• sync_region Callback, see Section 34.7.425

• OMPT sync_region Type, see Section 33.3326

• sync_region_wait Callback, see Section 34.7.527

17.3.3 Implementation-Specific Barriers28

An OpenMP implementation can execute implementation-specific barriers that the OpenMP29
specification does not imply; therefore, no execution model events are bound to them. The30
implementation can handle these barriers like implicit barriers and dispatch all events as for31
implicit barriers. Any callbacks for these events use32
ompt_sync_region_barrier_implementation as the kind argument when they are33
dispatched.34

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 477

17.4 taskgroup Construct1

Name: taskgroup
Category: executable

Association: block
Properties: cancellable2

Clauses3
allocate, task_reduction4

Binding5
The binding task set of a taskgroup region is all tasks of the current team that are generated in6
the region. A taskgroup region binds to the innermost enclosing parallel region.7

Semantics8
The taskgroup construct specifies a wait on completion of the taskgroup set associated with the9
taskgroup region. When a thread encounters a taskgroup construct, it starts executing the10
region. An implicit task scheduling point occurs at the end of the taskgroup region. The current11
task is suspended at the task scheduling point until all tasks in the taskgroup set complete execution.12

Execution Model Events13
The taskgroup-begin event occurs in each thread that encounters the taskgroup construct on14
entry to the taskgroup region. The taskgroup-wait-begin event occurs when a task begins a15
waiting interval in a taskgroup region. The taskgroup-wait-end event occurs when a task ends a16
waiting interval and resumes execution in a taskgroup region. The taskgroup-end event occurs17
in each thread that encounters the taskgroup construct after the taskgroup synchronization on18
exit from the taskgroup region.19

Tool Callbacks20
A thread dispatches a registered sync_region callback with21
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin as its22
endpoint argument for each occurrence of a taskgroup-begin event in the task that encounters the23
taskgroup construct. Similarly, a thread dispatches a registered sync_region callback with24
ompt_sync_region_taskgroup as its kind argument and ompt_scope_end as its25
endpoint argument for each occurrence of a taskgroup-end event in the task that encounters the26
taskgroup construct. These callbacks occur in the task that encounters the taskgroup27
construct.28

A thread dispatches a registered sync_region_wait callback with29
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin as its30
endpoint argument for each occurrence of a taskgroup-wait-begin event. Similarly, a thread31
dispatches a registered sync_region_wait callback with32
ompt_sync_region_taskgroup as its kind argument and ompt_scope_end as its33
endpoint argument for each occurrence of a taskgroup-wait-end event. These callbacks occur in the34
context of the task that encounters the taskgroup construct.35

478 OpenMP API – Version 6.0 November 2024

Cross References1

• allocate Clause, see Section 8.62

• Task Scheduling, see Section 14.143

• OMPT scope_endpoint Type, see Section 33.274

• sync_region Callback, see Section 34.7.45

• OMPT sync_region Type, see Section 33.336

• sync_region_wait Callback, see Section 34.7.57

• task_reduction Clause, see Section 7.6.118

17.5 taskwait Construct9

Name: taskwait
Category: executable

Association: unassociated
Properties: default10

Clauses11
depend, nowait, replayable12

Binding13
The binding thread set of the taskwait region is the current team. The taskwait region binds14
to the current task region.15

Semantics16
The taskwait construct specifies a wait on the completion of child tasks of the current task.17

If no depend clause is present on the taskwait construct, the current task region is suspended18
at an implicit task scheduling point associated with the construct. The current task region remains19
suspended until all child tasks that it generated before the taskwait region complete execution.20

If one or more depend clauses are present on the taskwait construct and the nowait clause is21
not also present, the behavior is as if these clauses were applied to a task construct with an empty22
associated structured block that generates a mergeable task and included task. Thus, the current23
task region is suspended until the predecessor tasks of this task complete execution.24

If one or more depend clauses are present on the taskwait construct and the nowait clause is25
also present, the behavior is as if these clauses were applied to a task construct with an empty26
associated structured block that generates a task for which execution may be deferred. Thus, all27
predecessor tasks of this task must complete execution before any subsequently generated task that28
depends on this task starts its execution.29

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 479

Execution Model Events1
The taskwait-begin event occurs in a thread when it encounters a taskwait construct with no2
depend clause on entry to the taskwait region. The taskwait-wait-begin event occurs when a3
task begins a waiting interval in a region that corresponds to a taskwait construct with no4
depend clause. The taskwait-wait-end event occurs when a task ends a waiting interval and5
resumes execution from a region that corresponds to a taskwait construct with no depend6
clause. The taskwait-end event occurs in a thread when it encounters a taskwait construct with7
no depend clause after the taskwait synchronization on exit from the taskwait region.8

The taskwait-init event occurs in a thread when it encounters a taskwait construct with one or9
more depend clauses on entry to the taskwait region. The taskwait-complete event occurs on10
completion of the dependent task that results from a taskwait construct with one or more11
depend clauses, in the context of the thread that executes the dependent task and before any12
subsequently generated task that depends on the dependent task starts its execution.13

Tool Callbacks14
A thread dispatches a registered sync_region callback with15
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin as its16
endpoint argument for each occurrence of a taskwait-begin event in the task that encounters the17
taskwait construct. Similarly, a thread dispatches a registered sync_region callback with18
ompt_sync_region_taskwait as its kind argument and ompt_scope_end as its endpoint19
argument for each occurrence of a taskwait-end event in the task that encounters the taskwait20
construct. These callbacks occur in the task that encounters the taskwait construct.21

A thread dispatches a registered sync_region_wait callback with22
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin as its23
endpoint argument for each occurrence of a taskwait-wait-begin event. Similarly, a thread24
dispatches a registered sync_region_wait callback with ompt_sync_region_taskwait25
as its kind argument and ompt_scope_end as its endpoint argument for each occurrence of a26
taskwait-wait-end event. These callbacks occur in the context of the task that encounters the27
taskwait construct.28

A thread dispatches a registered task_create callback for each occurrence of a taskwait-init29
event in the context of the encountering task. In the dispatched callback,30
(flags & ompt_task_taskwait) always evaluates to true. If the nowait clause is not present,31
(flags & ompt_task_undeferred) also evaluates to true.32

A thread dispatches a registered task_schedule callback for each occurrence of a33
taskwait-complete event. This callback has ompt_taskwait_complete as its34
prior_task_status argument.35

Restrictions36
Restrictions to the taskwait construct are as follows:37

• The mutexinoutset task-dependence-type may not appear in a depend clause on a38
taskwait construct.39

480 OpenMP API – Version 6.0 November 2024

• If the task-dependence-type of a depend clause is depobj then the depend objects may not1
represent dependences of the mutexinoutset dependence type.2

• The nowait clause may only appear on a taskwait directive if the depend clause is3
present.4

• The replayable clause may only appear on a taskwait directive if the depend clause5
is present.6

Cross References7

• depend Clause, see Section 17.9.58

• nowait Clause, see Section 17.69

• replayable Clause, see Section 14.610

• OMPT scope_endpoint Type, see Section 33.2711

• sync_region Callback, see Section 34.7.412

• OMPT sync_region Type, see Section 33.3313

• sync_region_wait Callback, see Section 34.7.514

• task Construct, see Section 14.115

• OMPT task_flag Type, see Section 33.3716

• task_schedule Callback, see Section 34.5.217

• OMPT task_status Type, see Section 33.3818

17.6 nowait Clause19

Name: nowait Properties: outermost-leaf, unique, end-
clause20

Arguments21
Name Type Properties
do_not_synchronize expression of OpenMP

logical type
optional22

Modifiers23
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique24

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 481

Directives1
dispatch, do, for, interop, scope, sections, single, target, target_data,2
target_enter_data, target_exit_data, target_update, taskwait, workshare3

Semantics4
If do_not_synchronize evaluates to true, the nowait clause overrides any synchronization that5
would otherwise occur at the end of a construct. It can also specify that a semantic requirement set6
includes the nowait property. If do_not_synchronize is not specified, the effect is as if7
do_not_synchronize evaluates to true. If do_not_synchronize evaluates to false, the effect is as if the8
nowait clause is not specified on the directive.9

If the construct includes an implicit barrier and do_not_synchronize evaluates to true, the nowait10
clause specifies that the barrier will not occur. If the construct includes an implicit barrier and the11
nowait is not specified, the barrier will occur.12

For constructs that generate a task, if do_not_synchronize evaluates to true, the nowait clause13
specifies that the generated task may be deferred. If the nowait clause is not specified on the14
directive then the generated task is an included task (so it executes synchronously in the context of15
the encountering task).16

For directives that generate a semantic requirement set, the nowait clause adds the nowait17
property to the set if do-not-synchronize evaluates to true.18

Restrictions19
Restrictions to the nowait clause are as follows:20

• The do_not_synchronize argument must evaluate to the same value for all threads in the21
binding thread set, if defined for the construct on which the nowait clause appears.22

• The do_not_synchronize argument must evaluate to the same value for all tasks in the binding23
task set, if defined for the construct on which the nowait clause appears.24

Cross References25

• dispatch Construct, see Section 9.726

• do Construct, see Section 13.6.227

• for Construct, see Section 13.6.128

• interop Construct, see Section 16.129

• scope Construct, see Section 13.230

• sections Construct, see Section 13.331

• single Construct, see Section 13.132

• target Construct, see Section 15.833

• target_data Construct, see Section 15.734

482 OpenMP API – Version 6.0 November 2024

• target_enter_data Construct, see Section 15.51

• target_exit_data Construct, see Section 15.62

• target_update Construct, see Section 15.93

• taskwait Construct, see Section 17.54

• workshare Construct, see Section 13.45

17.7 nogroup Clause6

Name: nogroup Properties: outermost-leaf, unique7

Arguments8
Name Type Properties
do_not_synchronize expression of OpenMP

logical type
optional9

Modifiers10
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique11

Directives12
target_data, taskgraph, taskloop13

Semantics14
If do_not_synchronize evaluates to true, the nogroup clause overrides any implicit taskgroup15
that would otherwise enclose the construct. If do_not_synchronize evaluates to false, the effect is as16
if the nogroup clause is not specified on the directive. If do_not_synchronize is not specified, the17
effect is as if do_not_synchronize evaluates to true.18

Cross References19

• target_data Construct, see Section 15.720

• taskgraph Construct, see Section 14.321

• taskloop Construct, see Section 14.222

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 483

17.8 OpenMP Memory Ordering1

This sections describes constructs and clauses that support ordering of memory operations.2

17.8.1 memory-order Clauses3

Clause groups4
Properties: exclusive, unique Members:

Clauses
acq_rel, acquire, relaxed, release,
seq_cst

5

Directives6
atomic, flush7

Semantics8
The memory-order clause group defines a set of clauses that indicate the memory ordering9
requirements for the visibility of the effects of the constructs on which they may be specified.10

Cross References11

• atomic Construct, see Section 17.8.512

• flush Construct, see Section 17.8.613

• OpenMP Memory Consistency, see Section 1.3.614

17.8.1.1 acq_rel Clause15

Name: acq_rel Properties: unique16

Arguments17
Name Type Properties
use-semantics expression of OpenMP

logical type
constant, optional18

Modifiers19
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique20

Directives21
atomic, flush22

484 OpenMP API – Version 6.0 November 2024

Semantics1
If use_semantics evaluates to true, the acq_rel clause specifies for the construct to use2
acquire/release memory ordering semantics. If use_semantics evaluates to false, the effect is as if3
the acq_rel clause is not specified. If use_semantics is not specified, the effect is as if4
use_semantics evaluates to true.5

Cross References6

• atomic Construct, see Section 17.8.57

• flush Construct, see Section 17.8.68

• OpenMP Memory Consistency, see Section 1.3.69

17.8.1.2 acquire Clause10

Name: acquire Properties: unique11

Arguments12
Name Type Properties
use_semantics expression of OpenMP

logical type
constant, optional13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique15

Directives16
atomic, flush17

Semantics18
If use_semantics evaluates to true, the acquire clause specifies for the construct to use acquire19
memory ordering semantics. If use_semantics evaluates to false, the effect is as if the acquire20
clause is not specified. If use_semantics is not specified, the effect is as if use_semantics evaluates21
to true.22

Cross References23

• atomic Construct, see Section 17.8.524

• flush Construct, see Section 17.8.625

• OpenMP Memory Consistency, see Section 1.3.626

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 485

17.8.1.3 relaxed Clause1

Name: relaxed Properties: unique2

Arguments3
Name Type Properties
use_semantics expression of OpenMP

logical type
constant, optional4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
atomic, flush8

Semantics9
If use_semantics evaluates to true, the relaxed clause specifies for the construct to use relaxed10
memory ordering semantics. If use_semantics evaluates to false, the effect is as if the relaxed11
clause is not specified. If use_semantics is not specified, the effect is as if use_semantics evaluates12
to true.13

Cross References14

• atomic Construct, see Section 17.8.515

• flush Construct, see Section 17.8.616

• OpenMP Memory Consistency, see Section 1.3.617

17.8.1.4 release Clause18

Name: release Properties: unique19

Arguments20
Name Type Properties
use_semantics expression of OpenMP

logical type
constant, optional21

Modifiers22
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique23

Directives24
atomic, flush25

486 OpenMP API – Version 6.0 November 2024

Semantics1
If use_semantics evaluates to true, the release clause specifies for the construct to use release2
memory ordering semantics. If use_semantics evaluates to false, the effect is as if the release3
clause is not specified. If use_semantics is not specified, the effect is as if use_semantics evaluates4
to true.5

Cross References6

• atomic Construct, see Section 17.8.57

• flush Construct, see Section 17.8.68

• OpenMP Memory Consistency, see Section 1.3.69

17.8.1.5 seq_cst Clause10

Name: seq_cst Properties: unique11

Arguments12
Name Type Properties
use_semantics expression of OpenMP

logical type
constant, optional13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique15

Directives16
atomic, flush17

Semantics18
If use_semantics evaluates to true, the seq_cst clause specifies for the construct to use19
sequentially consistent memory ordering semantics. If use_semantics evaluates to false, the effect20
is as if the seq_cst clause is not specified. If use_semantics is not specified, the effect is as if21
use_semantics evaluates to true.22

Cross References23

• atomic Construct, see Section 17.8.524

• flush Construct, see Section 17.8.625

• OpenMP Memory Consistency, see Section 1.3.626

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 487

17.8.2 atomic Clauses1

Clause groups2
Properties: exclusive, unique Members:

Clauses
read, update, write

3

Directives4
atomic5

Semantics6
The atomic clause group defines a set of clauses that defines the semantics for which a directive7
enforces atomicity. If a construct accepts the atomic clause group and no member of the clause8
group is specified, the effect is as if the update clause is specified.9

Cross References10

• atomic Construct, see Section 17.8.511

17.8.2.1 read Clause12

Name: read Properties: innermost-leaf, unique13

Arguments14
Name Type Properties
use_semantics expression of OpenMP

logical type
constant, optional15

Modifiers16
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique17

Directives18
atomic19

Semantics20
If use_semantics evaluates to true, the read clause specifies that the atomic construct has atomic21
read semantics, which read the value of the shared variable atomically. If use_semantics evaluates22
to false, the effect is as if the read clause is not specified. If use_semantics is not specified, the23
effect is as if use_semantics evaluates to true.24

Cross References25

• atomic Construct, see Section 17.8.526

488 OpenMP API – Version 6.0 November 2024

17.8.2.2 update Clause1

Name: update Properties: innermost-leaf, unique2

Arguments3
Name Type Properties
use_semantics expression of OpenMP

logical type
constant, optional4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
atomic8

Semantics9
If use_semantics evaluates to true, the update clause specifies that the atomic construct has10
atomic update semantics, which read and write the value of the shared variable atomically. If11
use_semantics evaluates to false, the effect is as if the update clause is not specified. If12
use_semantics is not specified, the effect is as if use_semantics evaluates to true.13

Cross References14

• atomic Construct, see Section 17.8.515

17.8.2.3 write Clause16

Name: write Properties: innermost-leaf, unique17

Arguments18
Name Type Properties
use_semantics expression of OpenMP

logical type
constant, optional19

Modifiers20
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique21

Directives22
atomic23

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 489

Semantics1
If use_semantics evaluates to true, the write clause specifies that the atomic construct has2
atomic write semantics, which write the value of the shared variable atomically. If use_semantics3
evaluates to false, the effect is as if the write clause is not specified. If use_semantics is not4
specified, the effect is as if use_semantics evaluates to true.5

Cross References6

• atomic Construct, see Section 17.8.57

17.8.3 extended-atomic Clauses8

Clause groups9
Properties: unique Members:

Clauses
capture, compare, fail, weak

10

Directives11
atomic12

Semantics13
The extended-atomic clause group defines a set of clauses that extend the atomicity semantics14
specified by members of the atomic clause group.15

Restrictions16
Restrictions to the extended-atomic clause group are as follows:17

• The compare clause may not be specified such that use_semantics evaluates to false if the18
weak clause is specified such that use_semantics evaluates to true.19

Cross References20

• atomic Construct, see Section 17.8.521

• atomic Clauses, see Section 17.8.222

17.8.3.1 capture Clause23

Name: capture Properties: innermost-leaf, unique24

Arguments25
Name Type Properties
use_semantics expression of OpenMP

logical type
constant, optional26

490 OpenMP API – Version 6.0 November 2024

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
atomic4

Semantics5
If use_semantics evaluates to true, the capture clause extends the semantics of the atomic6
construct to have atomic captured update semantics, which capture the value of the shared variable7
being updated atomically. If use_semantics evaluates to false, the value is not captured. If8
use_semantics is not specified, the effect is as if use_semantics evaluates to true.9

Cross References10

• atomic Construct, see Section 17.8.511

17.8.3.2 compare Clause12

Name: compare Properties: innermost-leaf, unique13

Arguments14
Name Type Properties
use_semantics expression of OpenMP

logical type
constant, optional15

Modifiers16
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique17

Directives18
atomic19

Semantics20
If use_semantics evaluates to true, the compare clause extends the semantics of the atomic21
construct with atomic conditional update semantics so the atomic update is performed22
conditionally. If use_semantics evaluates to false, the atomic update is performed unconditionally.23
If use_semantics is not specified, the effect is as if use_semantics evaluates to true.24

Cross References25

• atomic Construct, see Section 17.8.526

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 491

17.8.3.3 fail Clause1

Name: fail Properties: innermost-leaf, unique2

Arguments3
Name Type Properties
memorder Keyword: acquire,

relaxed, seq_cst
default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique6

Directives7
atomic8

Semantics9
The fail clause extends the semantics of the atomic construct to specify the memory ordering10
requirements for any comparison performed by any atomic conditional update that fails. Its11
argument overrides any other specified memory ordering. If an atomic construct has atomic12
conditional update semantics and the fail clause is not specified, the effect is as if the fail13
clause is specified with a default argument that depends on the effective memory ordering. If the14
effective memory ordering is acq_rel, the default argument is acquire. If the effective15
memory ordering is release, the default argument is relaxed. For any other effective memory16
ordering, the default argument is equal to that effective memory ordering. If the atomic construct17
does not have atomic conditional update semantics, the fail clause has no effect.18

Restrictions19
Restrictions to the fail clause are as follows:20

• memorder may not be acq_rel or release.21

Cross References22

• atomic Construct, see Section 17.8.523

• memory-order Clauses, see Section 17.8.124

17.8.3.4 weak Clause25

Name: weak Properties: innermost-leaf, unique26

Arguments27
Name Type Properties
use_semantics expression of OpenMP

logical type
constant, optional28

492 OpenMP API – Version 6.0 November 2024

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
atomic4

Semantics5
If use_semantics evaluates to true, the weak clause has the same effect as the compare clause6
and, in addition, the atomic construct has weak comparison semantics, which mean that the7
comparison may spuriously fail, evaluating to not equal even when the values are equal. If8
use_semantics evaluates to false, the semantics of the atomic construct are not extended. If9
use_semantics is not specified, the effect is as if use_semantics evaluates to true.10

11

Note – Allowing for spurious failure by specifying a weak clause can result in performance gains12
on some systems when using compare-and-swap in a loop. For cases where a single13
compare-and-swap would otherwise be sufficient, using a loop over a weak compare-and-swap is14
unlikely to improve performance.15

16

Cross References17

• atomic Construct, see Section 17.8.518

17.8.4 memscope Clause19

Name: memscope Properties: unique20

Arguments21
Name Type Properties
scope-specifier Keyword: all,

cgroup, device
default22

Modifiers23
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique24

Directives25
atomic, flush26

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 493

Semantics1
The memscope clause determines the binding thread set of the region that corresponds to the2
construct on which it is specified.3

If the scope-specifier is device, the binding thread set consists of all threads on the device. If the4
scope-specifier is cgroup, the binding thread set consists of all threads that are executing tasks in5
the contention group. If the scope-specifier is all, the binding thread set consists of all threads on6
all devices.7

Unless otherwise stated, the thread-set of any flushes that are performed in an atomic or flush8
region is the same as the binding thread set of the region, as determined by the memscope clause.9

Restrictions10
The restrictions for the memscope clause are as follows:11

• The binding thread set defined by the scope-specifier of the memscope clause on an12
atomic construct must be a subset of the atomic scope of the atomically accessed memory.13

• The binding thread set defined by the scope-specifier of the memscope clause on an14
atomic construct must be a subset of all threads that are executing tasks in the contention15
group if the size of the atomically accessed storage location is not 8, 16, 32, or 64 bits.16

Cross References17

• atomic Construct, see Section 17.8.518

• flush Construct, see Section 17.8.619

17.8.5 atomic Construct20

Name: atomic
Category: executable

Association: block : atomic
Properties: mutual-exclusion, order-
concurrent-nestable, simdizable

21

Clause groups22
atomic, extended-atomic, memory-order23

Clauses24
hint, memscope25

Binding26
The memscope clause determines the binding thread set for an atomic region. If the memscope27
clause is not present, the behavior is as if the memscope clause appeared on the construct with the28
device scope-specifier.29

494 OpenMP API – Version 6.0 November 2024

Semantics1
This section refers to the symbols defined for atomic structured blocks. The atomic construct2
ensures that a specific storage location is accessed atomically so that possible simultaneous reads3
and writes by multiple threads do not result in indeterminate values. An atomic region enforces4
exclusive access with respect to other atomic regions that access the same storage location x5
among all threads in the binding thread set without regard to the teams to which the threads belong.6

An atomic construct with the read clause results in an atomic read of the storage location7
designated by x. An atomic construct with the write clause results in an atomic write of the8
storage location designated by x. An atomic construct with the update clause results in an9
atomic update of the storage location designated by x using the designated operator or intrinsic.10
Only the read and write of the storage location designated by x are performed mutually atomically.11
The evaluation of expr or expr-list need not be atomic with respect to the read or write of the12
storage location designated by x. No task scheduling points are allowed between the read and the13
write of the storage location designated by x.14

If the capture clause is present, the atomic update is an atomic captured update — an atomic15
update to the storage location designated by x using the designated operator or intrinsic while also16
capturing the original or final value of the storage location designated by x with respect to the17
atomic update. The original or final value of the storage location designated by x is written in the18
storage location designated by v based on the base language semantics of atomic structured blocks19
of the atomic construct. Only the read and write of the storage location designated by x are20
performed mutually atomically. Neither the evaluation of expr or expr-list, nor the write to the21
storage location designated by v, need be atomic with respect to the read or write of the storage22
location designated by x.23

If the compare clause is present, the atomic update is an atomic conditional update. For forms24
that use an equality comparison, the operation is an atomic compare-and-swap. It atomically25
compares the value of x to e and writes the value of d into the storage location designated by x if26
they are equal. Based on the base language semantics of the associated atomic structured block, the27
original or final value of the storage location designated by x is written to the storage location28
designated by v, which is allowed to be the same storage location as designated by e, or the result of29
the comparison is written to the storage location designated by r. Only the read and write of the30
storage location designated by x are performed mutually atomically. Neither the evaluation of either31
e or d nor writes to the storage locations designated by v and r need be atomic with respect to the32
read or write of the storage location designated by x.33

C / C++
If the compare clause is present, forms that use ordop are logically an atomic maximum or34
minimum, but they may be implemented with a compare-and-swap loop with short-circuiting. For35
forms where statement is cond-expr-stmt, if the result of the condition implies that the value of x36
does not change then the update may not occur.37

C / C++

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 495

If a memory-order clause is present, or implicitly provided by a requires directive, it specifies1
the effective memory ordering. Otherwise the effect is as if the relaxed memory-order clause is2
specified.3

The atomic construct may be used to enforce memory consistency between threads, based on the4
guarantees provided by Section 1.3.6. A strong flush on the storage location designated by x is5
performed on entry to and exit from the atomic operation, ensuring that the set of all atomic6
operations applied to the same storage location in a race-free program has a total completion order.7
If the write or update clause is specified, the atomic operation is not an atomic conditional8
update for which the comparison fails, and the effective memory ordering is release, acq_rel,9
or seq_cst, the strong flush on entry to the atomic operation is also a release flush. If the read10
or update clause is specified and the effective memory ordering is acquire, acq_rel, or11
seq_cst then the strong flush on exit from the atomic operation is also an acquire flush.12
Therefore, if the effective memory ordering is not relaxed, release flushes and/or acquire flushes13
are implied and permit synchronization between the threads without the use of explicit flush14
directives.15

For all forms of the atomic construct, any combination of two or more of these atomic16
constructs enforces mutually exclusive access to the storage locations designated by x among17
threads in the binding thread set. To avoid data races, all accesses of the storage locations18
designated by x that could potentially occur in parallel must be protected with an atomic19
construct.20

atomic regions do not guarantee exclusive access with respect to any accesses outside of atomic21
regions to the same storage location x even if those accesses occur during a critical or22
ordered region, while a lock is owned by the executing task, or during the execution of a23
reduction clause.24

However, other OpenMP synchronization can ensure the desired exclusive access. For example, a25
barrier that follows a series of atomic updates to x guarantees that subsequent accesses do not form26
a data race with the atomic accesses.27

A compliant implementation may enforce exclusive access between atomic regions that update28
different storage locations. The circumstances under which this occurs are implementation defined.29

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a30
multiple of the size of x), then the behavior of the atomic region is implementation defined.31

Execution Model Events32
The atomic-acquiring event occurs in the thread that encounters the atomic construct on entry to33
the atomic region before initiating synchronization for the region. The atomic-acquired event34
occurs in the thread that encounters the atomic construct after it enters the region, but before it35
executes the atomic structured block of the atomic region. The atomic-released event occurs in36
the thread that encounters the atomic construct after it completes any synchronization on exit37
from the atomic region.38

496 OpenMP API – Version 6.0 November 2024

Tool Callbacks1
A thread dispatches a registered mutex_acquire callback for each occurrence of an2
atomic-acquiring event in that thread. A thread dispatches a registered mutex_acquired3
callback for each occurrence of an atomic-acquired event in that thread. A thread dispatches a4
registered mutex_released callback with ompt_mutex_atomic as the kind argument if5
practical, although a less specific kind may be used, for each occurrence of an atomic-released6
event in that thread. These callbacks occurs in the task that encounters the atomic construct.7

Restrictions8
Restrictions to the atomic construct are as follows:9

• Constructs may not be encountered during execution of an atomic region.10

• If a capture or compare clause is specified, the atomic clause must be update.11

• If a capture clause is specified but the compare clause is not specified, an update-capture12
structured block must be associated with the construct.13

• If both capture and compare clauses are specified, a conditional-update-capture14
structured block must be associated with the construct.15

• If a compare clause is specified but the capture clause is not specified, a16
conditional-update structured block must be associated with the construct.17

• If a write clause is specified, a write structured block must be associated with the construct.18

• If a read clause is specified, a read structured block must be associated with the construct.19

• If the atomic clause is read then the memory-order clause must not be release.20

• If the atomic clause is write then the memory-order clause must not be acquire.21

• The weak clause may only appear if the resulting atomic operation is an atomic conditional22
update for which the comparison tests for equality.23

C / C++
• All atomic accesses to the storage locations designated by x throughout the OpenMP24

program are required to have a compatible type.25

• The fail clause may only appear if the resulting atomic operation is an atomic conditional26
update.27

C / C++
Fortran

• All atomic accesses to the storage locations designated by x throughout the OpenMP28
program are required to have the same type and type parameters.29

• The fail clause may only appear if the resulting atomic operation is an atomic conditional30
update or an atomic update where intrinsic-procedure-name is either MAX or MIN.31

Fortran

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 497

Cross References1

• barrier Construct, see Section 17.3.12

• critical Construct, see Section 17.23

• flush Construct, see Section 17.8.64

• Lock Routines, see Chapter 285

• OpenMP Atomic Structured Blocks, see Section 6.3.36

• hint Clause, see Section 17.17

• memscope Clause, see Section 17.8.48

• OMPT mutex Type, see Section 33.209

• mutex_acquire Callback, see Section 34.7.810

• mutex_acquired Callback, see Section 34.7.1211

• mutex_released Callback, see Section 34.7.1312

• ordered Construct, see Section 17.1013

• requires Directive, see Section 10.514

17.8.6 flush Construct15

Name: flush
Category: executable

Association: unassociated
Properties: default16

Arguments17
flush(list)18

Name Type Properties
list list of variable list item

type
optional19

Clause groups20
memory-order21

Clauses22
memscope23

Binding24
The memscope clause determines the binding thread set for a flush region. If the memscope25
clause is not present the behavior is as if the memscope clause appeared on the construct with the26
device scope-specifier.27

498 OpenMP API – Version 6.0 November 2024

Semantics1
The flush construct executes the flush OpenMP operation. This operation makes the temporary2
view of the memory of a thread consistent with the memory and enforces an order on the memory3
operations of the variables explicitly specified or implied. Execution of a flush region affects the4
memory and it affects the temporary view of the memory of the encountering thread. It does not5
affect the temporary view of other threads. Other threads in the thread-set must themselves execute6
a flush in order to be guaranteed to observe the effects of the flush of the encountering thread. See7
the memory model description in Section 1.3 and the memscope clause description in8
Section 17.8.4 for more details on thread-sets.9

If neither a memory-order clause nor a list argument appears on a flush construct then the10
behavior is as if the memory-order clause is seq_cst.11

A flush construct with the seq_cst clause, executed on a given thread, operates as if all storage12
locations that are accessible to the thread are flushed by a strong flush; that is, the flush has the13
strong flush property. A flush construct with a list applies a strong flush to the items in the list,14
and the flush does not complete until the operation is complete for all specified list items. An15
implementation may implement a flush construct with a list by ignoring the list and treating it16
the same as a flush construct with the seq_cst clause.17

If no list items are specified, the flush operation has the release flush property and/or the acquire18
flush property:19

• If the memory-order clause is seq_cst or acq_rel, the flush is both a release flush and20
an acquire flush.21

• If the memory-order clause is release, the flush is a release flush.22

• If the memory-order clause is acquire, the flush is an acquire flush.23

C / C++
If a pointer is present in the list, the pointer itself is flushed, not the storage locations to which the24
pointer refers.25

A flush construct without a list corresponds to a call to atomic_thread_fence, where the26
argument is given by the identifier that results from prefixing memory_order_ to the27
memory-order clause name.28

For a flush construct without a list, the generated flush region implicitly performs the29
corresponding call to atomic_thread_fence. The behavior of an explicit call to30
atomic_thread_fence that occurs in an OpenMP program and does not have the argument31
memory_order_consume is as if the call is replaced by its corresponding flush construct.32

C / C++

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 499

Fortran
If the list item or a subobject of the list item has the POINTER attribute, the allocation or1
association status of the POINTER item is flushed, but the pointer target is not. If the list item is of2
type C_PTR, the variable is flushed, but the storage location that corresponds to that address is not3
flushed. If the list item or the subobject of the list item has the ALLOCATABLE attribute and has an4
allocation status of allocated, the allocated variable is flushed; otherwise the allocation status is5
flushed.6

Fortran
Execution Model Events7
The flush event occurs in a thread that encounters the flush construct.8

Tool Callbacks9
A thread dispatches a registered flush callback for each occurrence of a flush event in that thread.10

Restrictions11
Restrictions to the flush construct are as follows:12

• If a memory-order clause is specified, the list argument must not be specified.13

• The memory-order clause must not be relaxed.14

Cross References15

• flush Callback, see Section 34.7.1516

• memscope Clause, see Section 17.8.417

17.8.7 Implicit Flushes18

Flushes implied when executing an atomic region are described in Section 17.8.5.19

A flush region that corresponds to a flush directive with the release clause present is implied20
at the following locations:21

• During a barrier region;22

• At entry to a parallel region;23

• At entry to a teams region;24

• At exit from a critical region;25

• During an omp_unset_lock region;26

• During an omp_unset_nest_lock region;27

• During an omp_fulfill_event region;28

• Immediately before every task scheduling point;29

500 OpenMP API – Version 6.0 November 2024

• At exit from the task region of each implicit task;1

• At exit from an ordered region, if a threads clause or a doacross clause with a2
source task-dependence-type is present, or if no clauses are present; and3

• During a cancel region, if the cancel-var ICV is true.4

For a target construct, the thread-set of an implicit release flush that is performed in a target task5
during the generation of the target region and that is performed on exit from the initial task6
region that implicitly encloses the target region consists of the thread that executes the target7
task and the initial thread that executes the target region.8

A flush region that corresponds to a flush directive with the acquire clause present is implied9
at the following locations:10

• During a barrier region;11

• At exit from a teams region;12

• At entry to a critical region;13

• If the region causes the lock to be set, during:14

– an omp_set_lock region;15

– an omp_test_lock region;16

– an omp_set_nest_lock region; and17

– an omp_test_nest_lock region;18

• Immediately after every task scheduling point;19

• At entry to the task region of each implicit task;20

• At entry to an ordered region, if a threads clause or a doacross clause with a sink21
task-dependence-type is present, or if no clauses are present; and22

• Immediately before a cancellation point, if the cancel-var ICV is true and cancellation has23
been activated.24

For a target construct, the thread-set of an implicit acquire flush that is performed in a target task25
following the generation of the target region or that is performed on entry to the initial task26
region that implicitly encloses the target region consists of the thread that executes the target27
task and the initial thread that executes the target region.28

29

Note – A flush region is not implied at the following locations:30

• At entry to worksharing regions; and31

• At entry to or exit from masked regions.32

33

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 501

The synchronization behavior of implicit flushes is as follows:1

• When a thread executes an atomic region for which the corresponding construct has the2
release, acq_rel, or seq_cst clause and specifies an atomic operation that starts a3
given release sequence, the release flush that is performed on entry to the atomic operation4
synchronizes with an acquire flush that is performed by a different thread and has an5
associated atomic operation that reads a value written by a modification in the release6
sequence.7

• When a thread executes an atomic region for which the corresponding construct has the8
acquire, acq_rel, or seq_cst clause and specifies an atomic operation that reads a9
value written by a given modification, a release flush that is performed by a different thread10
and has an associated release sequence that contains that modification synchronizes with the11
acquire flush that is performed on exit from the atomic operation.12

• When a thread executes a critical region that has a given name, the behavior is as if the13
release flush performed on exit from the region synchronizes with the acquire flush14
performed on entry to the next critical region with the same name that is performed by a15
different thread, if it exists.16

• When a team executes a barrier region, the behavior is as if the release flush performed by17
each thread within the region, and the release flush performed by any other thread upon18
fulfilling the allow-completion event for a detachable task bound to the binding parallel19
region of the region, synchronizes with the acquire flush performed by all other threads20
within the region.21

• When a thread executes a taskwait region that does not result in the creation of a22
dependent task and the task that encounters the corresponding taskwait construct has at23
least one child task, the behavior is as if each thread that executes a child task that is24
generated before the taskwait region performs a release flush upon completion of the25
associated structured block of the child task that synchronizes with an acquire flush26
performed in the taskwait region. If the child task is a detachable task, the thread that27
fulfills its allow-completion event performs a release flush upon fulfilling the event that28
synchronizes with the acquire flush performed in the taskwait region.29

• When a thread executes a taskgroup region, the behavior is as if each thread that executes30
a remaining descendent task performs a release flush upon completion of the associated31
structured block of the descendent task that synchronizes with an acquire flush performed on32
exit from the taskgroup region. If the descendent task is a detachable task, the thread that33
fulfills its allow-completion event performs a release flush upon fulfilling the event that34
synchronizes with the acquire flush performed in the taskgroup region.35

• When a thread executes an ordered region that does not arise from a stand-alone36
ordered directive, the behavior is as if the release flush performed on exit from the region37
synchronizes with the acquire flush performed on entry to an ordered region encountered38
in the next collapsed iteration to be executed by a different thread, if it exists.39

502 OpenMP API – Version 6.0 November 2024

• When a thread executes an ordered region that arises from a stand-alone ordered1
directive, the behavior is as if the release flush performed in the ordered region from a2
given source doacross iteration synchronizes with the acquire flush performed in all3
ordered regions executed by a different thread that are waiting for dependences on that4
doacross iteration to be satisfied.5

• When a team begins execution of a parallel region, the behavior is as if the release flush6
performed by the primary thread on entry to the parallel region synchronizes with the7
acquire flush performed on entry to each implicit task that is assigned to a different thread.8

• When an initial thread begins execution of a target region that is generated by a different9
thread from a target task, the behavior is as if the release flush performed by the generating10
thread in the target task synchronizes with the acquire flush performed by the initial thread on11
entry to its initial task region.12

• When an initial thread completes execution of a target region that is generated by a13
different thread from a target task, the behavior is as if the release flush performed by the14
initial thread on exit from its initial task region synchronizes with the acquire flush performed15
by the generating thread in the target task.16

• When a thread encounters a teams construct, the behavior is as if the release flush17
performed by the thread on entry to the teams region synchronizes with the acquire flush18
performed on entry to each initial task that is executed by a different initial thread that19
participates in the execution of the teams region.20

• When a thread that encounters a teams construct reaches the end of the teams region, the21
behavior is as if the release flush performed by each different participating initial thread at22
exit from its initial task synchronizes with the acquire flush performed by the thread at exit23
from the teams region.24

• When a task generates an explicit task that begins execution on a different thread, the25
behavior is as if the thread that is executing the generating task performs a release flush that26
synchronizes with the acquire flush performed by the thread that begins to execute the27
explicit task.28

• When an undeferred task completes execution on a given thread that is different from the29
thread on which its generating task is suspended, the behavior is as if a release flush30
performed by the thread that completes execution of the associated structured block of the31
undeferred task synchronizes with an acquire flush performed by the thread that resumes32
execution of the generating task.33

• When a dependent task with one or more antecedent tasks begins execution on a given34
thread, the behavior is as if each release flush performed by a different thread on completion35
of the associated structured block of a antecedent task synchronizes with the acquire flush36
performed by the thread that begins to execute the dependent task. If the antecedent task is a37
detachable task, the thread that fulfills its allow-completion event performs a release flush38
upon fulfilling the event that synchronizes with the acquire flush performed when the39

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 503

dependent task begins to execute.1

• When a task begins execution on a given thread and it is mutually exclusive with respect to2
another dependence-compatible task that is executed by a different thread, the behavior is as3
if each release flush performed on completion of the dependence-compatible task4
synchronizes with the acquire flush performed by the thread that begins to execute the task.5

• When a thread executes a cancel region, the cancel-var ICV is true, and cancellation is not6
already activated for the specified region, the behavior is as if the release flush performed7
during the cancel region synchronizes with the acquire flush performed by a different8
thread immediately before a cancellation point in which that thread observes cancellation was9
activated for the region.10

• When a thread executes an omp_unset_lock region that causes the specified lock to be11
unset, the behavior is as if a release flush is performed during the omp_unset_lock12
region that synchronizes with an acquire flush that is performed during the next13
omp_set_lock or omp_test_lock region to be executed by a different thread that14
causes the specified lock to be set.15

• When a thread executes an omp_unset_nest_lock region that causes the specified16
nestable lock to be unset, the behavior is as if a release flush is performed during the17
omp_unset_nest_lock region that synchronizes with an acquire flush that is performed18
during the next omp_set_nest_lock or omp_test_nest_lock region to be19
executed by a different thread that causes the specified nestable lock to be set.20

17.9 OpenMP Dependences21

This section describes constructs and clauses in OpenMP that support the specification and22
enforcement of dependences. OpenMP supports two kinds of dependences: task dependences,23
which enforce orderings between dependence-compatible tasks; and doacross dependences, which24
enforce orderings between doacross iterations of a loop.25

17.9.1 task-dependence-type Modifier26

Modifiers27
Name Modifies Type Properties
task-dependence-
type

all arguments Keyword: depobj, in,
inout, inoutset,
mutexinoutset, out

unique
28

Clauses29
depend, update30

504 OpenMP API – Version 6.0 November 2024

Semantics1
Clauses that are related to task dependences use the task-dependence-type modifier to identify the2
type of dependence relevant to that clause. The effect of the type of dependence is associated with3
locator list items as described with the depend clause, see Section 17.9.5.4

Cross References5

• depend Clause, see Section 17.9.56

• update Clause, see Section 17.9.47

17.9.2 Depend Objects8

Depend objects are OpenMP objects that can be used to supply user-computed dependences to9
depend clauses. Depend objects must be accessed only through the depobj construct, the10
depend clause and the asynchronous device routines; OpenMP programs that otherwise access11
depend objects are non-conforming programs. A depend object can be in one of the following12
states: uninitialized or initialized. Initially, depend objects are in the uninitialized state.13

17.9.3 depobj Construct14

Name: depobj
Category: executable

Association: unassociated
Properties: default15

Clauses16
destroy, init, update17

Clause set18
Properties: required Members: destroy, init, update19

Additional information20
The depobj construct may alternatively be specified with a directive argument depend-object that21
is a depend object. If this syntax is used, the init clause must not be specified and instead the22
depend clause may be specified to initialize depend-object to represent a given dependence type23
and locator list item. With this syntax the update clause is only permitted to specify the24
task-dependence-type as if it is the sole argument of the clause, with the effect being that the25
specified dependence type applies to depend-object. With this syntax, any update-var or26
destroy-var that is specified in an update or destroy clause must be the same as depend-object.27
Finally, with this syntax only one clause may be specified and it must be depend, update, or28
destroy.29

Binding30
The binding thread set for a depobj region is the encountering thread.31

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 505

Semantics1
The depobj construct initializes, updates or destroys depend objects. If an init clause is2
specified, the state of the specified depend object is set to initialized and the depend object is set to3
represent the specified dependence type and locator list item. If an update clause is specified, the4
specified depend object is updated to represent the new dependence type. If a destroy clause is5
specified, the specified depend object is set to uninitialized.6

Cross References7

• destroy Clause, see Section 5.78

• init Clause, see Section 5.69

• update Clause, see Section 17.9.410

17.9.4 update Clause11

Name: update Properties: innermost-leaf, unique12

Arguments13
Name Type Properties
update-var variable of OpenMP

depend type
default14

Modifiers15
Name Modifies Type Properties
task-dependence-
type

all arguments Keyword: depobj, in,
inout, inoutset,
mutexinoutset, out

unique

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

16

Directives17
depobj18

Semantics19
The update clause sets the dependence type of update-var to task-dependence-type.20

Restrictions21
Restrictions to the update clause are as follows:22

• task-dependence-type must not be depobj.23

• The state of update-var must be initialized.24

• If the locator list item represented by update-var is the omp_all_memory reserved locator,25
task-dependence-type must be either out or inout.26

506 OpenMP API – Version 6.0 November 2024

Cross References1

• depobj Construct, see Section 17.9.32

• task-dependence-type Modifier, see Section 17.9.13

17.9.5 depend Clause4

Name: depend Properties: taskgraph-altering, task-inherited5

Arguments6
Name Type Properties
locator-list list of locator list item

type
default7

Modifiers8
Name Modifies Type Properties
task-dependence-
type

all arguments Keyword: depobj, in,
inout, inoutset,
mutexinoutset, out

unique

iterator locator-list Complex, name: iterator
Arguments:
iterator-specifier list of iter-

ator specifier list item
type (default)

unique

directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique

9

Directives10
dispatch, interop, target, target_data, target_enter_data,11
target_exit_data, target_update, task, task_iteration, taskwait12

Semantics13
The depend clause enforces additional constraints on the scheduling of tasks. These constraints14
establish dependences only between two dependence-compatible tasks: the antecedent task and the15
dependent task. The scheduling constraints are transitive so that the antecedent task must complete16
execution before any of its successor tasks execute. Similarly, the dependent task cannot start17
execution before all of its predecessor tasks complete execution. Task dependences are derived18
from the task-dependence-type and the list items in the locator-list argument.19

One task, A, is a preceding dependence-compatible task of another task, B, if one of the following is20
true:21

• A is a previously generated sibling task of B;22

• A is a preceding dependence-compatible task of an importing task for which B is a child task;23

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 507

• A is a child task of an exporting task that is a predecessor task of B;1

• A is a child task of an undeferred exporting task that is a previously generated sibling task of2
B.3

The storage location of a list item matches the storage location of another list item if they have the4
same storage location, or if any of the list items is omp_all_memory.5

For the in task-dependence-type, if the storage location of at least one of the list items matches the6
storage location of a list item appearing in a depend clause with an out, inout,7
mutexinoutset, or inoutset task-dependence-type on a construct from which a preceding8
dependence-compatible task was generated then the generated task will be a dependent task of that9
preceding dependence-compatible task.10

For the out task-dependence-type and inout task-dependence-type, if the storage location of at11
least one of the list items matches the storage location of a list item appearing in a depend clause12
with an in, out, inout, mutexinoutset, or inoutset task-dependence-type on a construct13
from which a preceding dependence-compatible task was generated then the generated task will be14
a dependent task of that preceding dependence-compatible task.15

For the mutexinoutset task-dependence-type, if the storage location of at least one of the list16
items matches the storage location of a list item appearing in a depend clause with an in, out,17
inout, or inoutset task-dependence-type on a construct from which a preceding18
dependence-compatible task was generated then the generated task will be a dependent task of that19
preceding dependence-compatible task.20

If a list item appearing in a depend clause with a mutexinoutset task-dependence-type on a21
task-generating construct matches a list item appearing in a depend clause with a22
mutexinoutset task-dependence-type on a different task-generating construct, and both23
constructs generate dependence-compatible tasks, the dependence-compatible tasks will be24
mutually exclusive tasks.25

For the inoutset task-dependence-type, if the storage location of at least one of the list items26
matches the storage location of a list item appearing in a depend clause with an in, out, inout,27
or mutexinoutset task-dependence-type on a construct from which a preceding28
dependence-compatible task was generated then the generated task will be a dependent task of that29
preceding dependence-compatible task.30

When the task-dependence-type is depobj, the behavior is as if the dependence type and locator31
list item that each specified depend object list item represents was specified by depend clauses on32
the current construct.33

The list items that appear in the depend clause may reference any iterator-identifier defined in its34
iterator modifier.35

The list items that appear in the depend clause may include array sections or the36
omp_all_memory reserved locator.37

508 OpenMP API – Version 6.0 November 2024

C / C++
The list items that appear in a depend clause may use shape-operators.1

C / C++
2

Note – The enforced task dependence establishes a synchronization of memory accesses3
performed by a dependent task with respect to accesses performed by the antecedent tasks.4
However, the programmer must properly synchronize with respect to other concurrent accesses that5
occur outside of those tasks.6

7

Execution Model Events8
The task-dependences event occurs in a thread that encounters a task-generating construct or a9
taskwait construct with a depend clause immediately after the task-create event for the10
generated task or the taskwait-init event. The task-dependence event indicates an unfulfilled11
dependence for the generated task. This event occurs in a thread that observes the unfulfilled12
dependence before it is satisfied.13

Tool Callbacks14
A thread dispatches the dependences callback for each occurrence of the task-dependences15
event to announce its dependences with respect to the list items in the depend clause. A thread16
dispatches the task_dependence callback for a task-dependence event to report a dependence17
between a antecedent task (src_task_data) and a dependent task (sink_task_data).18

Restrictions19
Restrictions to the depend clause are as follows:20

• List items, other than reserved locators, used in depend clauses of the same task or21
dependence-compatible tasks must indicate identical storage locations or disjoint storage22
locations.23

• List items used in depend clauses cannot be zero-length array sections.24

• The omp_all_memory reserved locator can only be used in a depend clause with an out25
or inout task-dependence-type.26

• Array sections cannot be specified in depend clauses with the depobj27
task-dependence-type.28

• List items used in depend clauses with the depobj task-dependence-type must be29
expressions of the depend OpenMP type that correspond to depend objects in the initialized30
state.31

• List items that are expressions of the depend OpenMP type can only be used in depend32
clauses with the depobj task-dependence-type.33

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 509

Fortran
• A common block name cannot appear in a depend clause.1

• If a locator list item has the ALLOCATABLE attribute and its allocation status is unallocated,2
the behavior is unspecified.3

• If a locator list item has the POINTER attribute and its association status is disassociated or4
undefined, the behavior is unspecified.5

Fortran
C / C++

• A bit-field cannot appear in a depend clause.6

C / C++
Cross References7

• dependences Callback, see Section 34.7.18

• dispatch Construct, see Section 9.79

• Array Sections, see Section 5.2.510

• Array Shaping, see Section 5.2.411

• interop Construct, see Section 16.112

• iterator Modifier, see Section 5.2.613

• task-dependence-type Modifier, see Section 17.9.114

• target Construct, see Section 15.815

• target_data Construct, see Section 15.716

• target_enter_data Construct, see Section 15.517

• target_exit_data Construct, see Section 15.618

• target_update Construct, see Section 15.919

• task Construct, see Section 14.120

• task_dependence Callback, see Section 34.7.221

• task_iteration Directive, see Section 14.2.322

• taskwait Construct, see Section 17.523

17.9.6 transparent Clause24

Name: transparent Properties: unique25

510 OpenMP API – Version 6.0 November 2024

Arguments1
Name Type Properties
impex-type expression of impex

OpenMP type
optional2

Modifiers3
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique4

Directives5
target_data, task, taskloop6

Semantics7
The transparent clause controls the task dependence importing and exporting characteristics8
of any generated tasks of the construct on which it appears. If impex-type evaluates to9
omp_not_impex then the generated tasks are neither importing tasks nor exporting tasks and so10
are not transparent tasks. Otherwise the clause extends the set of dependence-compatible tasks of11
any child task of any of the generated tasks as follows. If impex-type evaluates to omp_import12
then the generated tasks are importing tasks. If impex-type evaluates to omp_export then the13
generated tasks are exporting tasks. If impex-type evaluates to omp_impex then the generated14
tasks are both importing tasks and exporting tasks.15

The use of a variable in an impex-type expression causes an implicit reference to the variable in all16
enclosing constructs. The impex-type expression is evaluated in the context outside of the construct17
on which the clause appears. If impex-type is not specified, the effect is as if impex-type evaluates to18
omp_impex.19

Cross References20

• depend Clause, see Section 17.9.521

• target_data Construct, see Section 15.722

• task Construct, see Section 14.123

• taskloop Construct, see Section 14.224

17.9.7 doacross Clause25

Name: doacross Properties: required26

Arguments27
Name Type Properties
iteration-specifier OpenMP iteration speci-

fier
default28

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 511

Modifiers1
Name Modifies Type Properties
dependence-type iteration-specifier Keyword: sink, source required
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique2

Directives3
ordered4

Semantics5
The doacross clause identifies doacross dependences that imply additional constraints on the6
scheduling of doacross logical iterations of a doacross loop nest. These constraints establish7
dependences only between doacross iterations. The iteration-specifier specifies a doacross iteration8
and is either a loop-iteration vector or uses the omp_cur_iteration keyword (see9
Section 6.4.3).10

The source dependence-type specifies that the current doacross iteration is a source iteration and,11
thus, satisfies doacross dependences that arise from the current doacross iteration. If the source12
dependence-type is specified then the iteration-specifier argument is optional; if iteration-specifier13
is omitted, it is assumed to be omp_cur_iteration.14

The sink dependence-type specifies the current doacross iteration is a sink iteration and, thus, has15
a doacross dependence, where iteration-specifier indicates the doacross iteration that satisfies the16
dependence. If iteration-specifier indicates a doacross iteration that does not occur in the doacross17
iteration space, the doacross clause is ignored. If all doacross clauses on an ordered18
construct are ignored then the construct is ignored.19

20

Note – If the sink dependence-type is specified for an iteration-specifier that does not indicate an21
earlier iteration of the doacross iteration space, deadlock may occur.22

23

Restrictions24
Restrictions to the doacross clause are as follows:25

• If iteration-specifier is a loop-iteration vector that has n elements, the innermost26
loop-nest-associated construct that encloses the construct on which the clause appears must27
specify an ordered clause for which the parameter value equals n.28

• If iteration-specifier is specified with the omp_cur_iteration keyword and with sink29
as the dependence-type then it must be omp_cur_iteration - 1.30

• If iteration-specifier is specified with source as the dependence-type then it must be31
omp_cur_iteration.32

• If iteration-specifier is a loop-iteration vector and the sink dependence-type is specified33
then for each element, if the loop-iteration variable vari has an integral or pointer type, the ith34

512 OpenMP API – Version 6.0 November 2024

expression of vector must be computable without overflow in that type for any value of vari1
that can encounter the construct on which the doacross clause appears.2

C++
• If iteration-specifier is a loop-iteration vector and the sink dependence-type is specified3

then for each element, if the loop-iteration variable vari is of a random access iterator type4
other than pointer type, the ith expression of vector must be computable without overflow in5
the type that would be used by std::distance applied to variables of the type of vari for6
any value of vari that can encounter the construct on which the doacross clause appears.7

C++
Cross References8

• OpenMP Loop-Iteration Spaces and Vectors, see Section 6.4.39

• ordered Clause, see Section 6.4.610

• Stand-alone ordered Construct, see Section 17.10.111

17.10 ordered Construct12

This section describes two forms for the ordered construct, the stand-alone ordered construct13
and the block-associated ordered construct. Both forms include the execution model events, tool14
callbacks, and restrictions listed in this section.15

Execution Model Events16
The ordered-acquiring event occurs in the task that encounters the ordered construct on entry to17
the ordered region before it initiates synchronization for the region. The ordered-released event18
occurs in the task that encounters the ordered construct after it completes any synchronization on19
exit from the region.20

Tool Callbacks21
A thread dispatches a registered mutex_acquire callback for each occurrence of an22
ordered-acquiring event in that thread. A thread dispatches a registered mutex_released23
callback with ompt_mutex_ordered as the kind argument if practical, although a less specific24
kind may be used, for each occurrence of an ordered-released event in that thread. These callback25
occur in the task that encounters the construct.26

Restrictions27

• The construct that corresponds to the binding region of an ordered region must specify an28
ordered clause.29

• The construct that corresponds to the binding region of an ordered region must not specify30
a reduction clause with the inscan modifier.31

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 513

• The region of a block-associated ordered construct must not have a binding region that1
corresponds to a construct in which a stand-alone ordered construct is closely nested.2

• An ordered region that corresponds to an ordered construct with the threads or3
doacross clause may not be closely nested inside a critical, ordered, loop, task,4
or taskloop region (see Section 17.10).5

• The doacross-affected loops of a doacross loop nest must be perfectly nested loops.6

• The construct that corresponds to the binding region of an ordered region must not specify7
a linear clause.8

C++
• The doacross-affected loops of a doacross loop nest must not be range-based for loops.9

C++
Cross References10

• OMPT mutex Type, see Section 33.2011

• mutex_acquire Callback, see Section 34.7.812

• mutex_released Callback, see Section 34.7.1313

17.10.1 Stand-alone ordered Construct14

Name: ordered
Category: executable

Association: unassociated
Properties: mutual-exclusion15

Clauses16
doacross17

Binding18
The binding thread set for a stand-alone ordered region is the current team. A stand-alone19
ordered region binds to the innermost enclosing worksharing-loop region.20

Semantics21
The innermost enclosing worksharing-loop construct of a stand-alone ordered construct is22
associated with a doacross loop nest of the n doacross-affected loops. The stand-alone ordered23
construct specifies that execution must not violate doacross dependences as specified in the24
doacross clauses that appear on the construct. When a thread that is executing a doacross25
iteration encounters an ordered construct with one or more doacross clauses for which the26
sink dependence-type is specified, the thread waits until its dependences on all valid doacross27
iterations specified by the doacross clauses are satisfied before it continues execution. A specific28
dependence is satisfied when a thread that is executing the corresponding doacross iteration29
encounters an ordered construct with a doacross clause for which the source30
dependence-type is specified.31

514 OpenMP API – Version 6.0 November 2024

Execution Model Events1
The doacross-sink event occurs in the task that encounters an ordered construct for each2
doacross clause for which the sink dependence-type is specified after the dependence is3
fulfilled. The doacross-source event occurs in the task that encounters an ordered construct with4
a doacross clause for which the source dependence-type is specified before signaling that the5
dependence has been fulfilled.6

Tool Callbacks7
A thread dispatches a registered dependences callback with all vector entries listed as8
ompt_dependence_type_sink in the deps argument for each occurrence of a doacross-sink9
event in that thread. A thread dispatches a registered dependences callback with all vector10
entries listed as ompt_dependence_type_source in the deps argument for each occurrence11
of a doacross-source event in that thread.12

Restrictions13
Additional restrictions to the stand-alone ordered construct are as follows:14

• At most one doacross clause may appear on the construct with source as the15
dependence-type.16

• All doacross clauses that appear on the construct must specify the same dependence-type.17

• The construct must not be an orphaned construct.18

• The construct must be closely nested inside a worksharing-loop construct.19

Cross References20

• OMPT dependence_type Type, see Section 33.1021

• dependences Callback, see Section 34.7.122

• doacross Clause, see Section 17.9.723

• Worksharing-Loop Constructs, see Section 13.624

17.10.2 Block-associated ordered Construct25

Name: ordered
Category: executable

Association: block
Properties: mutual-exclusion, simdiz-
able, thread-limiting, thread-exclusive

26

Clause groups27
parallelization-level28

Binding29
The binding thread set for a block-associated ordered region is the current team. A30
block-associated ordered region binds to the innermost enclosing region that corresponds to a31
construct for which a worksharing-loop construct or simd construct is a constituent construct.32

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 515

Semantics1
If no clauses are specified, the effect is as if the threads parallelization-level clause was2
specified. If the threads clause is specified, the threads in the team that is executing the3
worksharing-loop region execute ordered regions sequentially in the order of the collapsed4
iterations. If the simd parallelization-level clause is specified, the ordered regions encountered5
by any thread will execute one at a time in the order of the collapsed iterations. With either6
parallelization-level, execution of code outside the region for different collapsed iterations can run7
in parallel; execution of that code within the same collapsed iteration must observe any constraints8
imposed by the base language semantics.9

When the thread that is executing the first collapsed iteration of the loop encounters a10
block-associated ordered construct, it can enter the ordered region without waiting. When a11
thread that is executing any subsequent collapsed iteration encounters a block-associated ordered12
construct, it waits at the beginning of the ordered region until execution of all ordered regions13
that belong to all previous collapsed iterations has completed. ordered regions that bind to14
different regions execute independently of each other.15

Execution Model Events16
The ordered-acquired event occurs in the task that encounters the ordered construct after it17
enters the region, but before it executes the associated structured block.18

Tool Callbacks19
A thread dispatches a registered mutex_acquired callback for each occurrence of an20
ordered-acquired event in that thread. This callback occurs in the task that encounters the construct.21

Restrictions22
Additional restrictions to the block-associated ordered construct are as follows:23

• The construct is SIMDizable only if the simd parallelization-level clause is specified.24

• If the simd parallelization-level clause is specified, the binding region must correspond to a25
construct for which the simd construct is a leaf construct.26

• If the threads parallelization-level clause is specified, the binding region must correspond27
to a construct for which a worksharing-loop construct is a leaf construct.28

• If the threads parallelization-level clause is specified and the binding region corresponds29
to a compound construct then the simd construct must not be a leaf construct unless the30
simd parallelization-level clause is also specified.31

• During execution of the collapsed iteration associated with a loop-nest-associated directive, a32
thread must not execute more than one block-associated ordered region that binds to the33
corresponding region of the loop-nest-associated directive.34

• An ordered clause with an argument value equal to the number of collapsed loops must35
appear on the construct that corresponds to the binding region, if the binding region is not a36
simd region.37

516 OpenMP API – Version 6.0 November 2024

Cross References1

• parallelization-level Clauses, see Section 17.10.32

• Worksharing-Loop Constructs, see Section 13.63

• mutex_acquired Callback, see Section 34.7.124

• ordered Clause, see Section 6.4.65

• simd Construct, see Section 12.46

17.10.3 parallelization-level Clauses7

Clause groups8
Properties: unique Members:

Clauses
simd, threads

9

Directives10
ordered11

Semantics12
The parallelization-level clause group defines a set of clauses that indicate the level of13
parallelization with which to associate a construct.14

Cross References15

• Block-associated ordered Construct, see Section 17.10.216

17.10.3.1 threads Clause17

Name: threads Properties: innermost-leaf, unique18

Arguments19
Name Type Properties
apply-to-threads expression of OpenMP

logical type
constant, optional20

Modifiers21
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique22

Directives23
ordered24

CHAPTER 17. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 517

Semantics1
If apply_to_threads evaluates to true, the effect is as if the threads parallelization-level clause is2
specified. If apply_to_threads evaluates to false, the effect is as if the threads clause is not3
specified. If apply_to_threads is not specified, the effect is as if apply_to_threads evaluates to true.4

Cross References5

• Block-associated ordered Construct, see Section 17.10.26

17.10.3.2 simd Clause7

Name: simd Properties: innermost-leaf, unique8

Arguments9
Name Type Properties
apply-to-simd expression of OpenMP

logical type
constant, optional10

Modifiers11
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique12

Directives13
ordered14

Semantics15
If apply_to_simd evaluates to true, the effect is as if the simd parallelization-level clause is16
specified. If apply_to_simd evaluates to false, the effect is as if the simd clause is not specified. If17
apply_to_simd is not specified, the effect is as if apply_to_simd evaluates to true.18

Cross References19

• Block-associated ordered Construct, see Section 17.10.220

518 OpenMP API – Version 6.0 November 2024

18 Cancellation Constructs1

This chapter defines constructs related to cancellation of OpenMP regions.2

18.1 cancel-directive-name Clauses3

Clause groups4
Properties: exclusive, required, unique Members:

Clauses
do, for, parallel, sections,
taskgroup

5

Modifiers6
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword: directive-name (a
directive name)

unique7

Directives8
cancel, cancellation_point9

Semantics10
For each directive that has the cancellable property (i.e., the directive may subject to cancellation11
and is a cancellable construct), a corresponding clause for which clause-name is the directive-name12
of that directive is a member of the cancel-directive-name clause group. Each member of the13
cancel-directive-name clause group takes an optional argument, apply-to-directive, that must be a14
constant expression of logical OpenMP type. For each member of the clause group, if15
apply_to_directive evaluates to true then the semantics of the construct on which the clause appears16
are applied for the directive with the directive-name specified by the clause. If apply_to_directive17
evaluates to false, the effect is equivalent to specifying an if clause for which if-expression18
evaluates to false. If apply_to_directive is not specified, the effect is as if apply_to_directive19
evaluates to true.20

Restrictions21
Restrictions to any clauses in the cancel-directive-name clause group are as follows:22

• If apply_to_directive evaluates to false and an if clause is specified for the same constituent23
construct, if-expression must evaluate to false.24

CHAPTER 18. CANCELLATION CONSTRUCTS 519

Cross References1

• cancel Construct, see Section 18.22

• cancellation_point Construct, see Section 18.33

• do Construct, see Section 13.6.24

• for Construct, see Section 13.6.15

• parallel Construct, see Section 12.16

• sections Construct, see Section 13.37

• taskgroup Construct, see Section 17.48

18.2 cancel Construct9

Name: cancel
Category: executable

Association: unassociated
Properties: default10

Clause groups11
cancel-directive-name12

Clauses13
if14

Binding15
The binding thread set of the cancel region is the current team. The binding region of the16
cancel region is the innermost enclosing region of the type that corresponds to17
cancel-directive-name.18

Semantics19
The cancel construct activates cancellation of the innermost enclosing region of the type20
specified by cancel-directive-name, which must be the directive-name of a cancellable construct.21
Cancellation of the binding region is activated only if the cancel-var ICV is true, in which case the22
cancel construct causes the encountering task to continue execution at the end of the binding23
region if cancel-directive-name is not taskgroup. If the cancel-var ICV is true and24
cancel-directive-name is taskgroup, the encountering task continues execution at the end of the25
current task region. If the cancel-var ICV is false, the cancel construct is ignored.26

Threads check for active cancellation only at cancellation points that are implied at the following27
locations:28

• cancel regions;29

• cancellation_point regions;30

• barrier regions;31

520 OpenMP API – Version 6.0 November 2024

• at the end of a worksharing-loop construct with a nowait clause and for which the same list1
item appears in both firstprivate and lastprivate clauses; and2

• implicit barrier regions.3

When a thread reaches one of the above cancellation points and if the cancel-var ICV is true, then:4

• If the thread is at a cancel or cancellation_point region and cancel-directive-name5
is not taskgroup, the thread continues execution at the end of the canceled region if6
cancellation has been activated for the innermost enclosing region of the type specified.7

• If the thread is at a cancel or cancellation_point region and cancel-directive-name8
is taskgroup, the encountering task checks for active cancellation of all of the taskgroup9
sets to which the encountering task belongs, and continues execution at the end of the current10
task region if cancellation has been activated for any of the taskgroup sets.11

• If the encountering task is at a barrier region or at the end of a worksharing-loop construct12
with a nowait clause and for which the same list item appears in both firstprivate13
and lastprivate clauses, the encountering task checks for active cancellation of the14
innermost enclosing parallel region. If cancellation has been activated, then the15
encountering task continues execution at the end of the canceled region.16

When cancellation of tasks is activated through a cancel construct with taskgroup for17
cancel-directive-name, the tasks that belong to the taskgroup set of the innermost enclosing18
taskgroup region will be canceled; that taskgroup set is then the canceled taskgroup set19
corresponding to that cancel region. The task that encountered that construct continues execution20
at the end of its task region, which implies completion of that task. Any task that belongs to the21
canceled taskgroup set and has already begun execution must run to completion or until a22
cancellation point is reached. Upon reaching a cancellation point and if cancellation is active, the23
task continues execution at the end of its task region, which implies the completion of the task. Any24
task that belongs to the canceled taskgroup set and that has not begun execution or that has not yet25
been fulfilled through an event variable may be discarded, which implies its completion.26

When cancellation of tasks is activated through a cancel construct with cancel-directive-name27
other than taskgroup, each thread of the binding thread set resumes execution at the end of the28
canceled region if a cancellation point is encountered. If the canceled region is a parallel29
region, any tasks that have been created by a task or a taskloop construct and their descendent30
tasks are canceled according to the above taskgroup cancellation semantics. If the canceled31
region is not a parallel region, no task cancellation occurs.32

C++
The usual C++ rules for object destruction are followed when cancellation is performed.33

C++
Fortran

All private objects or subobjects with the ALLOCATABLE attribute that are allocated inside the34
canceled construct are deallocated.35

Fortran

CHAPTER 18. CANCELLATION CONSTRUCTS 521

If the canceled construct specifies an original list-item updating clause, the final values of the list1
items that appear in those clauses are undefined.2

When an if clause is present on a cancel construct and if-expression evaluates to false, the3
cancel construct does not activate cancellation. The cancellation point associated with the4
cancel construct is always encountered regardless of the value of if-expression.5

6

Note – The programmer is responsible for releasing locks and other synchronization data structures7
that might cause a deadlock when a cancel construct is encountered and blocked threads cannot8
be canceled. The programmer is also responsible for ensuring proper synchronizations to avoid9
deadlocks that might arise from cancellation of regions that contain synchronization constructs.10

11

Execution Model Events12
If a task encounters a cancel construct that will activate cancellation then a cancel event occurs.13
A discarded-task event occurs for any discarded tasks.14

Tool Callbacks15
A thread dispatches a registered cancel callback for each occurrence of a cancel event in the16
context of the encountering task. (flags & ompt_cancel_activated) always evaluates to17
true in the dispatched callback; (flags & ompt_cancel_parallel) evaluates to true in the18
dispatched callback if cancel-directive-name is parallel;19
(flags & ompt_cancel_sections) evaluates to true in the dispatched callback if20
cancel-directive-name is sections; (flags & ompt_cancel_loop) evaluates to true in the21
dispatched callback if cancel-directive-name is for or do; and22
(flags & ompt_cancel_taskgroup) evaluates to true in the dispatched callback if23
cancel-directive-name is taskgroup.24

A thread dispatches a registered cancel callback with its task_data argument pointing to the25
data object associated with the discarded task and with ompt_cancel_discarded_task as26
its flags argument for each occurrence of a discarded-task event. The callback occurs in the context27
of the task that discards the task.28

Restrictions29
Restrictions to the cancel construct are as follows:30

• The behavior for concurrent cancellation of a region and a region nested within it is31
unspecified.32

• If cancel-directive-name is taskgroup, the cancel construct must be a closely nested33
construct of a task or a taskloop construct and the cancel region must be a closely34
nested region of a taskgroup region.35

• If cancel-directive-name is not taskgroup, the cancel construct must be a closely nested36
construct of a construct that matches cancel-directive-name.37

522 OpenMP API – Version 6.0 November 2024

• A worksharing construct that is canceled must not have a nowait clause or a reduction1
clause with a user-defined reduction that uses omp_orig in the initializer-expr of the2
corresponding declare_reduction directive.3

• A worksharing-loop construct that is canceled must not have an ordered clause or a4
reduction clause with the inscan reduction-modifier.5

• When cancellation is active for a parallel region, a thread in the team that binds to that6
region must not be executing or encounter a worksharing construct with an ordered clause,7
a reduction clause with the inscan reduction-modifier or a reduction clause with a8
user-defined reduction that uses omp_orig in the initializer-expr of the corresponding9
declare_reduction directive.10

• During execution of a construct that may be subject to cancellation, a thread must not11
encounter an orphaned cancellation point. That is, a cancellation point must only be12
encountered within that construct and must not be encountered elsewhere in its region.13

Cross References14

• barrier Construct, see Section 17.3.115

• cancel Callback, see Section 34.616

• OMPT cancel_flag Type, see Section 33.717

• cancellation_point Construct, see Section 18.318

• OMPT data Type, see Section 33.819

• declare_reduction Directive, see Section 7.6.1420

• firstprivate Clause, see Section 7.5.421

• cancel-var ICV, see Table 3.122

• if Clause, see Section 5.523

• nowait Clause, see Section 17.624

• omp_get_cancellation Routine, see Section 30.125

• ordered Clause, see Section 6.4.626

• private Clause, see Section 7.5.327

• reduction Clause, see Section 7.6.1028

• task Construct, see Section 14.129

CHAPTER 18. CANCELLATION CONSTRUCTS 523

18.3 cancellation_point Construct1

Name: cancellation_point
Category: executable

Association: unassociated
Properties: default2

Clause groups3
cancel-directive-name4

Additional information5
The cancellation_point directive may alternatively be specified with cancellation6
point as the directive-name.7

Binding8
The binding thread set of the cancellation_point construct is the current team. The binding9
region of the cancellation_point region is the innermost enclosing region of the type that10
corresponds to cancel-directive-name.11

Semantics12
The cancellation_point construct introduces a user-defined cancellation point at which an13
implicit task or explicit task must check if cancellation of the innermost enclosing region of the14
type specified by cancel-directive-name, which must be the directive-name of a cancellable15
construct, has been activated. This construct does not implement any synchronization between16
threads or tasks. The semantics, including the execution model events and tool callbacks, for when17
an implicit task or explicit task reaches a user-defined cancellation point are identical to those of18
any other cancellation point and are defined in Section 18.2.19

Restrictions20
Restrictions to the cancellation point construct are as follows:21

• A cancellation_point construct for which cancel-directive-name is taskgroup22
must be a closely nested construct of a task or taskloop construct, and the23
cancellation_point region must be a closely nested region of a taskgroup region.24

• A cancellation_point construct for which cancel-directive-name is not taskgroup25
must be a closely nested construct inside a construct that matches cancel-directive-name.26

Cross References27

• cancel-var ICV, see Table 3.128

• omp_get_cancellation Routine, see Section 30.129

524 OpenMP API – Version 6.0 November 2024

19 Composition of Constructs1

This chapter defines rules and mechanisms for nesting regions and for combining constructs.2

19.1 Compound Directive Names3

Unless explicitly specified otherwise, the directive-name of a compound directive concatenates two4
or more directive names, with an intervening separating character, the directive-name separator5
between each of them. Each directive name, as well as any concatenation of consecutive directive6
names and their directive-name separator, is a constituent-directive name. Any constituent-directive7
name that is not itself a compound-directive name is a leaf-directive name.8

Let directive-name-A refer to the first leaf-directive name that appears in a compound-directive9
name, and let directive-name-B refer to the constituent-directive name that forms the remainder of10
the compound-directive name. If the construct named by directive-name-B can be immediately11
nested inside the construct named by directive-name-A, the compound-directive name is a12
combined-directive name, the name of combined directive. Otherwise, the compound-directive13
name is a composite-directive name. Unless explicitly specified otherwise, the syntax for a14
compound-directive name is <compound-directive-name>, as described in the following grammar:15

<compound-directive-name>:16
<combined-directive-name>17
<composite-directive-name>18

19
<combined-directive-name>:20

<directive-name-A><separator><directive-name-B>21
22

<directive-name-A>:23
<parallelism-generating-directive-name>24
<thread-selecting-directive-name>25

26
<directive-name-B>:27

<composite-directive-name>28
<parallelism-generating-directive-name>29
<combined-parallelism-generating-directive-name>30
<partitioned-directive-name>31
<combined-partitioned-directive-name>32
<thread-selecting-directive-name>33

CHAPTER 19. COMPOSITION OF CONSTRUCTS 525

<combined-thread-selecting-directive-name>1
2

<composite-directive-name>:3
<loop-distributed-composite-construct-name>4
<simd-partitioned-composite-construct-name>5

6
<loop-distributed-composite-construct-name>:7

<distribute-directive-name><separator><parallel-loop-directive-name>8
9

<simd-partitioned-composite-construct-name>:10
<simd-partitionable-directive-name><separator><simd-directive-name>11

where:12

• <composite-directive-name> is a composite-directive name;13

• <parallelism-generating-directive-name> is the name of a parallelism-generating construct;14

• <combined-parallelism-generating-directive-name> is a <combined-directive-name> for15
which <directive-name-A> is a <parallelism-generating-directive-name>.16

• <thread-selecting-directive-name> is the name of a thread-selecting construct;17

• <combined-thread-selecting-directive-name> is a <combined-directive-name> for which18
<directive-name-A> is a <thread-selecting-directive-name>.19

• <partitioned-directive-name> is the name of a partitioned construct;20

• <combined-partitioned-directive-name> is a <combined-directive-name> for which21
<directive-name-A> is a <partitioned-directive-name>;22

• <distribute-directive-name> is distribute;23

• <parallel-loop-directive-name> is the name of a combined construct for which24
<directive-name-A> is parallel and <directive-name-B> is the name of a25
worksharing-loop construct or a composite directive for which <directive-name-A> is the26
name of a worksharing-loop construct;27

• <simd-partitionable-directive-name> is the name of a SIMD-partitionable construct;28

• <simd-directive-name> is simd.29

C / C++
• <separator>, the directive-name separator, is white space.30

C / C++
Fortran

• <separator>, the directive-name separator, is white space or a plus sign (i.e., ’+’).31

Fortran

526 OpenMP API – Version 6.0 November 2024

The section that defines any composite directive for which its composite-directive name is not1
composed from its leaf-directive names in the fashion described above, such as those that combine2
a series of directives into one directive, also specifies the composite-directive name and its leaf3
directives. Unless otherwise specified, those leaf directives may be specified by their leaf-directive4
names in a directive-name-modifier.5

Restrictions6
Restrictions to compound-directive names are as follows:7

• Any given instance of a compound-directive name must use the same character for all8
instances of <separator>.9

• Leaf-directive names that include spaces are not permitted in a compound-directive name;10
they must instead be specified with an underscore replacing each space in the directive name.11

• The leaf-directive names of a given compound-directive name must be unique.12

• The construct corresponding to <directive-name-B> must be permitted to be immediately13
nested inside the construct corresponding to <directive-name-A>.14

• If the first leaf-directive name of <directive-name-B> is the name of a worksharing construct15
or a thread-selecting construct then <directive-name-A> must be parallel.16

• If <directive-name-A> and the first leaf-directive name of <directive-name-B> are the names17
of task-generating constructs then their respective explicit task regions must not bind to the18
same parallel region.19

• The compound construct named by a given compound-directive name must have at most one20
constituent construct that is a map-entering construct.21

• The compound construct named by a given compound-directive name must have at most one22
constituent construct that is a map-exiting construct.23

Fortran
• If a directive name is ambiguous due to the use of optional intervening spaces between24

leaf-directive names, the directive-name separator must be a plus sign.25

Fortran
Cross References26

• distribute Construct, see Section 13.727

• parallel Construct, see Section 12.128

• simd Construct, see Section 12.429

CHAPTER 19. COMPOSITION OF CONSTRUCTS 527

19.2 Clauses on Compound Constructs1

This section specifies the handling of clauses on compound constructs and the handling of implicit2
clauses that arise from any variable with predetermined data-sharing attributes on more than one3
leaf construct. For any clause for which a directive-name-modifier is specified, the effect of the4
modifier is applied prior to any of the rules that are specified in this section. Some clauses are5
permitted only on a single leaf construct of the compound construct, in which case the effect is as if6
the clause is applied to that specific construct. Other clauses that are permitted on more than one7
leaf construct have the effect as if they are applied to a subset of those constructs, as detailed in this8
section. Unless otherwise specified, the effect of a clause on a compound directive is as if it is9
applied to all leaf constructs that permit it (i.e., it has the default all-constituents property).10

Unless otherwise specified, certain clause properties determine how each clause with those11
properties applies to any constituent directives of a compound directive on which it appears.12
Regardless of any specified directive-name-modifier, the effect of any clause with the13
once-for-all-constituents property on a compound construct is as if it is applied once to the14
compound construct regardless of how many constituent constructs to which they may apply.15

The effect of any clause with the all-privatizing property on a compound directive is as if it is16
applied to all leaf constructs that permit the clause and to which a data-sharing attribute clause that17
may create a private copy of the same list item is applied. Unless otherwise specified, the effect of18
any clause with the innermost-leaf property on a compound construct is as if it is applied only to19
the innermost leaf construct that permits it. Unless otherwise specified, the effect of any clause with20
the outermost-leaf property on a compound construct is as if it is applied only to the outermost leaf21
construct that permits it.22

The effect of the firstprivate clause is as if it is applied to one or more leaf constructs as23
follows:24

• To the distribute construct if it is among the constituent constructs;25

• To the teams construct if it is among the constituent constructs and the distribute26
construct is not;27

• To a worksharing construct that accepts the clause if one is among the constituent constructs;28

• To the taskloop construct if it is among the constituent constructs;29

• To the parallel construct if it is among the constituent construct and neither a30
taskloop construct nor a worksharing construct that accepts the clause is among them;31

• To the target construct if it is among the constituent constructs and the same list item32
neither appears in a lastprivate clause nor is the base variable or base pointer of a list33
item that appears in a map clause.34

If the parallel construct is among the constituent constructs and the effect is not as if the35
firstprivate clause is applied to it by the above rules, then the effect is as if the shared36
clause with the same list item is applied to the parallel construct. If the teams construct is37

528 OpenMP API – Version 6.0 November 2024

among the constituent constructs and the effect is not as if the firstprivate clause is applied to1
it by the above rules, then the effect is as if the shared clause with the same list item is applied to2
the teams construct.3

The effect of the lastprivate clause is as if it is applied to all leaf constructs that permit the4
clause. If the parallel construct is among the constituent constructs and the list item is not also5
specified in the firstprivate clause, then the effect of the lastprivate clause is as if the6
shared clause with the same list item is applied to the parallel construct. If the teams7
construct is among the constituent constructs and the list item is not also specified in the8
firstprivate clause, then the effect of the lastprivate clause is as if the shared clause9
with the same list item is applied to the teams construct. If the target construct is among the10
constituent constructs and the list item is not the base variable or base pointer of a list item that11
appears in a map clause, the effect of the lastprivate clause is as if the same list item appears12
in a map clause with a map-type of tofrom.13

The effect of the reduction clause is as if it is applied to all leaf constructs that permit the14
clause, except for the following constructs:15

• The parallel construct, when combined with the sections, worksharing-loop, loop,16
or taskloop construct; and17

• The teams construct, when combined with the loop construct.18

For the parallel and teams constructs above, the effect of the reduction clause instead is as19
if each list item or, for any list item that is an array item, its corresponding base array or20
corresponding base pointer appears in a shared clause for the construct. If the task21
reduction-modifier is specified, the effect is as if it only modifies the behavior of the reduction22
clause on the innermost leaf construct that accepts the modifier (see Section 7.6.10). If the23
inscan reduction-modifier is specified, the effect is as if it modifies the behavior of the24
reduction clause on all constructs of the compound construct to which the clause is applied and25
that accept the modifier. If a list item in a reduction clause on a compound target construct does26
not have the same base variable or base pointer as a list item in a map clause on the construct, then27
the effect is as if the list item in the reduction clause appears as a list item in a map clause with28
a map-type of tofrom.29

The effect of the linear clause is as if it is applied to the innermost leaf construct. Additionally,30
if the list item is not the loop-iteration variable of a construct for which simd is a constituent31
construct, the effect on the outer leaf constructs is as if the list item was specified in32
firstprivate and lastprivate clauses on the compound construct, with the rules specified33
above applied. If a list item of the linear clause is the loop-iteration variable of a construct for34
which the simd construct is a leaf construct and the variable is not declared in the construct, the35
effect on the outer leaf constructs is as if the list item was specified in a lastprivate clause on36
the compound construct with the rules specified above applied.37

If the clauses have expressions on them, such as for various clauses where the argument of the38
clause is an expression, or lower-bound, length, or stride expressions inside array sections (or39
subscript and stride expressions in subscript-triplet for Fortran), or linear-step or alignment40

CHAPTER 19. COMPOSITION OF CONSTRUCTS 529

expressions, the expressions are evaluated immediately before the construct to which the clause has1
been split or duplicated per the above rules (therefore inside of the outer leaf constructs). However,2
the expressions inside the num_teams and thread_limit clauses are always evaluated before3
the outermost leaf construct.4

The restriction that a list item may not appear in more than one data-sharing attribute clause with5
the exception of specifying a variable in both firstprivate and lastprivate clauses6
applies after the clauses are split or duplicated per the above rules.7

Restrictions8
Restrictions to clauses on compound constructs are as follows:9

• A clause that appears on a compound construct must apply to at least one of the leaf10
constructs per the rules defined in this section.11

Cross References12

• distribute Construct, see Section 13.713

• firstprivate Clause, see Section 7.5.414

• lastprivate Clause, see Section 7.5.515

• linear Clause, see Section 7.5.616

• loop Construct, see Section 13.817

• map Clause, see Section 7.9.618

• num_teams Clause, see Section 12.2.119

• parallel Construct, see Section 12.120

• reduction Clause, see Section 7.6.1021

• sections Construct, see Section 13.322

• shared Clause, see Section 7.5.223

• simd Construct, see Section 12.424

• target Construct, see Section 15.825

• taskloop Construct, see Section 14.226

• teams Construct, see Section 12.227

• thread_limit Clause, see Section 15.328

530 OpenMP API – Version 6.0 November 2024

19.3 Compound Construct Semantics1

The semantics of combined constructs are identical to that of explicitly specifying the first construct2
containing one instance of the second construct and no other statements.3

Most composite constructs compose constructs that otherwise cannot be immediately nested to4
apply multiple loop-nest-associated constructs to the same canonical loop nest. The semantics of5
each of these composite constructs first apply the semantics of the enclosing construct as specified6
by directive-name-A and any clauses that apply to it. For each task as appropriate for the semantics7
of directive-name-A, the application of its semantics yields a nested loop of depth two in which the8
outer loop iterates over the chunks assigned to that task and the inner loop iterates over the9
collapsed iteration of each chunk. The semantics of directive-name-B and any clauses that apply to10
it are then applied to that inner loop. If directive-name-A is taskloop and directive-name-B is11
simd then for the application of the simd construct, the effect of any in_reduction clause is12
as if a reduction clause with the same reduction operator and list items is present.13

For all compound constructs, tool callbacks are invoked as if the leaf constructs were explicitly14
nested. All compound constructs for which a loop-nest-associated construct is a leaf construct are15
themselves loop-nest-associated constructs.16

Restrictions17
Restrictions to compound construct are as follows:18

• The restrictions of all constituent directives apply.19

• If distribute is a constituent-directive name, the linear clause may only be specified20
for loop-iteration variables of loops that are associated with the construct and the ordered21
clause must not be specified.22

Cross References23

• distribute Construct, see Section 13.724

• in_reduction Clause, see Section 7.6.1225

• linear Clause, see Section 7.5.626

• ordered Clause, see Section 6.4.627

• parallel Construct, see Section 12.128

• reduction Clause, see Section 7.6.1029

• simd Construct, see Section 12.430

• taskloop Construct, see Section 14.231

CHAPTER 19. COMPOSITION OF CONSTRUCTS 531

Part III1

Runtime Library Routines2

532 OpenMP API – Version 6.0 November 2024

20 Runtime Library Definitions1

This chapter defines the naming convention for the OpenMP API routines. It also defines several2
OpenMP types. The names of OpenMP API routines have an omp_ prefix. Names that begin with3
the ompx_ prefix are reserved for routines that are implementation defined extensions.4

For each base language, a compliant implementation must supply a set of definitions for the5
OpenMP API routines and the OpenMP types that are used for their arguments and return values.6
The C/C++ header file (omp.h) and the Fortran module file (omp_lib) or the deprecated Fortran7
include file (omp_lib.h) provide these definitions and must contain a declaration for each routine8
and predefined identifier as well as a definition of each OpenMP type. In addition, each set of9
definitions may specify other implementation defined values.10

C / C++
The routines are external functions with “C” linkage. C/C++ prototypes for the routines shall be11
provided in the omp.h header file.12

C / C++
Fortran

The Fortran OpenMP API routines are external procedures. The return values of these routines are13
of default kind, unless otherwise specified. Interface declarations for the Fortran routines shall be14
provided in the form of a Fortran module named omp_lib or the deprecated Fortran include15
file named omp_lib.h. Whether the omp_lib.h file provides derived-type definitions or those16
routines that require an explicit interface is implementation defined. Whether the include file or17
the module file (or both) is provided is also implementation defined. Whether any of the routines18
that take an argument are extended with a generic interface so arguments of different KIND type19
can be accommodated is implementation defined.20

Fortran
Restrictions21
The following restrictions apply to all routines and OpenMP types:22

C++
• Enumeration OpenMP types provided in the omp.h header file shall not be scoped23

enumeration types unless explicitly allowed.24

C++

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 533

Fortran
• Routines may not be called from PURE or ELEMENTAL procedures.1

• Routines may not be called in DO CONCURRENT constructs.2

Fortran

20.1 Predefined Identifiers3

Predefined Identifiers4
Name Value Properties
omp_curr_progress_width see below default
omp_fill see below default
omp_initial_device -1 constant
omp_invalid_device < -1 constant
omp_num_args see below default
omp_unassigned_thread < -1 constant
openmp_version see below constant, Fortran-

only

5

In addition to the predefined identifiers of OpenMP types that are defined with their corresponding6
OpenMP type, the OpenMP API includes the predefined identifiers shown above. The predefined7
identifiers omp_invalid_device and omp_unassigned_thread have implementation8
defined values less than -1. The predefined identifier omp_num_args can only be used in9
parameter list items and is a context-specific value that evaluates to the number of parameters of the10
associated declaration plus any variadic arguments that were passed, if any, at a given procedure11
call site. The predefined identifier omp_curr_progress_width is a context-specific value12
that represents the maximum size, in terms of hardware threads, of a progress unit that is available13
to threads that are executing tasks in the current contention group.14

The predefined identifier omp_fill is a context-specific value that can only be used as a list item15
of the counts clause. It represents the number of logical iterations of a logical iteration space that16
remain after removing those specified by the other list items.17

Fortran
The predefined identifiers are represented as default integer named constants. The predefined18
identifier openmp_version has a value yyyymm where yyyy and mm are the year and month19
designations of the version of the OpenMP API that the implementation supports. This value20
matches that of the C preprocessor macro _OPENMP, when a macro preprocessor is supported (see21
Section 5.3).22

Fortran

534 OpenMP API – Version 6.0 November 2024

20.2 Routine Bindings1

Unless otherwise specified, the binding task set of any routine region is its encountering task and2
the binding thread set of any routine region is the encountering thread. That is, the default binding3
properties for routines are the encountering-task binding property and the encountering-thread4
binding property. However, the binding task set for all lock routine regions is all tasks in the5
contention group so all of those routines have the all-contention-group-tasks binding property.6
Further, the binding region of any routine that has a binding region for any type of region that is7
relevant to that routine region is the innermost enclosing region of that type. The binding thread set8
of several routines is all threads or all threads on the current device. Those routine have the9
all-threads binding property or the all-device-threads binding property.10

20.3 Routine Argument Properties11

Similarly to directive and clause arguments, routine arguments have properties that often specify12
constraints on their values. For all routines, if an argument is specified that does not conform to the13
constraints implied by its properties then the behavior is implementation defined. Routine14
properties include the properties that apply to the arguments of directives and clauses with the same15
meanings. The default property for all routine arguments is the required property. Routine16
arguments that have the optional property may be omitted in base languages for which a default17
value is defined. In addition, routine argument properties include ones that correspond to aspects of18
their base language prototypes, as shown in Table 20.1.19

TABLE 20.1: Routine Argument Properties

Property Property Description
C/C++ pointer property A pointer type in C/C++, an array in Fortran
intent(in) property An intent(in) argument in Fortran and,

if type corresponds to a pointer type but not
pointer to char, a const argument in C/C++

intent(out) property An intent(out) argument in Fortran
ISO C property Binds to an ISO C type in Fortran
pointer property A pointer type in C/C++ and an assumed-size

array in Fortran
pointer-to-pointer property A pointer-to-pointer type in C/C++
procedure property A function pointer type in C/C++ and a proce-

dure type in Fortran
value property A value argument in Fortran

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 535

20.4 General OpenMP Types1

This section describes general OpenMP types.2

20.4.1 OpenMP intptr Type3

Name: intptr
Properties: omp

Base Type: c_intptr_t
4

Type Definition5
C / C++

typedef intptr_t omp_intptr_t;6

C / C++
Fortran

integer (kind=omp_c_intptr_t_kind)7

Fortran
The intptr OpenMP type is a signed integer type that is capable of holding a pointer on any8
device, and is equivalent to intptr_t on platforms that provide it.9

20.4.2 OpenMP uintptr Type10

Name: uintptr
Properties: C/C++-only, omp

Base Type: c_uintptr_t
11

Type Definition12
C / C++

typedef uintptr_t omp_uintptr_t;13

C / C++
The uintptr OpenMP type is an unsigned integer type that is capable of holding a pointer on any14
device, and is equivalent to uintptr_t on platforms that provide it.15

20.5 OpenMP Parallel Region Support Types16

This section describes OpenMP types that support parallel regions.17

20.5.1 OpenMP sched Type18

Name: sched
Properties: omp

Base Type: enumeration
19

536 OpenMP API – Version 6.0 November 2024

Values1
Name Value Properties
omp_sched_static 0x1 omp
omp_sched_dynamic 0x2 omp
omp_sched_guided 0x3 omp
omp_sched_auto 0x4 omp
omp_sched_monotonic 0x80000000u omp

2

Type Definition3
C / C++

typedef enum omp_sched_t {4
omp_sched_static = 0x1,5
omp_sched_dynamic = 0x2,6
omp_sched_guided = 0x3,7
omp_sched_auto = 0x4,8
omp_sched_monotonic = 0x80000000u9

} omp_sched_t;10

C / C++
Fortran

integer (kind=omp_sched_kind), &11
parameter :: omp_sched_static = &12
int(Z'1', kind=omp_sched_kind)13

integer (kind=omp_sched_kind), &14
parameter :: omp_sched_dynamic = &15
int(Z'2', kind=omp_sched_kind)16

integer (kind=omp_sched_kind), &17
parameter :: omp_sched_guided = &18
int(Z'3', kind=omp_sched_kind)19

integer (kind=omp_sched_kind), &20
parameter :: omp_sched_auto = int(Z'4', kind=omp_sched_kind)21

integer (kind=omp_sched_kind), &22
parameter :: omp_sched_monotonic = &23
int(Z'80000000', kind=omp_sched_kind)24

Fortran
The sched type is used in routines that modify or retrieve the value of the run-sched-var ICV.25
Each of omp_sched_static, omp_sched_dynamic, omp_sched_guided, and26
omp_sched_auto can be combined with omp_sched_monotonic by using the + or |27
operator in C/C++ or the + operator in Fortran. If the schedule type is combined with the28
omp_sched_monotonic, the value corresponds to a schedule that is modified with the29
monotonic ordering-modifier. Otherwise, the value corresponds to a schedule that is modified30
with the nonmonotonic ordering-modifier.31

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 537

Cross References1

• run-sched-var ICV, see Table 3.12

20.6 OpenMP Tasking Support Types3

This section describes OpenMP types that support tasking mechanisms.4

20.6.1 OpenMP event_handle Type5

Name: event_handle
Properties: named-handle, omp, opaque

Base Type:
implementation-defined-int

6

Type Definition7
C / C++

typedef <implementation-defined-integral> omp_event_handle_t;8

C / C++
Fortran

integer (kind=omp_event_handle_kind)9

Fortran
The event_handle OpenMP type is an opaque type that represents events related to detachable10
tasks.11

20.7 OpenMP Interoperability Support Types12

This section describes OpenMP types that support interoperability mechanisms.13

20.7.1 OpenMP interop Type14

Name: interop
Properties: named-handle, omp, opaque

Base Type:
implementation-defined-int

15

Predefined Identifiers16
Name Value Properties
omp_interop_none 0 default17

538 OpenMP API – Version 6.0 November 2024

Type Definition1
C / C++

typedef <implementation-defined-integral> omp_interop_t;2

C / C++
Fortran

integer (kind=omp_interop_kind)3

Fortran
The interop OpenMP type is an opaque type that represents OpenMP interoperability objects,4
which thus have the opaque property. Interoperability objects may be initialized, destroyed or5
otherwise used by an interop construct and may be initialized to omp_interop_none.6

Cross References7

• interop Construct, see Section 16.18

20.7.2 OpenMP interop_fr Type9

Name: interop_fr
Properties: omp

Base Type: enumeration
10

Values11
Name Value Properties
omp_ifr_last N omp12

Type Definition13
C / C++

typedef enum omp_interop_fr_t {14
omp_ifr_last = N15

} omp_interop_fr_t;16

C / C++
Fortran

integer (kind=omp_interop_fr_kind), &17
parameter :: omp_ifr_last = N18

Fortran
The interop_fr OpenMP type represents supported foreign runtime environments. Each value19
of the interop_fr OpenMP type that an implementation provides will be available as20
omp_ifr_name, where name is the name of the foreign runtime environment. Available names21
include those that are listed in the OpenMP Additional Definitions document; implementation22
defined names may also be supported. The value of omp_ifr_last is defined as one greater than23
the value of the highest value of the supported foreign runtime environments that are listed in the24
aforementioned document or are implementation defined.25

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 539

Cross References1

• OpenMP Contexts, see Section 9.12

• omp_get_num_devices Routine, see Section 24.33

20.7.3 OpenMP interop_property Type4

Name: interop_property
Properties: omp

Base Type: enumeration
5

Values6
Name Value Properties
omp_ipr_fr_id -1 omp
omp_ipr_fr_name -2 omp
omp_ipr_vendor -3 omp
omp_ipr_vendor_name -4 omp
omp_ipr_device_num -5 omp
omp_ipr_platform -6 omp
omp_ipr_device -7 omp
omp_ipr_device_context -8 omp
omp_ipr_targetsync -9 omp
omp_ipr_first -9 omp

7

Type Definition8
C / C++

typedef enum omp_interop_property_t {9
omp_ipr_fr_id = -1,10
omp_ipr_fr_name = -2,11
omp_ipr_vendor = -3,12
omp_ipr_vendor_name = -4,13
omp_ipr_device_num = -5,14
omp_ipr_platform = -6,15
omp_ipr_device = -7,16
omp_ipr_device_context = -8,17
omp_ipr_targetsync = -9,18
omp_ipr_first = -919

} omp_interop_property_t;20

C / C++

540 OpenMP API – Version 6.0 November 2024

Fortran
integer (kind=omp_interop_property_kind), &1

parameter :: omp_ipr_fr_id = -12
integer (kind=omp_interop_property_kind), &3

parameter :: omp_ipr_fr_name = -24
integer (kind=omp_interop_property_kind), &5

parameter :: omp_ipr_vendor = -36
integer (kind=omp_interop_property_kind), &7

parameter :: omp_ipr_vendor_name = -48
integer (kind=omp_interop_property_kind), &9

parameter :: omp_ipr_device_num = -510
integer (kind=omp_interop_property_kind), &11

parameter :: omp_ipr_platform = -612
integer (kind=omp_interop_property_kind), &13

parameter :: omp_ipr_device = -714
integer (kind=omp_interop_property_kind), &15

parameter :: omp_ipr_device_context = -816
integer (kind=omp_interop_property_kind), &17

parameter :: omp_ipr_targetsync = -918
integer (kind=omp_interop_property_kind), &19

parameter :: omp_ipr_first = -920

Fortran
The interop_property OpenMP type is used in interoperability routines to represent21
interoperability properties. OpenMP reserves all negative values for interoperability properties, as22
listed in Table 20.2; implementation defined interoperability properties may use non-negative23
values. The special interoperability property, omp_ipr_first, will always have the lowest24
interop_property value, which may change in future versions of this specification. Valid25
values and types for the properties that Table 20.2 lists are specified in the OpenMP Additional26
Definitions document or are implementation defined unless otherwise specified. The Contexts27
column of Table 20.2 lists the OpenMP context that is relevant to the value.28

Cross References29

• OpenMP Contexts, see Section 9.130

• omp_get_num_devices Routine, see Section 24.331

20.7.4 OpenMP interop_rc Type32

Name: interop_rc
Properties: omp

Base Type: enumeration
33

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 541

TABLE 20.2: Required Values of the interop_property OpenMP Type

Enum Name Contexts Name Property
omp_ipr_fr_id all fr_id An intptr_t value that rep-

resents the foreign runtime envi-
ronment ID of context

omp_ipr_fr_name all fr_name C string value that represents
the name of the foreign runtime
environment of context

omp_ipr_vendor all vendor An intptr_t that represents
the vendor of context

omp_ipr_vendor_name all vendor_name C string value that represents the
vendor of context

omp_ipr_device_num all device_num The OpenMP device number
for the device in the range 0 to
omp_get_num_devices
inclusive

omp_ipr_platform target platform A foreign platform handle usu-
ally spanning multiple devices

omp_ipr_device target device A foreign device handle
omp_ipr_device_context target device_context A handle to an instance of a

foreign device context
omp_ipr_targetsync targetsync targetsync A handle to a synchronization

object of a foreign execution
context

Values1
Name Value Properties
omp_irc_no_value 1 omp
omp_irc_success 0 omp
omp_irc_empty -1 omp
omp_irc_out_of_range -2 omp
omp_irc_type_int -3 omp
omp_irc_type_ptr -4 omp
omp_irc_type_str -5 omp
omp_irc_other -6 omp

2

Type Definition3
C / C++

typedef enum omp_interop_rc_t {4
omp_irc_no_value = 1,5
omp_irc_success = 0,6
omp_irc_empty = -1,7
omp_irc_out_of_range = -2,8
omp_irc_type_int = -3,9

542 OpenMP API – Version 6.0 November 2024

TABLE 20.3: Required Values for the interop_rc OpenMP Type

Enum Name Description
omp_irc_no_value Valid but no meaningful value available
omp_irc_success Successful, value is usable

omp_irc_empty
The provided interoperability object is equal to
omp_interop_none

omp_irc_out_of_range Property ID is out of range, see Table 20.2
omp_irc_type_int Property type is int; use omp_get_interop_int
omp_irc_type_ptr Property type is pointer; use omp_get_interop_ptr
omp_irc_type_str Property type is string; use omp_get_interop_str
omp_irc_other Other error; use omp_get_interop_rc_desc

omp_irc_type_ptr = -4,1
omp_irc_type_str = -5,2
omp_irc_other = -63

} omp_interop_rc_t;4

C / C++
Fortran

integer (kind=omp_interop_rc_kind), &5
parameter :: omp_irc_no_value = 16

integer (kind=omp_interop_rc_kind), &7
parameter :: omp_irc_success = 08

integer (kind=omp_interop_rc_kind), &9
parameter :: omp_irc_empty = -110

integer (kind=omp_interop_rc_kind), &11
parameter :: omp_irc_out_of_range = -212

integer (kind=omp_interop_rc_kind), &13
parameter :: omp_irc_type_int = -314

integer (kind=omp_interop_rc_kind), &15
parameter :: omp_irc_type_ptr = -416

integer (kind=omp_interop_rc_kind), &17
parameter :: omp_irc_type_str = -518

integer (kind=omp_interop_rc_kind), &19
parameter :: omp_irc_other = -620

Fortran
The interop_rc OpenMP type is used in several interoperability routines to specify their21
results. Table 20.3 describes the values that this type must include.22

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 543

Cross References1

• OpenMP interop Type, see Section 20.7.12

• OpenMP interop_property Type, see Section 20.7.33

• omp_get_interop_int Routine, see Section 26.24

• omp_get_interop_ptr Routine, see Section 26.35

• omp_get_interop_rc_desc Routine, see Section 26.76

• omp_get_interop_str Routine, see Section 26.47

20.8 OpenMP Memory Management Types8

This section describes OpenMP types that support memory management.9

20.8.1 OpenMP allocator_handle Type10

Name: allocator_handle
Properties: omp

Base Type: enumeration
11

Values12
Name Value Properties
omp_null_allocator 0 omp
omp_default_mem_alloc 1 omp
omp_large_cap_mem_alloc 2 omp
omp_const_mem_alloc 3 omp
omp_high_bw_mem_alloc 4 omp
omp_low_lat_mem_alloc 5 omp
omp_cgroup_mem_alloc 6 omp
omp_pteam_mem_alloc 7 omp
omp_thread_mem_alloc 8 omp

13

Type Definition14
C / C++

typedef enum omp_allocator_handle_t {15
omp_null_allocator = 0,16
omp_default_mem_alloc = 1,17
omp_large_cap_mem_alloc = 2,18
omp_const_mem_alloc = 3,19
omp_high_bw_mem_alloc = 4,20
omp_low_lat_mem_alloc = 5,21
omp_cgroup_mem_alloc = 6,22

544 OpenMP API – Version 6.0 November 2024

omp_pteam_mem_alloc = 7,1
omp_thread_mem_alloc = 82

} omp_allocator_handle_t;3

C / C++
Fortran

integer (kind=omp_allocator_handle_kind), &4
parameter :: omp_null_allocator = 05

integer (kind=omp_allocator_handle_kind), &6
parameter :: omp_default_mem_alloc = 17

integer (kind=omp_allocator_handle_kind), &8
parameter :: omp_large_cap_mem_alloc = 29

integer (kind=omp_allocator_handle_kind), &10
parameter :: omp_const_mem_alloc = 311

integer (kind=omp_allocator_handle_kind), &12
parameter :: omp_high_bw_mem_alloc = 413

integer (kind=omp_allocator_handle_kind), &14
parameter :: omp_low_lat_mem_alloc = 515

integer (kind=omp_allocator_handle_kind), &16
parameter :: omp_cgroup_mem_alloc = 617

integer (kind=omp_allocator_handle_kind), &18
parameter :: omp_pteam_mem_alloc = 719

integer (kind=omp_allocator_handle_kind), &20
parameter :: omp_thread_mem_alloc = 821

Fortran
The allocator_handle OpenMP type represents an allocator as described in Table 8.3. This22
OpenMP type must be an implementation defined (for C++ possibly scoped) enum type and its23
valid constants must include those shown above.24

20.8.2 OpenMP alloctrait Type25

Name: alloctrait
Properties: omp

Base Type: structure
26

Fields27
Name Type Properties
key alloctrait_key omp
value alloctrait_val omp

28

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 545

Type Definition1
C / C++

typedef struct omp_alloctrait_t {2
omp_alloctrait_key_t key;3
omp_alloctrait_val_t value;4

} omp_alloctrait_t;5

C / C++
Fortran

! omp_alloctrait might not be provided6
! in deprecated include file omp_lib.h7
type omp_alloctrait8

integer (kind=omp_alloctrait_key_kind) key9
integer (kind=omp_alloctrait_val_kind) value10

end type omp_alloctrait;11

Fortran

TABLE 20.4: Allowed Key-Values for alloctrait OpenMP Type

Trait Key Allowed Values

sync_hint omp_atk_sync_hint omp_atv_contended,
omp_atv_uncontended,
omp_atv_serialized,
omp_atv_private

alignment omp_atk_alignment Positive property integer pow-
ers of 2

access omp_atk_access omp_atv_all,
omp_atv_memspace,
omp_atv_device,
omp_atv_cgroup,
omp_atv_pteam,
omp_atv_thread

pool_size omp_atk_pool_size Any positive property integer

fallback omp_atk_fallback omp_atv_default_mem_fb,
omp_atv_null_fb,
omp_atv_abort_fb,
omp_atv_allocator_fb

table continued on next page

546 OpenMP API – Version 6.0 November 2024

table continued from previous page

Trait Key Allowed Values

fb_data omp_atk_fb_data An allocator handle

pinned omp_atk_pinned omp_atv_true,
omp_atv_false

partition omp_atk_partition omp_atv_environment,
omp_atv_nearest,
omp_atv_blocked,
omp_atv_interleaved,
omp_atv_partitioner

pin_device omp_atk_pin_device Any conforming device num-
ber

preferred_device omp_atk_preferred_device Any conforming device num-
ber

target_access omp_atk_target_access omp_atv_single,
omp_atv_multiple

atomic_scope omp_atk_atomic_scope omp_atv_all,
omp_atv_device

part_size omp_atk_part_size Any positive property integer
value

partitioner omp_atk_partitioner A memory partitioner handle

partitioner_arg omp_atk_partitioner_arg Any integer value

The alloctrait OpenMP type is a key-value pair that represents the name of an allocator trait,1
as the key, and its value (see Table 20.4).2

Cross References3

• Memory Allocators, see Section 8.24

20.8.3 OpenMP alloctrait_key Type5

Name: alloctrait_key
Properties: omp

Base Type: enumeration
6

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 547

Values1
Name Value Properties
omp_atk_sync_hint 1 omp
omp_atk_alignment 2 omp
omp_atk_access 3 omp
omp_atk_pool_size 4 omp
omp_atk_fallback 5 omp
omp_atk_fb_data 6 omp
omp_atk_pinned 7 omp
omp_atk_partition 8 omp
omp_atk_pin_device 9 omp
omp_atk_preferred_device 10 omp
omp_atk_device_access 11 omp
omp_atk_target_access 12 omp
omp_atk_atomic_scope 13 omp
omp_atk_part_size 14 omp
omp_atk_partitioner 15 omp
omp_atk_partitioner_arg 16 omp

2

Type Definition3
C / C++

typedef enum omp_alloctrait_key_t {4
omp_atk_sync_hint = 1,5
omp_atk_alignment = 2,6
omp_atk_access = 3,7
omp_atk_pool_size = 4,8
omp_atk_fallback = 5,9
omp_atk_fb_data = 6,10
omp_atk_pinned = 7,11
omp_atk_partition = 8,12
omp_atk_pin_device = 9,13
omp_atk_preferred_device = 10,14
omp_atk_device_access = 11,15
omp_atk_target_access = 12,16
omp_atk_atomic_scope = 13,17
omp_atk_part_size = 14,18
omp_atk_partitioner = 15,19
omp_atk_partitioner_arg = 1620

} omp_alloctrait_key_t;21

C / C++

548 OpenMP API – Version 6.0 November 2024

Fortran
integer (kind=omp_alloctrait_key_kind), &1

parameter :: omp_atk_sync_hint = 12
integer (kind=omp_alloctrait_key_kind), &3

parameter :: omp_atk_alignment = 24
integer (kind=omp_alloctrait_key_kind), &5

parameter :: omp_atk_access = 36
integer (kind=omp_alloctrait_key_kind), &7

parameter :: omp_atk_pool_size = 48
integer (kind=omp_alloctrait_key_kind), &9

parameter :: omp_atk_fallback = 510
integer (kind=omp_alloctrait_key_kind), &11

parameter :: omp_atk_fb_data = 612
integer (kind=omp_alloctrait_key_kind), &13

parameter :: omp_atk_pinned = 714
integer (kind=omp_alloctrait_key_kind), &15

parameter :: omp_atk_partition = 816
integer (kind=omp_alloctrait_key_kind), &17

parameter :: omp_atk_pin_device = 918
integer (kind=omp_alloctrait_key_kind), &19

parameter :: omp_atk_preferred_device = 1020
integer (kind=omp_alloctrait_key_kind), &21

parameter :: omp_atk_device_access = 1122
integer (kind=omp_alloctrait_key_kind), &23

parameter :: omp_atk_target_access = 1224
integer (kind=omp_alloctrait_key_kind), &25

parameter :: omp_atk_atomic_scope = 1326
integer (kind=omp_alloctrait_key_kind), &27

parameter :: omp_atk_part_size = 1428
integer (kind=omp_alloctrait_key_kind), &29

parameter :: omp_atk_partitioner = 1530
integer (kind=omp_alloctrait_key_kind), &31

parameter :: omp_atk_partitioner_arg = 1632

Fortran
The alloctrait_key OpenMP type represents an allocator trait as described in Table 20.4.33
The valid constants for this OpenMP type must include those shown above.34

C++
The omp.h header file also defines a class template that models the memory allocator concept in35
the omp::allocator namespace for each value of the alloctrait_key OpenMP type. The36
names in this class do not include either the omp_ prefix or the _alloc suffix.37

C++

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 549

Cross References1

• Memory Allocators, see Section 8.22

20.8.4 OpenMP alloctrait_value Type3

Name: alloctrait_value
Properties: omp

Base Type: enumeration
4

Values5
Name Value Properties
omp_atv_default -1 omp
omp_atv_false 0 omp
omp_atv_true 1 omp
omp_atv_contended 3 omp
omp_atv_uncontended 4 omp
omp_atv_serialized 5 omp
omp_atv_private 6 omp
omp_atv_device 7 omp
omp_atv_thread 8 omp
omp_atv_pteam 9 omp
omp_atv_cgroup 10 omp
omp_atv_default_mem_fb 11 omp
omp_atv_null_fb 12 omp
omp_atv_abort_fb 13 omp
omp_atv_allocator_fb 14 omp
omp_atv_environment 15 omp
omp_atv_nearest 16 omp
omp_atv_blocked 17 omp
omp_atv_interleaved 18 omp
omp_atv_all 19 omp
omp_atv_single 20 omp
omp_atv_multiple 21 omp
omp_atv_memspace 22 omp
omp_atv_partitioner 23 omp

6

Type Definition7
C / C++

typedef enum omp_alloctrait_value_t {8
omp_atv_default = -1,9
omp_atv_false = 0,10
omp_atv_true = 1,11
omp_atv_contended = 3,12

550 OpenMP API – Version 6.0 November 2024

omp_atv_uncontended = 4,1
omp_atv_serialized = 5,2
omp_atv_private = 6,3
omp_atv_device = 7,4
omp_atv_thread = 8,5
omp_atv_pteam = 9,6
omp_atv_cgroup = 10,7
omp_atv_default_mem_fb = 11,8
omp_atv_null_fb = 12,9
omp_atv_abort_fb = 13,10
omp_atv_allocator_fb = 14,11
omp_atv_environment = 15,12
omp_atv_nearest = 16,13
omp_atv_blocked = 17,14
omp_atv_interleaved = 18,15
omp_atv_all = 19,16
omp_atv_single = 20,17
omp_atv_multiple = 21,18
omp_atv_memspace = 22,19
omp_atv_partitioner = 2320

} omp_alloctrait_value_t;21

C / C++
Fortran

integer (kind=omp_alloctrait_value_kind), &22
parameter :: omp_atv_default = -123

integer (kind=omp_alloctrait_value_kind), &24
parameter :: omp_atv_false = 025

integer (kind=omp_alloctrait_value_kind), &26
parameter :: omp_atv_true = 127

integer (kind=omp_alloctrait_value_kind), &28
parameter :: omp_atv_contended = 329

integer (kind=omp_alloctrait_value_kind), &30
parameter :: omp_atv_uncontended = 431

integer (kind=omp_alloctrait_value_kind), &32
parameter :: omp_atv_serialized = 533

integer (kind=omp_alloctrait_value_kind), &34
parameter :: omp_atv_private = 635

integer (kind=omp_alloctrait_value_kind), &36
parameter :: omp_atv_device = 737

integer (kind=omp_alloctrait_value_kind), &38
parameter :: omp_atv_thread = 839

integer (kind=omp_alloctrait_value_kind), &40
parameter :: omp_atv_pteam = 941

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 551

integer (kind=omp_alloctrait_value_kind), &1
parameter :: omp_atv_cgroup = 102

integer (kind=omp_alloctrait_value_kind), &3
parameter :: omp_atv_default_mem_fb = 114

integer (kind=omp_alloctrait_value_kind), &5
parameter :: omp_atv_null_fb = 126

integer (kind=omp_alloctrait_value_kind), &7
parameter :: omp_atv_abort_fb = 138

integer (kind=omp_alloctrait_value_kind), &9
parameter :: omp_atv_allocator_fb = 1410

integer (kind=omp_alloctrait_value_kind), &11
parameter :: omp_atv_environment = 1512

integer (kind=omp_alloctrait_value_kind), &13
parameter :: omp_atv_nearest = 1614

integer (kind=omp_alloctrait_value_kind), &15
parameter :: omp_atv_blocked = 1716

integer (kind=omp_alloctrait_value_kind), &17
parameter :: omp_atv_interleaved = 1818

integer (kind=omp_alloctrait_value_kind), &19
parameter :: omp_atv_all = 1920

integer (kind=omp_alloctrait_value_kind), &21
parameter :: omp_atv_single = 2022

integer (kind=omp_alloctrait_value_kind), &23
parameter :: omp_atv_multiple = 2124

integer (kind=omp_alloctrait_value_kind), &25
parameter :: omp_atv_memspace = 2226

integer (kind=omp_alloctrait_value_kind), &27
parameter :: omp_atv_partitioner = 2328

Fortran
The alloctrait_value OpenMP type represents semantic values of allocator traits as29
described in Table 20.4. The valid constants for this OpenMP type must include those shown above.30

Cross References31

• Memory Allocators, see Section 8.232

20.8.5 OpenMP alloctrait_val Type33

Name: alloctrait_val
Properties: omp

Base Type: intptr
34

552 OpenMP API – Version 6.0 November 2024

Type Definition1
C / C++

typedef omp_intptr_t omp_alloctrait_val_t;2

C / C++
Fortran

integer (kind=c_intptr_t)3

Fortran
The alloctrait_val OpenMP type represents the values that may be assigned to the value4
field of the alloctrait_val OpenMP type. Any of the semantic values of the5
alloctrait_value OpenMP type may be used for the alloctrait_val OpenMP type; in6
addition, other numeric values may be used for it as appropriate for the specified key of the7
alloctrait OpenMP type.8

20.8.6 OpenMP mempartition Type9

Name: mempartition
Properties: named-handle, omp, opaque

Base Type: opaque
10

Type Definition11
C / C++

typedef <implementation-defined> omp_mempartition_t;12

C / C++
Fortran

integer (kind=omp_mempartition_kind)13

Fortran
The mempartition OpenMP type is an opaque type that represents memory partitions.14

20.8.7 OpenMP mempartitioner Type15

Name: mempartitioner
Properties: named-handle, omp, opaque

Base Type: opaque
16

Type Definition17
C / C++

typedef <implementation-defined> omp_mempartitioner_t;18

C / C++
Fortran

integer (kind=omp_mempartitioner_kind)19

Fortran
The mempartitioner OpenMP type is an opaque type that represents memory partitioners.20

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 553

20.8.8 OpenMP mempartitioner_lifetime Type1

Name: mempartitioner_lifetime
Properties: omp

Base Type: enumeration
2

Values3
Name Value Properties
omp_static_mempartition 1 omp
omp_allocator_mempartition 2 omp
omp_dynamic_mempartition 3 omp

4

Type Definition5
C / C++

typedef enum omp_mempartitioner_lifetime_t {6
omp_static_mempartition = 1,7
omp_allocator_mempartition = 2,8
omp_dynamic_mempartition = 39

} omp_mempartitioner_lifetime_t;10

C / C++
Fortran

integer (kind=omp_mempartitioner_lifetime_kind), &11
parameter :: omp_static_mempartition = 112

integer (kind=omp_mempartitioner_lifetime_kind), &13
parameter :: omp_allocator_mempartition = 214

integer (kind=omp_mempartitioner_lifetime_kind), &15
parameter :: omp_dynamic_mempartition = 316

Fortran
The mempartitioner_lifetime OpenMP type represents the lifetime of a memory17
partitioner. The valid constants for the mempartitioner_lifetime OpenMP type must18
include those shown above.19

20.8.9 OpenMP mempartitioner_compute_proc Type20

Name: mempartitioner_compute_proc
Category: subroutine pointer

Properties: iso_c_binding, omp
21

Arguments22
Name Type Properties
memspace memspace_handle omp
allocation_size c_size_t iso_c, value
partitioner_arg alloctrait_val omp, value
partition mempartition C/C++ pointer, omp

23

554 OpenMP API – Version 6.0 November 2024

Type Signature1
C / C++

typedef void (*omp_mempartitioner_compute_proc_t) (2
omp_memspace_handle_t memspace, size_t allocation_size,3
omp_alloctrait_val_t partitioner_arg,4
omp_mempartition_t *partition);5

C / C++
Fortran

abstract interface6
subroutine omp_mempartitioner_compute_proc_t(memspace, &7

allocation_size, partitioner_arg, partition) bind(c)8
use, intrinsic :: iso_c_binding, only : c_size_t9
integer (kind=omp_memspace_handle_kind) memspace10
integer (kind=c_size_t), value :: allocation_size11
integer (kind=omp_alloctrait_val_kind), value :: &12

partitioner_arg13
integer (kind=omp_mempartition_kind) partition14

end subroutine15
end interface16

Fortran
The mempartitioner_compute_proc OpenMP type represents a partition computation17
procedure. When used through the omp_init_mempartition and18
omp_mempartition_set_part routines, the procedure will be passed the following19
arguments in the listed order:20

• The memory space associated with the allocator to be used for the memory allocation;21

• The size of the allocation in bytes;22

• If the omp_atk_partitioner_arg trait was specified for the allocator, its specified23
value, otherwise, the value zero; and24

• A memory partition object to be initialized25

If the sum of the sizes of the parts specified in the memory partition object after executing the26
procedure is not equal to the allocation_size argument, the behavior is unspecified.27

If the associated memory partitioner has been created with a call to28
omp_init_mempartitioner with the value of the lifetime argument set to29
omp_static_mempartition then the memory partition object computed by an invocation to30
the procedure might be used for the allocations of any allocators that have the partitioner memory31
partitioner object associated with them if the allocations have the same size and the same memory32
space. The number of times that the compute_proc procedure is invoked is unspecified.33

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 555

Cross References1

• OpenMP alloctrait_val Type, see Section 20.8.52

• OpenMP mempartition Type, see Section 20.8.63

• OpenMP memspace_handle Type, see Section 20.8.114

• omp_init_mempartition Routine, see Section 27.5.35

• omp_mempartition_set_part Routine, see Section 27.5.56

20.8.10 OpenMP mempartitioner_release_proc Type7

Name: mempartitioner_release_proc
Category: subroutine pointer

Properties: iso_c_binding, omp
8

Arguments9
Name Type Properties
partition mempartition C/C++ pointer, omp10

Type Signature11
C / C++

typedef void (*omp_mempartitioner_release_proc_t) (12
omp_mempartition_t *partition);13

C / C++
Fortran

abstract interface14
subroutine omp_mempartitioner_release_proc_t(partition) &15

bind(c)16
integer (kind=omp_mempartition_kind) partition17

end subroutine18
end interface19

Fortran
The mempartitioner_release_proc OpenMP type represents a partition release20
procedure. When an implementation finishes using a memory partition object that was created with21
the procedure used as the compute_proc argument for a call to the22
omp_init_mempartitioner routine to which the represented release procedure was the23
release_proc argument, that release procedure will be called with the memory partition object as its24
argument. The procedure can then release the object and its resources using the25
omp_destroy_mempartition routine. The implementation will invoke the release_proc at26
most once for each memory partition object.27

556 OpenMP API – Version 6.0 November 2024

Cross References1

• OpenMP mempartition Type, see Section 20.8.62

• omp_init_mempartitioner Routine, see Section 27.5.13

20.8.11 OpenMP memspace_handle Type4

Name: memspace_handle
Properties: omp

Base Type: enumeration
5

Values6
Name Value Properties
omp_null_mem_space 0 omp
omp_default_mem_space 1 omp
omp_large_cap_mem_space 2 omp
omp_const_mem_space 3 omp
omp_high_bw_mem_space 4 omp
omp_low_lat_mem_space 5 omp

7

Type Definition8
C / C++

typedef enum omp_memspace_handle_t {9
omp_null_mem_space = 0,10
omp_default_mem_space = 1,11
omp_large_cap_mem_space = 2,12
omp_const_mem_space = 3,13
omp_high_bw_mem_space = 4,14
omp_low_lat_mem_space = 515

} omp_memspace_handle_t;16

C / C++
Fortran

integer (kind=omp_memspace_handle_kind), &17
parameter :: omp_null_mem_space = 018

integer (kind=omp_memspace_handle_kind), &19
parameter :: omp_default_mem_space = 120

integer (kind=omp_memspace_handle_kind), &21
parameter :: omp_large_cap_mem_space = 222

integer (kind=omp_memspace_handle_kind), &23
parameter :: omp_const_mem_space = 324

integer (kind=omp_memspace_handle_kind), &25
parameter :: omp_high_bw_mem_space = 426

integer (kind=omp_memspace_handle_kind), &27
parameter :: omp_low_lat_mem_space = 528

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 557

Fortran
The memspace_handle OpenMP type represents an allocator as described in Table 8.1. This1
OpenMP type must be an implementation defined (for C++ possibly scoped) enum type and its2
valid constants must include those shown above.3

20.9 OpenMP Synchronization Types4

This section describes OpenMP types related to synchronization, including locks.5

20.9.1 OpenMP depend Type6

Name: depend
Properties: named-handle, omp, opaque

Base Type:
implementation-defined-int

7

Type Definition8
C / C++

typedef <implementation-defined-integral> omp_depend_t;9

C / C++
Fortran

integer (kind=omp_depend_kind)10

Fortran
The depend OpenMP type is an opaque type that represents depend objects.11

20.9.2 OpenMP impex Type12

Name: impex
Properties: omp

Base Type: enumeration
13

Values14
Name Value Properties
omp_not_impex 0 omp
omp_import 1 omp
omp_export 2 omp
omp_impex 3 omp

15

558 OpenMP API – Version 6.0 November 2024

Type Definition1
C / C++

typedef enum omp_impex_t {2
omp_not_impex = 0,3
omp_import = 1,4
omp_export = 2,5
omp_impex = 36

} omp_impex_t;7

C / C++
Fortran

integer (kind=omp_impex_kind), &8
parameter :: omp_not_impex = 09

integer (kind=omp_impex_kind), &10
parameter :: omp_import = 111

integer (kind=omp_impex_kind), &12
parameter :: omp_export = 213

integer (kind=omp_impex_kind), &14
parameter :: omp_impex = 315

Fortran
The impex OpenMP type is an enumeration type that is used to specify whether the child tasks of16
a task may form a task dependence with respect to its dependence-compatible tasks. In particular, it17
is used to identify whether a task is an importing task and/or an exporting task. The valid constants18
must include those shown above.19

Cross References20

• transparent Clause, see Section 17.9.621

20.9.3 OpenMP lock Type22

Name: lock
Properties: named-handle, opaque

Base Type: opaque
23

Type Definition24
C / C++

typedef <implementation-defined> omp_lock_t;25

C / C++
Fortran

integer (kind=omp_lock_kind)26

Fortran
The lock OpenMP type is an opaque type that represents simple locks used in simple lock27
routines.28

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 559

20.9.4 OpenMP nest_lock Type1

Name: nest_lock
Properties: named-handle, opaque

Base Type: opaque
2

Type Definition3
C / C++

typedef <implementation-defined> omp_nest_lock_t;4

C / C++
Fortran

integer (kind=omp_nest_lock_kind)5

Fortran
The nest_lock OpenMP type is an opaque type that represents nestable locks used in nestable6
lock routines.7

20.9.5 OpenMP sync_hint Type8

Name: sync_hint
Properties: omp

Base Type: enumeration
9

Values10
Name Value Properties
omp_sync_hint_none 0x0 omp
omp_sync_hint_uncontended 0x1 omp
omp_sync_hint_contended 0x2 omp
omp_sync_hint_nonspeculative 0x4 omp
omp_sync_hint_speculative 0x8 omp

11

Type Definition12
C / C++

typedef enum omp_sync_hint_t {13
omp_sync_hint_none = 0x0,14
omp_sync_hint_uncontended = 0x1,15
omp_sync_hint_contended = 0x2,16
omp_sync_hint_nonspeculative = 0x4,17
omp_sync_hint_speculative = 0x818

} omp_sync_hint_t;19

C / C++

560 OpenMP API – Version 6.0 November 2024

Fortran
integer (kind=omp_sync_hint_kind), &1

parameter :: omp_sync_hint_none = &2
int(Z'0', kind=omp_sync_hint_kind)3

integer (kind=omp_sync_hint_kind), &4
parameter :: omp_sync_hint_uncontended = &5
int(Z'1', kind=omp_sync_hint_kind)6

integer (kind=omp_sync_hint_kind), &7
parameter :: omp_sync_hint_contended = &8
int(Z'2', kind=omp_sync_hint_kind)9

integer (kind=omp_sync_hint_kind), &10
parameter :: omp_sync_hint_nonspeculative = &11
int(Z'4', kind=omp_sync_hint_kind)12

integer (kind=omp_sync_hint_kind), &13
parameter :: omp_sync_hint_speculative = &14
int(Z'8', kind=omp_sync_hint_kind)15

Fortran
The sync_hint OpenMP type is used to specify synchronization hints. The16
omp_init_lock_with_hint and omp_init_nest_lock_with_hint routines provide17
hints about the expected dynamic behavior or suggested implementation of a lock. Synchronization18
hints may also be provided for atomic and critical directives by using the hint clause. The19
effect of a hint does not change the semantics of the associated construct or routine; if ignoring the20
hint changes the program semantics, the result is unspecified.21

Synchronization hints can be combined by using the + or | operators in C/C++ or the + operator in22
Fortran. Combining omp_sync_hint_none with any other synchronization hint is equivalent to23
specifying the other synchronization hint.24

The intended meaning of each synchronization hint is:25

• omp_sync_hint_uncontended: low contention is expected in this operation, that is,26
few threads are expected to perform the operation simultaneously in a manner that requires27
synchronization;28

• omp_sync_hint_contended: high contention is expected in this operation, that is,29
many threads are expected to perform the operation simultaneously in a manner that requires30
synchronization;31

• omp_sync_hint_speculative: the programmer suggests that the operation should be32
implemented using speculative techniques such as transactional memory; and33

• omp_sync_hint_nonspeculative: the programmer suggests that the operation34
should not be implemented using speculative techniques such as transactional memory.35

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 561

1

Note – Future OpenMP specifications may add additional synchronization hints to the2
sync_hint OpenMP type. Implementers are advised to add implementation defined3
synchronization hints starting from the most significant bit of the type and to include the name of4
the implementation in the name of the added synchronization hint to avoid name conflicts with5
other OpenMP implementations.6

7

Restrictions8
Restrictions to the synchronization hints are as follows:9

• The omp_sync_hint_uncontended and omp_sync_hint_contended values may10
not be combined.11

• The omp_sync_hint_nonspeculative and omp_sync_hint_speculative12
values may not be combined.13

Cross References14

• atomic Construct, see Section 17.8.515

• critical Construct, see Section 17.216

• hint Clause, see Section 17.117

• omp_init_lock_with_hint Routine, see Section 28.1.318

• omp_init_nest_lock_with_hint Routine, see Section 28.1.419

20.10 OpenMP Affinity Support Types20

This section describes OpenMP types that support affinity mechanisms.21

20.10.1 OpenMP proc_bind Type22

Name: proc_bind
Properties: omp

Base Type: enumeration
23

Values24
Name Value Properties
omp_proc_bind_false 0 omp
omp_proc_bind_true 1 omp
omp_proc_bind_primary 2 omp
omp_proc_bind_close 3 omp
omp_proc_bind_spread 4 omp

25

562 OpenMP API – Version 6.0 November 2024

Type Definition1
C / C++

typedef enum omp_proc_bind_t {2
omp_proc_bind_false = 0,3
omp_proc_bind_true = 1,4
omp_proc_bind_primary = 2,5
omp_proc_bind_close = 3,6
omp_proc_bind_spread = 47

} omp_proc_bind_t;8

C / C++
Fortran

integer (kind=omp_proc_bind_kind), &9
parameter :: omp_proc_bind_false = 010

integer (kind=omp_proc_bind_kind), &11
parameter :: omp_proc_bind_true = 112

integer (kind=omp_proc_bind_kind), &13
parameter :: omp_proc_bind_primary = 214

integer (kind=omp_proc_bind_kind), &15
parameter :: omp_proc_bind_close = 316

integer (kind=omp_proc_bind_kind), &17
parameter :: omp_proc_bind_spread = 418

Fortran
The proc_bind OpenMP type is used in routines that modify or retrieve the value of the bind-var19
ICV. The valid constants for the proc_bind type must include those shown above.20

Cross References21

• bind-var ICV, see Table 3.122

20.11 OpenMP Resource Relinquishing Types23

This section describes OpenMP types related to resource-relinquishing routines.24

20.11.1 OpenMP pause_resource Type25

Name: pause_resource
Properties: omp

Base Type: enumeration
26

Values27
Name Value Properties
omp_pause_soft 1 omp
omp_pause_hard 2 omp
omp_pause_stop_tool 3 omp

28

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 563

Type Definition1
C / C++

typedef enum omp_pause_resource_t {2
omp_pause_soft = 1,3
omp_pause_hard = 2,4
omp_pause_stop_tool = 35

} omp_pause_resource_t;6

C / C++
Fortran

integer (kind=omp_pause_resource_kind), &7
parameter :: omp_pause_soft = 18

integer (kind=omp_pause_resource_kind), &9
parameter :: omp_pause_hard = 210

integer (kind=omp_pause_resource_kind), &11
parameter :: omp_pause_stop_tool = 312

Fortran
The pause_resource OpenMP type is used in resource-relinquishing routines to specify the13
resources that the instance of the routine relinquishes. The valid constants for the14
pause_resource OpenMP type must include those shown above.15

When specified and successful, the omp_pause_hard value results in a hard pause, which16
implies that the OpenMP state is not guaranteed to persist across the resource-relinquishing routine17
call. A hard pause may relinquish any data allocated by OpenMP on specified devices, including18
data allocated by device memory routines as well as data present on the devices as a result of a19
declare target directive or map-entering constructs. A hard pause may also relinquish any data20
associated with a threadprivate directive. When relinquished and when applicable, base21
language appropriate deallocation/finalization is performed. When relinquished and when22
applicable, mapped variables on a device will not be copied back from the device to the host device.23

When specified and successful, the omp_pause_soft value results in a soft pause for which the24
OpenMP state is guaranteed to persist across the resource-relinquishing routine call, with the25
exception of any data associated with a threadprivate directive, which may be relinquished26
across the call. When relinquished and when applicable, base language appropriate27
deallocation/finalization is performed.28

29

Note – A hard pause may relinquish more resources, but may resume processing regions more30
slowly. A soft pause allows regions to restart more quickly, but may relinquish fewer resources. An31
OpenMP implementation will reclaim resources as needed for regions encountered after the32
resource-relinquishing routine region. Since a hard pause may unmap data on the specified devices,33
appropriate mapping operations are required before using data on the specified devices after the34
resource-relinquishing routine region.35

36

564 OpenMP API – Version 6.0 November 2024

When specified and successful, the omp_pause_stop_tool value implies the effects described1
above for the omp_pause_hard value. Additionally, unless otherwise specified, the value implies2
that the implementation will shutdown the OMPT interface as if program execution is ending.3

20.12 OpenMP Tool Types4

This section describes OpenMP types that support the use of tools.5

20.12.1 OpenMP control_tool Type6

Name: control_tool
Properties: omp

Base Type: enumeration
7

Values8
Name Value Properties
omp_control_tool_start 1 omp
omp_control_tool_pause 2 omp
omp_control_tool_flush 3 omp
omp_control_tool_end 4 omp

9

Type Definition10
C / C++

typedef enum omp_control_tool_t {11
omp_control_tool_start = 1,12
omp_control_tool_pause = 2,13
omp_control_tool_flush = 3,14
omp_control_tool_end = 415

} omp_control_tool_t;16

C / C++
Fortran

integer (kind=omp_control_tool_kind), &17
parameter :: omp_control_tool_start = 118

integer (kind=omp_control_tool_kind), &19
parameter :: omp_control_tool_pause = 220

integer (kind=omp_control_tool_kind), &21
parameter :: omp_control_tool_flush = 322

integer (kind=omp_control_tool_kind), &23
parameter :: omp_control_tool_end = 424

Fortran
The control_tool OpenMP type is used in tool support routines to specify tool commands.25
Table 20.5 describes the actions that standard commands request from a tool. The valid constants26
for the control_tool OpenMP type must include those shown above.27

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 565

Tool-defined values for the control_tool OpenMP type must be greater than or equal to 64 and1
less than or equal to 2147483647 (INT32_MAX). Tools must ignore control_tool values that2
they are not explicitly designed to handle. Other values accepted by a tool for the control_tool3
OpenMP type are tool defined.4

TABLE 20.5: Standard Tool Control Commands

Command Action

omp_control_tool_start Start or restart monitoring if it is off. If monitoring
is already on, this command is idempotent. If moni-
toring has already been turned off permanently, this
command will have no effect.

omp_control_tool_pause Temporarily turn monitoring off. If monitoring is
already off, it is idempotent.

omp_control_tool_flush Flush any data buffered by a tool. This command may
be applied whether monitoring is on or off.

omp_control_tool_end Turn monitoring off permanently; the tool finalizes
itself and flushes all output.

20.12.2 OpenMP control_tool_result Type5

Name: control_tool_result
Properties: omp

Base Type: enumeration
6

Values7
Name Value Properties
omp_control_tool_notool -2 omp
omp_control_tool_nocallback -1 omp
omp_control_tool_success 0 omp
omp_control_tool_ignored 1 omp

8

Type Definition9
C / C++

typedef enum omp_control_tool_result_t {10
omp_control_tool_notool = -2,11
omp_control_tool_nocallback = -1,12
omp_control_tool_success = 0,13
omp_control_tool_ignored = 114

} omp_control_tool_result_t;15

C / C++

566 OpenMP API – Version 6.0 November 2024

Fortran
integer (kind=omp_control_tool_result_kind), &1

parameter :: omp_control_tool_notool = -22
integer (kind=omp_control_tool_result_kind), &3

parameter :: omp_control_tool_nocallback = -14
integer (kind=omp_control_tool_result_kind), &5

parameter :: omp_control_tool_success = 06
integer (kind=omp_control_tool_result_kind), &7

parameter :: omp_control_tool_ignored = 18

Fortran
The control_tool_result OpenMP type is used in tool support routines to specify the9
results of tool commands. The valid constants for the control_tool_result OpenMP type10
must include those shown above.11

CHAPTER 20. RUNTIME LIBRARY DEFINITIONS 567

21 Parallel Region Support Routines1

This chapter describes routines that support execution of parallel regions, including routines to2
determine the number of OpenMP threads for parallel regions and that query the nesting of parallel3
regions at runtime.4

21.1 omp_set_num_threads Routine5

Name: omp_set_num_threads
Category: subroutine

Properties: ICV-modifying
6

Arguments7
Name Type Properties
num_threads integer positive8

Prototypes9
C / C++

void omp_set_num_threads(int num_threads);10

C / C++
Fortran

subroutine omp_set_num_threads(num_threads)11
integer num_threads12

Fortran
Effect13
The effect of this routine is to set the value of the first element of the nthreads-var ICV of the14
current task to the value specified in the argument. Thus, the routine has the ICV modifying15
property, through which it affects the number of threads to be used for subsequent parallel16
regions that do not specify a num_threads clause.17

Cross References18

• nthreads-var ICV, see Table 3.119

• num_threads Clause, see Section 12.1.220

• parallel Construct, see Section 12.121

• Determining the Number of Threads for a parallel Region, see Section 12.1.122

568 OpenMP API – Version 6.0 November 2024

21.2 omp_get_num_threads Routine1

Name: omp_get_num_threads
Category: function

Properties: default
2

Return Type3
Name Type Properties
<return type> integer default4

Prototypes5
C / C++

int omp_get_num_threads(void);6

C / C++
Fortran

integer function omp_get_num_threads()7

Fortran
Effect8
The omp_get_num_threads routine returns the number of threads in the team that is executing9
the parallel region to which the routine region binds.10

21.3 omp_get_thread_num Routine11

Name: omp_get_thread_num
Category: function

Properties: default
12

Return Type13
Name Type Properties
<return type> integer default14

Prototypes15
C / C++

int omp_get_thread_num(void);16

C / C++
Fortran

integer function omp_get_thread_num()17

Fortran
Effect18
The omp_get_thread_num routine returns the thread number of the calling thread, within the19
team that is executing the parallel region to which the routine region binds. For assigned threads,20
the thread number is an integer between 0 and one less than the value returned by21
omp_get_num_threads, inclusive. The thread number of the primary thread of the team is 0.22
For unassigned threads, the thread number is the value omp_unassigned_thread.23

CHAPTER 21. PARALLEL REGION SUPPORT ROUTINES 569

Cross References1

• Predefined Identifiers, see Section 20.12

• omp_get_num_threads Routine, see Section 21.23

21.4 omp_get_max_threads Routine4

Name: omp_get_max_threads
Category: function

Properties: ICV-retrieving
5

Return Type6
Name Type Properties
<return type> integer default7

Prototypes8
C / C++

int omp_get_max_threads(void);9

C / C++
Fortran

integer function omp_get_max_threads()10

Fortran
Effect11
The value returned by omp_get_max_threads is the value of the first element of the12
nthreads-var ICV of the current task; thus, the routine has the ICV retrieving property. Its return13
value is an upper bound on the number of threads that could be used to form a new team if a parallel14
region without a num_threads clause is encountered after execution returns from this routine.15

Cross References16

• nthreads-var ICV, see Table 3.117

• num_threads Clause, see Section 12.1.218

• parallel Construct, see Section 12.119

• Determining the Number of Threads for a parallel Region, see Section 12.1.120

21.5 omp_get_thread_limit Routine21

Name: omp_get_thread_limit
Category: function

Properties: ICV-retrieving
22

570 OpenMP API – Version 6.0 November 2024

Return Type1
Name Type Properties
<return type> integer default2

Prototypes3
C / C++

int omp_get_thread_limit(void);4

C / C++
Fortran

integer function omp_get_thread_limit()5

Fortran
Effect6
The omp_get_thread_limit routine returns the value of the thread-limit-var ICV. Thus, it7
returns the maximum number of threads available to execute tasks in the current contention group.8

Cross References9

• thread-limit-var ICV, see Table 3.110

21.6 omp_in_parallel Routine11

Name: omp_in_parallel
Category: function

Properties: default
12

Return Type13
Name Type Properties
<return type> logical default14

Prototypes15
C / C++

int omp_in_parallel(void);16

C / C++
Fortran

logical function omp_in_parallel()17

Fortran
Effect18
The effect of the omp_in_parallel routine is to return true if the current task is enclosed by an19
active parallel region, and the parallel region is enclosed by the outermost initial task region on20
the device. That is, it returns true if the active-levels-var ICV is greater than zero. Otherwise, it21
returns false.22

CHAPTER 21. PARALLEL REGION SUPPORT ROUTINES 571

Cross References1

• active-levels-var ICV, see Table 3.12

• parallel Construct, see Section 12.13

21.7 omp_set_dynamic Routine4

Name: omp_set_dynamic
Category: subroutine

Properties: ICV-modifying
5

Arguments6
Name Type Properties
dynamic_threads logical default7

Prototypes8
C / C++

void omp_set_dynamic(int dynamic_threads);9

C / C++
Fortran

subroutine omp_set_dynamic(dynamic_threads)10
logical dynamic_threads11

Fortran
Effect12
For implementations that support dynamic adjustment of the number of threads, if the argument to13
omp_set_dynamic evaluates to true, dynamic adjustment is enabled for the current task by14
setting the value of the dyn-var ICV to true; otherwise, dynamic adjustment is disabled for the15
current task by setting the value of the dyn-var ICV to false. For implementations that do not16
support dynamic adjustment of the number of threads, this routine has no effect: the value of17
dyn-var remains false.18

Cross References19

• dyn-var ICV, see Table 3.120

21.8 omp_get_dynamic Routine21

Name: omp_get_dynamic
Category: function

Properties: ICV-retrieving
22

Return Type23
Name Type Properties
<return type> logical default24

572 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

int omp_get_dynamic(void);2

C / C++
Fortran

logical function omp_get_dynamic()3

Fortran
Effect4
The omp_get_dynamic routine returns the value of the dyn-var ICV. Thus, this routine returns5
true if dynamic adjustment of the number of threads is enabled for the current task; otherwise, it6
returns false. If an implementation does not support dynamic adjustment of the number of threads,7
then this routine always returns false.8

Cross References9

• dyn-var ICV, see Table 3.110

21.9 omp_set_schedule Routine11

Name: omp_set_schedule
Category: subroutine

Properties: ICV-modifying
12

Arguments13
Name Type Properties
kind sched omp
chunk_size integer default

14

Prototypes15
C / C++

void omp_set_schedule(omp_sched_t kind, int chunk_size);16

C / C++
Fortran

subroutine omp_set_schedule(kind, chunk_size)17
integer (kind=omp_sched_kind) kind18
integer chunk_size19

Fortran
Effect20
The effect of this routine is to set the value of the run-sched-var ICV of the current task to the21
values specified in the two arguments. Thus, the routine affects the schedule that is applied when22
runtime is used as the schedule type.23

CHAPTER 21. PARALLEL REGION SUPPORT ROUTINES 573

The schedule is set to the schedule type that is specified by the first argument kind. For the schedule1
types omp_sched_static, omp_sched_dynamic, and omp_sched_guided, the2
chunk_size is set to the value of the second argument, or to the default chunk_size if the value of the3
second argument is less than 1; for the schedule type omp_sched_auto, the second argument is4
ignored; for implementation defined schedule types, the values and associated meanings of the5
second argument are implementation defined.6

Cross References7

• run-sched-var ICV, see Table 3.18

• OpenMP sched Type, see Section 20.5.19

21.10 omp_get_schedule Routine10

Name: omp_get_schedule
Category: subroutine

Properties: ICV-retrieving
11

Arguments12
Name Type Properties
kind sched C/C++ pointer, omp
chunk_size integer C/C++ pointer

13

Prototypes14
C / C++

void omp_get_schedule(omp_sched_t *kind, int *chunk_size);15

C / C++
Fortran

subroutine omp_get_schedule(kind, chunk_size)16
integer (kind=omp_sched_kind) kind17
integer chunk_size18

Fortran
Effect19
The omp_get_schedule routine returns the run-sched-var ICV in the task to which the routine20
binds. Thus, the routine returns the schedule that is applied when the runtime schedule type is21
used. The first argument kind returns the schedule type to be used. If the returned schedule type is22
omp_sched_static, omp_sched_dynamic, or omp_sched_guided, the second23
argument, chunk_size, returns the chunk size to be used, or a value less than 1 if the default chunk24
size is to be used. The value returned by the second argument is implementation defined for any25
other schedule types.26

574 OpenMP API – Version 6.0 November 2024

Cross References1

• run-sched-var ICV, see Table 3.12

• OpenMP sched Type, see Section 20.5.13

21.11 omp_get_supported_active_levels4

Routine5

Name:
omp_get_supported_active_levels
Category: function

Properties: default
6

Return Type7
Name Type Properties
<return type> integer default8

Prototypes9
C / C++

int omp_get_supported_active_levels(void);10

C / C++
Fortran

integer function omp_get_supported_active_levels()11

Fortran
Effect12
The omp_get_supported_active_levels routine returns the number of supported active13
levels. The max-active-levels-var ICV cannot have a value that is greater than this number. The14
value that the omp_get_supported_active_levels routine returns is implementation15
defined, but it must be greater than 0.16

Cross References17

• max-active-levels-var ICV, see Table 3.118

21.12 omp_set_max_active_levels Routine19

Name: omp_set_max_active_levels
Category: subroutine

Properties: ICV-modifying
20

Arguments21
Name Type Properties
max_levels integer non-negative22

CHAPTER 21. PARALLEL REGION SUPPORT ROUTINES 575

Prototypes1
C / C++

void omp_set_max_active_levels(int max_levels);2

C / C++
Fortran

subroutine omp_set_max_active_levels(max_levels)3
integer max_levels4

Fortran
Effect5
The effect of this routine is to set the value of the max-active-levels-var ICV to the value specified6
in the argument. Thus, the routine limits the number of nested active parallel regions when a new7
nested parallel region is generated by the current task.8

If the number of active levels requested exceeds the number of supported active levels, the value of9
the max-active-levels-var ICV will be set to the number of supported active levels. If the number of10
active levels requested is less than the value of the active-levels-var ICV, the value of the11
max-active-levels-var ICV will be set to an implementation defined value between the requested12
number and active-levels-var, inclusive.13

Cross References14

• active-levels-var ICV, see Table 3.115

• max-active-levels-var ICV, see Table 3.116

• parallel Construct, see Section 12.117

21.13 omp_get_max_active_levels Routine18

Name: omp_get_max_active_levels
Category: function

Properties: ICV-retrieving
19

Return Type20
Name Type Properties
<return type> integer default21

Prototypes22
C / C++

int omp_get_max_active_levels(void);23

C / C++
Fortran

integer function omp_get_max_active_levels()24

Fortran

576 OpenMP API – Version 6.0 November 2024

Effect1
The omp_get_max_active_levels routine returns the value of the max-active-levels-var2
ICV. The current task may only generate an active parallel region if the returned value is greater3
than the value of the active-levels-var ICV.4

Cross References5

• max-active-levels-var ICV, see Table 3.16

21.14 omp_get_level Routine7

Name: omp_get_level
Category: function

Properties: ICV-retrieving
8

Return Type9
Name Type Properties
<return type> integer default10

Prototypes11
C / C++

int omp_get_level(void);12

C / C++
Fortran

integer function omp_get_level()13

Fortran
Effect14
The omp_get_level routine returns the value of the levels-var ICV. Thus, its effect is to return15
the number of nested parallel regions (whether active or inactive) that enclose the current task16
such that all of the parallel regions are enclosed by the outermost initial task region on the17
current device.18

Cross References19

• levels-var ICV, see Table 3.120

• parallel Construct, see Section 12.121

21.15 omp_get_ancestor_thread_num Routine22

Name: omp_get_ancestor_thread_num
Category: function

Properties: default
23

CHAPTER 21. PARALLEL REGION SUPPORT ROUTINES 577

Return Type and Arguments1
Name Type Properties
<return type> integer default
level integer default

2

Prototypes3
C / C++

int omp_get_ancestor_thread_num(int level);4

C / C++
Fortran

integer function omp_get_ancestor_thread_num(level)5
integer level6

Fortran
Effect7
The omp_get_ancestor_thread_num routine returns the thread number of the ancestor8
thread at a given nest level of the encountering thread or the thread number of the encountering9
thread. If the requested nest level is outside the range of 0 and the nest level of the encountering10
thread, as returned by the omp_get_level routine, the routine returns -1.11

12

Note – When the omp_get_ancestor_thread_num routine is called with value of level =0,13
the routine always returns 0. If level =omp_get_level(), the routine has the same effect as the14
omp_get_thread_num routine.15

16

Cross References17

• omp_get_level Routine, see Section 21.1418

• omp_get_thread_num Routine, see Section 21.319

21.16 omp_get_team_size Routine20

Name: omp_get_team_size
Category: function

Properties: default
21

Return Type and Arguments22
Name Type Properties
<return type> integer default
level integer default

23

578 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

int omp_get_team_size(int level);2

C / C++
Fortran

integer function omp_get_team_size(level)3
integer level4

Fortran
Effect5
The omp_get_team_size routine returns the size of the current team to which the ancestor6
thread or the encountering task belongs. If the requested nested level is outside the range of 0 and7
the nested level of the encountering thread, as returned by the omp_get_level routine, the8
routine returns -1. Inactive parallel regions are regarded as active parallel regions executed with9
one thread.10

11

Note – When the omp_get_team_size routine is called with a value of level =0, the routine12
always returns 1. If level =omp_get_level(), the routine has the same effect as the13
omp_get_num_threads routine.14

15

Cross References16

• omp_get_level Routine, see Section 21.1417

• omp_get_num_threads Routine, see Section 21.218

21.17 omp_get_active_level Routine19

Name: omp_get_active_level
Category: function

Properties: ICV-retrieving
20

Return Type21
Name Type Properties
<return type> integer default22

Prototypes23
C / C++

int omp_get_active_level(void);24

C / C++
Fortran

integer function omp_get_active_level()25

Fortran

CHAPTER 21. PARALLEL REGION SUPPORT ROUTINES 579

Effect1
The effect of the omp_get_active_level routine is to return the number of nested active2
parallel regions that enclose the current task such that all parallel regions are enclosed by3
the outermost initial task region on the current device. Thus, the routine returns the value of the4
active-levels-var ICV.5

Cross References6

• active-levels-var ICV, see Table 3.17

• parallel Construct, see Section 12.18

580 OpenMP API – Version 6.0 November 2024

22 Teams Region Routines1

This chapter describes routines that affect and monitor the league of teams that may execute a2
teams region.3

22.1 omp_get_num_teams Routine4

Name: omp_get_num_teams
Category: function

Properties: ICV-retrieving, teams-
nestable5

Return Type6
Name Type Properties
<return type> integer default7

Prototypes8
C / C++

int omp_get_num_teams(void);9

C / C++
Fortran

integer function omp_get_num_teams()10

Fortran
Effect11
The omp_get_num_teams routine returns the value of the league-size-var ICV, which is the12
number of initial teams in the current teams region. The routine returns 1 if it is called from13
outside of a teams region.14

Cross References15

• league-size-var ICV, see Table 3.116

• teams Construct, see Section 12.217

CHAPTER 22. TEAMS REGION ROUTINES 581

22.2 omp_set_num_teams Routine1

Name: omp_set_num_teams
Category: subroutine

Properties: ICV-modifying
2

Arguments3
Name Type Properties
num_teams integer non-negative4

Prototypes5
C / C++

void omp_set_num_teams(int num_teams);6

C / C++
Fortran

subroutine omp_set_num_teams(num_teams)7
integer num_teams8

Fortran
Effect9
The effect of the omp_set_num_teams routine is to set the value of the nteams-var ICV of the10
host device to the value specified in the num_teams argument.11

Restrictions12
Restrictions to the omp_set_num_teams routine are as follows:13

• An omp_set_num_teams region must be a strictly nested region of the implicit parallel14
region that surrounds the whole OpenMP program.15

Cross References16

• nteams-var ICV, see Table 3.117

• num_teams Clause, see Section 12.2.118

• teams Construct, see Section 12.219

22.3 omp_get_team_num Routine20

Name: omp_get_team_num
Category: function

Properties: ICV-retrieving, teams-
nestable21

Return Type22
Name Type Properties
<return type> integer default23

582 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

int omp_get_team_num(void);2

C / C++
Fortran

integer function omp_get_team_num()3

Fortran
Effect4
The omp_get_team_num routine returns the value of the team-num-var ICV, which is the team5
number of the current team and is an integer between 0 and one less than the value returned by6
omp_get_num_teams, inclusive. The routine returns 0 if it is called outside of a teams region.7

Cross References8

• team-num-var ICV, see Table 3.19

• omp_get_num_teams Routine, see Section 22.110

• teams Construct, see Section 12.211

22.4 omp_get_max_teams Routine12

Name: omp_get_max_teams
Category: function

Properties: ICV-retrieving
13

Return Type14
Name Type Properties
<return type> integer default15

Prototypes16
C / C++

int omp_get_max_teams(void);17

C / C++
Fortran

integer function omp_get_max_teams()18

Fortran
Effect19
The omp_get_max_teams routine returns the value of the nteams-var ICV of the current20
device. If positive, this value is also an upper bound on the number of teams that can be created by21
a teams construct without a num_teams clause that is encountered after execution returns from22
this routine.23

CHAPTER 22. TEAMS REGION ROUTINES 583

Cross References1

• nteams-var ICV, see Table 3.12

• num_teams Clause, see Section 12.2.13

• teams Construct, see Section 12.24

22.5 omp_get_teams_thread_limit Routine5

Name: omp_get_teams_thread_limit
Category: function

Properties: ICV-retrieving
6

Return Type7
Name Type Properties
<return type> integer default8

Prototypes9
C / C++

int omp_get_teams_thread_limit(void);10

C / C++
Fortran

integer function omp_get_teams_thread_limit()11

Fortran
Effect12
The omp_get_teams_thread_limit routine returns the value of the teams-thread-limit-var13
ICV, which is the maximum number of threads available to execute tasks in each contention group14
that a teams construct creates.15

Cross References16

• teams-thread-limit-var ICV, see Table 3.117

• teams Construct, see Section 12.218

22.6 omp_set_teams_thread_limit Routine19

Name: omp_set_teams_thread_limit
Category: subroutine

Properties: ICV-modifying
20

Arguments21
Name Type Properties
thread_limit integer positive22

584 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

void omp_set_teams_thread_limit(int thread_limit);2

C / C++
Fortran

subroutine omp_set_teams_thread_limit(thread_limit)3
integer thread_limit4

Fortran
Effect5
The omp_set_teams_thread_limit routine sets the value of the teams-thread-limit-var6
ICV to the value of the thread_limit argument and thus defines the maximum number of threads7
that can execute tasks in each contention group that a teams construct creates on the host device.8
If the value of thread_limit exceeds the number of threads that an implementation supports for each9
contention group created by a teams construct, the value of the teams-thread-limit-var ICV will10
be set to the number that is supported by the implementation.11

Restrictions12
Restrictions to the omp_set_teams_thread_limit routine are as follows:13

• An omp_set_num_teams region must be a strictly nested region of the implicit parallel14
region that surrounds the whole OpenMP program.15

Cross References16

• teams-thread-limit-var ICV, see Table 3.117

• teams Construct, see Section 12.218

• thread_limit Clause, see Section 15.319

CHAPTER 22. TEAMS REGION ROUTINES 585

23 Tasking Support Routines1

This chapter specifies OpenMP API routines that support task execution:2

• Tasking routines that query general task execution properties; and3

• The event routine to fulfill task dependences.4

23.1 Tasking Routines5

This section describes routines that pertain to OpenMP explicit tasks.6

23.1.1 omp_get_max_task_priority Routine7

Name: omp_get_max_task_priority
Category: function

Properties: all-device-threads-binding,
ICV-retrieving8

Return Type9
Name Type Properties
<return type> integer default10

Prototypes11
C / C++

int omp_get_max_task_priority(void);12

C / C++
Fortran

integer function omp_get_max_task_priority()13

Fortran
Effect14
The omp_get_max_task_priority routine returns the value of the max-task-priority-var15
ICV, which determines the maximum value that can be specified in the priority clause.16

Cross References17

• max-task-priority-var ICV, see Table 3.118

• priority Clause, see Section 14.919

586 OpenMP API – Version 6.0 November 2024

23.1.2 omp_in_explicit_task Routine1

Name: omp_in_explicit_task
Category: function

Properties: ICV-retrieving
2

Return Type3
Name Type Properties
<return type> logical default4

Prototypes5
C / C++

int omp_in_explicit_task(void);6

C / C++
Fortran

logical function omp_in_explicit_task()7

Fortran
Effect8
The omp_in_explicit_task routine returns the value of the explicit-task-var ICV, which9
indicates whether the encountering task is an explicit task region.10

Cross References11

• explicit-task-var ICV, see Table 3.112

• task Construct, see Section 14.113

23.1.3 omp_in_final Routine14

Name: omp_in_final
Category: function

Properties: ICV-retrieving
15

Return Type16
Name Type Properties
<return type> logical default17

Prototypes18
C / C++

int omp_in_final(void);19

C / C++
Fortran

logical function omp_in_final()20

Fortran

CHAPTER 23. TASKING SUPPORT ROUTINES 587

Effect1
The omp_in_final routine returns the value of the final-task-var ICV, which indicates whether2
the encountering task is a final task region.3

Cross References4

• final Clause, see Section 14.75

• final-task-var ICV, see Table 3.16

• task Construct, see Section 14.17

23.1.4 omp_is_free_agent Routine8

Name: omp_is_free_agent
Category: function

Properties: ICV-retrieving
9

Return Type10
Name Type Properties
<return type> logical default11

Prototypes12
C / C++

int omp_is_free_agent(void);13

C / C++
Fortran

logical function omp_is_free_agent()14

Fortran
Effect15
The omp_is_free_agent routine returns the value of the free-agent-var ICV, which indicates16
whether a free-agent thread is executing the enclosing task region at the time the routine is called.17

Cross References18

• free-agent-var ICV, see Table 3.119

• task Construct, see Section 14.120

• threadset Clause, see Section 14.821

23.1.5 omp_ancestor_is_free_agent Routine22

Name: omp_ancestor_is_free_agent
Category: function

Properties: default
23

588 OpenMP API – Version 6.0 November 2024

Return Type and Arguments1
Name Type Properties
<return type> logical default
level integer default

2

Prototypes3
C / C++

int omp_ancestor_is_free_agent(int level);4

C / C++
Fortran

logical function omp_ancestor_is_free_agent(level)5
integer level6

Fortran
Effect7
The omp_ancestor_is_free_agent routine returns true if the ancestor thread of the8
encountering thread is a free-agent thread, for a given nested level of the encountering thread;9
otherwise, it returns false. If the requested nesting level is outside the range of 0 and the nesting10
level of the current task, as returned by the omp_get_level routine, the routine returns false.11

12

Note – When the omp_ancestor_is_free_agent routine is called with a value of level13
=omp_get_level, the routine has the same effect as the omp_is_free_agent routine.14

15

Cross References16

• omp_get_level Routine, see Section 21.1417

• omp_is_free_agent Routine, see Section 23.1.418

• task Construct, see Section 14.119

• threadset Clause, see Section 14.820

23.2 Event Routine21

This section describes routines that support OpenMP event objects.22

23.2.1 omp_fulfill_event Routine23

Name: omp_fulfill_event
Category: subroutine

Properties: default
24

CHAPTER 23. TASKING SUPPORT ROUTINES 589

Arguments1
Name Type Properties
event event_handle default2

Prototypes3
C / C++

void omp_fulfill_event(omp_event_handle_t event);4

C / C++
Fortran

subroutine omp_fulfill_event(event)5
integer (kind=omp_event_handle_kind) event6

Fortran
Effect7
The effect of this routine is to fulfill the event associated with the event argument. The effect of8
fulfilling the event will depend on how the event object was created. The event object is destroyed9
and cannot be accessed after calling this routine, and the event handle becomes unassociated with10
any event object. This routine has no effect if the event argument corresponds to a completed task.11

Execution Model Events12
The task-fulfill event occurs in a thread that executes an omp_fulfill_event region before the13
event is fulfilled if the OpenMP event object was created by a detach clause on a task.14

Tool Callbacks15
A thread dispatches a registered task_schedule callback with NULL as its next_task_data16
argument while the argument prior_task_data binds to the detachable task for each occurrence of a17
task-fulfill event. If the task-fulfill event occurs before the detachable task finished execution of the18
associated structured block, the callback has ompt_task_early_fulfill as its19
prior_task_status argument; otherwise the callback has ompt_task_late_fulfill as its20
prior_task_status argument.21

Restrictions22
Restrictions to the omp_fulfill_event routine are as follows:23

• The event that corresponds to the event argument must not have already been fulfilled.24

• The event handle that the event argument identifies must have been created by the effect of a25
detach clause.26

• The event handle passed to the routine must refer to an event object that was created by a27
thread in the same device as the thread that invoked the routine.28

• An event handle must be fulfilled before execution continues beyond the next barrier of the29
current team after a detach clause creates the event that the event argument represents.30

590 OpenMP API – Version 6.0 November 2024

Cross References1

• detach Clause, see Section 14.112

• OpenMP event_handle Type, see Section 20.6.13

• task_schedule Callback, see Section 34.5.24

• OMPT task_status Type, see Section 33.385

CHAPTER 23. TASKING SUPPORT ROUTINES 591

24 Device Information Routines1

This chapter describes device-information routines, which are routines that have the2
device-information property. These routines modify or retrieve information that supports the use of3
the set of devices that are available to an OpenMP program.4

Restrictions5
Restrictions to device-information routines are as follows.6

• Any device_num argument must be a conforming device number unless otherwise specified.7

24.1 omp_set_default_device Routine8

Name: omp_set_default_device
Category: subroutine

Properties: device-information, ICV-
modifying9

Arguments10
Name Type Properties
device_num integer default11

Prototypes12
C / C++

void omp_set_default_device(int device_num);13

C / C++
Fortran

subroutine omp_set_default_device(device_num)14
integer device_num15

Fortran
Effect16
The effect of the omp_set_default_device routine is to set the value of the17
default-device-var ICV of the current task to the value specified in the device-num argument, thus18
determining the default target device. When called from within a target region, the effect of this19
routine is unspecified.20

Cross References21

• default-device-var ICV, see Table 3.122

• target Construct, see Section 15.823

592 OpenMP API – Version 6.0 November 2024

24.2 omp_get_default_device Routine1

Name: omp_get_default_device
Category: function

Properties: device-information, ICV-
retrieving2

Return Type3
Name Type Properties
<return type> integer default4

Prototypes5
C / C++

int omp_get_default_device(void);6

C / C++
Fortran

integer function omp_get_default_device()7

Fortran
Effect8
The omp_get_default_device routine returns the value of the default-device-var ICV of the9
current task, which is the device number of the default target device. When called from within a10
target region the effect of this routine is unspecified.11

Cross References12

• default-device-var ICV, see Table 3.113

• target Construct, see Section 15.814

24.3 omp_get_num_devices Routine15

Name: omp_get_num_devices
Category: function

Properties: device-information, ICV-
retrieving16

Return Type17
Name Type Properties
<return type> integer default18

Prototypes19
C / C++

int omp_get_num_devices(void);20

C / C++
Fortran

integer function omp_get_num_devices()21

Fortran

CHAPTER 24. DEVICE INFORMATION ROUTINES 593

Effect1
The omp_get_num_devices routine returns the value of the num-devices-var ICV, which is2
the number of available non-host devices onto which code or data may be offloaded. When called3
from within a target region the effect of this routine is unspecified.4

Cross References5

• num-devices-var ICV, see Table 3.16

• target Construct, see Section 15.87

24.4 omp_get_device_num Routine8

Name: omp_get_device_num
Category: function

Properties: device-information
9

Return Type10
Name Type Properties
<return type> integer default11

Prototypes12
C / C++

int omp_get_device_num(void);13

C / C++
Fortran

integer function omp_get_device_num()14

Fortran
Effect15
The omp_get_device_num routine returns the value of the device-num-var ICV, which is the16
device number of the device on which the encountering thread is executing. When called on the17
host device, it will return the same value as the omp_get_initial_device routine.18

Cross References19

• device-num-var ICV, see Table 3.120

• target Construct, see Section 15.821

24.5 omp_get_num_procs Routine22

Name: omp_get_num_procs
Category: function

Properties: all-device-threads-binding,
device-information, ICV-retrieving23

594 OpenMP API – Version 6.0 November 2024

Return Type1
Name Type Properties
<return type> integer default2

Prototypes3
C / C++

int omp_get_num_procs(void);4

C / C++
Fortran

integer function omp_get_num_procs()5

Fortran
Effect6
The omp_get_num_procs routine returns the value of the num-procs-var ICV. Thus, this7
routine returns the number of processors that are available to the device at the time the routine is8
called. This value may change between the time that it is determined by the9
omp_get_num_procs routine and the time that it is read in the calling context due to system10
actions outside the control of the OpenMP implementation.11

Cross References12

• num-procs-var ICV, see Table 3.113

24.6 omp_get_max_progress_width Routine14

Name: omp_get_max_progress_width
Category: function

Properties: device-information
15

Return Type and Arguments16
Name Type Properties
<return type> integer default
device_num integer default

17

Prototypes18
C / C++

int omp_get_max_progress_width(int device_num);19

C / C++
Fortran

integer function omp_get_max_progress_width(device_num)20
integer device_num21

Fortran

CHAPTER 24. DEVICE INFORMATION ROUTINES 595

Effect1
The omp_get_max_progress_width routine returns the maximum size, in terms of2
hardware threads, of progress units on the device specified by device_num. When called from3
within a target region the effect of this routine is unspecified.4

24.7 omp_get_device_from_uid Routine5

Name: omp_get_device_from_uid
Category: function

Properties: device-information
6

Return Type and Arguments7
Name Type Properties
<return type> integer default
uid char pointer, intent(in)

8

Prototypes9
C / C++

int omp_get_device_from_uid(const char *uid);10

C / C++
Fortran

integer function omp_get_device_from_uid(uid)11
character(len=*), intent(in) :: uid12

Fortran
Effect13
The omp_get_device_from_uid routine returns the device number associated with the device14
specified by the uid; if no device with that uid is available, the value of omp_invalid_device15
is returned. When called from within a target region, the effect is unspecified.16

Cross References17

• available-devices-var ICV, see Table 3.118

• default-device-var ICV, see Table 3.119

• omp_get_uid_from_device Routine, see Section 24.820

24.8 omp_get_uid_from_device Routine21

Name: omp_get_uid_from_device
Category: function

Properties: device-information
22

596 OpenMP API – Version 6.0 November 2024

Return Type and Arguments1
Name Type Properties
<return type> const char pointer
device_num integer intent(in)

2

Prototypes3
C / C++

const char *omp_get_uid_from_device(int device_num);4

C / C++
Fortran

character(:) function omp_get_uid_from_device(device_num)5
pointer :: omp_get_uid_from_device6
integer, intent(in) :: device_num7

Fortran
Effect8
The omp_get_uid_from_device routine returns the implementation defined unique identifier9
string that identifies the device specified by device_num. If the device_num argument has a value of10
omp_invalid_device, the routine returns NULL. When called from within a target region,11
the effect is unspecified.12

Cross References13

• available-devices-var ICV, see Table 3.114

• default-device-var ICV, see Table 3.115

• omp_get_device_from_uid Routine, see Section 24.716

24.9 omp_is_initial_device Routine17

Name: omp_is_initial_device
Category: function

Properties: device-information
18

Return Type19
Name Type Properties
<return type> logical default20

CHAPTER 24. DEVICE INFORMATION ROUTINES 597

Prototypes1
C / C++

int omp_is_initial_device(void);2

C / C++
Fortran

logical function omp_is_initial_device()3

Fortran
Effect4
The omp_is_initial_device routine returns true if the current task is executing on the host5
device; otherwise, it returns false.6

24.10 omp_get_initial_device Routine7

Name: omp_get_initial_device
Category: function

Properties: device-information
8

Return Type9
Name Type Properties
<return type> integer default10

Prototypes11
C / C++

int omp_get_initial_device(void);12

C / C++
Fortran

integer function omp_get_initial_device()13

Fortran
Effect14
The effect of the omp_get_initial_device routine is to return the device number of the host15
device. The value of the device number is the value of omp_initial_device or the value16
returned by the omp_get_num_devices routine. When called from within a target region17
the effect of this routine is unspecified.18

Cross References19

• target Construct, see Section 15.820

598 OpenMP API – Version 6.0 November 2024

24.11 omp_get_device_num_teams Routine1

Name: omp_get_device_num_teams
Category: function

Properties: device-information, ICV-
retrieving2

Return Type and Arguments3
Name Type Properties
<return type> integer default
device_num integer default

4

Prototypes5
C / C++

int omp_get_device_num_teams(int device_num);6

C / C++
Fortran

integer function omp_get_device_num_teams(device_num)7
integer device_num8

Fortran
Effect9
The omp_get_device_num_teams routine returns the value of the nteams-var ICV in the10
device data environment of device device_num. Thus, the routine returns the number of teams that11
will be requested for a teams region on device device_num if the num_teams clause is not12
specified. If device_num is the device number of the host device,13
omp_get_device_num_teams is equivalent to omp_get_num_teams. If the device_num14
argument has the value of omp_invalid_device or is not a conforming device number, the15
routine returns zero. When called from within a target region, the effect of this routine is16
unspecified.17

Cross References18

• nteams-var ICV, see Table 3.119

• num_teams Clause, see Section 12.2.120

• teams Construct, see Section 12.221

24.12 omp_set_device_num_teams Routine22

Name: omp_set_device_num_teams
Category: subroutine

Properties: device-information, ICV-
modifying23

CHAPTER 24. DEVICE INFORMATION ROUTINES 599

Arguments1
Name Type Properties
num_teams integer non-negative
device_num integer default

2

Prototypes3
C / C++

void omp_set_device_num_teams(int num_teams, int device_num);4

C / C++
Fortran

subroutine omp_set_device_num_teams(num_teams, device_num)5
integer num_teams, device_num6

Fortran
Effect7
The effect of the omp_set_device_num_teams routine is to set the value of the nteams-var8
ICV of device device_num to the value specified in the num_teams argument. Thus, the routine9
determines the number of teams that will be requested for a teams region on device device_num if10
the num_teams clause is not specified. If device_num is the device number of the host device,11
omp_set_device_num_teams is equivalent to omp_set_num_teams. If the device_num12
argument has the value of omp_invalid_device or is not a conforming device number,13
runtime error termination occurs. When called from within a target region, the effect of this14
routine is unspecified.15

Restrictions16
Restrictions to the omp_set_device_num_teams routine are as follows:17

• The routine must not execute concurrently with any device-affecting construct on device18
device_num.19

• If device device_num is the host device, an omp_set_device_num_teams region must20
be a strictly nested region of the implicit parallel region that surrounds the whole OpenMP21
program.22

Cross References23

• nteams-var ICV, see Table 3.124

• num_teams Clause, see Section 12.2.125

• teams Construct, see Section 12.226

600 OpenMP API – Version 6.0 November 2024

24.13 omp_get_device_teams_thread_limit1

Routine2

Name:
omp_get_device_teams_thread_limit
Category: function

Properties: device-information, ICV-
retrieving3

Return Type and Arguments4
Name Type Properties
<return type> integer default
device_num integer default

5

Prototypes6
C / C++

int omp_get_device_teams_thread_limit(int device_num);7

C / C++
Fortran

integer function omp_get_device_teams_thread_limit(device_num)8
integer device_num9

Fortran
Effect10
The omp_get_device_teams_thread_limit routine returns the value of the11
teams-thread-limit-var ICV in the device data environment of device device_num, which is the12
maximum number of threads available to execute tasks in each contention group that a teams13
construct creates on that device. If device_num is the device number of the host device,14
omp_get_device_teams_thread_limit is equivalent to15
omp_get_teams_thread_limit. If the device_num argument has the value of16
omp_invalid_device or is not a conforming device number, the routine returns zero. When17
called from within a target region, the effect of this routine is unspecified.18

Cross References19

• teams-thread-limit-var ICV, see Table 3.120

• teams Construct, see Section 12.221

24.14 omp_set_device_teams_thread_limit22

Routine23

Name:
omp_set_device_teams_thread_limit
Category: subroutine

Properties: device-information, ICV-
modifying24

CHAPTER 24. DEVICE INFORMATION ROUTINES 601

Arguments1
Name Type Properties
thread_limit integer positive
device_num integer default

2

Prototypes3
C / C++

void omp_set_device_teams_thread_limit(int thread_limit,4
int device_num);5

C / C++
Fortran

subroutine omp_set_device_teams_thread_limit(thread_limit, &6
device_num)7
integer thread_limit, device_num8

Fortran
Effect9
The omp_set_device_teams_thread_limit routine sets the value of the10
teams-thread-limit-var ICV in the device data environment of device device_num to the value of11
the thread_limit argument and thus defines the maximum number of threads that can execute tasks12
in each contention group that a teams construct creates on that device. If the value of thread_limit13
exceeds the number of threads that an implementation supports for each contention group created14
by a teams construct on device device_num, the value of the teams-thread-limit-var ICV will be15
set to the number that is supported by the implementation. If device_num is the device number of16
the host device, omp_set_device_teams_thread_limit is equivalent to17
omp_set_teams_thread_limit. If the device_num argument has the value of18
omp_invalid_device or is not a conforming device number, runtime error termination occurs.19
When called from within a target region, the effect of this routine is unspecified.20

Restrictions21
Restrictions to the omp_set_device_teams_thread_limit routine are as follows:22

• The routine must not execute concurrently with any device-affecting construct on device23
device_num.24

• If device device_num is the host device, an omp_set_device_teams_thread_limit25
region must be a strictly nested region of the implicit parallel region that surrounds the whole26
OpenMP program.27

Cross References28

• teams-thread-limit-var ICV, see Table 3.129

• teams Construct, see Section 12.230

• thread_limit Clause, see Section 15.331

602 OpenMP API – Version 6.0 November 2024

25 Device Memory Routines1

This chapter describes device memory routines that support allocation of memory and management2
of pointers in the data environments of target devices, and therefore the routines have the device3
memory routine property.4

If the device_num, src_device_num, or dst_device_num argument of a device memory routine has5
the value omp_invalid_device, runtime error termination is performed.6

Device memory routines that are not device-memory-information routines execute as if part of a7
target task that is generated by the call to the routine. This target task, which is an included task if8
the routine is not an asynchronous device routine, is the generating task of the region associated9
with the routine. Since the target task provides the execution context for any execution that occurs10
on the device, it is the binding task set for the routine. Thus, all of these routines have the11
generating-task binding property.12

Fortran
The Fortran version of all device memory routines have ISO C bindings so the routines have the13
ISO C binding property. Thus, each device memory routine requires an explicit interface and so14
might not be provided in the deprecated include file omp_lib.h.15

Fortran
Execution Model Events16
Events associated with a target task are the same as for the task construct defined in Section 14.1.17

Tool Callbacks18
Callbacks associated with events for target tasks are the same as for the task construct defined in19
Section 14.1; (flags & ompt_task_target) always evaluates to true in the dispatched callback.20

Restrictions21
Restrictions to device memory routines are as follows:22

• Any device_num, src_device_num, and dst_device_num arguments must be conforming23
device numbers.24

• When called from within a target region, the effect is unspecified.25

Cross References26

• target Construct, see Section 15.827

• task Construct, see Section 14.128

• OMPT task_flag Type, see Section 33.3729

CHAPTER 25. DEVICE MEMORY ROUTINES 603

25.1 Asynchronous Device Memory Routines1

Some device memory routines have the asynchronous-device routine property. The execution of the2
target task that is generated by the call to an asynchronous device routines may be deferred. Task3
dependences are expressed with zero or more OpenMP depend objects. The dependences are4
specified by passing the number of depend objects followed by an array of the objects. The5
generated target task is not a dependent task if the program passes in a count of zero for6
depobj_count. The depobj_list argument is ignored if the value of depobj_count is zero.7

Execution Model Events8
Events associated with task dependences that result from depobj_list are the same as for a depend9
clause with the depobj task-dependence-type defined in Section 17.9.5.10

Tool Callbacks11
Callbacks associated with events for task dependences are the same as for the depend clause12
defined in Section 17.9.5.13

Cross References14

• depend Clause, see Section 17.9.515

• depobj Construct, see Section 17.9.316

25.2 Device Memory Information Routines17

This section describes routines that have the device-memory-information routine property. These18
device-memory-information routines provide information about device pointers, which can be19
determined without directly accessing the target device; thus, they do not create a target task.20

25.2.1 omp_target_is_present Routine21

Name: omp_target_is_present
Category: function

Properties: device-memory-
information-routine, device-memory-
routine, iso_c_binding

22

Return Type and Arguments23
Name Type Properties
<return type> c_int default
ptr c_ptr intent(in), iso_c, value
device_num c_int iso_c, value

24

Prototypes25
C / C++

int omp_target_is_present(const void *ptr, int device_num);26

C / C++

604 OpenMP API – Version 6.0 November 2024

Fortran
integer (kind=c_int) function omp_target_is_present(ptr, &1

device_num) bind(c)2
use, intrinsic :: iso_c_binding, only : c_int, c_ptr3
type (c_ptr), value, intent(in) :: ptr4
integer (kind=c_int), value :: device_num5

Fortran
Effect6
The omp_target_is_present routine returns a non-zero value if device_num refers to the7
host device or if ptr refers to storage that has corresponding storage in the device data environment8
of device device_num. Otherwise, the routine returns zero. If ptr is NULL. the routine returns zero.9
Thus, the omp_target_is_present routine tests whether a host pointer refers to storage that10
is mapped to a given device.11

Restrictions12
Restrictions to the omp_target_is_present routine are as follows:13

• The value of ptr must be a valid host pointer or NULL.14

25.2.2 omp_target_is_accessible Routine15

Name: omp_target_is_accessible
Category: function

Properties: device-memory-
information-routine, device-memory-
routine, iso_c_binding

16

Return Type and Arguments17
Name Type Properties
<return type> c_int default
ptr c_ptr intent(in), iso_c, value
size c_size_t iso_c, positive, value
device_num c_int iso_c, value

18

Prototypes19
C / C++

int omp_target_is_accessible(const void *ptr, size_t size,20
int device_num);21

C / C++
Fortran

integer (kind=c_int) function omp_target_is_accessible(ptr, &22
size, device_num) bind(c)23
use, intrinsic :: iso_c_binding, only : c_int, c_ptr, &24
c_size_t25

type (c_ptr), value, intent(in) :: ptr26
integer (kind=c_size_t), value :: size27
integer (kind=c_int), value :: device_num28

Fortran

CHAPTER 25. DEVICE MEMORY ROUTINES 605

Effect1
The omp_target_is_accessible routine returns a non-zero value if the storage of size bytes2
that corresponds to the address range starting at the address given by ptr is accessible from device3
device_num. Otherwise, it returns zero. If ptr is NULL, the routine returns zero. The value of ptr is4
interpreted as an address in the address space of the specified device.5

25.2.3 omp_get_mapped_ptr Routine6

Name: omp_get_mapped_ptr
Category: function

Properties: device-memory-
information-routine, device-memory-
routine, iso_c_binding

7

Return Type and Arguments8
Name Type Properties
<return type> c_ptr default
ptr c_ptr intent(in), iso_c, value
device_num c_int iso_c, value

9

Prototypes10
C / C++

void *omp_get_mapped_ptr(const void *ptr, int device_num);11

C / C++
Fortran

type (c_ptr) function omp_get_mapped_ptr(ptr, device_num) &12
bind(c)13
use, intrinsic :: iso_c_binding, only : c_ptr, c_int14
type (c_ptr), value, intent(in) :: ptr15
integer (kind=c_int), value :: device_num16

Fortran
Effect17
The omp_get_mapped_ptr routine returns the associated device pointer for host pointer ptr on18
device device_num. A call to this routine for a pointer that is not NULL and does not have an19
associated pointer on the given device will return NULL. The routine returns NULL if unsuccessful.20
Otherwise it returns the device pointer, which is ptr if device_num specifies the host device.21

Cross References22

• omp_get_initial_device Routine, see Section 24.1023

25.3 omp_target_alloc Routine24

Name: omp_target_alloc
Category: function

Properties: device-memory-routine,
generating-task-binding, iso_c_binding25

606 OpenMP API – Version 6.0 November 2024

Return Type and Arguments1
Name Type Properties
<return type> c_ptr default
size c_size_t iso_c, value
device_num c_int iso_c, value

2

Prototypes3
C / C++

void *omp_target_alloc(size_t size, int device_num);4

C / C++
Fortran

type (c_ptr) function omp_target_alloc(size, device_num) &5
bind(c)6
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t, &7
c_int8

integer (kind=c_size_t), value :: size9
integer (kind=c_int), value :: device_num10

Fortran
Effect11
The omp_target_alloc routine returns a device pointer that references the device address of a12
storage location of size bytes. The storage location is dynamically allocated in the device data13
environment of the device specified by device_num.14

The omp_target_alloc routine returns NULL if it cannot dynamically allocate the memory in15
the device data environment or if size is 0. The device pointer returned by omp_target_alloc16
can be used in an is_device_ptr clause (see Section 7.5.7).17

Execution Model Events18
The target-data-allocation-begin event occurs before a thread initiates a data allocation on a target19
device. The target-data-allocation-end event occurs after a thread initiates a data allocation on a20
target device.21

Tool Callbacks22
A thread dispatches a registered target_data_op_emi callback with ompt_scope_begin23
as its endpoint argument for each occurrence of a target-data-allocation-begin event in that thread.24
Similarly, a thread dispatches a registered target_data_op_emi callback with25
ompt_scope_end as its endpoint argument for each occurrence of a target-data-allocation-end26
event in that thread.27

Restrictions28
Restrictions to the omp_target_alloc routine are as follows:29

• Freeing the storage returned by omp_target_alloc with any routine other than30
omp_target_free results in unspecified behavior.31

CHAPTER 25. DEVICE MEMORY ROUTINES 607

C / C++
• Unless the unified_address clause appears on a requires directive in the1

compilation unit, pointer arithmetic is not supported on the device pointer returned by2
omp_target_alloc.3

C / C++
Cross References4

• is_device_ptr Clause, see Section 7.5.75

• omp_target_free Routine, see Section 25.46

• OMPT scope_endpoint Type, see Section 33.277

• target_data_op_emi Callback, see Section 35.78

25.4 omp_target_free Routine9

Name: omp_target_free
Category: subroutine

Properties: device-memory-routine,
generating-task-binding, iso_c_binding10

Arguments11
Name Type Properties
device_ptr c_ptr iso_c, value
device_num c_int iso_c, value

12

Prototypes13
C / C++

void omp_target_free(void *device_ptr, int device_num);14

C / C++
Fortran

subroutine omp_target_free(device_ptr, device_num) bind(c)15
use, intrinsic :: iso_c_binding, only : c_ptr, c_int16
type (c_ptr), value :: device_ptr17
integer (kind=c_int), value :: device_num18

Fortran
Effect19
The omp_target_free routine frees the memory in the device data environment associated20
with device_ptr. If device_ptr is NULL, the operation is ignored.21

Execution Model Events22
The target-data-free-begin event occurs before a thread initiates a data free on a target device. The23
target-data-free-end event occurs after a thread initiates a data free on a target device.24

608 OpenMP API – Version 6.0 November 2024

Tool Callbacks1
A thread dispatches a registered target_data_op_emi callback with ompt_scope_begin2
as its endpoint argument for each occurrence of a target-data-free-begin event in that thread.3
Similarly, a thread dispatches a registered target_data_op_emi callback with4
ompt_scope_end as its endpoint argument for each occurrence of a target-data-free-end event5
in that thread.6

Restrictions7
Restrictions to the omp_target_free routine are as follows:8

• The value of device_ptr must be NULL or have been returned by omp_target_alloc.9

Cross References10

• omp_target_alloc Routine, see Section 25.311

• OMPT scope_endpoint Type, see Section 33.2712

• target_data_op_emi Callback, see Section 35.713

25.5 omp_target_associate_ptr Routine14

Name: omp_target_associate_ptr
Category: function

Properties: device-memory-routine,
generating-task-binding, iso_c_binding15

Return Type and Arguments16
Name Type Properties
<return type> c_int default
host_ptr c_ptr intent(in), iso_c, value
device_ptr c_ptr intent(in), iso_c, value
size c_size_t iso_c, value
device_offset c_size_t iso_c, value
device_num c_int iso_c, value

17

Prototypes18
C / C++

int omp_target_associate_ptr(const void *host_ptr,19
const void *device_ptr, size_t size, size_t device_offset,20
int device_num);21

C / C++

CHAPTER 25. DEVICE MEMORY ROUTINES 609

Fortran
integer (kind=c_int) function omp_target_associate_ptr(host_ptr, &1

device_ptr, size, device_offset, device_num) bind(c)2
use, intrinsic :: iso_c_binding, only : c_int, c_ptr, &3

c_size_t4
type (c_ptr), value, intent(in) :: host_ptr, device_ptr5
integer (kind=c_size_t), value :: size, device_offset6
integer (kind=c_int), value :: device_num7

Fortran
Effect8
The omp_target_associate_ptr routine associates a device pointer in the device data9
environment of device device_num with a host pointer such that when the host device pointer10
appears in a subsequent map clause, the associated device pointer is used as the target for data11
motion associated with that host pointer. Thus, the omp_target_associate_ptr routine12
maps a device pointer, which may be returned from omp_target_alloc or implementation13
defined routine, to a host pointer. The device_offset argument specifies the offset into device_ptr14
that is used as the base address for the device side of the mapping. The reference count of the15
resulting mapping will be infinite. The association between the host pointer and the device pointer16
can be removed by using the omp_target_disassociate_ptr routine. The routine returns17
zero if successful. Otherwise it returns a non-zero value.18

Only one device buffer can be associated with a given host pointer value and device number pair.19
Attempting to associate a second buffer will return non-zero. Associating the same pair of pointers20
on the same device with the same offset has no effect and returns zero. Associating pointers that21
share underlying storage will result in unspecified behavior. The omp_target_is_present22
routine can be used to test whether a given host pointer has a corresponding list item in the device23
data environment.24

Execution Model Events25
The target-data-associate event occurs before a thread initiates a device pointer association on a26
target device.27

Tool Callbacks28
A thread dispatches a registered target_data_op_emi callback with29
ompt_scope_beginend as its endpoint argument for each occurrence of a30
target-data-associate event in that thread.31

Cross References32

• omp_target_alloc Routine, see Section 25.333

• omp_target_disassociate_ptr Routine, see Section 25.634

• omp_target_is_present Routine, see Section 25.2.135

610 OpenMP API – Version 6.0 November 2024

• OMPT scope_endpoint Type, see Section 33.271

• target_data_op_emi Callback, see Section 35.72

25.6 omp_target_disassociate_ptr Routine3

Name: omp_target_disassociate_ptr
Category: function

Properties: device-memory-routine,
generating-task-binding, iso_c_binding4

Return Type and Arguments5
Name Type Properties
<return type> c_int default
ptr c_ptr intent(in), iso_c, value
device_num c_int iso_c, value

6

Prototypes7
C / C++

int omp_target_disassociate_ptr(const void *ptr, int device_num);8

C / C++
Fortran

integer (kind=c_int) function omp_target_disassociate_ptr(ptr, &9
device_num) bind(c)10
use, intrinsic :: iso_c_binding, only : c_int, c_ptr11
type (c_ptr), value, intent(in) :: ptr12
integer (kind=c_int), value :: device_num13

Fortran
Effect14
The omp_target_disassociate_ptr removes the associated device data on device15
device_num from the presence table for host pointer ptr. A call to this routine on a pointer that is16
not NULL and does not have associated data on the given device results in unspecified behavior.17
The reference count of the mapping is reduced to zero, regardless of its current value. The routine18
returns zero if successful. Otherwise it returns a non-zero value.19

Execution Model Events20
The target-data-disassociate event occurs before a thread initiates a device pointer disassociation21
on a target device.22

Tool Callbacks23
A thread dispatches a registered target_data_op_emi callback with24
ompt_scope_beginend as its endpoint argument for each occurrence of a25
target-data-disassociate event in that thread.26

CHAPTER 25. DEVICE MEMORY ROUTINES 611

Cross References1

• OMPT scope_endpoint Type, see Section 33.272

• target_data_op_emi Callback, see Section 35.73

25.7 Memory Copying Routines4

This section describes memory-copying routines, which are routines that have the memory-copying5
property. These routines copy memory from the device data environment of a src_device_num6
device to the device data environment of a dst_device_num device. OpenMP provides two varieties7
of memory-copying routines: flat-memory-copying routines, which have the flat-memory-copying8
property; and rectangular-memory-copying routines, which have the rectangular-memory-copying9
property.10

Each flat-memory-copying routine copies length bytes of memory at offset src_offset from src in11
the device data environment of device src_device_num to dst starting at offset dst_offset in the12
device data environment of device dst_device_num.13

Each rectangular-memory-copying routine performs a copy between any combination of host14
pointers and device pointers. Specifically, the routine copies a rectangular subvolume from a15
multi-dimensional array src, in the device data environment of device src_device_num, to another16
multi-dimensional array dst, in the device data environment of device dst_device_num. The volume17
is specified in terms of the size of an element, number of dimensions, and constant arrays of length18
num_dims. The maximum number of dimensions supported is at least three; support for higher19
dimensionality is implementation defined. The volume array specifies the length, in number of20
elements, to copy in each dimension from src to dst. The dst_offsets (src_offsets) argument21
specifies the number of elements from the origin of dst (src) in elements. The dst_dimensions22
(src_dimensions) argument specifies the length of each dimension of dst (src).23

An OpenMP program can determine the inclusive number of dimensions that an implementation24
supports for a rectangular-memory-copying routine by passing NULL for both dst and src. The25
routine returns the number of dimensions supported by the implementation for the specified device26
numbers. No copy operation is performed.27

Fortran
Because the interface of each rectangular-memory-copying routine binds directly to a C language28
routine, each of these routines assumes C memory ordering.29

Fortran
Each memory-copying routine contains a task scheduling point. These routines return zero on30
success and non-zero on failure.31

Execution Model Events32
The target-data-op-begin event occurs before a thread initiates a data transfer in a memory-copying33
routine region. The target-data-op-end event occurs after a thread initiates a data transfer in a34
memory-copying routine region.35

612 OpenMP API – Version 6.0 November 2024

Tool Callbacks1
A thread dispatches a registered target_data_op_emi callback with ompt_scope_begin2
as its endpoint argument for each occurrence of a target-data-op-begin event in that thread.3
Similarly, a thread dispatches a registered target_data_op_emi callback with4
ompt_scope_end as its endpoint argument for each occurrence of a target-data-op-end event in5
that thread. These callbacks occur in the context of the target task.6

Restrictions7
Restrictions to the memory-copying routines are as follows:8

• The value of src must be a valid device pointer for the device src_device_num.9

• The value of dst must be a valid device pointer for the device dst_device_num.10

• The value of num_dims must be between 1 and the implementation defined limit, which must11
be at least three.12

• The length of the offset (src_offset and dst_offset) and dimension (src_dimensions and13
dst_dimensions) arrays must be at least the value of num_dims.14

Cross References15

• OMPT scope_endpoint Type, see Section 33.2716

• target_data_op_emi Callback, see Section 35.717

25.7.1 omp_target_memcpy Routine18

Name: omp_target_memcpy
Category: function

Properties: device-memory-routine,
flat-memory-copying, generating-
task-binding, iso_c_binding, memory-
copying

19

Return Type and Arguments20
Name Type Properties
<return type> c_int default
dst c_ptr iso_c, value
src c_ptr intent(in), iso_c, value
length c_size_t iso_c, value
dst_offset c_size_t iso_c, value
src_offset c_size_t iso_c, value
dst_device_num c_int iso_c, value
src_device_num c_int iso_c, value

21

Prototypes22
C / C++

int omp_target_memcpy(void *dst, const void *src, size_t length,23
size_t dst_offset, size_t src_offset, int dst_device_num,24
int src_device_num);25

C / C++

CHAPTER 25. DEVICE MEMORY ROUTINES 613

Fortran
integer (kind=c_int) function omp_target_memcpy(dst, src, &1

length, dst_offset, src_offset, dst_device_num, &2
src_device_num) bind(c)3
use, intrinsic :: iso_c_binding, only : c_int, c_ptr, &4

c_size_t5
type (c_ptr), value :: dst6
type (c_ptr), value, intent(in) :: src7
integer (kind=c_size_t), value :: length, dst_offset, &8

src_offset9
integer (kind=c_int), value :: dst_device_num, src_device_num10

Fortran
Effect11
As a flat-memory-copying routine, the effect of the omp_target_memcpy routine is as described12
in Section 25.7. This effect includes the associated tool events and callbacks defined in that section.13

Cross References14

• Memory Copying Routines, see Section 25.715

25.7.2 omp_target_memcpy_rect Routine16

Name: omp_target_memcpy_rect
Category: function

Properties: device-memory-routine,
generating-task-binding, iso_c_bind-
ing, memory-copying, rectangular-
memory-copying

17

Return Type and Arguments18
Name Type Properties
<return type> c_int default
dst c_ptr iso_c, value
src c_ptr intent(in), iso_c, value
element_size c_size_t iso_c, value
num_dims c_int iso_c, positive, value
volume c_size_t intent(in), iso_c, pointer
dst_offsets c_size_t intent(in), iso_c, pointer
src_offsets c_size_t intent(in), iso_c, pointer
dst_dimensions c_size_t intent(in), iso_c, pointer
src_dimensions c_size_t intent(in), iso_c, pointer
dst_device_num c_int iso_c, value
src_device_num c_int iso_c, value

19

614 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

int omp_target_memcpy_rect(void *dst, const void *src,2
size_t element_size, int num_dims, const size_t *volume,3
const size_t *dst_offsets, const size_t *src_offsets,4
const size_t *dst_dimensions, const size_t *src_dimensions,5
int dst_device_num, int src_device_num);6

C / C++
Fortran

integer (kind=c_int) function omp_target_memcpy_rect(dst, src, &7
element_size, num_dims, volume, dst_offsets, src_offsets, &8
dst_dimensions, src_dimensions, dst_device_num, &9
src_device_num) bind(c)10
use, intrinsic :: iso_c_binding, only : c_int, c_ptr, &11
c_size_t12

type (c_ptr), value :: dst13
type (c_ptr), value, intent(in) :: src14
integer (kind=c_size_t), value :: element_size15
integer (kind=c_int), value :: num_dims, dst_device_num, &16

src_device_num17
integer (kind=c_size_t), intent(in) :: volume(*), dst_offsets&18
(*), src_offsets(*), dst_dimensions(*), src_dimensions(*)19

Fortran
Effect20
As a rectangular-memory-copying routine, the effect of the omp_target_memcpy_rect21
routine is as described in Section 25.7. This effect includes the associated tool events and callbacks22
defined in that section.23

Cross References24

• Memory Copying Routines, see Section 25.725

25.7.3 omp_target_memcpy_async Routine26

Name: omp_target_memcpy_async
Category: function

Properties: asynchronous-device-
routine, device-memory-routine, flat-
memory-copying, generating-task-
binding, iso_c_binding, memory-
copying

27

CHAPTER 25. DEVICE MEMORY ROUTINES 615

Return Type and Arguments1
Name Type Properties
<return type> c_int default
dst c_ptr iso_c, value
src c_ptr intent(in), iso_c, value
length c_size_t iso_c, value
dst_offset c_size_t iso_c, value
src_offset c_size_t iso_c, value
dst_device_num c_int iso_c, value
src_device_num c_int iso_c, value
depobj_count c_int iso_c, value
depobj_list depend optional, pointer

2

Prototypes3
C / C++

int omp_target_memcpy_async(void *dst, const void *src,4
size_t length, size_t dst_offset, size_t src_offset,5
int dst_device_num, int src_device_num, int depobj_count,6
omp_depend_t *depobj_list);7

C / C++
Fortran

integer (kind=c_int) function omp_target_memcpy_async(dst, src, &8
length, dst_offset, src_offset, dst_device_num, &9
src_device_num, depobj_count, depobj_list) bind(c)10
use, intrinsic :: iso_c_binding, only : c_int, c_ptr, &11

c_size_t12
type (c_ptr), value :: dst13
type (c_ptr), value, intent(in) :: src14
integer (kind=c_size_t), value :: length, dst_offset, &15

src_offset16
integer (kind=c_int), value :: dst_device_num, src_device_num, &17

depobj_count18
integer (kind=omp_depend_kind), optional :: depobj_list(*)19

Fortran
Effect20
As a flat-memory-copying routine, the effect of the omp_target_memcpy_async routine is as21
described in Section 25.7. This effect includes the tool events and callbacks defined in that section.22
As it is also an asynchronous device routine, the routine also includes the tool events and callbacks23
defined in Section 25.1.24

616 OpenMP API – Version 6.0 November 2024

Cross References1

• Asynchronous Device Memory Routines, see Section 25.12

• Memory Copying Routines, see Section 25.73

25.7.4 omp_target_memcpy_rect_async Routine4

Name: omp_target_memcpy_rect_async
Category: function

Properties: asynchronous-device-
routine, device-memory-routine,
generating-task-binding, iso_c_bind-
ing, memory-copying, rectangular-
memory-copying

5

Return Type and Arguments6
Name Type Properties
<return type> c_int default
dst c_ptr iso_c, value
src c_ptr intent(in), iso_c, value
element_size c_size_t iso_c, value
num_dims c_int iso_c, positive, value
volume c_size_t intent(in), iso_c, pointer
dst_offsets c_size_t intent(in), iso_c, pointer
src_offsets c_size_t intent(in), iso_c, pointer
dst_dimensions c_size_t intent(in), iso_c, pointer
src_dimensions c_size_t intent(in), iso_c, pointer
dst_device_num c_int iso_c, value
src_device_num c_int iso_c, value
depobj_count c_int iso_c, value
depobj_list depend optional, pointer

7

Prototypes8
C / C++

int omp_target_memcpy_rect_async(void *dst, const void *src,9
size_t element_size, int num_dims, const size_t *volume,10
const size_t *dst_offsets, const size_t *src_offsets,11
const size_t *dst_dimensions, const size_t *src_dimensions,12
int dst_device_num, int src_device_num, int depobj_count,13
omp_depend_t *depobj_list);14

C / C++

CHAPTER 25. DEVICE MEMORY ROUTINES 617

Fortran
integer (kind=c_int) function omp_target_memcpy_rect_async(dst, &1

src, element_size, num_dims, volume, dst_offsets, src_offsets, &2
dst_dimensions, src_dimensions, dst_device_num, &3
src_device_num, depobj_count, depobj_list) bind(c)4
use, intrinsic :: iso_c_binding, only : c_int, c_ptr, &5

c_size_t6
type (c_ptr), value :: dst7
type (c_ptr), value, intent(in) :: src8
integer (kind=c_size_t), value :: element_size9
integer (kind=c_int), value :: num_dims, dst_device_num, &10

src_device_num, depobj_count11
integer (kind=c_size_t), intent(in) :: volume(*), dst_offsets&12

(*), src_offsets(*), dst_dimensions(*), src_dimensions(*)13
integer (kind=omp_depend_kind), optional :: depobj_list(*)14

Fortran
Effect15
As a rectangular-memory-copying routine, the effect of the16
omp_target_memcpy_rect_async routine is as described in Section 25.7. This effect17
includes the tool events and callbacks defined in that section. As it is also an asynchronous device18
routine, the routine also includes the tool events and callbacks defined in Section 25.1.19

Cross References20

• Asynchronous Device Memory Routines, see Section 25.121

• Memory Copying Routines, see Section 25.722

25.8 Memory Setting Routines23

This section describes the memory-setting routines, which are routines that have the24
memory-setting property. These routines fill memory in a device data environment with a given25
value. The effect of a memory-setting routine is to fill the first count bytes pointed to by ptr with the26
value val (converted to unsigned char) in the device data environment associated with device27
device_num. If count is zero, the routine has no effect. If ptr is NULL, the effect is unspecified. The28
memory-setting routines return ptr. Each memory-setting routine contains a task scheduling point.29

Execution Model Events30
The target-data-op-begin event occurs before a thread initiates filling the memory in a31
memory-setting routine region. The target-data-op-end event occurs after a thread initiates filling32
the memory in a memory-setting routine region.33

618 OpenMP API – Version 6.0 November 2024

Tool Callbacks1
A thread dispatches a registered target_data_op_emi callback with ompt_scope_begin2
as its endpoint argument for each occurrence of a target-data-op-begin event in that thread.3
Similarly, a thread dispatches a registered target_data_op_emi callback with4
ompt_scope_end as its endpoint argument for each occurrence of a target-data-op-end event in5
that thread. These callbacks occur in the context of the target task.6

Restrictions7
The restrictions to the memory-setting routines are as follows:8

• The value of the ptr argument must be a valid pointer to device memory for the device9
denoted by the value of the device_num argument.10

Cross References11

• OMPT scope_endpoint Type, see Section 33.2712

• target_data_op_emi Callback, see Section 35.713

25.8.1 omp_target_memset Routine14

Name: omp_target_memset
Category: function

Properties: device-memory-routine,
generating-task-binding, iso_c_bind-
ing, memory-setting

15

Return Type and Arguments16
Name Type Properties
<return type> c_ptr default
ptr c_ptr iso_c, value
val c_int iso_c, value
count c_size_t iso_c, value
device_num c_int iso_c, value

17

Prototypes18
C / C++

void *omp_target_memset(void *ptr, int val, size_t count,19
int device_num);20

C / C++
Fortran

type (c_ptr) function omp_target_memset(ptr, val, count, &21
device_num) bind(c)22
use, intrinsic :: iso_c_binding, only : c_ptr, c_int, &23
c_size_t24

type (c_ptr), value :: ptr25
integer (kind=c_int), value :: val, device_num26
integer (kind=c_size_t), value :: count27

Fortran

CHAPTER 25. DEVICE MEMORY ROUTINES 619

Effect1
As a memory-setting routine, the effect of the omp_target_memset routine is as described in2
Section 25.8. This effect includes the tool events and callbacks defined in that section.3

Cross References4

• Memory Setting Routines, see Section 25.85

25.8.2 omp_target_memset_async Routine6

Name: omp_target_memset_async
Category: function

Properties: asynchronous-device-
routine, device-memory-routine,
generating-task-binding, iso_c_bind-
ing, memory-setting

7

Return Type and Arguments8
Name Type Properties
<return type> c_ptr default
ptr c_ptr iso_c, value
val c_int iso_c, value
count c_size_t iso_c, value
device_num c_int iso_c, value
depobj_count c_int iso_c, value
depobj_list depend optional, pointer

9

Prototypes10
C / C++

void *omp_target_memset_async(void *ptr, int val, size_t count,11
int device_num, int depobj_count, omp_depend_t *depobj_list);12

C / C++
Fortran

type (c_ptr) function omp_target_memset_async(ptr, val, count, &13
device_num, depobj_count, depobj_list) bind(c)14
use, intrinsic :: iso_c_binding, only : c_ptr, c_int, &15

c_size_t16
type (c_ptr), value :: ptr17
integer (kind=c_int), value :: val, device_num, depobj_count18
integer (kind=c_size_t), value :: count19
integer (kind=omp_depend_kind), optional :: depobj_list(*)20

Fortran

620 OpenMP API – Version 6.0 November 2024

Effect1
As a memory-setting routine, the effect of the omp_target_memset_async routine is as2
described in Section 25.8. This effect includes the tool events and callbacks defined in that section.3
As it is also an asynchronous device routine, the routine also includes the tool events and callbacks4
defined in Section 25.1.5

Cross References6

• Asynchronous Device Memory Routines, see Section 25.17

• Memory Setting Routines, see Section 25.88

CHAPTER 25. DEVICE MEMORY ROUTINES 621

26 Interoperability Routines1

This section describes interoperability routines, which have the interoperability-routine property.2
These routines provide mechanisms to inspect the properties associated with an interoperability3
object. Each interoperability routine takes an interop argument of the interop OpenMP type.4
Most interoperability routines also take a property_id argument of the interop_property5
OpenMP type and a ret_code argument of (pointer to) interop_rc OpenMP type.6

Interoperability-property-retrieving routines, which have the interoperability-property-retrieving7
property, retrieve an interoperability property from an interoperability object. For these routines, if8
a non-null pointer is passed to the ret_code argument, an interop_rc OpenMP type value that9
indicates the return code is stored in the object to which ret_code points. If an error occurred, the10
stored value is negative and matches the error as defined in Table 20.3. On success,11
omp_irc_success is stored. If no error occurred but no meaningful value can be returned,12
omp_irc_no_value is stored.13

Interoperability-property-retrieving routines return the requested interoperability property, if14
available, and zero if an error occurs or no value is available. If the interop argument is15
omp_interop_none, an empty error occurs. If the property_id argument is greater than or16
equal to omp_get_num_interop_properties(interop) or less than omp_ipr_first, an17
out-of-range error occurs. If the requested property value is not convertible into a value of the type18
that the specific interoperability-property-retrieving routine retrieves, a type error occurs.19

Restrictions20
Restrictions to interoperability routines are as follows:21

• Providing an invalid interoperability object for the interop argument results in unspecified22
behavior.23

• For any interoperability routine that returns a pointer, memory referenced by the pointer is24
managed by the OpenMP implementation and should not be freed or modified and memory25
referenced by that pointer cannot be accessed after the interoperability object that was used to26
obtain the pointer is destroyed.27

Cross References28

• OpenMP Interoperability Support Types, see Section 20.729

622 OpenMP API – Version 6.0 November 2024

26.1 omp_get_num_interop_properties Routine1

Name: omp_get_num_interop_properties
Category: function

Properties: interoperability-routine
2

Return Type and Arguments3
Name Type Properties
<return type> integer default
interop interop intent(in)

4

Prototypes5
C / C++

int omp_get_num_interop_properties(const omp_interop_t interop);6

C / C++
Fortran

integer function omp_get_num_interop_properties(interop)7
integer (kind=omp_interop_kind), intent(in) :: interop8

Fortran
Effect9
The omp_get_num_interop_properties routine returns the number of implementation10
defined interoperability properties available for interop. The total number of properties available11
for interop is the returned value minus omp_ipr_first.12

Cross References13

• OpenMP interop Type, see Section 20.7.114

26.2 omp_get_interop_int Routine15

Name: omp_get_interop_int
Category: function

Properties: interoperability-property-
retrieving, interoperability-routine16

Return Type and Arguments17
Name Type Properties
<return type> intptr default
interop interop omp, opaque, intent(in)
property_id interop_property omp
ret_code interop_rc omp, intent(out), op-

tional

18

CHAPTER 26. INTEROPERABILITY ROUTINES 623

Prototypes1
C / C++

omp_intptr_t *omp_get_interop_int(const omp_interop_t interop,2
omp_interop_property_t property_id, omp_interop_rc_t *ret_code);3

C / C++
Fortran

integer (kind=c_intptr_t) function omp_get_interop_int(interop, &4
property_id, ret_code)5
use, intrinsic :: iso_c_binding, only : c_intptr_t6
integer (kind=omp_interop_kind), intent(in) :: interop7
integer (kind=omp_interop_property_kind) property_id8
integer (kind=omp_interop_rc_kind), intent(out), optional :: &9

ret_code10

Fortran
Effect11
The omp_get_interop_int routine is an interoperability-property-retrieving routine that12
retrieves an interoperability property of integer type, if available.13

Cross References14

• OpenMP interop Type, see Section 20.7.115

• OpenMP interop_property Type, see Section 20.7.316

• OpenMP interop_rc Type, see Section 20.7.417

• omp_get_num_interop_properties Routine, see Section 26.118

26.3 omp_get_interop_ptr Routine19

Name: omp_get_interop_ptr
Category: function

Properties: interoperability-property-
retrieving, interoperability-routine20

Return Type and Arguments21
Name Type Properties
<return type> c_ptr default
interop interop omp, opaque, intent(in)
property_id interop_property omp
ret_code interop_rc omp, intent(out), op-

tional

22

624 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

void *omp_get_interop_ptr(const omp_interop_t interop,2
omp_interop_property_t property_id, omp_interop_rc_t *ret_code);3

C / C++
Fortran

type (c_ptr) function omp_get_interop_ptr(interop, property_id, &4
ret_code)5
use, intrinsic :: iso_c_binding, only : c_ptr6
integer (kind=omp_interop_kind), intent(in) :: interop7
integer (kind=omp_interop_property_kind) property_id8
integer (kind=omp_interop_rc_kind), intent(out), optional :: &9

ret_code10

Fortran
Effect11
The omp_get_interop_ptr routine is an interoperability-property-retrieving routine that12
retrieves an interoperability property of pointer type, if available.13

Cross References14

• OpenMP interop Type, see Section 20.7.115

• OpenMP interop_property Type, see Section 20.7.316

• OpenMP interop_rc Type, see Section 20.7.417

• omp_get_num_interop_properties Routine, see Section 26.118

26.4 omp_get_interop_str Routine19

Name: omp_get_interop_str
Category: function

Properties: interoperability-property-
retrieving, interoperability-routine20

Return Type and Arguments21
Name Type Properties
<return type> const char pointer
interop interop omp, opaque, intent(in)
property_id interop_property omp
ret_code interop_rc omp, intent(out), op-

tional

22

CHAPTER 26. INTEROPERABILITY ROUTINES 625

Prototypes1
C / C++

const char *omp_get_interop_str(const omp_interop_t interop,2
omp_interop_property_t property_id, omp_interop_rc_t *ret_code);3

C / C++
Fortran

character(:) function omp_get_interop_str(interop, property_id, &4
ret_code)5
pointer :: omp_get_interop_str6
integer (kind=omp_interop_kind), intent(in) :: interop7
integer (kind=omp_interop_property_kind) property_id8
integer (kind=omp_interop_rc_kind), intent(out), optional :: &9

ret_code10

Fortran
Effect11
The omp_get_interop_str routine is an interoperability-property-retrieving routine that12
retrieves an interoperability string property type as a string, if available.13

Cross References14

• OpenMP interop Type, see Section 20.7.115

• OpenMP interop_property Type, see Section 20.7.316

• OpenMP interop_rc Type, see Section 20.7.417

• omp_get_num_interop_properties Routine, see Section 26.118

26.5 omp_get_interop_name Routine19

Name: omp_get_interop_name
Category: function

Properties: interoperability-routine
20

Return Type and Arguments21
Name Type Properties
<return type> const char pointer
interop interop omp, opaque, intent(in)
property_id interop_property omp

22

626 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

const char *omp_get_interop_name(const omp_interop_t interop,2
omp_interop_property_t property_id);3

C / C++
Fortran

character(:) function omp_get_interop_name(interop, property_id)4
pointer :: omp_get_interop_name5
integer (kind=omp_interop_kind), intent(in) :: interop6
integer (kind=omp_interop_property_kind) property_id7

Fortran
Effect8
The omp_get_interop_name routine returns, as a string, the name of the interoperability9
property identified by property_id. Property names for non-implementation defined interoperability10
properties are listed in Table 20.2. If the property_id is less than omp_ipr_first or greater than11
or equal to omp_get_num_interop_properties(interop), NULL is returned.12

Cross References13

• OpenMP interop Type, see Section 20.7.114

• OpenMP interop_property Type, see Section 20.7.315

• omp_get_num_interop_properties Routine, see Section 26.116

26.6 omp_get_interop_type_desc Routine17

Name: omp_get_interop_type_desc
Category: function

Properties: interoperability-routine
18

Return Type and Arguments19
Name Type Properties
<return type> const char pointer
interop interop omp, opaque, intent(in)
property_id interop_property omp

20

CHAPTER 26. INTEROPERABILITY ROUTINES 627

Prototypes1
C / C++

const char *omp_get_interop_type_desc(2
const omp_interop_t interop, omp_interop_property_t property_id);3

C / C++
Fortran

character(:) function omp_get_interop_type_desc(interop, &4
property_id)5
pointer :: omp_get_interop_type_desc6
integer (kind=omp_interop_kind), intent(in) :: interop7
integer (kind=omp_interop_property_kind) property_id8

Fortran
Effect9
The omp_get_interop_type_desc routine returns a string that describes the type of the10
interoperability property identified by property_id in human-readable form. The description may11
contain a valid type declaration, possibly followed by a description or name of the type. If interop12
has the value omp_interop_none, or if the property_id is less than omp_ipr_first or13
greater than or equal to omp_get_num_interop_properties(interop), NULL is returned.14

Cross References15

• OpenMP interop Type, see Section 20.7.116

• OpenMP interop_property Type, see Section 20.7.317

• omp_get_num_interop_properties Routine, see Section 26.118

26.7 omp_get_interop_rc_desc Routine19

Name: omp_get_interop_rc_desc
Category: function

Properties: interoperability-routine
20

Return Type and Arguments21
Name Type Properties
<return type> const char pointer
interop interop omp, opaque, intent(in)
ret_code interop_rc omp

22

628 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

const char *omp_get_interop_rc_desc(const omp_interop_t interop,2
omp_interop_rc_t ret_code);3

C / C++
Fortran

character(:) function omp_get_interop_rc_desc(interop, ret_code)4
pointer :: omp_get_interop_rc_desc5
integer (kind=omp_interop_kind), intent(in) :: interop6
integer (kind=omp_interop_rc_kind) ret_code7

Fortran
Effect8
The omp_get_interop_rc_desc routine returns a string that describes the return code9
ret_code associated with an interoperability object in human-readable form.10

Restrictions11
Restrictions to the omp_get_interop_rc_desc routine are as follows:12

• The behavior of the routine is unspecified if ret_code was not last written by an13
interoperability routine invoked with the interoperability object interop.14

Cross References15

• OpenMP interop Type, see Section 20.7.116

• OpenMP interop_property Type, see Section 20.7.317

• OpenMP interop_rc Type, see Section 20.7.418

• omp_get_num_interop_properties Routine, see Section 26.119

CHAPTER 26. INTEROPERABILITY ROUTINES 629

27 Memory Management Routines1

This chapter describes OpenMP memory-management routines, which are OpenMP API routines2
that have the memory-management-routine property. These routines support memory management3
on the current device.4

Fortran
The Fortran versions of the memory-management routines require an explicit interface and thus5
might not be provided in the deprecated include file omp_lib.h.6

Fortran

27.1 Memory Space Retrieving Routines7

This section describes the memory-space-retrieving routines, which are routines that have the8
memory-space-retrieving property. Each of these routines returns a handle to a memory space that9
represents a set of storage resources accessible by one or more devices. For each storage resource10
the following requirements are true:11

• The storage resource is accessible by each of the devices selected by the routine; and12

• The storage resource is part of the memory space represented by the memspace argument in13
each of the devices selected by the routine.14

If no set of storage resources matches the above requirements then the special value15
omp_null_mem_space is returned. These routines have the all-device-threads binding property16
for each device selected by the routine. Thus, the binding thread set for a region that corresponds to17
a memory-space-retrieving routine is all threads on the devices selected by the routine.18

The memory spaces returned by these routines are target memory spaces if any of the selected19
devices is not the current device.20

For any memory-space-retrieving routine that takes a devs argument, if the array to which the21
argument points has more than ndevs values, the additional values are ignored.22

Restrictions23
The restrictions to memory-space-retrieving routines are as follows:24

• These routines must only be invoked on the host device.25

• The memspace argument must be one of the predefined memory spaces.26

• For any memory-space-retrieving routine that has a devs argument, the argument must point27
to an array that contains at least ndevs values.28

630 OpenMP API – Version 6.0 November 2024

• For any memory-space-retrieving routine that has a dev or devs argument, the value of the1
dev argument the ndevs values of the array to which devs points must be conforming device2
numbers.3

Cross References4

• Memory Spaces, see Section 8.15

• requires Directive, see Section 10.56

• target Construct, see Section 15.87

27.1.1 omp_get_devices_memspace Routine8

Name: omp_get_devices_memspace
Category: function

Properties: all-device-threads-
binding, memory-management-routine,
memory-space-retrieving

9

Return Type and Arguments10
Name Type Properties
<return type> memspace_handle default
ndevs integer intent(in), positive
devs integer intent(in), pointer
memspace memspace_handle intent(in), omp

11

Prototypes12
C / C++

omp_memspace_handle_t omp_get_devices_memspace(int ndevs,13
const int *devs, omp_memspace_handle_t memspace);14

C / C++
Fortran

integer (kind=omp_memspace_handle_kind) function &15
omp_get_devices_memspace(ndevs, devs, memspace)16
integer, intent(in) :: ndevs, devs(*)17
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace18

Fortran
Effect19
The omp_get_devices_memspace routine is a memory-space-retrieving routine. The devices20
selected by the routine are those specified in the devs argument.21

Cross References22

• Memory Space Retrieving Routines, see Section 27.123

• OpenMP memspace_handle Type, see Section 20.8.1124

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 631

27.1.2 omp_get_device_memspace Routine1

Name: omp_get_device_memspace
Category: function

Properties: all-device-threads-
binding, memory-management-routine,
memory-space-retrieving

2

Return Type and Arguments3
Name Type Properties
<return type> memspace_handle default
dev integer intent(in)
memspace memspace_handle intent(in), omp

4

Prototypes5
C / C++

omp_memspace_handle_t omp_get_device_memspace(int dev,6
omp_memspace_handle_t memspace);7

C / C++
Fortran

integer (kind=omp_memspace_handle_kind) function &8
omp_get_device_memspace(dev, memspace)9
integer, intent(in) :: dev10
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace11

Fortran
Effect12
The omp_get_device_memspace routine is a memory-space-retrieving routine. The device13
selected by the routine is the device specified in the dev argument.14

Cross References15

• Memory Space Retrieving Routines, see Section 27.116

• OpenMP memspace_handle Type, see Section 20.8.1117

27.1.3 omp_get_devices_and_host_memspace Routine18

Name:
omp_get_devices_and_host_memspace
Category: function

Properties: all-device-threads-
binding, memory-management-routine,
memory-space-retrieving

19

Return Type and Arguments20
Name Type Properties
<return type> memspace_handle default
ndevs integer intent(in), positive
devs integer intent(in), pointer
memspace memspace_handle intent(in), omp

21

632 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

omp_memspace_handle_t omp_get_devices_and_host_memspace(2
int ndevs, const int *devs, omp_memspace_handle_t memspace);3

C / C++
Fortran

integer (kind=omp_memspace_handle_kind) function &4
omp_get_devices_and_host_memspace(ndevs, devs, memspace)5
integer, intent(in) :: ndevs, devs(*)6
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace7

Fortran
Effect8
The omp_get_devices_and_host_memspace routine is a memory-space-retrieving9
routine. The devices selected by the routine are the host device and those specified in the devs10
argument.11

Cross References12

• Memory Space Retrieving Routines, see Section 27.113

• OpenMP memspace_handle Type, see Section 20.8.1114

27.1.4 omp_get_device_and_host_memspace Routine15

Name:
omp_get_device_and_host_memspace
Category: function

Properties: all-device-threads-
binding, memory-management-routine,
memory-space-retrieving

16

Return Type and Arguments17
Name Type Properties
<return type> memspace_handle default
dev integer intent(in)
memspace memspace_handle intent(in), omp

18

Prototypes19
C / C++

omp_memspace_handle_t omp_get_device_and_host_memspace(int dev,20
omp_memspace_handle_t memspace);21

C / C++
Fortran

integer (kind=omp_memspace_handle_kind) function &22
omp_get_device_and_host_memspace(dev, memspace)23
integer, intent(in) :: dev24
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace25

Fortran

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 633

Effect1
The omp_get_device_and_host_memspace routine is a memory-space-retrieving routine.2
The devices selected by the routine are the host device and the device specified in the dev argument.3

Cross References4

• Memory Space Retrieving Routines, see Section 27.15

• OpenMP memspace_handle Type, see Section 20.8.116

27.1.5 omp_get_devices_all_memspace Routine7

Name: omp_get_devices_all_memspace
Category: function

Properties: all-device-threads-
binding, memory-management-routine,
memory-space-retrieving

8

Return Type and Arguments9
Name Type Properties
<return type> memspace_handle default
memspace memspace_handle intent(in), omp

10

Prototypes11
C / C++

omp_memspace_handle_t omp_get_devices_all_memspace(12
omp_memspace_handle_t memspace);13

C / C++
Fortran

integer (kind=omp_memspace_handle_kind) function &14
omp_get_devices_all_memspace(memspace)15
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace16

Fortran
Effect17
The omp_get_devices_all_memspace routine is a memory-space-retrieving routine. The18
devices selected by the routine are all available devices.19

Cross References20

• Memory Space Retrieving Routines, see Section 27.121

• OpenMP memspace_handle Type, see Section 20.8.1122

27.2 omp_get_memspace_num_resources Routine23

Name: omp_get_memspace_num_resources
Category: function

Properties: all-device-threads-binding,
memory-management-routine24

634 OpenMP API – Version 6.0 November 2024

Return Type and Arguments1
Name Type Properties
<return type> integer default
memspace memspace_handle intent(in), omp

2

Prototypes3
C / C++

int omp_get_memspace_num_resources(4
omp_memspace_handle_t memspace);5

C / C++
Fortran

integer function omp_get_memspace_num_resources(memspace)6
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace7

Fortran
Effect8
The omp_get_memspace_num_resources routine is a memory-management routine that9
returns the number of distinct storage resources that are associated with the memory space10
represented by the memspace handle.11

Restrictions12
The restrictions to the omp_get_memspace_num_resources routine are as follows:13

• The memspace argument must be a valid memory space.14

Cross References15

• Memory Spaces, see Section 8.116

• OpenMP memspace_handle Type, see Section 20.8.1117

27.3 omp_get_memspace_pagesize Routine18

Name: omp_get_memspace_pagesize
Category: function

Properties: all-device-threads-binding,
iso_c_binding, memory-management-
routine

19

Return Type and Arguments20
Name Type Properties
<return type> c_size_t default
memspace memspace_handle intent(in), omp

21

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 635

Prototypes1
C / C++

size_t omp_get_memspace_pagesize(omp_memspace_handle_t memspace);2

C / C++
Fortran

integer (kind=c_size_t) function omp_get_memspace_pagesize(&3
memspace) bind(c)4
use, intrinsic :: iso_c_binding, only : c_size_t5
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace6

Fortran
Effect7
The omp_get_memspace_pagesize routine is a memory-management routine that returns the8
page size that the memory space represented by the memspace handle supports.9

Restrictions10
The restrictions to the omp_get_memspace_pagesize routine are as follows:11

• The memspace argument must be a valid memory space.12

Cross References13

• Memory Spaces, see Section 8.114

• OpenMP memspace_handle Type, see Section 20.8.1115

27.4 omp_get_submemspace Routine16

Name: omp_get_submemspace
Category: function

Properties: all-device-threads-binding,
memory-management-routine17

Return Type and Arguments18
Name Type Properties
<return type> memspace_handle default
memspace memspace_handle intent(in), omp
num_resources integer intent(in), non-negative
resources integer intent(in), pointer

19

636 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

omp_memspace_handle_t omp_get_submemspace(2
omp_memspace_handle_t memspace, int num_resources,3
const int *resources);4

C / C++
Fortran

integer (kind=omp_memspace_handle_kind) function &5
omp_get_submemspace(memspace, num_resources, resources)6
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace7
integer, intent(in) :: num_resources, resources(*)8

Fortran
Effect9
The omp_get_submemspace routine is a memory-management routine that returns a new10
memory space that contains a subset of the resources of the original memory space. The new11
memory space represents only the resources of the memory space represented by the memspace12
handle that are specified by the resources argument. If num_resources is zero or a memory space13
cannot be created for the requested resources, the special value omp_null_mem_space is14
returned.15

Restrictions16
The restrictions to the omp_get_submemspace routine are as follows:17

• The memspace argument must be a valid memory space.18

• The resources array must contain at least as many entries as specified by the num_resources19
argument.20

• The value of each entry of the resources array must be between 0 and one less than the21
number of resources associated with the memory space represented by the memspace22
argument.23

Cross References24

• Memory Spaces, see Section 8.125

• OpenMP memspace_handle Type, see Section 20.8.1126

27.5 OpenMP Memory Partitioning Routines27

This section describes the memory-partitioning routines, which are routines that have the28
memory-partitioning property. These routines provide mechanisms to create and to use memory29
partitioners.30

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 637

27.5.1 omp_init_mempartitioner Routine1

Name: omp_init_mempartitioner
Category: subroutine

Properties: all-device-threads-
binding, memory-management-routine,
memory-partitioning

2

Arguments3
Name Type Properties
partitioner mempartitioner C/C++ pointer, omp,

intent(out)
lifetime mempartitioner_lifetime omp, intent(in)
compute_proc mempartitioner_com-

pute_proc
omp, procedure

release_proc mempartitioner_re-
lease_proc

omp, procedure

4

Prototypes5
C / C++

void omp_init_mempartitioner(omp_mempartitioner_t *partitioner,6
omp_mempartitioner_lifetime_t lifetime,7
omp_mempartitioner_compute_proc_t compute_proc,8
omp_mempartitioner_release_proc_t release_proc);9

C / C++
Fortran

subroutine omp_init_mempartitioner(partitioner, lifetime, &10
compute_proc, release_proc)11
integer (kind=omp_mempartitioner_kind), intent(out) :: &12

partitioner13
integer (kind=omp_mempartitioner_lifetime_kind), &14

intent(in) :: lifetime15
procedure (omp_mempartitioner_compute_proc_t) compute_proc16
procedure (omp_mempartitioner_release_proc_t) release_proc17

Fortran
Effect18
The omp_init_mempartitioner routine initializes the memory partitioner that the19
partitioner object represents with the lifetime specified by the lifetime argument, and the20
compute_proc partition computation procedure and the release_proc partition release procedure.21

Once initialized the partitioner object can be associated with an allocator when the allocator is22
initialized with omp_init_allocator by using the omp_atk_partitioner trait. If the23
omp_atk_partition allocator trait is set to omp_atv_partitioner, then, for allocations24

638 OpenMP API – Version 6.0 November 2024

that use the allocator, the number of memory parts of an allocation and how they are distributed1
across the storage resources are defined by a memory partition object that must be initialized in the2
compute_proc provided in this routine through calls to the omp_init_mempartition and3
omp_mempartition_set_part routines.4

If the value of the lifetime argument is omp_allocator_mempartition then the memory5
partition object that is created through the compute_proc procedure might be used for all6
allocations of an allocator that has the same allocation size. If the value of the lifetime argument is7
omp_dynamic_mempartition then a memory partition object will be initialized for every8
allocation.9

Restrictions10
The restrictions to the omp_init_mempartitioner routine are as follows:11

• The memory partitioner represented by the partitioner argument must be in the uninitialized12
state.13

Cross References14

• Memory Allocators, see Section 8.215

• Memory Spaces, see Section 8.116

• OpenMP mempartitioner Type, see Section 20.8.717

• OpenMP mempartitioner_compute_proc Type, see Section 20.8.918

• OpenMP mempartitioner_lifetime Type, see Section 20.8.819

• OpenMP mempartitioner_release_proc Type, see Section 20.8.1020

27.5.2 omp_destroy_mempartitioner Routine21

Name: omp_destroy_mempartitioner
Category: subroutine

Properties: all-device-threads-
binding, memory-management-routine,
memory-partitioning

22

Arguments23
Name Type Properties
partitioner mempartitioner C/C++ pointer, omp,

intent(in)
24

Prototypes25
C / C++

void omp_destroy_mempartitioner(26
const omp_mempartitioner_t *partitioner);27

C / C++

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 639

Fortran
subroutine omp_destroy_mempartitioner(partitioner)1

integer (kind=omp_mempartitioner_kind), intent(in) :: &2
partitioner3

Fortran
Effect4
The effect of the omp_destroy_mempartitioner routine is to uninitialize a memory5
partitioner. Thus, the routine changes the state of the memory partitioner object represented by the6
partitioner argument to uninitialized and releases all resources associated with it.7

Restrictions8
The restrictions to the omp_destroy_mempartitioner routine are as follows:9

• The memory partitioner represented by the partitioner argument must be in the initialized10
state.11

• Any allocator that references the memory partitioner object represented by the partitioner12
argument must be destroyed before this routine is called.13

Cross References14

• Memory Allocators, see Section 8.215

• OpenMP mempartitioner Type, see Section 20.8.716

27.5.3 omp_init_mempartition Routine17

Name: omp_init_mempartition
Category: subroutine

Properties: all-device-threads-binding,
iso_c_binding, memory-management-
routine, memory-partitioning

18

Arguments19
Name Type Properties
partition mempartition C/C++ pointer, omp,

intent(out)
nparts c_size_t intent(in), iso_c, in-

tent(in)
user_data c_ptr intent(in), iso_c, in-

tent(in)

20

640 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

void omp_init_mempartition(omp_mempartition_t *partition,2
size_t nparts, const void *user_data);3

C / C++
Fortran

subroutine omp_init_mempartition(partition, nparts, user_data) &4
bind(c)5
use, intrinsic :: iso_c_binding, only : c_size_t, c_ptr6
integer (kind=omp_mempartition_kind), intent(out) :: partition7
integer (kind=c_size_t), intent(in) :: nparts8
type (c_ptr), intent(in) :: user_data9

Fortran
Effect10
The effect of the omp_init_mempartition routine is to initialize a memory partition object.11
Thus, the routine sets the memory partition object indicated by the partition argument to represent12
a memory partition of nparts parts and associates the user data indicated by the user_data argument13
with it.14

Restrictions15
The restrictions to the omp_init_mempartition routine are as follows:16

• The memory partition represented by the partition argument must be in the uninitialized state.17

• This routine must only be called by a procedure that is associated with the memory18
partitioner object that allocated the memory partition indicated by the partition argument.19

Cross References20

• OpenMP Memory Management Types, see Section 20.821

• OpenMP mempartitioner Type, see Section 20.8.722

27.5.4 omp_destroy_mempartition Routine23

Name: omp_destroy_mempartition
Category: subroutine

Properties: all-device-threads-
binding, memory-management-routine,
memory-partitioning

24

Arguments25
Name Type Properties
partition mempartition C/C++ pointer, omp,

intent(in)
26

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 641

Prototypes1
C / C++

void omp_destroy_mempartition(2
const omp_mempartition_t *partition);3

C / C++
Fortran

subroutine omp_destroy_mempartition(partition)4
integer (kind=omp_mempartition_kind), intent(in) :: partition5

Fortran
Effect6
The effect of the omp_destroy_mempartition routine is to uninitialize a memory partition7
object. Thus, the routine releases the memory partition indicated by the partition argument and all8
resources associated with it.9

Restrictions10
The restrictions to the omp_destroy_mempartition routine are as follows:11

• The memory partition represented by the partition argument must be in the initialized state.12

• This routine must only be called by a procedure that is associated with the memory13
partitioner object that allocated the memory partition indicated by the partition argument.14

Cross References15

• OpenMP Memory Management Types, see Section 20.816

• OpenMP mempartitioner Type, see Section 20.8.717

27.5.5 omp_mempartition_set_part Routine18

Name: omp_mempartition_set_part
Category: function

Properties: all-device-threads-binding,
iso_c_binding, memory-management-
routine, memory-partitioning

19

Return Type and Arguments20
Name Type Properties
<return type> integer default
partition mempartition C/C++ pointer, omp,

intent(out)
part c_size_t intent(in), iso_c
resource integer intent(in), iso_c
size c_size_t intent(in), iso_c

21

642 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

int omp_mempartition_set_part(omp_mempartition_t *partition,2
size_t part, int resource, size_t size);3

C / C++
Fortran

integer function omp_mempartition_set_part(partition, part, &4
resource, size) bind(c)5
use, intrinsic :: iso_c_binding, only : c_size_t6
integer (kind=omp_mempartition_kind), intent(out) :: partition7
integer (kind=c_size_t), intent(in) :: part, size8
integer, intent(in) :: resource9

Fortran
Effect10
The effect of the omp_mempartition_set_part routine is to define the size and resource of a11
given part of a memory partition. Thus the routine defines the part number indicated by the part12
argument of the memory partition object indicated by the partition argument to be associated to the13
resource indicated by the resource argument and to be of size indicated by the size argument.14

The size of all parts of a memory partition, except the last one, need to be a multiple of the page size15
that the memory space where the memory is being allocated supports. If the specified size cannot16
be supported by the specified resource, this routine returns negative one. Otherwise, it returns zero.17

Restrictions18
The restrictions to the omp_mempartition_set_part routine are as follows:19

• The memory partition represented by the partition argument must be in the initialized state.20

• This routine must only be called by a procedure that is associated with the memory21
partitioner object that allocated the memory partition indicated by the partition argument.22

Cross References23

• Memory Spaces, see Section 8.124

• OpenMP Memory Management Types, see Section 20.825

• OpenMP mempartitioner Type, see Section 20.8.726

27.5.6 omp_mempartition_get_user_data Routine27

Name: omp_mempartition_get_user_data
Category: function

Properties: all-device-threads-binding,
iso_c_binding, memory-management-
routine, memory-partitioning

28

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 643

Return Type and Arguments1
Name Type Properties
<return type> c_ptr default
partition mempartition intent(in), C/C++

pointer, omp

2

Prototypes3
C / C++

void *omp_mempartition_get_user_data(4
const omp_mempartition_t *partition);5

C / C++
Fortran

type (c_ptr) function omp_mempartition_get_user_data(partition) &6
bind(c)7
use, intrinsic :: iso_c_binding, only : c_ptr8
integer (kind=omp_mempartition_kind), intent(in) :: partition9

Fortran
Effect10
The effect of the omp_mempartition_get_user_data routine is to retrieve the user data11
that was associated with the memory partition when it was created. Thus, the routine returns the12
data associated with the memory partition object indicated by the partition argument.13

Restrictions14
The restrictions to the omp_mempartition_get_user_data routine are as follows:15

• The memory partition represented by the partition argument must be in the initialized state.16

• This routine must only be called by a procedure that is associated with the memory17
partitioner object that allocated the memory partition indicated by the partition argument.18

Cross References19

• OpenMP Memory Management Types, see Section 20.820

• OpenMP mempartitioner Type, see Section 20.8.721

27.6 omp_init_allocator Routine22

Name: omp_init_allocator
Category: function

Properties: all-device-threads-binding,
memory-management-routine23

Return Type and Arguments24
Name Type Properties
<return type> allocator_handle default
memspace memspace_handle intent(in), omp
ntraits integer intent(in)
traits alloctrait intent(in), pointer, omp

25

644 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

omp_allocator_handle_t omp_init_allocator(2
omp_memspace_handle_t memspace, int ntraits,3
const omp_alloctrait_t *traits);4

C / C++
Fortran

integer (kind=omp_allocator_handle_kind) function &5
omp_init_allocator(memspace, ntraits, traits)6
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace7
integer, intent(in) :: ntraits8
integer (kind=omp_alloctrait_kind), intent(in) :: traits(*)9

Fortran
Effect10
The omp_init_allocator routine creates a new allocator that is associated with the11
memspace memory space and returns a handle to it. All allocations through the created allocator12
will behave according to the allocator traits specified in the traits argument. The number of traits in13
the traits argument is specified by the ntraits argument. If the special omp_atv_default value14
is used for a given trait, then its value will be the default value specified in Table 8.2 for that trait.15

If memspace has the value omp_null_mem_space, the effect of this routine will be as if the16
value of memspace was omp_default_mem_space. If memspace is17
omp_default_mem_space and the traits argument is an empty set, this routine will always18
return a handle to an allocator. Otherwise, if an allocator based on the requirements cannot be19
created then the special omp_null_allocator handle is returned.20

Restrictions21
The restrictions to the omp_init_allocator routine are as follows:22

• Each allocator trait must be specified at most once.23

• The memspace argument must be a valid memory space handle or the value24
omp_null_mem_space.25

• If the ntraits argument is positive then the traits argument must specify at least ntraits traits.26

• The use of an allocator returned by this routine on devices other than the one on which it was27
created results in unspecified behavior.28

• Unless a requires directive with the dynamic_allocators clause is present in the29
same compilation unit, using this routine in a target region results in unspecified behavior.30

• If the memspace handle represents a target memory space, the values omp_atv_device,31
omp_atv_cgroup, omp_atv_pteam or omp_atv_thread must not be specified for32
the omp_atk_access allocator trait.33

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 645

Cross References1

• OpenMP allocator_handle Type, see Section 20.8.12

• Memory Allocators, see Section 8.23

• Memory Spaces, see Section 8.14

• OpenMP memspace_handle Type, see Section 20.8.115

• requires Directive, see Section 10.56

• target Construct, see Section 15.87

27.7 omp_destroy_allocator Routine8

Name: omp_destroy_allocator
Category: subroutine

Properties: all-device-threads-binding,
memory-management-routine9

Arguments10
Name Type Properties
allocator allocator_handle intent(in), omp11

Prototypes12
C / C++

void omp_destroy_allocator(omp_allocator_handle_t allocator);13

C / C++
Fortran

subroutine omp_destroy_allocator(allocator)14
integer (kind=omp_allocator_handle_kind), intent(in) :: &15

allocator16

Fortran
Effect17
The omp_destroy_allocator routine releases all resources used to implement the allocator18
handle. If allocator is omp_null_allocator then this routine has no effect.19

Restrictions20
The restrictions to the omp_destroy_allocator routine are as follows:21

• The allocator argument must not represent a predefined memory allocator.22

• Accessing any memory allocated by the allocator after this call results in unspecified23
behavior.24

• Unless a requires directive with the dynamic_allocators clause is present in the25
same compilation unit, using this routine in a target region results in unspecified behavior.26

646 OpenMP API – Version 6.0 November 2024

Cross References1

• OpenMP allocator_handle Type, see Section 20.8.12

• Memory Allocators, see Section 8.23

• requires Directive, see Section 10.54

• target Construct, see Section 15.85

27.8 Memory Allocator Retrieving Routines6

This section describes the memory-allocator-retrieving routines, which are routines that have the7
memory-allocator-retrieving property. Each of these routines returns a handle to a predefined8
memory allocator that represents the default memory allocator for a given device for a certain kind9
of memory. If the implementation does not have a predefined allocator that satisfies the request,10
then the special value omp_null_allocator is returned. For any memory-allocator-retrieving11
routine that takes a devs argument, if the array to which the argument points has more than ndevs12
values, the additional values are ignored. Each of these routines returns an allocator that may be13
used anywhere that requires a predefined allocator specified in Table 8.3. The allocator is14
associated with a target memory space if any of the selected devices is not the current device.15

Restrictions16
The restrictions to memory-allocator-retrieving routines are as follows:17

• These routines must only be invoked on the host device.18

• The memspace argument must not be one of the predefined memory spaces.19

• For any memory-allocator-retrieving routine that has a devs argument, the argument must20
point to an array that contains at least ndevs values.21

• For any memory-allocator-retrieving routine that has a dev or devs argument, the value of the22
dev argument the ndevs values of the array to which devs points must be conforming device23
numbers.24

Cross References25

• Memory Allocators, see Section 8.226

• Memory Spaces, see Section 8.127

27.8.1 omp_get_devices_allocator Routine28

Name: omp_get_devices_allocator
Category: function

Properties: all-device-threads-
binding, memory-management-routine,
memory-allocator-retrieving

29

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 647

Return Type and Arguments1
Name Type Properties
<return type> allocator_handle default
ndevs integer intent(in), positive
devs integer intent(in), pointer
memspace memspace_handle intent(in), omp

2

Prototypes3
C / C++

omp_allocator_handle_t omp_get_devices_allocator(int ndevs,4
const int *devs, omp_memspace_handle_t memspace);5

C / C++
Fortran

integer (kind=omp_allocator_handle_kind) function &6
omp_get_devices_allocator(ndevs, devs, memspace)7
integer, intent(in) :: ndevs, devs(*)8
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace9

Fortran
Effect10
The omp_get_devices_allocator routine is a memory-allocator-retrieving routine. The11
devices selected by the routine are those specified in the devs argument.12

Cross References13

• OpenMP allocator_handle Type, see Section 20.8.114

• Memory Allocator Retrieving Routines, see Section 27.815

• OpenMP memspace_handle Type, see Section 20.8.1116

27.8.2 omp_get_device_allocator Routine17

Name: omp_get_device_allocator
Category: function

Properties: all-device-threads-
binding, memory-management-routine,
memory-allocator-retrieving

18

Return Type and Arguments19
Name Type Properties
<return type> allocator_handle default
dev integer intent(in)
memspace memspace_handle intent(in), omp

20

648 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

omp_allocator_handle_t omp_get_device_allocator(int dev,2
omp_memspace_handle_t memspace);3

C / C++
Fortran

integer (kind=omp_allocator_handle_kind) function &4
omp_get_device_allocator(dev, memspace)5
integer, intent(in) :: dev6
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace7

Fortran
Effect8
The omp_get_device_allocator routine is a memory-allocator-retrieving routine. The9
device selected by the routine is the device specified in the dev argument.10

Cross References11

• OpenMP allocator_handle Type, see Section 20.8.112

• Memory Allocator Retrieving Routines, see Section 27.813

• OpenMP memspace_handle Type, see Section 20.8.1114

27.8.3 omp_get_devices_and_host_allocator Routine15

Name:
omp_get_devices_and_host_allocator
Category: function

Properties: all-device-threads-
binding, memory-management-routine,
memory-allocator-retrieving

16

Return Type and Arguments17
Name Type Properties
<return type> allocator_handle default
ndevs integer intent(in), positive
devs integer intent(in), pointer
memspace memspace_handle intent(in), omp

18

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 649

Prototypes1
C / C++

omp_allocator_handle_t omp_get_devices_and_host_allocator(2
int ndevs, const int *devs, omp_memspace_handle_t memspace);3

C / C++
Fortran

integer (kind=omp_allocator_handle_kind) function &4
omp_get_devices_and_host_allocator(ndevs, devs, memspace)5
integer, intent(in) :: ndevs, devs(*)6
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace7

Fortran
Effect8
The omp_get_devices_and_host_allocator routine is a memory-allocator-retrieving9
routine. The devices selected by the routine are the host device and those specified in the devs10
argument.11

Cross References12

• OpenMP allocator_handle Type, see Section 20.8.113

• Memory Allocator Retrieving Routines, see Section 27.814

• OpenMP memspace_handle Type, see Section 20.8.1115

27.8.4 omp_get_device_and_host_allocator Routine16

Name:
omp_get_device_and_host_allocator
Category: function

Properties: all-device-threads-
binding, memory-management-routine,
memory-allocator-retrieving

17

Return Type and Arguments18
Name Type Properties
<return type> allocator_handle default
dev integer intent(in)
memspace memspace_handle intent(in), omp

19

650 OpenMP API – Version 6.0 November 2024

Prototypes1
C / C++

omp_allocator_handle_t omp_get_device_and_host_allocator(int dev,2
omp_memspace_handle_t memspace);3

C / C++
Fortran

integer (kind=omp_allocator_handle_kind) function &4
omp_get_device_and_host_allocator(dev, memspace)5
integer, intent(in) :: dev6
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace7

Fortran
Effect8
The omp_get_device_and_host_allocator routine is a memory-allocator-retrieving9
routine. The devices selected by the routine are the host device and the device specified in the dev10
argument.11

Cross References12

• OpenMP allocator_handle Type, see Section 20.8.113

• Memory Allocator Retrieving Routines, see Section 27.814

• OpenMP memspace_handle Type, see Section 20.8.1115

27.8.5 omp_get_devices_all_allocator Routine16

Name: omp_get_devices_all_allocator
Category: function

Properties: all-device-threads-
binding, memory-management-routine,
memory-allocator-retrieving

17

Return Type and Arguments18
Name Type Properties
<return type> allocator_handle default
memspace memspace_handle intent(in), omp

19

Prototypes20
C / C++

omp_allocator_handle_t omp_get_devices_all_allocator(21
omp_memspace_handle_t memspace);22

C / C++
Fortran

integer (kind=omp_allocator_handle_kind) function &23
omp_get_devices_all_allocator(memspace)24
integer (kind=omp_memspace_handle_kind), intent(in) :: memspace25

Fortran

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 651

Effect1
The omp_get_devices_all_allocator routine is a memory-allocator-retrieving routine.2
The devices selected by the routine are all available devices.3

Cross References4

• OpenMP allocator_handle Type, see Section 20.8.15

• Memory Space Retrieving Routines, see Section 27.16

• OpenMP memspace_handle Type, see Section 20.8.117

27.9 omp_set_default_allocator Routine8

Name: omp_set_default_allocator
Category: subroutine

Properties: binding-implicit-task-
binding, memory-management-routine9

Arguments10
Name Type Properties
allocator allocator_handle omp, intent(in)11

Prototypes12
C / C++

void omp_set_default_allocator(omp_allocator_handle_t allocator);13

C / C++
Fortran

subroutine omp_set_default_allocator(allocator)14
integer (kind=omp_allocator_handle_kind), intent(in) :: &15

allocator16

Fortran
Effect17
The effect of the omp_set_default_allocator is to set the value of the def-allocator-var18
ICV of the binding implicit task to the value specified in the allocator argument. Thus, it sets the19
default memory allocator to be used by allocation calls, allocate clauses and allocate and20
allocators directives that do not specify an allocator. This routine has the binding-implicit-task21
binding property so the binding task set for an omp_set_default_allocator region is the22
binding implicit task.23

652 OpenMP API – Version 6.0 November 2024

Restrictions1
The restrictions to the omp_set_default_allocator routine are as follows:2

• The allocator argument must be a valid memory allocator handle.3

Cross References4

• allocate Clause, see Section 8.65

• allocate Directive, see Section 8.56

• OpenMP allocator_handle Type, see Section 20.8.17

• allocators Construct, see Section 8.78

• Memory Allocators, see Section 8.29

• def-allocator-var ICV, see Table 3.110

27.10 omp_get_default_allocator Routine11

Name: omp_get_default_allocator
Category: function

Properties: binding-implicit-task-
binding, memory-management-routine12

Return Type13
Name Type Properties
<return type> allocator_handle default14

Prototypes15
C / C++

omp_allocator_handle_t omp_get_default_allocator(void);16

C / C++
Fortran

integer (kind=omp_allocator_handle_kind) function &17
omp_get_default_allocator()18

Fortran
Effect19
The omp_get_default_allocator routine returns the value of the def-allocator-var ICV of20
the binding implicit task, which is a handle to the memory allocator to be used by allocation calls,21
allocate clauses and allocate and allocators directives that do not specify an allocator.22
This routine has the binding-implicit-task binding property, so the binding task set for an23
omp_get_default_allocator region is the binding implicit task.24

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 653

Cross References1

• allocate Clause, see Section 8.62

• allocate Directive, see Section 8.53

• OpenMP allocator_handle Type, see Section 20.8.14

• allocators Construct, see Section 8.75

• Memory Allocators, see Section 8.26

• def-allocator-var ICV, see Table 3.17

27.11 Memory Allocating Routines8

This section describes the memory-allocating routines, which are routines that have the9
memory-allocating-routine property. Each of these routines requests a memory allocation from the10
memory allocator that its allocator argument specifies. If the allocator argument is11
omp_null_allocator, the routine uses the memory allocator specified by the12
def-allocator-var ICV of the binding implicit task. Upon success, these routines return a pointer to13
the allocated memory. Otherwise, the behavior that the omp_atk_fallback trait of the14
allocator specifies is followed. Pointers returned by these routines are considered device pointers if15
at least one of the devices associated with the allocator that the allocator argument represents is not16
the current device.17

OpenMP provides several kinds of memory-allocating routines. The memory allocated by18
raw-memory-allocating routines, which have the raw-memory-allocating-routine property, is19
uninitialized. The memory allocated by zeroed-memory-allocating routines, which have the20
zeroed-memory-allocating-routine property, is set to zero before the routine returns.21

The memory allocated by aligned-memory-allocating routines, which have the22
aligned-memory-allocating-routine property, is byte-aligned to at least the maximum of the23
alignment required by malloc, the omp_atk_alignment trait of the allocator and the value of24
their alignment argument. The memory allocated by all other memory-allocating routines is25
byte-aligned to at least the maximum of the alignment required by malloc and the26
omp_atk_alignment trait of the allocator.27

Raw-memory-allocating routines request a memory allocation of size bytes from the specified28
memory allocator. Zeroed-memory-allocating routines request a memory allocation for an array of29
nmemb elements, each of which has a size of size bytes. If any of the size or nmemb arguments are30
zero, these routines return NULL.31

Memory-reallocating routines deallocate the memory to which the ptr argument points and request32
a new memory allocation of size bytes from the memory allocator that is specified by the allocator33
argument. If the free_allocator argument is omp_null_allocator, the implementation will34
determine that value automatically. If the allocator argument is omp_null_allocator, the35

654 OpenMP API – Version 6.0 November 2024

behavior is as if the memory allocator that allocated the memory to which ptr argument points is1
passed to the allocator argument. Upon success, each of these routines returns a (possibly moved)2
pointer to the allocated memory and the contents of the new object will be the same as that of the3
old object prior to deallocation, up to the minimum size of the old allocated size and size. Any4
bytes in the new object beyond the old allocated size will have unspecified values. If the allocation5
failed, the behavior that the omp_atk_fallback trait of the allocator specifies will be followed.6
If ptr is NULL, a memory-reallocating routine behaves the same as a raw-memory-allocating7
routine with the same size and allocator arguments. If size is zero, a memory-reallocating routine8
returns NULL and the old allocation is deallocated. If size is not zero, the old allocation will be9
deallocated if and only if the routine returns a non-null value.10

C++
The C++ version of all memory-allocating routines have the overloaded property since they are11
overloaded routines for which the allocator argument may be omitted, in which case the effect is as12
if omp_null_allocator is specified.13

C++
Restrictions14
The restrictions to memory-allocating routines are as follows:15

• Unless the unified_address clause is specified or the current device is an associated16
device of the allocator, pointer arithmetic is not supported on the pointer that a17
memory-allocating routine returns.18

• Each allocator and free_allocator argument must be a constant expression that evaluates to a19
handle that represents a predefined memory allocator.20

• The value of the alignment argument to an aligned-memory-allocating routine must be a21
power of two.22

• The value of a size argument to an aligned-memory-allocating routine must be a multiple of23
the alignment argument.24

• The value of the ptr argument to a memory-reallocating routine must have been returned by a25
memory-allocating routine.26

• If the free_allocator argument is specified for a memory-reallocating routine, it must be the27
memory allocator to which the previous allocation request was made.28

• Using a memory-reallocating routine on memory that was already deallocated or that was29
allocated by an allocator that has already been destroyed with omp_destroy_allocator30
results in unspecified behavior.31

• Unless a requires directive with the dynamic_allocators clause is present in the32
same compilation unit, memory-allocating routines that appear in target regions must not33
pass omp_null_allocator as the allocator or free_allocator argument.34

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 655

Cross References1

• Memory Allocators, see Section 8.22

• def-allocator-var ICV, see Table 3.13

• omp_destroy_allocator Routine, see Section 27.74

• requires Directive, see Section 10.55

• target Construct, see Section 15.86

27.11.1 omp_alloc Routine7

Name: omp_alloc
Category: function

Properties: iso_c_binding, memory-
allocating-routine, memory-
management-routine, overloaded, raw-
memory-allocating-routine

8

Return Type and Arguments9
Name Type Properties
<return type> c_ptr default
size c_size_t iso_c, value
allocator allocator_handle value, omp

10

Prototypes11
C

void *omp_alloc(size_t size, omp_allocator_handle_t allocator);12

C
C++

void *omp_alloc(size_t size,13
omp_allocator_handle_t allocator = omp_null_allocator);14

C++
Fortran

type (c_ptr) function omp_alloc(size, allocator) bind(c)15
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t16
integer (kind=c_size_t), value :: size17
integer (kind=omp_allocator_handle_kind), value :: allocator18

Fortran
Effect19
The omp_alloc routine is a raw-memory-allocating routine.20

656 OpenMP API – Version 6.0 November 2024

Cross References1

• OpenMP allocator_handle Type, see Section 20.8.12

• Memory Allocating Routines, see Section 27.113

27.11.2 omp_aligned_alloc Routine4

Name: omp_aligned_alloc
Category: function

Properties: aligned-memory-
allocating-routine, iso_c_binding,
memory-allocating-routine, memory-
management-routine, overloaded, raw-
memory-allocating-routine

5

Return Type and Arguments6
Name Type Properties
<return type> c_ptr default
alignment c_size_t iso_c, value
size c_size_t iso_c, value
allocator allocator_handle value, omp

7

Prototypes8
C

void *omp_aligned_alloc(size_t alignment, size_t size,9
omp_allocator_handle_t allocator);10

C
C++

void *omp_aligned_alloc(size_t alignment, size_t size,11
omp_allocator_handle_t allocator = omp_null_allocator);12

C++
Fortran

type (c_ptr) function omp_aligned_alloc(alignment, size, &13
allocator) bind(c)14
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t15
integer (kind=c_size_t), value :: alignment, size16
integer (kind=omp_allocator_handle_kind), value :: allocator17

Fortran
Effect18
The omp_aligned_alloc routine is a raw-memory-allocating routine and an19
aligned-memory-allocating routine.20

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 657

Cross References1

• OpenMP allocator_handle Type, see Section 20.8.12

• Memory Allocating Routines, see Section 27.113

27.11.3 omp_calloc Routine4

Name: omp_calloc
Category: function

Properties: iso_c_binding, memory-
allocating-routine, memory-
management-routine, overloaded,
zeroed-memory-allocating-routine

5

Return Type and Arguments6
Name Type Properties
<return type> c_ptr default
nmemb c_size_t iso_c, value
size c_size_t iso_c, value
allocator allocator_handle value, omp

7

Prototypes8
C

void *omp_calloc(size_t nmemb, size_t size,9
omp_allocator_handle_t allocator);10

C
C++

void *omp_calloc(size_t nmemb, size_t size,11
omp_allocator_handle_t allocator = omp_null_allocator);12

C++
Fortran

type (c_ptr) function omp_calloc(nmemb, size, allocator) &13
bind(c)14
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t15
integer (kind=c_size_t), value :: nmemb, size16
integer (kind=omp_allocator_handle_kind), value :: allocator17

Fortran
Effect18
The omp_calloc routine is a zeroed-memory-allocating routines.19

Cross References20

• OpenMP allocator_handle Type, see Section 20.8.121

• Memory Allocating Routines, see Section 27.1122

658 OpenMP API – Version 6.0 November 2024

27.11.4 omp_aligned_calloc Routine1

Name: omp_aligned_calloc
Category: function

Properties: aligned-memory-
allocating-routine, iso_c_binding,
memory-allocating-routine, memory-
management-routine, overloaded,
zeroed-memory-allocating-routine

2

Return Type and Arguments3
Name Type Properties
<return type> c_ptr default
alignment c_size_t iso_c, value
nmemb c_size_t iso_c, value
size c_size_t iso_c, value
allocator allocator_handle value, omp

4

Prototypes5
C

void *omp_aligned_calloc(size_t alignment, size_t nmemb,6
size_t size, omp_allocator_handle_t allocator);7

C
C++

void *omp_aligned_calloc(size_t alignment, size_t nmemb,8
size_t size,9
omp_allocator_handle_t allocator = omp_null_allocator);10

C++
Fortran

type (c_ptr) function omp_aligned_calloc(alignment, nmemb, size, &11
allocator) bind(c)12
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t13
integer (kind=c_size_t), value :: alignment, nmemb, size14
integer (kind=omp_allocator_handle_kind), value :: allocator15

Fortran
Effect16
The omp_aligned_calloc routine is a zeroed-memory-allocating routine and an17
aligned-memory-allocating routine.18

Cross References19

• OpenMP allocator_handle Type, see Section 20.8.120

• Memory Allocating Routines, see Section 27.1121

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 659

27.11.5 omp_realloc Routine1

Name: omp_realloc
Category: function

Properties: iso_c_binding, memory-
allocating-routine, memory-
management-routine, memory-
reallocating-routine, overloaded

2

Return Type and Arguments3
Name Type Properties
<return type> c_ptr default
ptr c_ptr iso_c, value
size c_size_t iso_c, value
allocator allocator_handle value, omp
free_allocator allocator_handle value, omp

4

Prototypes5
C

void *omp_realloc(void *ptr, size_t size,6
omp_allocator_handle_t allocator,7
omp_allocator_handle_t free_allocator);8

C
C++

void *omp_realloc(void *ptr, size_t size,9
omp_allocator_handle_t allocator = omp_null_allocator,10
omp_allocator_handle_t free_allocator = omp_null_allocator);11

C++
Fortran

type (c_ptr) function omp_realloc(ptr, size, allocator, &12
free_allocator) bind(c)13
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t14
type (c_ptr), value :: ptr15
integer (kind=c_size_t), value :: size16
integer (kind=omp_allocator_handle_kind), value :: allocator, &17

free_allocator18

Fortran
Effect19
The omp_realloc routine is a memory-reallocating routine.20

Cross References21

• OpenMP allocator_handle Type, see Section 20.8.122

• Memory Allocating Routines, see Section 27.1123

660 OpenMP API – Version 6.0 November 2024

27.12 omp_free Routine1

Name: omp_free
Category: subroutine

Properties: iso_c_binding, memory-
management-routine, overloaded2

Arguments3
Name Type Properties
ptr c_ptr iso_c, value
allocator allocator_handle value, omp

4

Prototypes5
C

void omp_free(void *ptr, omp_allocator_handle_t allocator);6

C
C++

void omp_free(void *ptr,7
omp_allocator_handle_t allocator = omp_null_allocator);8

C++
Fortran

subroutine omp_free(ptr, allocator) bind(c)9
use, intrinsic :: iso_c_binding, only : c_ptr10
type (c_ptr), value :: ptr11
integer (kind=omp_allocator_handle_kind), value :: allocator12

Fortran
Effect13
The omp_free routine deallocates the memory to which the ptr argument points. If the allocator14
argument is omp_null_allocator, the implementation will determine that value15
automatically. If ptr is NULL, no operation is performed.16

C++
The C++ version of the omp_free routine has the overloaded property since it is an overloaded17
routine for which the allocator argument may be omitted, in which case the effect is as if18
omp_null_allocator is specified.19

C++

CHAPTER 27. MEMORY MANAGEMENT ROUTINES 661

Restrictions1
The restrictions to the omp_free routine are as follows:2

• The ptr argument must have been returned by a memory-allocating routine.3

• If the allocator argument is specified it must be the memory allocator to which the allocation4
request was made.5

• Using omp_free on memory that was already deallocated or that was allocated by an6
allocator that has already been destroyed with omp_destroy_allocator results in7
unspecified behavior.8

Cross References9

• OpenMP allocator_handle Type, see Section 20.8.110

• Memory Allocating Routines, see Section 27.1111

• Memory Allocators, see Section 8.212

• omp_destroy_allocator Routine, see Section 27.713

662 OpenMP API – Version 6.0 November 2024

28 Lock Routines1

This chapter describes general-purpose lock routines that can be used for synchronization via2
mutual exclusion. These routines with the lock property operate on OpenMP locks that are3
represented by OpenMP lock variables. OpenMP lock variables must be accessed only through the4
lock routines; OpenMP programs that otherwise access OpenMP lock variables are5
non-conforming.6

A lock can be in one of the following lock states: uninitialized; unlocked; or locked. If a lock is in7
the unlocked state, a task can acquire the lock by executing a lock-acquiring routine, a routine that8
has the lock-acquiring property, through which it changes the lock state to the locked state. The task9
that acquires the lock is then said to own the lock. A task that owns a lock can release it by10
executing a lock-releasing routine, a routine that has the lock-releasing property, through which it11
returns the lock state to the unlocked state. An OpenMP program in which a task executes a12
lock-releasing routine on a lock that is owned by another task is non-conforming.13

OpenMP supports two types of locks: simple locks and nestable locks. A nestable lock can be14
acquired (i.e., set) multiple times by the same task before being released (i.e., unset); a simple lock15
cannot be acquired if it is already owned by the task trying to set it. Simple lock variables are16
associated with simple locks and can only be passed to simple lock routines (routines that have the17
simple lock property). Nestable lock variables are associated with nestable locks and can only be18
passed to nestable lock routines (routines that have the nestable lock property).19

Each type of lock can also have a synchronization hint that contains information about the intended20
usage of the lock by the OpenMP program. The effect of the hint is implementation defined. An21
OpenMP implementation can use this hint to select a usage-specific lock, but hints do not change22
the mutual exclusion semantics of locks. A compliant implementation can safely ignore the hint.23

Constraints on the lock state and ownership of the lock accessed by each of the lock routines are24
described with the routine. If these constraints are not met, the behavior of the routine is25
unspecified.26

The lock routines access an OpenMP lock variable such that they always read and update its most27
current value. An OpenMP program does not need to include explicit flush directives to ensure28
that the value of a lock is consistent among different tasks.29

Restrictions30
Restrictions to OpenMP lock routines are as follows:31

• The use of the same lock in different contention groups results in unspecified behavior.32

CHAPTER 28. LOCK ROUTINES 663

28.1 Lock Initializing Routines1

Lock-initializing routines are routines with the lock-initializing property. These routines initialize2
the lock to the unlocked state; that is, no task owns the lock. In addition, the nesting count for a3
nestable lock is set to zero.4

Restrictions5
Restrictions to lock-initializing routines are as follows:6

• A lock-initializing routine must not access a lock that is not in the uninitialized state.7

28.1.1 omp_init_lock Routine8

Name: omp_init_lock
Category: subroutine

Properties: all-contention-group-
tasks-binding, lock-initializing, simple-
lock

9

Arguments10
Name Type Properties
svar lock C/C++ pointer, omp11

Prototypes12
C / C++

void omp_init_lock(omp_lock_t *svar);13

C / C++
Fortran

subroutine omp_init_lock(svar)14
integer (kind=omp_lock_kind) svar15

Fortran
Effect16
The omp_init_lock routine is a lock-initializing routine.17

Execution Model Events18
The lock-init event occurs in a thread that executes an omp_init_lock region after initialization19
of the lock, but before it finishes the region.20

Tool Callbacks21
A thread dispatches a registered lock_init callback with omp_sync_hint_none as the hint22
argument and ompt_mutex_lock as the kind argument for each occurrence of a lock-init event23
in that thread. This callback occurs in the task that encounters the routine.24

664 OpenMP API – Version 6.0 November 2024

Cross References1

• OpenMP lock Type, see Section 20.9.32

• lock_init Callback, see Section 34.7.93

• OMPT mutex Type, see Section 33.204

28.1.2 omp_init_nest_lock Routine5

Name: omp_init_nest_lock
Category: subroutine

Properties: all-contention-group-
tasks-binding, lock-initializing,
nestable-lock

6

Arguments7
Name Type Properties
nvar nest_lock C/C++ pointer, omp8

Prototypes9
C / C++

void omp_init_nest_lock(omp_nest_lock_t *nvar);10

C / C++
Fortran

subroutine omp_init_nest_lock(nvar)11
integer (kind=omp_nest_lock_kind) nvar12

Fortran
Effect13
The omp_init_nest_lock routine is a lock-initializing routine.14

Execution Model Events15
The nest-lock-init event occurs in a thread that executes an omp_init_nest_lock region after16
initialization of the lock, but before it finishes the region.17

Tool Callbacks18
A thread dispatches a registered lock_init callback with omp_sync_hint_none as the hint19
argument and ompt_mutex_nest_lock as the kind argument for each occurrence of a20
nest-lock-init event in that thread. This callback occurs in the task that encounters the routine.21

Cross References22

• lock_init Callback, see Section 34.7.923

• OMPT mutex Type, see Section 33.2024

• OpenMP nest_lock Type, see Section 20.9.425

CHAPTER 28. LOCK ROUTINES 665

28.1.3 omp_init_lock_with_hint Routine1

Name: omp_init_lock_with_hint
Category: subroutine

Properties: all-contention-group-
tasks-binding, lock-initializing, simple-
lock

2

Arguments3
Name Type Properties
svar lock C/C++ pointer, omp
hint sync_hint omp

4

Prototypes5
C / C++

void omp_init_lock_with_hint(omp_lock_t *svar,6
omp_sync_hint_t hint);7

C / C++
Fortran

subroutine omp_init_lock_with_hint(svar, hint)8
integer (kind=omp_lock_kind) svar9
integer (kind=omp_sync_hint_kind) hint10

Fortran
Effect11
The omp_init_lock_with_hint routine is a lock-initializing routine.12

Execution Model Events13
The lock-init-with-hint event occurs in a thread that executes an omp_init_lock_with_hint14
region after initialization of the lock, but before it finishes the region.15

Tool Callbacks16
A thread dispatches a registered lock_init callback with the same value for its hint argument as17
the hint argument of the call to omp_init_lock_with_hint and ompt_mutex_lock as18
the kind argument for each occurrence of a lock-init-with-hint event in that thread. This callback19
occurs in the task that encounters the routine.20

Cross References21

• OpenMP lock Type, see Section 20.9.322

• lock_init Callback, see Section 34.7.923

• OMPT mutex Type, see Section 33.2024

• OpenMP sync_hint Type, see Section 20.9.525

666 OpenMP API – Version 6.0 November 2024

28.1.4 omp_init_nest_lock_with_hint Routine1

Name: omp_init_nest_lock_with_hint
Category: subroutine

Properties: all-contention-group-
tasks-binding, lock-initializing,
nestable-lock

2

Arguments3
Name Type Properties
nvar nest_lock C/C++ pointer, omp
hint sync_hint omp

4

Prototypes5
C / C++

void omp_init_nest_lock_with_hint(omp_nest_lock_t *nvar,6
omp_sync_hint_t hint);7

C / C++
Fortran

subroutine omp_init_nest_lock_with_hint(nvar, hint)8
integer (kind=omp_nest_lock_kind) nvar9
integer (kind=omp_sync_hint_kind) hint10

Fortran
Effect11
The omp_init_nest_lock_with_hint routine is a lock-initializing routine.12

Execution Model Events13
The nest-lock-init-with-hint event occurs in a thread that executes an omp_init_nest_lock14
region after initialization of the lock, but before it finishes the region.15

Tool Callbacks16
A thread dispatches a registered lock_init callback with the same value for its hint argument as17
the hint argument of the call to omp_init_nest_lock_with_hint and18
ompt_mutex_nest_lock as the kind argument for each occurrence of a nest-lock-init-with-hint19
event in that thread This callback occurs in the task that encounters the routine.20

Cross References21

• lock_init Callback, see Section 34.7.922

• OMPT mutex Type, see Section 33.2023

• OpenMP nest_lock Type, see Section 20.9.424

• OpenMP sync_hint Type, see Section 20.9.525

CHAPTER 28. LOCK ROUTINES 667

28.2 Lock Destroying Routines1

Lock-destroying routines are routines with the lock-destroying property. These routines deactivate2
the lock by setting it to the uninitialized state.3

Restrictions4
Restrictions to lock-destroying routines are as follows:5

• A lock-destroying routine must not access a lock that is not in the unlocked state.6

28.2.1 omp_destroy_lock Routine7

Name: omp_destroy_lock
Category: subroutine

Properties: all-contention-group-
tasks-binding, lock-destroying, simple-
lock

8

Arguments9
Name Type Properties
svar lock C/C++ pointer, omp10

Prototypes11
C / C++

void omp_destroy_lock(omp_lock_t *svar);12

C / C++
Fortran

subroutine omp_destroy_lock(svar)13
integer (kind=omp_lock_kind) svar14

Fortran
Effect15
The omp_destroy_lock routine is a lock-destroying routine.16

Execution Model Events17
The lock-destroy event occurs in a thread that executes an omp_destroy_lock region before it18
finishes the region.19

Tool Callbacks20
A thread dispatches a registered lock_destroy callback with ompt_mutex_lock as the kind21
argument for each occurrence of a lock-destroy event in that thread. This callback occurs in the task22
that encounters the routine.23

668 OpenMP API – Version 6.0 November 2024

Cross References1

• OpenMP lock Type, see Section 20.9.32

• lock_destroy Callback, see Section 34.7.113

• OMPT mutex Type, see Section 33.204

28.2.2 omp_destroy_nest_lock Routine5

Name: omp_destroy_nest_lock
Category: subroutine

Properties: all-contention-group-
tasks-binding, lock-destroying,
nestable-lock

6

Arguments7
Name Type Properties
nvar nest_lock C/C++ pointer, omp8

Prototypes9
C / C++

void omp_destroy_nest_lock(omp_nest_lock_t *nvar);10

C / C++
Fortran

subroutine omp_destroy_nest_lock(nvar)11
integer (kind=omp_nest_lock_kind) nvar12

Fortran
Effect13
The omp_destroy_nest_lock routine is a lock-destroying routine.14

Execution Model Events15
The nest-lock-destroy event occurs in a thread that executes an omp_destroy_nest_lock16
region before it finishes the region.17

Tool Callbacks18
A thread dispatches a registered lock_destroy callback with ompt_mutex_nest_lock as19
the kind argument for each occurrence of a nest-lock-destroy event in that thread. This occurs in the20
task that encounters the routine.21

Cross References22

• lock_destroy Callback, see Section 34.7.1123

• OMPT mutex Type, see Section 33.2024

• OpenMP nest_lock Type, see Section 20.9.425

CHAPTER 28. LOCK ROUTINES 669

28.3 Lock Acquiring Routines1

Lock-acquiring routines are routines with the lock-acquiring property. These routines provide a2
means of setting locks. The encountering task region behaves as if it was suspended until the lock3
can be acquired by this task.4

5

Note – The semantics of lock-acquiring routine are specified as if they serialize execution of the6
region guarded by the lock. However, implementations may implement them in other ways7
provided that the isolation properties are respected so that the actual execution delivers a result that8
could arise from some serialization.9

10

Restrictions11
Restrictions to lock-acquiring routines are as follows:12

• A lock-acquiring routine must not access a lock that is in the uninitialized state.13

28.3.1 omp_set_lock Routine14

Name: omp_set_lock
Category: subroutine

Properties: all-contention-group-
tasks-binding, lock-acquiring, simple-
lock

15

Arguments16
Name Type Properties
svar lock C/C++ pointer, omp17

Prototypes18
C / C++

void omp_set_lock(omp_lock_t *svar);19

C / C++
Fortran

subroutine omp_set_lock(svar)20
integer (kind=omp_lock_kind) svar21

Fortran
Effect22
A simple lock is available when it is in the unlocked state. Ownership of the lock is granted to the23
task that executes the routine.24

670 OpenMP API – Version 6.0 November 2024

Execution Model Events1
The lock-acquire event occurs in a thread that executes an omp_set_lock region before the2
associated lock is requested. The lock-acquired event occurs in a thread that executes an3
omp_set_lock region after it acquires the associated lock but before it finishes the region.4

Tool Callbacks5
A thread dispatches a registered mutex_acquire callback for each occurrence of a lock-acquire6
event in that thread. A thread dispatches a registered mutex_acquired callback for each7
occurrence of a lock-acquired event in that thread. These callbacks occur in the task that encounters8
the omp_set_lock routine and their kind argument is ompt_mutex_lock.9

Restrictions10
Restrictions to the omp_set_lock routine are as follows:11

• A task must not already own the lock that it accesses with a call to omp_set_lock (or12
deadlock will result).13

Cross References14

• OpenMP lock Type, see Section 20.9.315

• OMPT mutex Type, see Section 33.2016

• mutex_acquire Callback, see Section 34.7.817

• mutex_acquired Callback, see Section 34.7.1218

28.3.2 omp_set_nest_lock Routine19

Name: omp_set_nest_lock
Category: subroutine

Properties: all-contention-group-
tasks-binding, lock-acquiring, nestable-
lock

20

Arguments21
Name Type Properties
nvar nest_lock C/C++ pointer, omp22

Prototypes23
C / C++

void omp_set_nest_lock(omp_nest_lock_t *nvar);24

C / C++
Fortran

subroutine omp_set_nest_lock(nvar)25
integer (kind=omp_nest_lock_kind) nvar26

Fortran

CHAPTER 28. LOCK ROUTINES 671

Effect1
A nestable lock is available if it is in the unlocked state or if it is already owned by the task that2
executes the routine. The task that executes the routine is granted, or retains, ownership of the lock,3
and the nesting count for the lock is incremented.4

Execution Model Events5
The nest-lock-acquire event occurs in a thread that executes an omp_set_nest_lock region6
before the associated lock is requested. The nest-lock-acquired event occurs in a thread that7
executes an omp_set_nest_lock region if the task did not already own the lock, after it8
acquires the associated lock but before it finishes the region. The nest-lock-owned event occurs in a9
task when it already owns the lock and executes an omp_set_nest_lock region. The10
nest-lock-owned event occurs after the nesting count is incremented but before the task finishes the11
region.12

Tool Callbacks13
A thread dispatches a registered mutex_acquire callback for each occurrence of a14
nest-lock-acquire event in that thread. A thread dispatches a registered mutex_acquired15
callback for each occurrence of a nest-lock-acquired event in that thread. A thread dispatches a16
registered nest_lock callback with ompt_scope_begin as its endpoint argument for each17
occurrence of a nest-lock-owned event in that thread. These callbacks occur in the task that18
encounters the omp_set_nest_lock routine and their kind argument is19
ompt_mutex_nest_lock.20

Cross References21

• OMPT mutex Type, see Section 33.2022

• mutex_acquire Callback, see Section 34.7.823

• mutex_acquired Callback, see Section 34.7.1224

• nest_lock Callback, see Section 34.7.1425

• OpenMP nest_lock Type, see Section 20.9.426

• OMPT scope_endpoint Type, see Section 33.2727

28.4 Lock Releasing Routines28

Lock-releasing routines are routines with the lock-releasing property. These routines provide a29
means of unsetting locks. If the effect of a lock-releasing routine changes the lock state to the30
unlocked state and one or more task regions were effectively suspended because the lock was31
unavailable, the effect is that one task is chosen and given ownership of the lock.32

Restrictions33
Restrictions to lock-releasing routines are as follows:34

672 OpenMP API – Version 6.0 November 2024

• A lock-releasing routine must not access a lock that is not in the locked state.1

• A lock-releasing routine must not access a lock that is owned by a task other than the2
encountering task.3

28.4.1 omp_unset_lock Routine4

Name: omp_unset_lock
Category: subroutine

Properties: all-contention-group-
tasks-binding, lock-releasing, simple-
lock

5

Arguments6
Name Type Properties
svar lock C/C++ pointer, omp7

Prototypes8
C / C++

void omp_unset_lock(omp_lock_t *svar);9

C / C++
Fortran

subroutine omp_unset_lock(svar)10
integer (kind=omp_lock_kind) svar11

Fortran
Effect12
The omp_unset_lock routine changes the lock state to the unlocked state.13

Execution Model Events14
The lock-release event occurs in a thread that executes an omp_unset_lock region after it15
releases the associated lock but before it finishes the region.16

Tool Callbacks17
A thread dispatches a registered mutex_released callback with ompt_mutex_lock as the18
kind argument for each occurrence of a lock-release event in that thread. This callback occurs in the19
encountering task.20

Cross References21

• OpenMP lock Type, see Section 20.9.322

• OMPT mutex Type, see Section 33.2023

• mutex_released Callback, see Section 34.7.1324

CHAPTER 28. LOCK ROUTINES 673

28.4.2 omp_unset_nest_lock Routine1

Name: omp_unset_nest_lock
Category: subroutine

Properties: all-contention-group-
tasks-binding, lock-releasing, nestable-
lock

2

Arguments3
Name Type Properties
nvar nest_lock C/C++ pointer, omp4

Prototypes5
C / C++

void omp_unset_nest_lock(omp_nest_lock_t *nvar);6

C / C++
Fortran

subroutine omp_unset_nest_lock(nvar)7
integer (kind=omp_nest_lock_kind) nvar8

Fortran
Effect9
The omp_unset_nest_lock routine decrements the nesting count and, if the resulting nesting10
count is zero, changes the lock state to the unlocked state.11

Execution Model Events12
The nest-lock-release event occurs in a thread that executes an omp_unset_nest_lock region13
after it releases the associated lock but before it finishes the region. The nest-lock-held event occurs14
in a thread that executes an omp_unset_nest_lock region before it finishes the region when15
the thread still owns the lock after the nesting count is decremented.16

Tool Callbacks17
A thread dispatches a registered mutex_released callback with ompt_mutex_nest_lock18
as the kind argument for each occurrence of a nest-lock-release event in that thread. A thread19
dispatches a registered nest_lock callback with ompt_scope_end as its endpoint argument20
for each occurrence of a nest-lock-held event in that thread. These callbacks occur in the21
encountering task.22

Cross References23

• OMPT mutex Type, see Section 33.2024

• mutex_released Callback, see Section 34.7.1325

• nest_lock Callback, see Section 34.7.1426

• OpenMP nest_lock Type, see Section 20.9.427

• OMPT scope_endpoint Type, see Section 33.2728

674 OpenMP API – Version 6.0 November 2024

28.5 Lock Testing Routines1

Lock-testing routines are routines with the lock-testing property. These routines attempt to acquire2
a lock in the same manner as lock-acquiring routines, except that they do not suspend execution of3
the encountering task4

Restrictions5
Restrictions on lock-testing routines are as follows.6

• A lock-testing routine must not access a lock that is in the uninitialized state.7

28.5.1 omp_test_lock Routine8

Name: omp_test_lock
Category: function

Properties: all-contention-group-
tasks-binding, lock-testing, simple-lock9

Return Type and Arguments10
Name Type Properties
<return type> logical default
svar lock C/C++ pointer, omp

11

Prototypes12
C / C++

int omp_test_lock(omp_lock_t *svar);13

C / C++
Fortran

logical function omp_test_lock(svar)14
integer (kind=omp_lock_kind) svar15

Fortran
Effect16
The omp_test_lock routine returns true if it successfully acquires the lock; otherwise, it returns17
false.18

Execution Model Events19
The lock-test event occurs in a thread that executes an omp_test_lock region before the20
associated lock is tested. The lock-test-acquired event occurs in a thread that executes an21
omp_test_lock region before it finishes the region if the associated lock was acquired.22

Tool Callbacks23
A thread dispatches a registered mutex_acquire callback for each occurrence of a lock-test24
event in that thread. A thread dispatches a registered mutex_acquired callback for each25
occurrence of a lock-test-acquired event in that thread. These callbacks occur in the encountering26
task and their kind argument is ompt_mutex_test_lock.27

CHAPTER 28. LOCK ROUTINES 675

Restrictions1
Restrictions to omp_test_lock routines are as follows:2

• An omp_test_lock routine must not access a lock that is already owned by the3
encountering task.4

Cross References5

• OpenMP lock Type, see Section 20.9.36

• OMPT mutex Type, see Section 33.207

• mutex_acquire Callback, see Section 34.7.88

• mutex_acquired Callback, see Section 34.7.129

28.5.2 omp_test_nest_lock Routine10

Name: omp_test_nest_lock
Category: function

Properties: all-contention-group-
tasks-binding, lock-testing, nestable-
lock

11

Return Type and Arguments12
Name Type Properties
<return type> integer default
nvar nest_lock C/C++ pointer, omp

13

Prototypes14
C / C++

int omp_test_nest_lock(omp_nest_lock_t *nvar);15

C / C++
Fortran

integer function omp_test_nest_lock(nvar)16
integer (kind=omp_nest_lock_kind) nvar17

Fortran
Effect18
The omp_test_nest_lock routine returns the new nesting count if it successfully sets the lock;19
otherwise, it returns zero.20

Execution Model Events21
The nest-lock-test event occurs in a thread that executes an omp_test_nest_lock region22
before the associated lock is tested. The nest-lock-test-acquired event occurs in a thread that23
executes an omp_test_nest_lock region before it finishes the region if the associated lock24
was acquired and the thread did not already own the lock. The nest-lock-owned event occurs in a25
thread that executes an omp_test_nest_lock region before it finishes the region after the26
nesting count is incremented if the thread already owned the lock.27

676 OpenMP API – Version 6.0 November 2024

Tool Callbacks1
A thread dispatches a registered mutex_acquire callback for each occurrence of a nest-lock-test2
event in that thread. A thread dispatches a registered mutex_acquired callback for each3
occurrence of a nest-lock-test-acquired event in that thread. A thread dispatches a registered4
nest_lock callback with ompt_scope_begin as its endpoint argument for each occurrence5
of a nest-lock-owned event in that thread. These callbacks occur in the encountering task and their6
kind argument is ompt_mutex_test_nest_lock.7

Cross References8

• OMPT mutex Type, see Section 33.209

• mutex_acquire Callback, see Section 34.7.810

• mutex_acquired Callback, see Section 34.7.1211

• nest_lock Callback, see Section 34.7.1412

• OpenMP nest_lock Type, see Section 20.9.413

• OMPT scope_endpoint Type, see Section 33.2714

CHAPTER 28. LOCK ROUTINES 677

29 Thread Affinity Routines1

This chapter describes routines that specify and obtain information about thread affinity policies,2
which govern the placement of threads in the execution environment of OpenMP programs.3

29.1 omp_get_proc_bind Routine4

Name: omp_get_proc_bind
Category: function

Properties: ICV-retrieving
5

Return Type6
Name Type Properties
<return type> proc_bind default7

Prototypes8
C / C++

omp_proc_bind_t omp_get_proc_bind(void);9

C / C++
Fortran

integer (kind=omp_proc_bind_kind) function omp_get_proc_bind()10

Fortran
Effect11
The effect of this routine is to return the value of the first element of the bind-var ICV of the current12
task, which will be used for the subsequent nested parallel regions that do not specify a13
proc_bind clause. See Section 12.1.3 for the rules that govern the thread affinity policy.14

Cross References15

• Controlling OpenMP Thread Affinity, see Section 12.1.316

• bind-var ICV, see Table 3.117

• parallel Construct, see Section 12.118

• OpenMP proc_bind Type, see Section 20.10.119

678 OpenMP API – Version 6.0 November 2024

29.2 omp_get_num_places Routine1

Name: omp_get_num_places
Category: function

Properties: all-device-threads-binding
2

Return Type3
Name Type Properties
<return type> integer default4

Prototypes5
C / C++

int omp_get_num_places(void);6

C / C++
Fortran

integer function omp_get_num_places()7

Fortran
Effect8
The omp_get_num_places routine returns the number of places in the place list. This value is9
equivalent to the number of places in the place-partition-var ICV in the execution environment of10
the initial task.11

Cross References12

• place-partition-var ICV, see Table 3.113

29.3 omp_get_place_num_procs Routine14

Name: omp_get_place_num_procs
Category: function

Properties: all-device-threads-binding,
ICV-retrieving15

Return Type and Arguments16
Name Type Properties
<return type> integer default
place_num integer default

17

Prototypes18
C / C++

int omp_get_place_num_procs(int place_num);19

C / C++
Fortran

integer function omp_get_place_num_procs(place_num)20
integer place_num21

Fortran

CHAPTER 29. THREAD AFFINITY ROUTINES 679

Effect1
The omp_get_place_num_procs routine returns the number of processors associated with2
the place numbered place_num as per the place-partition-var ICV. The routine returns zero when3
place_num is negative or is greater than or equal to the value returned by4
omp_get_num_places.5

Cross References6

• place-partition-var ICV, see Table 3.17

• omp_get_num_places Routine, see Section 29.28

29.4 omp_get_place_proc_ids Routine9

Name: omp_get_place_proc_ids
Category: subroutine

Properties: all-device-threads-binding,
ICV-retrieving10

Arguments11
Name Type Properties
place_num integer default
ids integer pointer

12

Prototypes13
C / C++

void omp_get_place_proc_ids(int place_num, int *ids);14

C / C++
Fortran

subroutine omp_get_place_proc_ids(place_num, ids)15
integer place_num, ids(*)16

Fortran
Effect17
The omp_get_place_proc_ids routine returns the numerical identifiers of each processor18
associated with the place numbered place_num as per the place-partition-var ICV. The numerical19
identifiers are non-negative and their meaning is implementation defined. The numerical identifiers20
are returned in the array ids and their order in the array is implementation defined. The array must21
be sufficiently large to contain omp_get_place_num_procs(place_num) integers; otherwise,22
the behavior is unspecified. The routine has no effect when place_num has a negative value or a23
value greater than or equal to omp_get_num_places.24

680 OpenMP API – Version 6.0 November 2024

Cross References1

• OMP_PLACES, see Section 4.1.62

• omp_get_num_places Routine, see Section 29.23

• omp_get_place_num_procs Routine, see Section 29.34

29.5 omp_get_place_num Routine5

Name: omp_get_place_num
Category: function

Properties: default
6

Return Type7
Name Type Properties
<return type> integer default8

Prototypes9
C / C++

int omp_get_place_num(void);10

C / C++
Fortran

integer function omp_get_place_num()11

Fortran
Effect12
When the encountering thread is bound to a place, the omp_get_place_num routine returns the13
place number associated with the thread. The returned value is between zero and one less than the14
value returned by omp_get_num_places, inclusive. When the encountering thread is not15
bound to a place, the routine returns -1.16

Cross References17

• omp_get_num_places Routine, see Section 29.218

29.6 omp_get_partition_num_places Routine19

Name: omp_get_partition_num_places
Category: function

Properties: ICV-retrieving
20

Return Type21
Name Type Properties
<return type> integer default22

CHAPTER 29. THREAD AFFINITY ROUTINES 681

Prototypes1
C / C++

int omp_get_partition_num_places(void);2

C / C++
Fortran

integer function omp_get_partition_num_places()3

Fortran
Effect4
The omp_get_partition_num_places routine returns the number of places in the5
place-partition-var ICV.6

Cross References7

• place-partition-var ICV, see Table 3.18

29.7 omp_get_partition_place_nums Routine9

Name: omp_get_partition_place_nums
Category: subroutine

Properties: ICV-retrieving
10

Arguments11
Name Type Properties
place_nums integer pointer12

Prototypes13
C / C++

void omp_get_partition_place_nums(int *place_nums);14

C / C++
Fortran

subroutine omp_get_partition_place_nums(place_nums)15
integer place_nums(*)16

Fortran
Effect17
The omp_get_partition_place_nums routine returns the list of place numbers that18
correspond to the places in the place-partition-var ICV of the innermost implicit task. The array19
must be sufficiently large to contain omp_get_partition_num_places integers; otherwise,20
the behavior is unspecified.21

682 OpenMP API – Version 6.0 November 2024

Cross References1

• place-partition-var ICV, see Table 3.12

• omp_get_partition_num_places Routine, see Section 29.63

29.8 omp_set_affinity_format Routine4

Name: omp_set_affinity_format
Category: subroutine

Properties: ICV-modifying
5

Arguments6
Name Type Properties
format char pointer, intent(in)7

Prototypes8
C / C++

void omp_set_affinity_format(const char *format);9

C / C++
Fortran

subroutine omp_set_affinity_format(format)10
character(len=*), intent(in) :: format11

Fortran
Effect12
The omp_set_affinity_format routine sets the affinity format to be used on the device by13
setting the value of the affinity-format-var ICV. The value of the ICV is set by copying the14
character string specified by the format argument into the ICV on the current device.15

This routine has the described effect only when called from a sequential part of the program. When16
called from within a parallel or teams region, the effect of this routine is implementation17
defined.18

When called from a sequential part of the program, the binding thread set for an19
omp_set_affinity_format region is the encountering thread. When called from within any20
parallel or teams region, the binding thread set (and binding region, if required) for the21
omp_set_affinity_format region is implementation defined.22

Restrictions23
Restrictions to the omp_set_affinity_format routine are as follows:24

• When called from within a target region the effect is unspecified.25

CHAPTER 29. THREAD AFFINITY ROUTINES 683

Cross References1

• OMP_AFFINITY_FORMAT, see Section 4.3.52

• OMP_DISPLAY_AFFINITY, see Section 4.3.43

• Controlling OpenMP Thread Affinity, see Section 12.1.34

• affinity-format-var ICV, see Table 3.15

• parallel Construct, see Section 12.16

• teams Construct, see Section 12.27

29.9 omp_get_affinity_format Routine8

Name: omp_get_affinity_format
Category: function

Properties: ICV-retrieving
9

Return Type and Arguments10
Name Type Properties
<return type> size_t default
buffer char pointer, intent(out)
size size_t default

11

Prototypes12
C / C++

size_t omp_get_affinity_format(char *buffer, size_t size);13

C / C++
Fortran

integer function omp_get_affinity_format(buffer)14
character(len=*), intent(out) :: buffer15

Fortran
Effect16

C / C++
The omp_get_affinity_format routine returns the number of characters in the17
affinity-format-var ICV on the current device, excluding the terminating null byte (’\0’) and, if18
size is non-zero, writes the value of the affinity-format-var ICV on the current device to buffer19
followed by a null byte. If the return value is larger or equal to size, the affinity format specification20
is truncated, with the terminating null byte stored to buffer [size-1]. If size is zero, nothing is21
stored and buffer may be NULL.22

C / C++

684 OpenMP API – Version 6.0 November 2024

Fortran
The omp_get_affinity_format routine returns the number of characters that are required to1
hold the affinity-format-var ICV on the current device and writes the value of the2
affinity-format-var ICV on the current device to buffer. If the return value is larger than3
len(buffer), the affinity format specification is truncated.4

Fortran
If the buffer argument does not conform to the specified format then the result is implementation5
defined.6

When called from a sequential part of the program, the binding thread set for an7
omp_get_affinity_format region is the encountering thread. When called from within any8
parallel or teams region, the binding thread set (and binding region, if required) for the9
omp_get_affinity_format region is implementation defined.10

Restrictions11
Restrictions to the omp_get_affinity_format routine are as follows:12

• When called from within a target region the effect is unspecified.13

Cross References14

• affinity-format-var ICV, see Table 3.115

• parallel Construct, see Section 12.116

• target Construct, see Section 15.817

• teams Construct, see Section 12.218

29.10 omp_display_affinity Routine19

Name: omp_display_affinity
Category: subroutine

Properties: default
20

Arguments21
Name Type Properties
format char pointer, intent(in)22

Prototypes23
C / C++

void omp_display_affinity(const char *format);24

C / C++

CHAPTER 29. THREAD AFFINITY ROUTINES 685

Fortran
subroutine omp_display_affinity(format)1

character(len=*), intent(in) :: format2

Fortran
Effect3
The omp_display_affinity routine prints the thread affinity information of the encountering4
thread in the format specified by the format argument, followed by a new-line. If the format is5
NULL (for C/C++) or a zero-length string (for Fortran and C/C++), the value of the6
affinity-format-var ICV is used. If the format argument does not conform to the specified format7
then the result is implementation defined.8

Restrictions9
Restrictions to the omp_display_affinity routine are as follows:10

• When called from within a target region the effect is unspecified.11

Cross References12

• affinity-format-var ICV, see Table 3.113

• target Construct, see Section 15.814

29.11 omp_capture_affinity Routine15

Name: omp_capture_affinity
Category: function

Properties: default
16

Return Type and Arguments17
Name Type Properties
<return type> size_t default
buffer char pointer, intent(out)
size size_t default
format char pointer, intent(in)

18

Prototypes19
C / C++

size_t omp_capture_affinity(char *buffer, size_t size,20
const char *format);21

C / C++
Fortran

integer function omp_capture_affinity(buffer, format)22
character(len=*), intent(out) :: buffer23
character(len=*), intent(in) :: format24

Fortran

686 OpenMP API – Version 6.0 November 2024

Effect1
C / C++

The omp_capture_affinity routine returns the number of characters in the entire thread2
affinity information string excluding the terminating null byte (’\0’). If size is non-zero, it writes3
the thread affinity information of the encountering thread in the format specified by the format4
argument into the character string buffer followed by a null byte. If the return value is larger or5
equal to size, the thread affinity information string is truncated, with the terminating null byte stored6
to buffer [size-1]. If size is zero, nothing is stored and buffer may be NULL. If the format is7
NULL or a zero-length string, the value of the affinity-format-var ICV is used.8

C / C++
Fortran

The omp_capture_affinity routine returns the number of characters required to hold the9
entire thread affinity information string and prints the thread affinity information of the encountering10
thread into the character string buffer with the size of len(buffer) in the format specified by the11
format argument. If the format is a zero-length string, the value of the affinity-format-var ICV is12
used. If the return value is larger than len(buffer), the thread affinity information string is13
truncated. If the format is a zero-length string, the value of the affinity-format-var ICV is used.14

Fortran
If the format argument does not conform to the specified format then the result is implementation15
defined.16

Restrictions17
Restrictions to the omp_capture_affinity routine are as follows:18

• When called from within a target region the effect is unspecified.19

Cross References20

• affinity-format-var ICV, see Table 3.121

• target Construct, see Section 15.822

CHAPTER 29. THREAD AFFINITY ROUTINES 687

30 Execution Control Routines1

This chapter describes the OpenMP API routines that control the execution state of the OpenMP2
implementation and provide information about that state. These routines include:3

• Routines that monitor and control cancellation;4

• Resource-relinquishing routines that free resources used by the OpenMP program;5

• Routines that support timing measurements of OpenMP programs; and6

• The environment display routine that displays the initial values of ICVs.7

30.1 omp_get_cancellation Routine8

Name: omp_get_cancellation
Category: function

Properties: ICV-retrieving
9

Return Type10
Name Type Properties
<return type> logical default11

Prototypes12
C / C++

int omp_get_cancellation(void);13

C / C++
Fortran

logical function omp_get_cancellation()14

Fortran
Effect15
The omp_get_cancellation routine returns the value of the cancel-var ICV. Thus, it returns16
true if cancellation is enabled and otherwise it returns false.17

Cross References18

• cancel-var ICV, see Table 3.119

688 OpenMP API – Version 6.0 November 2024

30.2 Resource Relinquishing Routines1

This section describes routines that have the resource-relinquishing property. Each2
resource-relinquishing routine region implies a barrier. Each resource-relinquishing routine returns3
zero in case of success, and non-zero otherwise.4

Tool Callbacks5
If the tool is not allowed to interact with the specified device after encountering the6
resource-relinquishing routine, then the runtime must call the tool finalizer for that device.7

Restrictions8
Restrictions to resource-relinquishing routines are as follows:9

• A resource-relinquishing routine region may not be nested in any explicit region.10

• A resource-relinquishing routine may only be called when all explicit tasks that do not bind to11
the implicit parallel region to which the encountering thread binds have finalized execution.12

30.2.1 omp_pause_resource Routine13

Name: omp_pause_resource
Category: function

Properties: all-tasks-binding,
resource-relinquishing14

Return Type and Arguments15
Name Type Properties
<return type> integer default
kind pause_resource default
device_num integer default

16

Prototypes17
C / C++

int omp_pause_resource(omp_pause_resource_t kind, int device_num);18

C / C++
Fortran

integer function omp_pause_resource(kind, device_num)19
integer (kind=omp_pause_resource_kind) kind20
integer device_num21

Fortran
Effect22
The omp_pause_resource routine allows the runtime to relinquish resources used by OpenMP23
on the specified device. The device_num argument indicates the device that will be paused. If the24
device number has the value omp_invalid_device, runtime error termination is performed.25

CHAPTER 30. EXECUTION CONTROL ROUTINES 689

The binding task set for a omp_pause_resource routine region is all tasks on the specified1
device. That is, this routines has the all-device-tasks binding property. If2
omp_pause_stop_tool is specified for a non-host device, the effect is the same as for3
omp_pause_hard and (unlike for the host device) does not shutdown the OMPT interface.4

Restrictions5
Restrictions to the omp_pause_resource routine are as follows:6

• The device_num argument must be a conforming device number.7

Cross References8

• Predefined Identifiers, see Section 20.19

• OpenMP pause_resource Type, see Section 20.11.110

30.2.2 omp_pause_resource_all Routine11

Name: omp_pause_resource_all
Category: function

Properties: all-tasks-binding,
resource-relinquishing12

Return Type and Arguments13
Name Type Properties
<return type> integer default
kind pause_resource default

14

Prototypes15
C / C++

int omp_pause_resource_all(omp_pause_resource_t kind);16

C / C++
Fortran

integer function omp_pause_resource_all(kind)17
integer (kind=omp_pause_resource_kind) kind18

Fortran
Effect19
The omp_pause_resource_all routine allows the runtime to relinquish resources used by20
OpenMP on all devices. It is equivalent to calling the omp_pause_resource routine once for21
each available device, including the host device. The binding task set for a22
omp_pause_resource_all routine region is all tasks in the OpenMP program. That is, this23
routine has the all-tasks binding property.24

Cross References25

• omp_pause_resource Routine, see Section 30.2.126

• OpenMP pause_resource Type, see Section 20.11.127

690 OpenMP API – Version 6.0 November 2024

30.3 Timing Routines1

This section describes routines that support a portable wall clock timer.2

30.3.1 omp_get_wtime Routine3

Name: omp_get_wtime
Category: function

Properties: default
4

Return Type5
Name Type Properties
<return type> double default6

Prototypes7
C / C++

double omp_get_wtime(void);8

C / C++
Fortran

double precision function omp_get_wtime()9

Fortran
Effect10
The omp_get_wtime routine returns a value equal to the elapsed wall clock time in seconds11
since some time-in-the-past. The actual time-in-the-past is arbitrary, but it is guaranteed not to12
change during the execution of an OpenMP program. The time returned is a per-thread time, so it is13
not required to be globally consistent across all threads that participate in an OpenMP program.14

30.3.2 omp_get_wtick Routine15

Name: omp_get_wtick
Category: function

Properties: default
16

Return Type17
Name Type Properties
<return type> double default18

Prototypes19
C / C++

double omp_get_wtick(void);20

C / C++
Fortran

double precision function omp_get_wtick()21

Fortran

CHAPTER 30. EXECUTION CONTROL ROUTINES 691

Effect1
The omp_get_wtick routine returns the precision of the timer used by omp_get_wtime as a2
value equal to the number of seconds between successive clock ticks. The return value of the3
omp_get_wtick routine is not guaranteed to be consistent across any set of threads.4

Cross References5

• omp_get_wtime Routine, see Section 30.3.16

30.4 omp_display_env Routine7

Name: omp_display_env
Category: subroutine

Properties: default
8

Arguments9
Name Type Properties
verbose logical intent(in)10

Prototypes11
C / C++

void omp_display_env(int verbose);12

C / C++
Fortran

subroutine omp_display_env(verbose)13
logical, intent(in) :: verbose14

Fortran
Effect15
Each time that the omp_display_env routine is invoked, the runtime system prints the OpenMP16
version number and the initial values of the ICVs associated with the environment variables17
described in Chapter 4. The displayed values are the values of the ICVs after they have been18
modified according to the environment variable settings and before the execution of any construct19
or routine.20

The display begins with "OPENMP DISPLAY ENVIRONMENT BEGIN", followed by the21
_OPENMP version macro (or the openmp_version predefined identifier for Fortran) and ICV22
values, in the format NAME ’=’ VALUE. NAME corresponds to the macro or environment variable23
name, prepended with a bracketed DEVICE. VALUE corresponds to the value of the macro or ICV24
associated with this environment variable. Values are enclosed in single quotes. DEVICE25
corresponds to a comma-separated list of the devices on which the value of the ICV is applied. It is26
host if the device is the host device; device if the ICV applies to all non-host devices; all if27
the ICV has global scope or the value applies to the host device and all non-host devices; dev, a28
space, and the device number if it applies to a specific non-host devices. Instead of a single number29
a range can also be specified using the first and last device number separated by a hyphen. Whether30

692 OpenMP API – Version 6.0 November 2024

ICVs with the same value are combined or displayed in multiple lines is implementation defined.1
The display is terminated with "OPENMP DISPLAY ENVIRONMENT END".2

If the verbose argument evaluates to false, the runtime displays the OpenMP version number3
defined by the _OPENMP version macro (or the openmp_version predefined identifier for4
Fortran) value and the initial ICV values for the environment variables listed in Chapter 4. If the5
verbose argument evaluates to true, the runtime may also display the values of vendor-specific6
ICVs that may be modified by vendor-specific environment variables.7

Example output:8

OPENMP DISPLAY ENVIRONMENT BEGIN9
_OPENMP='202411'10
[dev 1] OMP_SCHEDULE='GUIDED,4'11
[host] OMP_NUM_THREADS='4,3,2'12
[device] OMP_NUM_THREADS='2'13
[host, dev 2] OMP_DYNAMIC='TRUE'14
[dev 2-3, dev 5] OMP_DYNAMIC='FALSE'15
[all] OMP_WAIT_POLICY='ACTIVE'16
[host] OMP_PLACES='{0:4},{4:4},{8:4},{12:4}'17
...18

OPENMP DISPLAY ENVIRONMENT END19

Restrictions20
Restrictions to the omp_display_env routine are as follows:21

• When called from within a target region the effect is unspecified.22

Cross References23

• Predefined Identifiers, see Section 20.124

CHAPTER 30. EXECUTION CONTROL ROUTINES 693

31 Tool Support Routines1

This chapter describes the OpenMP API routines that support the use of OpenMP tool interfaces.2

31.1 omp_control_tool Routine3

Name: omp_control_tool
Category: function

Properties: default
4

Return Type and Arguments5
Name Type Properties
<return type> control_tool_result default
command control_tool omp
modifier integer default
arg void C/C++ pointer

6

Prototypes7
C / C++

omp_control_tool_result_t omp_control_tool(8
omp_control_tool_t command, int modifier, void *arg);9

C / C++
Fortran

integer (kind=omp_control_tool_result_kind) function &10
omp_control_tool(command, modifier)11
integer (kind=omp_control_tool_kind) command12
integer modifier13

Fortran
Effect14
An OpenMP program may use the omp_control_tool routine to pass commands to a tool. An15
OpenMP program can use the routine to request: that a tool starts or restarts data collection when a16
code region of interest is encountered; that a tool pauses data collection when leaving the region of17
interest; that a tool flushes any data that it has collected so far; or that a tool ends data collection.18
Additionally, the omp_control_tool routine can be used to pass tool-specific commands to a19
particular tool.20

694 OpenMP API – Version 6.0 November 2024

Any values for modifier and arg are tool defined.1

If the OMPT interface state is OMPT inactive, the OpenMP implementation returns2
omp_control_tool_notool. If the OMPT interface state is OMPT active, but no callback is3
registered for the tool-control event, the OpenMP implementation returns4
omp_control_tool_nocallback. An OpenMP implementation may return other5
implementation defined negative values strictly smaller than -64; an OpenMP program may assume6
that any negative return value indicates that a tool has not received the command. A return value of7
omp_control_tool_success indicates that the tool has performed the specified command. A8
return value of omp_control_tool_ignored indicates that the tool has ignored the specified9
command. A tool may return other positive values strictly greater than 64 that are tool defined.10

Execution Model Events11
The tool-control event occurs in the encountering thread inside the corresponding region.12

Tool Callbacks13
A thread dispatches a registered control_tool callback for each occurrence of a tool-control14
event. The callback executes in the context of the call that occurs in the user program. The callback15
may return any non-negative value, which will be returned to the OpenMP program by the OpenMP16
implementation as the return value of the omp_control_tool call that triggered the callback.17

Arguments passed to the callback are those passed by the user to omp_control_tool. If the call18
is made in Fortran, the tool will be passed NULL as the third argument to the callback. If any of the19
standard commands is presented to a tool, the tool will ignore the modifier and arg argument values.20

Restrictions21
Restrictions on access to the state of an OpenMP first-party tool are as follows:22

• An OpenMP program may access the tool state modified by an OMPT callback only by using23
omp_control_tool.24

Cross References25

• control_tool Callback, see Section 34.826

• OpenMP control_tool Type, see Section 20.12.127

• OpenMP control_tool_result Type, see Section 20.12.228

• OMPT Overview, see Chapter 3229

CHAPTER 31. TOOL SUPPORT ROUTINES 695

Part IV1

OMPT2

696 OpenMP API – Version 6.0 November 2024

32 OMPT Overview1

This chapter provides an overview of OMPT, which is an interface for first-party tools. First-party2
tools are linked or loaded directly into the OpenMP program. OMPT defines mechanisms to3
initialize a tool, to examine thread state associated with a thread, to interpret the call stack of a4
thread, to receive notification about events, to trace activity on target devices, to assess5
implementation-dependent details of an OpenMP implementation (such as supported states and6
mutual exclusion implementations), and to control a tool from an OpenMP program.7

32.1 OMPT Interfaces Definitions8

C / C++
A compliant implementation must supply a set of definitions for the OMPT runtime entry points,9
OMPT callback signatures, and the OMPT types. These definitions, which are listed throughout10
this and the immediately following chapters, and their associated declarations shall be provided in a11
header file named omp-tools.h. In addition, the set of definitions may specify other12
implementation defined values.13

The ompt_start_tool procedure is an external function with C linkage.14

C / C++

32.2 Activating a First-Party Tool15

To activate a tool, an OpenMP implementation first determines whether the tool should be16
initialized. If so, the OpenMP implementation invokes the OMPT-tool initializer of the tool, which17
enables the tool to prepare to monitor execution on the host device. The tool may then also arrange18
to monitor computation that executes on target devices. This section explains how the tool and an19
OpenMP implementation interact to accomplish these activities.20

32.2.1 ompt_start_tool Procedure21

Name: ompt_start_tool
Category: function

Properties: C-only, OMPT
22

CHAPTER 32. OMPT OVERVIEW 697

Return Type and Arguments1
Name Type Properties
<return type> start_tool_result pointer, OMPT
omp_version integer unsigned
runtime_version char intent(in), pointer

2

Prototypes3
C

ompt_start_tool_result_t *ompt_start_tool(4
unsigned int omp_version, const char *runtime_version);5

C
Semantics6
For a tool to use the OMPT interface that an OpenMP implementation provides, the tool must7
define a globally-visible implementation of the ompt_start_tool procedure. The tool8
indicates that it will use the OMPT interface that an OpenMP implementation provides by returning9
a non-null pointer to a start_tool_result OMPT type structure from the10
ompt_start_tool implementation that it provides. The start_tool_result structure11
contains pointers to initialize and finalize callbacks as well as a tool data word that an12
OpenMP implementation must pass by reference to these callbacks. A tool may return NULL from13
ompt_start_tool to indicate that it will not use the OMPT interface in a particular execution.14
A tool may use the omp_version argument to determine if it is compatible with the OMPT interface15
that the OpenMP implementation provides. The omp_version argument is the value of the16
_OPENMP version macro associated with the OpenMP implementation. This value identifies the17
version that an implementation supports, which specifies the version of the OMPT interface that it18
supports. The runtime_version argument is a version string that unambiguously identifies the19
OpenMP implementation.20
If a tool returns a non-null pointer to a start_tool_result OMPT type structure, an OpenMP21
implementation will call the OMPT-tool initializer specified by the initialize field in this22
structure before beginning execution of any construct or completing execution of any routine; the23
OpenMP implementation will call the OMPT-tool finalizer specified by the finalize field in this24
structure when the OpenMP implementation shuts down.25

Restrictions26
Restrictions to ompt_start_tool procedures are as follows:27

• The runtime_version argument must be an immutable string that is defined for the lifetime of28
a program execution.29

Cross References30

• finalize Callback, see Section 34.1.231

• initialize Callback, see Section 34.1.132

• OMPT start_tool_result Type, see Section 33.3033

698 OpenMP API – Version 6.0 November 2024

32.2.2 Determining Whether to Initialize a First-Party Tool1

Inactive
Runtime

(re)start tool-var Pending

Find next tool

Return
value r

Active

Call
ompt_start_tool

Found?Inactive
Runtime shutdown

or pause

Call
r->initialize

Return
value

enabled

disabled

r=non-null

r=NULLyes

no

1

0

FIGURE 32.1: First-Party Tool Activation Flow Chart

An OpenMP implementation examines the tool-var ICV as one of its first initialization steps. If the2
value of tool-var is disabled, the initialization continues without a check for the presence of a tool3
and the functionality of the OMPT interface will be unavailable as the OpenMP program executes.4
In this case, the OMPT interface state remains OMPT inactive.5

Otherwise, the OMPT interface state changes to OMPT pending and the OpenMP implementation6
activates any first-party tool that it finds. A tool can provide a definition of ompt_start_tool7
to an OpenMP implementation in three ways:8

• By statically linking its definition of ompt_start_tool into an OpenMP program;9

• By introducing a dynamically-linked library that includes its definition of10
ompt_start_tool into the address space of the program; or11

• By providing, in the tool-libraries-var ICV, the name of a dynamically-linked library that is12
appropriate for the OpenMP architecture and operating system used by the OpenMP program13
and that includes a definition of ompt_start_tool.14

If the value of tool-var is enabled, the OpenMP implementation must check if a tool has provided15

CHAPTER 32. OMPT OVERVIEW 699

an implementation of ompt_start_tool. The OpenMP implementation first checks if a1
tool-provided implementation of ompt_start_tool is available in the address space, either2
statically-linked into the OpenMP program or in a dynamically-linked library loaded in the address3
space. If multiple implementations of ompt_start_tool are available, the implementation will4
use the first tool-provided implementation of ompt_start_tool that it finds.5
If the implementation does not find a tool-provided implementation of ompt_start_tool in the6
address space, it consults the tool-libraries-var ICV, which contains a (possibly empty) list of7
dynamically-linked libraries. As described in detail in Section 4.5.2, the libraries in8
tool-libraries-var are then searched for the first usable implementation of ompt_start_tool9
that one of the libraries in the list provides.10
If the implementation finds a tool-provided definition of ompt_start_tool, it invokes that11
procedure; if a NULL pointer is returned, the OMPT interface state remains OMPT pending and12
the implementation continues to look for implementations of ompt_start_tool; otherwise a13
non-null pointer to a start_tool_result OMPT type structure is returned, the OMPT14
interface state changes to OMPT active and the OpenMP implementation makes the OMPT15
interface available as the program executes. In this case, as the OpenMP implementation completes16
its initialization, it initializes the OMPT interface.17
If no tool can be found, the OMPT interface state changes to OMPT inactive.18

Cross References19

• tool-libraries-var ICV, see Table 3.120

• tool-var ICV, see Table 3.121

• ompt_start_tool Procedure, see Section 32.2.122

• OMPT start_tool_result Type, see Section 33.3023

32.2.3 Initializing a First-Party Tool24

To initialize the OMPT interface, the OpenMP implementation invokes the OMPT-tool initializer25
that is specified in the initialize field of the start_tool_result structure that26
ompt_start_tool returns. This initialize callback is invoked prior to the occurrence of27
any OpenMP event.28
An initialize callback uses the entry point specified in its lookup argument to look up pointers29
to OMPT entry points that the OpenMP implementation provides; this process is described in30
Section 32.2.3.1. Typically, an OMPT-tool initializer obtains a pointer to the set_callback31
entry point and then uses it to perform callback registration for events, as described in32
Section 32.2.4.33
An OMPT-tool initializer may use the enumerate_states entry point to determine the thread34
states that an OpenMP implementation employs. Similarly, it may use the35
enumerate_mutex_impls entry point to determine the mutual exclusion implementations that36
the OpenMP implementation employs.37
If an OMPT-tool initializer returns a non-zero value, the OMPT interface state remains OMPT38
active for the execution; otherwise, the OMPT interface state changes to OMPT inactive.39

700 OpenMP API – Version 6.0 November 2024

Cross References1

• enumerate_mutex_impls Entry Point, see Section 36.32

• enumerate_states Entry Point, see Section 36.23

• Binding Entry Points, see Section 32.2.3.14

• initialize Callback, see Section 34.1.15

• ompt_start_tool Procedure, see Section 32.2.16

• set_callback Entry Point, see Section 36.47

• OMPT start_tool_result Type, see Section 33.308

32.2.3.1 Binding Entry Points9

Routines that an OpenMP implementation provides to support OMPT are not defined as global10
symbols. Instead, they are defined as runtime entry points that a tool can only identify through the11
value returned in the lookup argument of the initialize callback. A tool can use this12
function_lookup entry point to obtain a pointer to each of the other entry points that an13
OpenMP implementation provides to support OMPT. Once a tool has obtained a14
function_lookup entry point, it may employ it at any point in the future.15
For each OMPT entry point for the host device, Table 32.1 provides the string name by which it is16
known and its associated type signature. Implementations can provide additional implementation17
defined names and corresponding entry points.18
During initialization, a tool should look up each entry point by name and assign the entry point to a19
pointer that it maintains so it can later invoke that entry point. The entry points described in20
Table 32.1 enable a tool to assess the thread states and mutual exclusion implementations that an21
implementation supports for callback registration, to inspect registered callbacks, to introspect22
OpenMP state associated with threads, and to use tracing to monitor computations that execute on23
target devices.24

Cross References25

• enumerate_mutex_impls Entry Point, see Section 36.326

• enumerate_states Entry Point, see Section 36.227

• finalize_tool Entry Point, see Section 36.2028

• function_lookup Entry Point, see Section 36.129

• get_callback Entry Point, see Section 36.530

• get_num_devices Entry Point, see Section 36.1831

• get_num_places Entry Point, see Section 36.832

• get_num_procs Entry Point, see Section 36.733

CHAPTER 32. OMPT OVERVIEW 701

TABLE 32.1: OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures
Entry Point String Name OMPT Type
“ompt_enumerate_states” enumerate_states
“ompt_enumerate_mutex_impls” enumerate_mutex_impls
“ompt_set_callback” set_callback
“ompt_get_callback” get_callback
“ompt_get_thread_data” get_thread_data
“ompt_get_num_places” get_num_places
“ompt_get_place_proc_ids” get_place_proc_ids
“ompt_get_place_num” get_place_num
“ompt_get_partition_place_nums” get_partition_place_nums
“ompt_get_proc_id” get_proc_id
“ompt_get_state” get_state
“ompt_get_parallel_info” get_parallel_info
“ompt_get_task_info” get_task_info
“ompt_get_task_memory” get_task_memory
“ompt_get_num_devices” get_num_devices
“ompt_get_num_procs” get_num_procs
“ompt_get_target_info” get_target_info
“ompt_get_unique_id” get_unique_id
“ompt_finalize_tool” finalize_tool

• get_parallel_info Entry Point, see Section 36.141

• get_partition_place_nums Entry Point, see Section 36.112

• get_place_num Entry Point, see Section 36.103

• get_place_proc_ids Entry Point, see Section 36.94

• get_proc_id Entry Point, see Section 36.125

• get_state Entry Point, see Section 36.136

• get_target_info Entry Point, see Section 36.177

• get_task_info Entry Point, see Section 36.158

• get_task_memory Entry Point, see Section 36.169

• get_thread_data Entry Point, see Section 36.610

• get_unique_id Entry Point, see Section 36.1911

• initialize Callback, see Section 34.1.112

• set_callback Entry Point, see Section 36.413

702 OpenMP API – Version 6.0 November 2024

TABLE 32.2: Callbacks for which set_callback Must Return ompt_set_always

Callback Name
thread_begin
thread_end
parallel_begin
parallel_end
task_create
task_schedule
implicit_task
target_data_op_emi
target_emi
target_submit_emi
control_tool
device_initialize
device_finalize
device_load
device_unload
error

32.2.4 Monitoring Activity on the Host with OMPT1

To monitor the execution of an OpenMP program on the host device, an OMPT-tool initializer must2
register to receive notification of events that occur as an OpenMP program executes. A tool can use3
the set_callback entry point to perform callback registrations for events. The return codes for4
set_callback use the set_result OMPT type. If the set_callback entry point is called5
outside an initialize OMPT callback, callback registration may fail for supported callbacks6
with a return value of ompt_set_error. All registered callbacks and all callbacks returned by7
get_callback use the callback OMPT type as a dummy type signature.8

For callbacks listed in Table 32.2, ompt_set_always is the only registration return code that is9
allowed. An OpenMP implementation must guarantee that the callback will be invoked every time10
that a runtime event that is associated with it occurs. Support for such callbacks is required in a11
minimal implementation of the OMPT interface.12

For any other callbacks not listed in Table 32.2, the set_callback entry point may return any13
non-error code. Whether an OpenMP implementation invokes a registered callback never,14
sometimes, or always is implementation defined. If registration for a callback allows a return code15
of ompt_set_never, support for invoking such a callback may not be present in a minimal16
implementation of the OMPT interface. The return code from callback registration indicates the17
implementation defined level of support for the callback.18

Two techniques reduce the size of the OMPT interface. First, in cases where events are naturally19
paired, for example the beginning and end of a region, and the arguments needed by the callback at20
each region endpoint are identical, a tool registers a single callback for the pair of events, with21

CHAPTER 32. OMPT OVERVIEW 703

ompt_scope_begin or ompt_scope_end provided as an argument to identify for which1
region endpoint the callback is invoked. Second, when a class of events is amenable to uniform2
treatment, OMPT provides a single callback for that class of events; for example, a3
sync_region_wait callback is used for multiple kinds of synchronization regions, such as4
barrier, taskwait, and taskgroup regions. Some events, for example, those that correspond to5
sync_region_wait, use both techniques.6

Cross References7

• get_callback Entry Point, see Section 36.58

• initialize Callback, see Section 34.1.19

• OMPT scope_endpoint Type, see Section 33.2710

• set_callback Entry Point, see Section 36.411

• OMPT set_result Type, see Section 33.2812

32.2.5 Tracing Activity on Target Devices13

A target device may not initialize a full OpenMP runtime system. Without one, using a tool14
interface based on callbacks to monitor activity on a device may incur unacceptable overhead.15
Thus, OMPT defines a monitoring interface for tracing activity on target devices. This section16
details the use of that interface.17
First, to prepare to trace device activity, a tool must register a device_initialize callback. A18
tool may also register a device_load callback to be notified when code is loaded onto a target19
device or a device_unload callback to be notified when code is unloaded from a target device.20
A tool may also optionally register a device_finalize callback.21
When an OpenMP implementation initializes a target device, it dispatches the22
device_initialize callback (the device initializer) of the tool on the host device. If the23
OpenMP implementation or target device does not support tracing, the OpenMP implementation24
passes NULL to the device initializer of the tool for its lookup argument; otherwise, the OpenMP25
implementation passes a pointer to a device-specific function_lookup entry point to the26
device_initialize callback of the tool.27
If the lookup argument of the device_initialize of the tool is a non-null pointer, the tool28
may use it to determine the entry points in the tracing interface that are available for the device and29
may bind the returned function pointers to tool variables. Table 32.3 lists the names of runtime30
entry points that may be available for a device; an implementation may provide additional31
implementation defined names and corresponding entry points. The driver for the device provides32
the entry points that enable a tool to control the trace collection interface of the device. The native33
trace format that the interface uses may be device-specific and the available kinds of trace records34
are implementation defined.35
Some devices may allow a tool to collect trace records in a standard trace format known as OMPT36
trace records. Each OMPT trace record serves as a substitute for an OMPT callback that is not37
appropriate to be dispatched on the device. The fields in each trace record type are defined in the38

704 OpenMP API – Version 6.0 November 2024

TABLE 32.3: OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures
Entry Point String Name OMPT Type
“ompt_get_device_num_procs” get_device_num_procs
“ompt_get_device_time” get_device_time
“ompt_translate_time” translate_time
“ompt_set_trace_ompt” set_trace_ompt
“ompt_set_trace_native” set_trace_native
“ompt_get_buffer_limits” get_buffer_limits
“ompt_start_trace” start_trace
“ompt_pause_trace” pause_trace
“ompt_flush_trace” flush_trace
“ompt_stop_trace” stop_trace
“ompt_advance_buffer_cursor” advance_buffer_cursor
“ompt_get_record_type” get_record_type
“ompt_get_record_ompt” get_record_ompt
“ompt_get_record_native” get_record_native
“ompt_get_record_abstract” get_record_abstract

description of the callback that the record represents. If this type of record is provided then the1
function_lookup entry point returns values for the entry points set_trace_ompt and2
get_record_ompt, which support collecting and decoding OMPT traces. If the native trace3
format for a device is the OMPT format then tracing can be controlled using the entry points for4
native or OMPT tracing.5

The tool uses the set_trace_native and/or the set_trace_ompt runtime entry point to6
specify what types of events or activities to monitor on the device. The return codes for7
set_trace_ompt and set_trace_native use the set_result OMPT type. If the8
set_trace_native or the set_trace_ompt entry point is called outside a device9
initializer, registration of supported callbacks may fail with a return code of ompt_set_error.10
After specifying the events or activities to monitor, the tool initiates tracing of device activity by11
invoking the start_trace entry point. Arguments to start_trace include two tool12
callbacks through which the OpenMP implementation can manage traces associated with the13
device. The buffer_request callback allocates a buffer in which trace records that correspond14
to device activity can be deposited. The buffer_complete callback processes a buffer of trace15
records from the device.16
If the OpenMP implementation requires a trace buffer for device activity, it invokes the17
tool-supplied callback on the host device to request a new buffer. The OpenMP implementation18
then monitors the execution of OpenMP constructs on the device and records a trace of events or19
activities into a trace buffer. If possible, device trace records are marked with a host_op_id —20
an identifier that associates device activities with the target device operation that the host device21
initiated to cause these activities.22
To correlate activities on the host device with activities on a target device, a tool can register a23
target_submit_emi callback. Before and after the host device initiates creation of an initial24
task on a device associated with a structured block for a target construct, the OpenMP25

CHAPTER 32. OMPT OVERVIEW 705

implementation dispatches the target_submit_emi callback on the host device in the thread1
that is executing the encountering task of the target construct. This callback provides the tool2
with a pair of identifiers: one that identifies the target region and a second that uniquely3
identifies the initial task associated with that region. These identifiers help the tool correlate4
activities on the target device with their target region.5
When appropriate, for example, when a trace buffer fills or needs to be flushed, the OpenMP6
implementation invokes the tool-supplied buffer_complete callback to process a non-empty7
sequence of trace records in a trace buffer that is associated with the device. The8
buffer_complete callback may return immediately, ignoring records in the trace buffer, or it9
may iterate through them using the advance_buffer_cursor entry point to inspect each trace10
record.11
A tool may use the get_record_type entry point to inspect the type of the trace record at the12
current cursor position. Three entry points (get_record_ompt, get_record_native, and13
get_record_abstract) allow tools to inspect the contents of some or all trace records in a14
trace buffer. The get_record_native entry point uses the native trace format of the device.15
The get_record_abstract entry point decodes the contents of a native trace record and16
summarizes them as a record_abstract OMPT type record. The get_record_ompt entry17
point can only be used to retrieve trace records in OMPT format.18
Once device tracing has been started, a tool may pause or resume device tracing at any time by19
invoking pause_trace with an appropriate flag value as an argument. Further, a tool may invoke20
the flush_trace entry point for a device at any time between device initialization and21
finalization to cause the pending trace records for that device to be flushed.22
At any time, a tool may use the start_trace entry point to start or the stop_trace entry23
point to stop device tracing. When device tracing is stopped, the OpenMP implementation24
eventually gathers all trace records already collected from device tracing and presents them to the25
tool using the buffer-completion callback.26
An OpenMP implementation can be shut down while device tracing is in progress. When an27
OpenMP implementation is shut down, it finalizes each device. Device finalization occurs in three28
steps. First, the OpenMP implementation halts any tracing in progress for the device. Second, the29
OpenMP implementation flushes all trace records collected for the device and uses the30
buffer_complete callback associated with that device to present them to the tool. Finally, the31
OpenMP implementation dispatches any device_finalize callback registered for the device.32

Cross References33

• advance_buffer_cursor Entry Point, see Section 37.1134

• buffer_complete Callback, see Section 35.635

• buffer_request Callback, see Section 35.536

• device_finalize Callback, see Section 35.237

• device_initialize Callback, see Section 35.138

• device_load Callback, see Section 35.339

706 OpenMP API – Version 6.0 November 2024

• device_unload Callback, see Section 35.41

• flush_trace Entry Point, see Section 37.92

• function_lookup Entry Point, see Section 36.13

• get_buffer_limits Entry Point, see Section 37.64

• get_device_num_procs Entry Point, see Section 37.15

• get_device_time Entry Point, see Section 37.26

• get_record_abstract Entry Point, see Section 37.157

• get_record_native Entry Point, see Section 37.148

• get_record_ompt Entry Point, see Section 37.139

• get_record_type Entry Point, see Section 37.1210

• pause_trace Entry Point, see Section 37.811

• OMPT record_abstract Type, see Section 33.2412

• OMPT set_result Type, see Section 33.2813

• set_trace_native Entry Point, see Section 37.514

• set_trace_ompt Entry Point, see Section 37.415

• start_trace Entry Point, see Section 37.716

• stop_trace Entry Point, see Section 37.1017

• translate_time Entry Point, see Section 37.318

32.3 Finalizing a First-Party Tool19

If the OMPT interface state is OMPT active, the OMPT-tool finalizer, which is a finalize20
callback and is specified by the finalize field in the start_tool_result OMPT type21
structure returned from the ompt_start_tool procedure, is called when the OpenMP22
implementation shuts down.23

Cross References24

• finalize Callback, see Section 34.1.225

• ompt_start_tool Procedure, see Section 32.2.126

• OMPT start_tool_result Type, see Section 33.3027

CHAPTER 32. OMPT OVERVIEW 707

33 OMPT Data Types1

This chapter specifies OMPT types that the omp-tools.h C/C++ header file defines.2

C / C++

33.1 OMPT Predefined Identifiers3

Predefined Identifiers4
Name Value Properties
ompt_addr_none ~0 default
ompt_mutex_impl_none 0 default

5

In addition to the predefined identifiers of OMPT type that are defined with their corresponding6
OMPT type, the OpenMP API includes the predefined identifiers shown above. The7
ompt_addr_none void * predefined identifier indicates that no address on the relevant device8
is available. The ompt_mutex_impl_none predefined identifier indicates an invalid mutex9
implementation.10

C / C++

33.2 OMPT any_record_ompt Type11

Name: any_record_ompt
Properties: C/C++-only, OMPT

Base Type: union
12

708 OpenMP API – Version 6.0 November 2024

Fields1
Name Type Properties
thread_begin thread_begin C/C++-only
parallel_begin parallel_begin C/C++-only
parallel_end parallel_end C/C++-only
work work C/C++-only
dispatch dispatch C/C++-only
task_create task_create C/C++-only
dependences dependences C/C++-only
task_dependence task_dependence C/C++-only
task_schedule task_schedule C/C++-only
implicit_task implicit_task C/C++-only
masked masked C/C++-only
sync_region sync_region C/C++-only
mutex_acquire mutex_acquire C/C++-only
mutex mutex C/C++-only
nest_lock nest_lock C/C++-only
flush flush C/C++-only
cancel cancel C/C++-only
target_emi target_emi C/C++-only
target_data_op_emi target_data_op_emi C/C++-only
target_map_emi target_map_emi C/C++-only
target_submit_emi target_submit_emi C/C++-only
control_tool control_tool C/C++-only
error error C/C++-only

2

Type Definition3
C / C++

typedef union ompt_any_record_ompt_t {4
ompt_record_thread_begin_t thread_begin;5
ompt_record_parallel_begin_t parallel_begin;6
ompt_record_parallel_end_t parallel_end;7
ompt_record_work_t work;8
ompt_record_dispatch_t dispatch;9
ompt_record_task_create_t task_create;10
ompt_record_dependences_t dependences;11
ompt_record_task_dependence_t task_dependence;12
ompt_record_task_schedule_t task_schedule;13
ompt_record_implicit_task_t implicit_task;14
ompt_record_masked_t masked;15
ompt_record_sync_region_t sync_region;16
ompt_record_mutex_acquire_t mutex_acquire;17
ompt_record_mutex_t mutex;18

CHAPTER 33. OMPT DATA TYPES 709

ompt_record_nest_lock_t nest_lock;1
ompt_record_flush_t flush;2
ompt_record_cancel_t cancel;3
ompt_record_target_emi_t target_emi;4
ompt_record_target_data_op_emi_t target_data_op_emi;5
ompt_record_target_map_emi_t target_map_emi;6
ompt_record_target_submit_emi_t target_submit_emi;7
ompt_record_control_tool_t control_tool;8
ompt_record_error_t error;9

} ompt_any_record_ompt_t;10

C / C++
Additional information11
The union also includes target, taget_data_op, target_kernel, and target_map12
fields with corresponding trace record OMPT types. These fields have been deprecated.13

Semantics14
The any_record_ompt OMPT type is a union of all standard trace format event-specific trace15
record OMPT types that is the type of the record field of the record_ompt OMPT type.16

Cross References17

• OMPT record_ompt Type, see Section 33.2618

33.3 OMPT buffer Type19

Name: buffer
Properties: C/C++-only, OMPT, opaque

Base Type: void
20

Type Definition21
C / C++

typedef void ompt_buffer_t;22

C / C++
Semantics23
The buffer OMPT type represents a handle for a device buffer.24

33.4 OMPT buffer_cursor Type25

Name: buffer_cursor
Properties: C/C++-only, OMPT, opaque

Base Type: c_uint64_t
26

710 OpenMP API – Version 6.0 November 2024

Type Definition1
C / C++

typedef uint64_t ompt_buffer_cursor_t;2

C / C++
Summary3
The buffer_cursor OMPT type represents a handle for a position in a device buffer.4

33.5 OMPT callback Type5

Name: callback
Category: subroutine pointer

Properties: C/C++-only, OMPT
6

Type Signature7
C / C++

typedef void (*ompt_callback_t) (void);8

C / C++
Semantics9
Pointers to OMPT callbacks with different type signatures are passed to the set_callback entry10
point and returned by the get_callback entry point. For convenience, these entry points require11
all type signatures to be cast to the callback OMPT type.12

33.6 OMPT callbacks Type13

Name: callbacks
Properties: C/C++-only, OMPT

Base Type: enumeration
14

CHAPTER 33. OMPT DATA TYPES 711

Values1
Name Value Properties
ompt_callback_thread_begin 1 C-only, OMPT
ompt_callback_thread_end 2 C-only, OMPT
ompt_callback_parallel_begin 3 C-only, OMPT
ompt_callback_parallel_end 4 C-only, OMPT
ompt_callback_task_create 5 C-only, OMPT
ompt_callback_task_schedule 6 C-only, OMPT
ompt_callback_implicit_task 7 C-only, OMPT
ompt_callback_control_tool 11 C-only, OMPT
ompt_callback_device_initialize 12 C-only, OMPT
ompt_callback_device_finalize 13 C-only, OMPT
ompt_callback_device_load 14 C-only, OMPT
ompt_callback_device_unload 15 C-only, OMPT
ompt_callback_sync_region_wait 16 C-only, OMPT
ompt_callback_mutex_released 17 C-only, OMPT
ompt_callback_dependences 18 C-only, OMPT
ompt_callback_task_dependence 19 C-only, OMPT
ompt_callback_work 20 C-only, OMPT
ompt_callback_masked 21 C-only, OMPT
ompt_callback_sync_region 23 C-only, OMPT
ompt_callback_lock_init 24 C-only, OMPT
ompt_callback_lock_destroy 25 C-only, OMPT
ompt_callback_mutex_acquire 26 C-only, OMPT
ompt_callback_mutex_acquired 27 C-only, OMPT
ompt_callback_nest_lock 28 C-only, OMPT
ompt_callback_flush 29 C-only, OMPT
ompt_callback_cancel 30 C-only, OMPT
ompt_callback_reduction 31 C-only, OMPT
ompt_callback_dispatch 32 C-only, OMPT
ompt_callback_target_emi 33 C-only, OMPT
ompt_callback_target_data_op_emi 34 C-only, OMPT
ompt_callback_target_submit_emi 35 C-only, OMPT
ompt_callback_target_map_emi 36 C-only, OMPT
ompt_callback_error 37 C-only, OMPT

2

Type Definition3
C / C++

typedef enum ompt_callbacks_t {4
ompt_callback_thread_begin = 1,5
ompt_callback_thread_end = 2,6
ompt_callback_parallel_begin = 3,7
ompt_callback_parallel_end = 4,8

712 OpenMP API – Version 6.0 November 2024

ompt_callback_task_create = 5,1
ompt_callback_task_schedule = 6,2
ompt_callback_implicit_task = 7,3
ompt_callback_control_tool = 11,4
ompt_callback_device_initialize = 12,5
ompt_callback_device_finalize = 13,6
ompt_callback_device_load = 14,7
ompt_callback_device_unload = 15,8
ompt_callback_sync_region_wait = 16,9
ompt_callback_mutex_released = 17,10
ompt_callback_dependences = 18,11
ompt_callback_task_dependence = 19,12
ompt_callback_work = 20,13
ompt_callback_masked = 21,14
ompt_callback_sync_region = 23,15
ompt_callback_lock_init = 24,16
ompt_callback_lock_destroy = 25,17
ompt_callback_mutex_acquire = 26,18
ompt_callback_mutex_acquired = 27,19
ompt_callback_nest_lock = 28,20
ompt_callback_flush = 29,21
ompt_callback_cancel = 30,22
ompt_callback_reduction = 31,23
ompt_callback_dispatch = 32,24
ompt_callback_target_emi = 33,25
ompt_callback_target_data_op_emi = 34,26
ompt_callback_target_submit_emi = 35,27
ompt_callback_target_map_emi = 36,28
ompt_callback_error = 3729

} ompt_callbacks_t;30

C / C++
Additional information31
The following instances and associated values of the callbacks OMPT type are also defined:32
ompt_callback_target, with value 8; ompt_callback_target_data_op, with value33
9; ompt_callback_target_submit, with value 10; and34
ompt_callback_target_map, with value 22. These instances have been deprecated.35

Semantics36
The callbacks OMPT type provides codes that identify OMPT callbacks when registering or37
querying them.38

CHAPTER 33. OMPT DATA TYPES 713

33.7 OMPT cancel_flag Type1

Name: cancel_flag
Properties: C/C++-only, OMPT

Base Type: enumeration
2

Values3
Name Value Properties
ompt_cancel_parallel 0x01 C/C++-only, OMPT
ompt_cancel_sections 0x02 C/C++-only, OMPT
ompt_cancel_loop 0x04 C/C++-only, OMPT
ompt_cancel_taskgroup 0x08 C/C++-only, OMPT
ompt_cancel_activated 0x10 C/C++-only, OMPT
ompt_cancel_detected 0x20 C/C++-only, OMPT
ompt_cancel_discarded_task 0x40 C/C++-only, OMPT

4

Type Definition5
C / C++

typedef enum ompt_cancel_flag_t {6
ompt_cancel_parallel = 0x01,7
ompt_cancel_sections = 0x02,8
ompt_cancel_loop = 0x04,9
ompt_cancel_taskgroup = 0x08,10
ompt_cancel_activated = 0x10,11
ompt_cancel_detected = 0x20,12
ompt_cancel_discarded_task = 0x4013

} ompt_cancel_flag_t;14

C / C++
Semantics15
The cancel_flag OMPT type defines cancel flag values.16

33.8 OMPT data Type17

Name: data
Properties: C/C++-only, OMPT

Base Type: union
18

Fields19
Name Type Properties
value c_uint64_t default
ptr void C/C++-only, pointer

20

Predefined Identifiers21
Name Value Properties
ompt_data_none 0 C/C++-only, OMPT22

714 OpenMP API – Version 6.0 November 2024

Type Definition1
C / C++

typedef union ompt_data_t {2
uint64_t value;3
void *ptr;4

} ompt_data_t;5

C / C++
Semantics6
The data OMPT type represents data that is reserved for tool use. When an OpenMP7
implementation creates a thread or an instance of a parallel region, teams region, task region, or8
device region, it initializes the associated data object with the value ompt_data_none.9

33.9 OMPT dependence Type10

Name: dependence
Properties: C/C++-only, OMPT

Base Type: structure
11

Fields12
Name Type Properties
variable data C/C++-only
dependence_type dependence_type C/C++-only

13

Type Definition14
C / C++

typedef struct ompt_dependence_t {15
ompt_data_t variable;16
ompt_dependence_type_t dependence_type;17

} ompt_dependence_t;18

C / C++
Semantics19
The dependence OMPT type represents a dependence in a structure that holds information about20
a depend or doacross clause. For task dependences, the ptr field of its variable field21
points to the storage location of the dependence. For doacross dependences, the value field of the22
variable field contains the value of a vector element that describes the dependence. The23
dependence_type field indicates the type of the dependence. For task dependences with the24
reserved locator omp_all_memory, the value of the variable field is undefined and the25
dependence_type field contains a value that has the _all_memory suffix.26

Cross References27

• OMPT data Type, see Section 33.828

• OMPT dependence_type Type, see Section 33.1029

CHAPTER 33. OMPT DATA TYPES 715

33.10 OMPT dependence_type Type1

Name: dependence_type
Properties: C/C++-only, OMPT

Base Type: enumeration
2

Values3
Name Value Properties
ompt_dependence_type_in 1 C/C++-only, OMPT
ompt_dependence_type_out 2 C/C++-only, OMPT
ompt_dependence_type_inout 3 C/C++-only, OMPT
ompt_dependence_type_mutexinoutset 4 C/C++-only, OMPT
ompt_dependence_type_source 5 C/C++-only, OMPT
ompt_dependence_type_sink 6 C/C++-only, OMPT
ompt_dependence_type_inoutset 7 C/C++-only, OMPT
ompt_dependence_type_out_all_memory 34 C/C++-only, OMPT
ompt_dependence_type_inout_all_memory 35 C/C++-only, OMPT

4

Type Definition5
C / C++

typedef enum ompt_dependence_type_t {6
ompt_dependence_type_in = 1,7
ompt_dependence_type_out = 2,8
ompt_dependence_type_inout = 3,9
ompt_dependence_type_mutexinoutset = 4,10
ompt_dependence_type_source = 5,11
ompt_dependence_type_sink = 6,12
ompt_dependence_type_inoutset = 7,13
ompt_dependence_type_out_all_memory = 34,14
ompt_dependence_type_inout_all_memory = 3515

} ompt_dependence_type_t;16

C / C++
Semantics17
The dependence_type OMPT type defines task dependence type values. The18
ompt_dependence_type_in, ompt_dependence_type_out,19
ompt_dependence_type_inout, ompt_dependence_type_mutexinoutset,20
ompt_dependence_type_inoutset, ompt_dependence_type_out_all_memory,21
and ompt_dependence_type_inout_all_memory values represent the task dependence22
type present in a depend clause while the ompt_dependence_type_source and23
ompt_dependence_type_sink values represent the dependence-type present in a24
doacross clause. The ompt_dependence_type_out_all_memory and25
ompt_dependence_type_inout_all_memory represent task dependences for which the26
omp_all_memory reserved locator is specified.27

716 OpenMP API – Version 6.0 November 2024

33.11 OMPT device Type1

Name: device
Properties: C/C++-only, OMPT, opaque

Base Type: void
2

Type Definition3
C / C++

typedef void ompt_device_t;4

C / C++
Semantics5
The device OMPT type represents a device.6

33.12 OMPT device_time Type7

Name: device_time
Properties: C/C++-only, OMPT, opaque

Base Type: c_uint64_t
8

Predefined Identifiers9
Name Value Properties
ompt_time_none 0 C/C++-only, OMPT10

Type Definition11
C / C++

typedef uint64_t ompt_device_time_t;12

C / C++
Semantics13
The device_time OMPT type represents raw device time values; ompt_time_none14
represents an unknown or unspecified time.15

33.13 OMPT dispatch Type16

Name: dispatch
Properties: C/C++-only, OMPT, overlapping-type-
name

Base Type: enumeration
17

CHAPTER 33. OMPT DATA TYPES 717

Values1
Name Value Properties
ompt_dispatch_iteration 1 C/C++-only, OMPT
ompt_dispatch_section 2 C/C++-only, OMPT
ompt_dispatch_ws_loop_chunk 3 C/C++-only, OMPT
ompt_dispatch_taskloop_chunk 4 C/C++-only, OMPT
ompt_dispatch_distribute_chunk 5 C/C++-only, OMPT

2

Type Definition3
C / C++

typedef enum ompt_dispatch_t {4
ompt_dispatch_iteration = 1,5
ompt_dispatch_section = 2,6
ompt_dispatch_ws_loop_chunk = 3,7
ompt_dispatch_taskloop_chunk = 4,8
ompt_dispatch_distribute_chunk = 59

} ompt_dispatch_t;10

C / C++
Semantics11
The dispatch OMPT type defines the valid dispatch values.12

33.14 OMPT dispatch_chunk Type13

Name: dispatch_chunk
Properties: C/C++-only, OMPT

Base Type: structure
14

Fields15
Name Type Properties
start c_uint64_t default
iterations c_uint64_t default

16

Type Definition17
C / C++

typedef struct ompt_dispatch_chunk_t {18
uint64_t start;19
uint64_t iterations;20

} ompt_dispatch_chunk_t;21

C / C++

718 OpenMP API – Version 6.0 November 2024

Semantics1
The dispatch_chunk OMPT type represents chunk information for a dispatched chunk. The2
start field specifies the first logical iteration of the chunk and the iterations field specifies3
the number of logical iterations in the chunk. Whether the chunk of a taskloop region is4
contiguous is implementation defined.5

33.15 OMPT frame Type6

Name: frame
Properties: C/C++-only, OMPT

Base Type: structure
7

Fields8
Name Type Properties
exit_frame data C/C++-only, OMPT
enter_frame data C/C++-only, OMPT
exit_frame_flags integer default
enter_frame_flags integer default

9

Type Definition10
C / C++

typedef struct ompt_frame_t {11
ompt_data_t exit_frame;12
ompt_data_t enter_frame;13
int exit_frame_flags;14
int enter_frame_flags;15

} ompt_frame_t;16

C / C++
Semantics17
The frame OMPT type describes procedure frame information for a task. Each frame object is18
associated with the task to which the procedure frames belong. Every task that is not a merged task19
with one or more frames on the stack of a native thread, whether an initial task, an implicit task, an20
explicit task, or a target task, has an associated frame object.21

The exit_frame field contains information to identify the first procedure frame executing the22
task region. The exit_frame for the frame object associated with the initial task that is not23
nested inside any OpenMP construct is ompt_data_none. The enter_frame field contains24
information to identify the latest still active procedure frame executing the task region before25
entering the OpenMP runtime implementation or before executing a different task. If a task with26
frames on the stack is not executing implementation code in the OpenMP runtime, the value of27
enter_frame for its associated frame object is ompt_data_none.28

For the frame indicated by exit_frame (enter_frame), the exit_frame_flags29
(enter_frame_flags) field indicates that the provided frame information points to a runtime30

CHAPTER 33. OMPT DATA TYPES 719

or an OpenMP program frame address. The same fields also specify the kind of information that is1
provided to identify the frame, These fields are a disjunction of values in the frame_flag OMPT2
type.3

The lifetime of a frame object begins when a task is created and ends when the task is destroyed.4
Tools should not assume that a frame structure remains at a constant location in memory5
throughout the lifetime of the task. A pointer to a frame object is passed to some callbacks; a6
pointer to the frame object of a task can also be retrieved by a tool at any time, including in a7
signal handler, by invoking the get_task_info entry point. A pointer to a frame object that a8
tool retrieved is valid as long as the tool does not pass back control to the OpenMP implementation.9

10

Note – A monitoring tool that uses asynchronous sampling can observe values of exit_frame11
and enter_frame at inconvenient times. Tools must be prepared to handle frame objects12
observed just prior to when their field values will be set or cleared.13

14

Cross References15

• OMPT data Type, see Section 33.816

• OMPT frame_flag Type, see Section 33.1617

• get_task_info Entry Point, see Section 36.1518

33.16 OMPT frame_flag Type19

Name: frame_flag
Properties: C/C++-only, OMPT

Base Type: enumeration
20

Values21
Name Value Properties
ompt_frame_runtime 0x00 C/C++-only, OMPT
ompt_frame_application 0x01 C/C++-only, OMPT
ompt_frame_cfa 0x10 C/C++-only, OMPT
ompt_frame_framepointer 0x20 C/C++-only, OMPT
ompt_frame_stackaddress 0x30 C/C++-only, OMPT

22

Type Definition23
C / C++

typedef enum ompt_frame_flag_t {24
ompt_frame_runtime = 0x00,25
ompt_frame_application = 0x01,26
ompt_frame_cfa = 0x10,27
ompt_frame_framepointer = 0x20,28

720 OpenMP API – Version 6.0 November 2024

ompt_frame_stackaddress = 0x301
} ompt_frame_flag_t;2

C / C++
Semantics3
The frame_flag OMPT type defines frame information flags. The ompt_frame_runtime4
value indicates that a frame address is a procedure frame in the OpenMP runtime implementation.5
The ompt_frame_application value indicates that a frame address is a procedure frame in6
the OpenMP program. Higher order bits indicate the specific information for a particular frame7
pointer. The ompt_frame_cfa value indicates that a frame address specifies a canonical frame8
address. The ompt_frame_framepointer value indicates that a frame address provides the9
value of the frame pointer register. The ompt_frame_stackaddress value indicates that a10
frame address specifies a pointer address that is contained in the current stack frame.11

33.17 OMPT hwid Type12

Name: hwid
Properties: C/C++-only, OMPT

Base Type: c_uint64_t
13

Predefined Identifiers14
Name Value Properties
ompt_hwid_none 0 C/C++-only, OMPT15

Type Definition16
C / C++

typedef uint64_t ompt_hwid_t;17

C / C++
Semantics18
The hwid OMPT type is a handle for a hardware identifier for a target device; ompt_hwid_none19
represents an unknown or unspecified hardware identifier. If no specific value for the hwid field is20
associated with an instance of the record_abstract OMPT type then the value of hwid is21
ompt_hwid_none.22

Cross References23

• OMPT record_abstract Type, see Section 33.2424

33.18 OMPT id Type25

Name: id
Properties: C/C++-only, OMPT

Base Type: c_uint64_t
26

CHAPTER 33. OMPT DATA TYPES 721

Predefined Identifiers1
Name Value Properties
ompt_id_none 0 C/C++-only, OMPT2

Type Definition3
C / C++

typedef uint64_t ompt_id_t;4

C / C++
Semantics5
The id OMPT type is used to provide various identifiers to tools; ompt_id_none is used when6
the specific ID is unknown or unavailable. When tracing asynchronous activity on devices,7
identifiers enable tools to correlate device regions and operations that the host device initiates with8
associated activities on a target device. In addition, OMPT provides identifiers to refer to parallel9
regions and tasks that execute on a device.10

Restrictions11
Restrictions to the id OMPT type are as follows:12

• Identifiers created on each device must be unique from the time an OpenMP implementation13
is initialized until it is shut down. Identifiers for each device region and target data operation14
instance that the host device initiates must be unique over time on the host device. Identifiers15
for instances of parallel regions and task regions that execute on a device must be unique over16
time within that device.17

33.19 OMPT interface_fn Type18

Name: interface_fn
Category: subroutine pointer

Properties: C/C++-only, OMPT
19

Type Signature20
C / C++

typedef void (*ompt_interface_fn_t) (void);21

C / C++
Semantics22
The interface_fn OMPT type serves as a generic function pointer that the23
function_lookup entry point returns to provide access to a tool to entry points by name.24

33.20 OMPT mutex Type25

Name: mutex
Properties: C/C++-only, OMPT, overlapping-type-
name

Base Type: enumeration
26

722 OpenMP API – Version 6.0 November 2024

Values1
Name Value Properties
ompt_mutex_lock 1 C/C++-only, OMPT
ompt_mutex_test_lock 2 C/C++-only, OMPT
ompt_mutex_nest_lock 3 C/C++-only, OMPT
ompt_mutex_test_nest_lock 4 C/C++-only, OMPT
ompt_mutex_critical 5 C/C++-only, OMPT
ompt_mutex_atomic 6 C/C++-only, OMPT
ompt_mutex_ordered 7 C/C++-only, OMPT

2

Type Definition3
C / C++

typedef enum ompt_mutex_t {4
ompt_mutex_lock = 1,5
ompt_mutex_test_lock = 2,6
ompt_mutex_nest_lock = 3,7
ompt_mutex_test_nest_lock = 4,8
ompt_mutex_critical = 5,9
ompt_mutex_atomic = 6,10
ompt_mutex_ordered = 711

} ompt_mutex_t;12

C / C++
Semantics13
The mutex OMPT type defines the valid mutex values.14

33.21 OMPT native_mon_flag Type15

Name: native_mon_flag
Properties: C/C++-only, OMPT

Base Type: enumeration
16

Values17
Name Value Properties
ompt_native_data_motion_explicit 0x01 C/C++-only, OMPT
ompt_native_data_motion_implicit 0x02 C/C++-only, OMPT
ompt_native_kernel_invocation 0x04 C/C++-only, OMPT
ompt_native_kernel_execution 0x08 C/C++-only, OMPT
ompt_native_driver 0x10 C/C++-only, OMPT
ompt_native_runtime 0x20 C/C++-only, OMPT
ompt_native_overhead 0x40 C/C++-only, OMPT
ompt_native_idleness 0x80 C/C++-only, OMPT

18

CHAPTER 33. OMPT DATA TYPES 723

Type Definition1
C / C++

typedef enum ompt_native_mon_flag_t {2
ompt_native_data_motion_explicit = 0x01,3
ompt_native_data_motion_implicit = 0x02,4
ompt_native_kernel_invocation = 0x04,5
ompt_native_kernel_execution = 0x08,6
ompt_native_driver = 0x10,7
ompt_native_runtime = 0x20,8
ompt_native_overhead = 0x40,9
ompt_native_idleness = 0x8010

} ompt_native_mon_flag_t;11

C / C++
Semantics12
The native_mon_flag OMPT type defines the valid native monitoring flag values.13

33.22 OMPT parallel_flag Type14

Name: parallel_flag
Properties: C/C++-only, OMPT

Base Type: enumeration
15

Values16
Name Value Properties
ompt_parallel_invoker_program 0x00000001 C/C++-only,

OMPT
ompt_parallel_invoker_runtime 0x00000002 C/C++-only,

OMPT
ompt_parallel_league 0x40000000 C/C++-only,

OMPT
ompt_parallel_team 0x80000000 C/C++-only,

OMPT

17

Type Definition18
C / C++

typedef enum ompt_parallel_flag_t {19
ompt_parallel_invoker_program = 0x00000001,20
ompt_parallel_invoker_runtime = 0x00000002,21
ompt_parallel_league = 0x40000000,22
ompt_parallel_team = 0x8000000023

} ompt_parallel_flag_t;24

C / C++

724 OpenMP API – Version 6.0 November 2024

Semantics1
The parallel_flag OMPT type defines valid invoker values, which indicate how the code that2
implements the associated structured block of the region is invoked or encountered. The3
ompt_parallel_invoker_program value indicates that the encountering thread for a4
parallel or teams region executes code to implement its associated structured block as if5
directly invoked or encountered in application code. The6
ompt_parallel_invoker_runtime value indicates that the encountering thread for a7
parallel or teams region invokes the code that implements its associated structured block8
from the runtime. The ompt_parallel_league value indicates that the callback is invoked9
due to the creation of a league of teams by a teams construct. The ompt_parallel_team10
value indicates that the callback is invoked due to the creation of a team of threads by a parallel11
construct.12

33.23 OMPT record Type13

Name: record
Properties: C/C++-only, OMPT

Base Type: enumeration
14

Values15
Name Value Properties
ompt_record_ompt 1 C/C++-only, OMPT
ompt_record_native 2 C/C++-only, OMPT
ompt_record_invalid 3 C/C++-only, OMPT

16

Type Definition17
C / C++

typedef enum ompt_record_t {18
ompt_record_ompt = 1,19
ompt_record_native = 2,20
ompt_record_invalid = 321

} ompt_record_t;22

C / C++
Semantics23
The record OMPT type indicates the integer codes that identify OMPT trace record formats.24

33.24 OMPT record_abstract Type25

Name: record_abstract
Properties: C/C++-only, OMPT

Base Type: structure
26

CHAPTER 33. OMPT DATA TYPES 725

Fields1
Name Type Properties
rclass record_native C/C++-only, OMPT
type char common-field, in-

tent(in), pointer
start_time device_time C/C++-only, OMPT
end_time device_time C/C++-only, OMPT
hwid hwid C/C++-only, OMPT

2

Type Definition3
C / C++

typedef struct ompt_record_abstract_t {4
ompt_record_native_t rclass;5
const char *type;6
ompt_device_time_t start_time;7
ompt_device_time_t end_time;8
ompt_hwid_t hwid;9

} ompt_record_abstract_t;10

C / C++
Semantics11
The record_abstract OMPT type is an abstract trace record format that summarizes native12
trace records. It contains information that a tool can use to process a native trace record that it may13
not fully understand. The rclass field indicates that the trace record is informational or that it14
represents an event; this information can help a tool determine how to present the trace record. The15
type field points to a statically-allocated, immutable character string that provides a meaningful16
name that a tool can use to describe the event. The start_time and end_time fields are used17
to place an event in time. The times are relative to the device clock. If an event does not have an18
associated start_time (end_time), the value of the start_time (end_time) field is19
ompt_time_none. The hardware identifier field, hwid, indicates the location on the device20
where the event occurred. A hwid may represent a hardware abstraction such as a core or a21
hardware thread identifier. The meaning of a hwid value for a device is implementation defined. If22
no hardware abstraction is associated with the trace record then the value of hwid is23
ompt_hwid_none.24

Cross References25

• OMPT device_time Type, see Section 33.1226

• OMPT hwid Type, see Section 33.1727

• OMPT record_native Type, see Section 33.2528

726 OpenMP API – Version 6.0 November 2024

33.25 OMPT record_native Type1

Name: record_native
Properties: C/C++-only, OMPT

Base Type: enumeration
2

Values3
Name Value Properties
ompt_record_native_info 1 C/C++-only, OMPT
ompt_record_native_event 2 C/C++-only, OMPT

4

Type Definition5
C / C++

typedef enum ompt_record_native_t {6
ompt_record_native_info = 1,7
ompt_record_native_event = 28

} ompt_record_native_t;9

C / C++
Semantics10
The record_native OMPT type indicates the integer codes that identify OMPT native trace11
record contents.12

33.26 OMPT record_ompt Type13

Name: record_ompt
Properties: C/C++-only, OMPT

Base Type: structure
14

Fields15
Name Type Properties
type callbacks C/C++-only,

common-field,
OMPT

time device_time C/C++-only, OMPT
thread_id id C/C++-only, OMPT
target_id id C/C++-only, OMPT
record any_record_ompt C/C++-only, OMPT

16

CHAPTER 33. OMPT DATA TYPES 727

Type Definition1
C / C++

typedef struct ompt_record_ompt_t {2
ompt_callbacks_t type;3
ompt_device_time_t time;4
ompt_id_t thread_id;5
ompt_id_t target_id;6
ompt_any_record_ompt_t record;7

} ompt_record_ompt_t;8

C / C++
Semantics9
The record_ompt OMPT type provides a complete trace record by specifying the common10
fields of the standard trace format along with a field that is an instance of the any_record_ompt11
OMPT type. The type field specifies the type of trace record that the structure provides.12
According to the type, event-specific information is stored in the matching record field.13

Restrictions14
Restrictions to the record_ompt OMPT type are as follows:15

• If type is ompt_callback_thread_end then the value of record is undefined.16

Cross References17

• OMPT any_record_ompt Type, see Section 33.218

• OMPT callbacks Type, see Section 33.619

• OMPT device_time Type, see Section 33.1220

• OMPT id Type, see Section 33.1821

33.27 OMPT scope_endpoint Type22

Name: scope_endpoint
Properties: C/C++-only, OMPT

Base Type: enumeration
23

Values24
Name Value Properties
ompt_scope_begin 1 C/C++-only, OMPT
ompt_scope_end 2 C/C++-only, OMPT
ompt_scope_beginend 3 C/C++-only, OMPT

25

728 OpenMP API – Version 6.0 November 2024

Type Definition1
C / C++

typedef enum ompt_scope_endpoint_t {2
ompt_scope_begin = 1,3
ompt_scope_end = 2,4
ompt_scope_beginend = 35

} ompt_scope_endpoint_t;6

C / C++
Summary7
The scope_endpoint OMPT type defines valid region endpoint values.8

33.28 OMPT set_result Type9

Name: set_result
Properties: C/C++-only, OMPT

Base Type: enumeration
10

Values11
Name Value Properties
ompt_set_error 0 C/C++-only, OMPT
ompt_set_never 1 C/C++-only, OMPT
ompt_set_impossible 2 C/C++-only, OMPT
ompt_set_sometimes 3 C/C++-only, OMPT
ompt_set_sometimes_paired 4 C/C++-only, OMPT
ompt_set_always 5 C/C++-only, OMPT

12

Type Definition13
C / C++

typedef enum ompt_set_result_t {14
ompt_set_error = 0,15
ompt_set_never = 1,16
ompt_set_impossible = 2,17
ompt_set_sometimes = 3,18
ompt_set_sometimes_paired = 4,19
ompt_set_always = 520

} ompt_set_result_t;21

C / C++
Summary22
The set_result OMPT type corresponds to values that the set_callback,23
set_trace_ompt and set_trace_native entry points return. Its values indicate several24
possible outcomes. The ompt_set_error value indicates that the associated call failed.25
Otherwise, the value indicates when an event may occur and, when appropriate, callback dispatch26

CHAPTER 33. OMPT DATA TYPES 729

leads to the invocation of the callback. The ompt_set_never value indicates that the event will1
never occur or that the callback will never be invoked at runtime. The ompt_set_impossible2
value indicates that the event may occur but that tracing of it is not possible. The3
ompt_set_sometimes value indicates that the event may occur and, for an implementation4
defined subset of associated event occurrences, will be traced or the callback will be invoked at5
runtime. The ompt_set_sometimes_paired value indicates the same result as6
ompt_set_sometimes and, in addition, that a callback with an endpoint value of7
ompt_scope_begin will be invoked if and only if the same callback with an endpoint value of8
ompt_scope_end will also be invoked sometime in the future. The ompt_set_always value9
indicates that, whenever an associated event occurs, it will be traced or the callback will be invoked.10

Cross References11

• OMPT scope_endpoint Type, see Section 33.2712

• set_callback Entry Point, see Section 36.413

• set_trace_native Entry Point, see Section 37.514

• set_trace_ompt Entry Point, see Section 37.415

33.29 OMPT severity Type16

Name: severity
Properties: C/C++-only, OMPT

Base Type: enumeration
17

Values18
Name Value Properties
ompt_warning 1 C/C++-only, OMPT
ompt_fatal 2 C/C++-only, OMPT

19

Type Definition20
C / C++

typedef enum ompt_severity_t {21
ompt_warning = 1,22
ompt_fatal = 223

} ompt_severity_t;24

C / C++
Semantics25
The severity OMPT type defines severity values.26

730 OpenMP API – Version 6.0 November 2024

33.30 OMPT start_tool_result Type1

Name: start_tool_result
Properties: C/C++-only, OMPT

Base Type: structure
2

Fields3
Name Type Properties
initialize initialize C/C++-only, OMPT
finalize finalize C/C++-only, OMPT
tool_data data C/C++-only, OMPT

4

Type Definition5
C / C++

typedef struct ompt_start_tool_result_t {6
ompt_initialize_t initialize;7
ompt_finalize_t finalize;8
ompt_data_t tool_data;9

} ompt_start_tool_result_t;10

C / C++
Semantics11
The ompt_start_tool procedure returns a pointer to a structure of the12
start_tool_result OMPT type, which provides pointers to the tool’s initialize and13
finalize callbacks as well as a data object for use by the tool.14

Restrictions15
Restrictions to the start_tool_result OMPT type are as follows:16

• The initialize and finalize callback pointer values in a start_tool_result17
structure that ompt_start_tool returns must be non-null values.18

Cross References19

• OMPT data Type, see Section 33.820

• finalize Callback, see Section 34.1.221

• initialize Callback, see Section 34.1.122

• ompt_start_tool Procedure, see Section 32.2.123

33.31 OMPT state Type24

Name: state
Properties: C/C++-only, OMPT

Base Type: enumeration
25

CHAPTER 33. OMPT DATA TYPES 731

Values1
Name Value Properties
ompt_state_work_serial 0x000 C/C++-only, OMPT
ompt_state_work_parallel 0x001 C/C++-only, OMPT
ompt_state_work_reduction 0x002 C/C++-only, OMPT
ompt_state_work_free_agent 0x003 C/C++-only, OMPT
ompt_state_work_induction 0x004 C/C++-only, OMPT
ompt_state_wait_barrier_implicit_parallel 0x011 C/C++-only, OMPT
ompt_state_wait_barrier_implicit_workshare 0x012 C/C++-only, OMPT
ompt_state_wait_barrier_explicit 0x014 C/C++-only, OMPT
ompt_state_wait_barrier_implementation 0x015 C/C++-only, OMPT
ompt_state_wait_barrier_teams 0x016 C/C++-only, OMPT
ompt_state_wait_taskwait 0x020 C/C++-only, OMPT
ompt_state_wait_taskgroup 0x021 C/C++-only, OMPT
ompt_state_wait_mutex 0x040 C/C++-only, OMPT
ompt_state_wait_lock 0x041 C/C++-only, OMPT
ompt_state_wait_critical 0x042 C/C++-only, OMPT
ompt_state_wait_atomic 0x043 C/C++-only, OMPT
ompt_state_wait_ordered 0x044 C/C++-only, OMPT
ompt_state_wait_target 0x080 C/C++-only, OMPT
ompt_state_wait_target_map 0x081 C/C++-only, OMPT
ompt_state_wait_target_update 0x082 C/C++-only, OMPT
ompt_state_idle 0x100 C/C++-only, OMPT
ompt_state_overhead 0x101 C/C++-only, OMPT
ompt_state_undefined 0x102 C/C++-only, OMPT

2

Type Definition3
C / C++

typedef enum ompt_state_t {4
ompt_state_work_serial = 0x000,5
ompt_state_work_parallel = 0x001,6
ompt_state_work_reduction = 0x002,7
ompt_state_work_free_agent = 0x003,8
ompt_state_work_induction = 0x004,9
ompt_state_wait_barrier_implicit_parallel = 0x011,10
ompt_state_wait_barrier_implicit_workshare = 0x012,11
ompt_state_wait_barrier_explicit = 0x014,12
ompt_state_wait_barrier_implementation = 0x015,13
ompt_state_wait_barrier_teams = 0x016,14
ompt_state_wait_taskwait = 0x020,15
ompt_state_wait_taskgroup = 0x021,16
ompt_state_wait_mutex = 0x040,17
ompt_state_wait_lock = 0x041,18

732 OpenMP API – Version 6.0 November 2024

ompt_state_wait_critical = 0x042,1
ompt_state_wait_atomic = 0x043,2
ompt_state_wait_ordered = 0x044,3
ompt_state_wait_target = 0x080,4
ompt_state_wait_target_map = 0x081,5
ompt_state_wait_target_update = 0x082,6
ompt_state_idle = 0x100,7
ompt_state_overhead = 0x101,8
ompt_state_undefined = 0x1029

} ompt_state_t;10

C / C++
Semantics11
The state OMPT type defines thread states that indicate the current activity of a thread. If the12
OMPT interface is in the active state then an OpenMP implementation must maintain thread state13
information for each thread. The thread state maintained is an approximation of the instantaneous14
state of a thread. A thread state must be one of the values of the state OMPT type or an15
implementation defined state value of 0x200 (512) or higher that extends the OMPT type.16

A tool can query the OpenMP thread state at any time. If a tool queries the thread state of a native17
thread that is not associated with OpenMP then the implementation reports the state as18
ompt_state_undefined.19

The ompt_state_work_serial value indicates that the thread is executing code outside all20
parallel regions. The ompt_state_work_parallel value indicates that the thread is21
executing code within the scope of a parallel region. The ompt_state_work_reduction22
value indicates that the thread is combining partial reduction results from threads in its team. An23
OpenMP implementation may never report a thread in this state; a thread that is combining partial24
reduction results may have its state reported as ompt_state_work_parallel or25
ompt_state_overhead. The ompt_state_work_free_agent value indicates that the26
thread is executing code within the scope of a task while not being assigned to the current team of27
that task. The ompt_state_wait_barrier_implicit_parallel value indicates that the28
thread is waiting at the implicit barrier at the end of a parallel region. The29
ompt_state_wait_barrier_implicit_workshare value indicates that the thread is30
waiting at an implicit barrier at the end of a worksharing construct. The31
ompt_state_wait_barrier_explicit value indicates that the thread is waiting in an32
explicit barrier region. The ompt_state_wait_barrier_implementation value33
indicates that the thread is waiting in a barrier that the OpenMP specification does not require but34
the implementation introduces. The ompt_state_wait_barrier_teams value indicates35
that the thread is waiting at a barrier at the end of a teams region. The value36
ompt_state_wait_taskwait indicates that the thread is waiting at a taskwait construct.37
The ompt_state_wait_taskgroup value indicates that the thread is waiting at the end of a38
taskgroup construct. The ompt_state_wait_mutex value indicates that the thread is39
waiting for a mutex of an unspecified type. The ompt_state_wait_lock value indicates that40

CHAPTER 33. OMPT DATA TYPES 733

the thread is waiting for a lock or nestable lock. The ompt_state_wait_critical value1
indicates that the thread is waiting to enter a critical region. The2
ompt_state_wait_atomic value indicates that the thread is waiting to enter an atomic3
region. The ompt_state_wait_ordered value indicates that the thread is waiting to enter an4
ordered region. The ompt_state_wait_target value indicates that the thread is waiting5
for a target region to complete. The ompt_state_wait_target_map value indicates that6
the thread is waiting for a mapping operation to complete. An implementation may report7
ompt_state_wait_target for target_data constructs. The8
ompt_state_wait_target_update value indicates that the thread is waiting for a9
target_update operation to complete. An implementation may report10
ompt_state_wait_target for target_update constructs. The ompt_state_idle11
value indicates that the native thread is an idle thread, that is, it is an unassigned thread that is not a12
free-agent thread. The ompt_state_overhead value indicates that the thread is in the13
overhead state at any point while executing within the OpenMP runtime, except while waiting at a14
synchronization point. The ompt_state_undefined value indicates that the native thread is15
not created by the OpenMP implementation.16

33.32 OMPT subvolume Type17

Name: subvolume
Properties: C/C++-only, OMPT

Base Type: structure
18

Fields19
Name Type Properties
base c_ptr C/C++-only, in-

tent(in), value
size c_uint64_t value
num_dims c_uint64_t value, positive
volume c_uint64_t C/C++-only, in-

tent(in), pointer
offsets c_uint64_t C/C++-only, in-

tent(in), pointer
dimensions c_uint64_t C/C++-only, in-

tent(in), pointer

20

Type Definition21
C / C++

typedef struct ompt_subvolume_t {22
const void *base;23
uint64_t size;24
uint64_t num_dims;25
const uint64_t *volume;26
const uint64_t *offsets;27

734 OpenMP API – Version 6.0 November 2024

const uint64_t *dimensions;1
} ompt_subvolume_t;2

C / C++
Semantics3
The subvolume OMPT type represents a rectangular subvolume used in a4
rectangular-memory-copying routine.5

Cross References6

• Memory Copying Routines, see Section 25.77

33.33 OMPT sync_region Type8

Name: sync_region
Properties: C/C++-only, OMPT, overlapping-type-
name

Base Type: enumeration
9

Values10
Name Value Properties
ompt_sync_region_barrier_explicit 3 C/C++-only, OMPT
ompt_sync_region_barrier_implementation 4 C/C++-only, OMPT
ompt_sync_region_taskwait 5 C/C++-only, OMPT
ompt_sync_region_taskgroup 6 C/C++-only, OMPT
ompt_sync_region_reduction 7 C/C++-only, OMPT
ompt_sync_region_barrier_implicit_workshare 8 C/C++-only, OMPT
ompt_sync_region_barrier_implicit_parallel 9 C/C++-only, OMPT
ompt_sync_region_barrier_teams 10 C/C++-only, OMPT

11

Type Definition12
C / C++

typedef enum ompt_sync_region_t {13
ompt_sync_region_barrier_explicit = 3,14
ompt_sync_region_barrier_implementation = 4,15
ompt_sync_region_taskwait = 5,16
ompt_sync_region_taskgroup = 6,17
ompt_sync_region_reduction = 7,18
ompt_sync_region_barrier_implicit_workshare = 8,19
ompt_sync_region_barrier_implicit_parallel = 9,20
ompt_sync_region_barrier_teams = 1021

} ompt_sync_region_t;22

C / C++

CHAPTER 33. OMPT DATA TYPES 735

Semantics1
The sync_region OMPT type defines the valid synchronization region values.2

33.34 OMPT target Type3

Name: target
Properties: C/C++-only, OMPT

Base Type: enumeration
4

Values5
Name Value Properties
ompt_target 1 C/C++-only, OMPT
ompt_target_enter_data 2 C/C++-only, OMPT
ompt_target_exit_data 3 C/C++-only, OMPT
ompt_target_update 4 C/C++-only, OMPT
ompt_target_nowait 9 C/C++-only, OMPT
ompt_target_enter_data_nowait 10 C/C++-only, OMPT
ompt_target_exit_data_nowait 11 C/C++-only, OMPT
ompt_target_update_nowait 12 C/C++-only, OMPT

6

Type Definition7
C / C++

typedef enum ompt_target_t {8
ompt_target = 1,9
ompt_target_enter_data = 2,10
ompt_target_exit_data = 3,11
ompt_target_update = 4,12
ompt_target_nowait = 9,13
ompt_target_enter_data_nowait = 10,14
ompt_target_exit_data_nowait = 11,15
ompt_target_update_nowait = 1216

} ompt_target_t;17

C / C++
Semantics18
The target OMPT type defines valid values to identify device constructs.19

33.35 OMPT target_data_op Type20

Name: target_data_op
Properties: C/C++-only, OMPT

Base Type: enumeration
21

736 OpenMP API – Version 6.0 November 2024

Values1
Name Value Properties
ompt_target_data_alloc 1 C/C++-only, OMPT
ompt_target_data_delete 4 C/C++-only, OMPT
ompt_target_data_associate 5 C/C++-only, OMPT
ompt_target_data_disassociate 6 C/C++-only, OMPT
ompt_target_data_transfer 7 C/C++-only, OMPT
ompt_target_data_memset 8 C/C++-only, OMPT
ompt_target_data_transfer_rect 9 C/C++-only, OMPT
ompt_target_data_alloc_async 17 C/C++-only, OMPT
ompt_target_data_delete_async 20 C/C++-only, OMPT
ompt_target_data_transfer_async 23 C/C++-only, OMPT
ompt_target_data_memset_async 24 C/C++-only, OMPT
ompt_target_data_transfer_rect_async 25 C/C++-only, OMPT

2

Type Definition3
C / C++

typedef enum ompt_target_data_op_t {4
ompt_target_data_alloc = 1,5
ompt_target_data_delete = 4,6
ompt_target_data_associate = 5,7
ompt_target_data_disassociate = 6,8
ompt_target_data_transfer = 7,9
ompt_target_data_memset = 8,10
ompt_target_data_transfer_rect = 9,11
ompt_target_data_alloc_async = 17,12
ompt_target_data_delete_async = 20,13
ompt_target_data_transfer_async = 23,14
ompt_target_data_memset_async = 24,15
ompt_target_data_transfer_rect_async = 2516

} ompt_target_data_op_t;17

C / C++
Additional information18
The following instances and associated values of the target_data_op OMPT type are also19
defined: ompt_target_data_transfer_to_device, with value 2;20
ompt_target_data_transfer_from_device, with value 3;21
ompt_target_data_transfer_to_device_async, with value 18; and22
ompt_target_data_transfer_from_device, with value 19. These instances have been23
deprecated.24
Semantics25
The target_data_op OMPT type indicates the kind of target data operation for26
target_data_op_emi callbacks, which can be allocate (ompt_target_data_alloc and27
ompt_target_data_alloc_async); delete (ompt_target_data_delete and28

CHAPTER 33. OMPT DATA TYPES 737

ompt_target_data_delete_async); associate (ompt_target_data_associate);1
disassociate (ompt_target_data_disassociate); transfer2
(ompt_target_data_transfer, ompt_target_data_transfer_async,3
ompt_target_data_transfer_rect, and4
ompt_target_data_transfer_rect_async); or memset5
(ompt_target_data_memset and ompt_target_data_memset_async), where the6
values that end with _async correspond to asynchronous data operations.7

33.36 OMPT target_map_flag Type8

Name: target_map_flag
Properties: C/C++-only, OMPT

Base Type: enumeration
9

Values10
Name Value Properties
ompt_target_map_flag_to 0x01 C/C++-only, OMPT
ompt_target_map_flag_from 0x02 C/C++-only, OMPT
ompt_target_map_flag_alloc 0x04 C/C++-only, OMPT
ompt_target_map_flag_release 0x08 C/C++-only, OMPT
ompt_target_map_flag_delete 0x10 C/C++-only, OMPT
ompt_target_map_flag_implicit 0x20 C/C++-only, OMPT
ompt_target_map_flag_always 0x40 C/C++-only, OMPT
ompt_target_map_flag_present 0x80 C/C++-only, OMPT
ompt_target_map_flag_close 0x100 C/C++-only, OMPT
ompt_target_map_flag_shared 0x200 C/C++-only, OMPT

11

Type Definition12
C / C++

typedef enum ompt_target_map_flag_t {13
ompt_target_map_flag_to = 0x01,14
ompt_target_map_flag_from = 0x02,15
ompt_target_map_flag_alloc = 0x04,16
ompt_target_map_flag_release = 0x08,17
ompt_target_map_flag_delete = 0x10,18
ompt_target_map_flag_implicit = 0x20,19
ompt_target_map_flag_always = 0x40,20
ompt_target_map_flag_present = 0x80,21
ompt_target_map_flag_close = 0x100,22
ompt_target_map_flag_shared = 0x20023

} ompt_target_map_flag_t;24

C / C++
Semantics25
The target_map_flag OMPT type defines the valid map flag values. The26
ompt_target_map_flag_to, ompt_target_map_flag_from,27

738 OpenMP API – Version 6.0 November 2024

ompt_target_map_flag_alloc, and ompt_target_map_flag_release values are1
set when the mapping operations have the corresponding map-type. If the map-type for the2
mapping operations is tofrom, both the ompt_target_map_flag_to and3
ompt_target_map_flag_from values are set. The4
ompt_target_map_flag_implicit value is set if the mapping operations correspond to5
implicitly determined data-mapping attributes. The ompt_target_map_flag_delete,6
ompt_target_map_flag_always, ompt_target_map_flag_present, and7
ompt_target_map_flag_close, values are set if the mapping operations are specified with8
the corresponding map-type-modifier modifiers. The ompt_target_map_flag_shared9
value is set if the original storage and corresponding storage are shared for the mapping operation.10

33.37 OMPT task_flag Type11

Name: task_flag
Properties: C/C++-only, OMPT

Base Type: enumeration
12

Values13
Name Value Properties
ompt_task_initial 0x00000001 C/C++-only,

OMPT
ompt_task_implicit 0x00000002 C/C++-only,

OMPT
ompt_task_explicit 0x00000004 C/C++-only,

OMPT
ompt_task_target 0x00000008 C/C++-only,

OMPT
ompt_task_taskwait 0x00000010 C/C++-only,

OMPT
ompt_task_importing 0x02000000 C/C++-only,

OMPT
ompt_task_exporting 0x04000000 C/C++-only,

OMPT
ompt_task_undeferred 0x08000000 C/C++-only,

OMPT
ompt_task_untied 0x10000000 C/C++-only,

OMPT
ompt_task_final 0x20000000 C/C++-only,

OMPT
ompt_task_mergeable 0x40000000 C/C++-only,

OMPT
ompt_task_merged 0x80000000 C/C++-only,

OMPT

14

CHAPTER 33. OMPT DATA TYPES 739

Type Definition1
C / C++

typedef enum ompt_task_flag_t {2
ompt_task_initial = 0x00000001,3
ompt_task_implicit = 0x00000002,4
ompt_task_explicit = 0x00000004,5
ompt_task_target = 0x00000008,6
ompt_task_taskwait = 0x00000010,7
ompt_task_importing = 0x02000000,8
ompt_task_exporting = 0x04000000,9
ompt_task_undeferred = 0x08000000,10
ompt_task_untied = 0x10000000,11
ompt_task_final = 0x20000000,12
ompt_task_mergeable = 0x40000000,13
ompt_task_merged = 0x8000000014

} ompt_task_flag_t;15

C / C++
Semantics16
The task_flag OMPT type defines valid task values. The least significant byte provides17
information about the general classification of the task. The other bits represent its properties.18

33.38 OMPT task_status Type19

Name: task_status
Properties: C/C++-only, OMPT

Base Type: enumeration
20

Values21
Name Value Properties
ompt_task_complete 1 C/C++-only, OMPT
ompt_task_yield 2 C/C++-only, OMPT
ompt_task_cancel 3 C/C++-only, OMPT
ompt_task_detach 4 C/C++-only, OMPT
ompt_task_early_fulfill 5 C/C++-only, OMPT
ompt_task_late_fulfill 6 C/C++-only, OMPT
ompt_task_switch 7 C/C++-only, OMPT
ompt_taskwait_complete 8 C/C++-only, OMPT

22

740 OpenMP API – Version 6.0 November 2024

Type Definition1
C / C++

typedef enum ompt_task_status_t {2
ompt_task_complete = 1,3
ompt_task_yield = 2,4
ompt_task_cancel = 3,5
ompt_task_detach = 4,6
ompt_task_early_fulfill = 5,7
ompt_task_late_fulfill = 6,8
ompt_task_switch = 7,9
ompt_taskwait_complete = 810

} ompt_task_status_t;11

C / C++
Semantics12
The task_status OMPT type indicates the reason that a task was switched when it reached a13
task scheduling point. The ompt_task_complete value indicates that the task that encountered14
the task scheduling point completed execution of its associated structured block and any associated15
allow-completion event was fulfilled. The ompt_task_yield value indicates that the task16
encountered a taskyield construct. The ompt_task_cancel value indicates that the task17
was canceled when it encountered an active cancellation point. The ompt_task_detach value18
indicates that a task for which the detach clause was specified completed execution of the19
associated structured block and is waiting for an allow-completion event to be fulfilled. The20
ompt_task_early_fulfill value indicates that the allow-completion event of the task was21
fulfilled before the task completed execution of the associated structured block. The22
ompt_task_late_fulfill value indicates that the allow-completion event of the task was23
fulfilled after the task completed execution of the associated structured block. The24
ompt_taskwait_complete value indicates completion of the dependent task that results from25
a taskwait construct with one or more depend clauses. The ompt_task_switch value is26
used for all other cases that a task was switched.27

33.39 OMPT thread Type28

Name: thread
Properties: C/C++-only, OMPT

Base Type: enumeration
29

Values30
Name Value Properties
ompt_thread_initial 1 C/C++-only, OMPT
ompt_thread_worker 2 C/C++-only, OMPT
ompt_thread_other 3 C/C++-only, OMPT
ompt_thread_unknown 4 C/C++-only, OMPT

31

CHAPTER 33. OMPT DATA TYPES 741

Type Definition1
C / C++

typedef enum ompt_thread_t {2
ompt_thread_initial = 1,3
ompt_thread_worker = 2,4
ompt_thread_other = 3,5
ompt_thread_unknown = 46

} ompt_thread_t;7

C / C++
Semantics8
The thread OMPT type defines the valid thread type values. Any initial thread has thread type9
ompt_thread_initial. All threads that are thread-pool-worker threads have thread type10
ompt_thread_worker. A native thread that an OpenMP implementation uses but that does not11
execute user code has thread type ompt_thread_other. Any native thread that is created12
outside an OpenMP implementation and that is not an initial thread has thread type13
ompt_thread_unknown.14

33.40 OMPT wait_id Type15

Name: wait_id
Properties: C/C++-only, OMPT

Base Type: c_uint64_t
16

Predefined Identifiers17
Name Value Properties
ompt_wait_id_none 0 C/C++-only, OMPT18

Type Definition19
C / C++

typedef uint64_t ompt_wait_id_t;20

C / C++
Semantics21
The wait_id OMPT type describes wait identifiers for a thread; each thread maintains one of22
these wait identifiers. When a task that a thread executes is waiting for mutual exclusion, the wait23
identifier of the thread indicates the reason that the thread is waiting. A wait identifier may24
represent the name argument of a critical section, or a lock, or a variable accessed in an atomic25
region, or a synchronization object that is internal to an OpenMP implementation. When a thread is26
not in a wait state then the value of the wait identifier of the thread is undefined.27

742 OpenMP API – Version 6.0 November 2024

33.41 OMPT work Type1

Name: work
Properties: C/C++-only, OMPT, overlapping-type-
name

Base Type: enumeration
2

Values3
Name Value Properties
ompt_work_loop 1 C/C++-only, OMPT
ompt_work_sections 2 C/C++-only, OMPT
ompt_work_single_executor 3 C/C++-only, OMPT
ompt_work_single_other 4 C/C++-only, OMPT
ompt_work_workshare 5 C/C++-only, OMPT
ompt_work_distribute 6 C/C++-only, OMPT
ompt_work_taskloop 7 C/C++-only, OMPT
ompt_work_scope 8 C/C++-only, OMPT
ompt_work_workdistribute 9 C/C++-only, OMPT
ompt_work_loop_static 10 C/C++-only, OMPT
ompt_work_loop_dynamic 11 C/C++-only, OMPT
ompt_work_loop_guided 12 C/C++-only, OMPT
ompt_work_loop_other 13 C/C++-only, OMPT

4

Type Definition5
C / C++

typedef enum ompt_work_t {6
ompt_work_loop = 1,7
ompt_work_sections = 2,8
ompt_work_single_executor = 3,9
ompt_work_single_other = 4,10
ompt_work_workshare = 5,11
ompt_work_distribute = 6,12
ompt_work_taskloop = 7,13
ompt_work_scope = 8,14
ompt_work_workdistribute = 9,15
ompt_work_loop_static = 10,16
ompt_work_loop_dynamic = 11,17
ompt_work_loop_guided = 12,18
ompt_work_loop_other = 1319

} ompt_work_t;20

C / C++
Semantics21
The work OMPT type defines the valid work values.22

CHAPTER 33. OMPT DATA TYPES 743

34 General Callbacks and Trace Records1

This chapter describes general OMPT callbacks that an OMPT tool may register and that are called2
during the runtime of an OpenMP program. The C/C++ header file (omp-tools.h) provides the3
types that this chapter defines. Tool implementations of callbacks are not required to be async4
signal safe.5
Several OMPT callbacks include a codeptr_ra argument that relates the implementation of an6
OpenMP region to its source code. If a routine implements the region associated with a callback7
then codeptr_ra contains the return address of the call to that routine. If the implementation of the8
region is inlined then codeptr_ra contains the return address of the callback invocation. If9
attribution to source code is impossible or inappropriate, codeptr_ra may be NULL.10
Several OMPT callbacks have a flags argument; the meaning and valid values for that argument is11
described with the callback. Some callbacks have an encountering_task_frame argument that points12
to the frame object that is associated with the encountering task. The behavior for accessing the13
frame object after the callback returns is unspecified. Some callbacks have a tool_data argument14
that is a pointer to the tool_data field in the start_tool_result structure that15
ompt_start_tool returned. Some callbacks have a parallel_data argument; the binding of16
these arguments is the parallel or teams region that is beginning or ending or the current17
parallel region for callbacks that are dispatched during the execution of one. Some callbacks have18
an encountering_task_data argument; the binding of these arguments is the encountering task.19
Some callbacks have an endpoint argument that indicates whether the callback signals that a region20
begins or ends. Some callbacks have a wait_id argument, which indicates the object being awaited.21
Several OMPT callbacks have a task_data argument; unless otherwise specified, the binding of22
these arguments is the encountering task of the event for which the implementation dispatches the23
callback. For some of those callbacks, OpenMP semantics imply that this task to which the24
task_data argument binds is the implicit task that executes the structured block of the binding25
parallel region or teams region.26
An implementation may also provide a trace of events per device. Along with the callbacks, this27
chapter also defines standard trace records. For these trace records, unless otherwise specified, tool28
data arguments are replaced by an ID, which must be initialized by the OpenMP implementation.29
Each of parallel_id, task_id, and thread_id must be unique per target region. If the30
target_emi callback is dispatched, the target_id used in any trace records associated with31
the device region is given by the value field of the target_data data object that is set in the32
callback.33

Restrictions34
Restrictions to OpenMP tool callbacks are as follows:35

• Tool callbacks may not use directives or call any routines.36

• Tool callbacks must exit by either returning to the caller or aborting.37

744 OpenMP API – Version 6.0 November 2024

34.1 Initialization and Finalization Callbacks1

This section describes callbacks that are called to initialize and to finalize tools and when native2
threads are initialized and finalized.3

34.1.1 initialize Callback4

Name: initialize
Category: function

Properties: C/C++-only, OMPT
5

Return Type and Arguments6
Name Type Properties
<return type> integer default
lookup function_lookup OMPT
initial_device_num integer default
tool_data data OMPT, pointer

7

Type Signature8
C / C++

typedef int (*ompt_initialize_t) (ompt_function_lookup_t lookup,9
int initial_device_num, ompt_data_t *tool_data);10

C / C++
Semantics11
A tool provides an initialize callback, which has the initialize OMPT type, in the12
non-null pointer to a start_tool_result OMPT type structure that its implementation of13
ompt_start_tool returns. An OpenMP implementation must call this OMPT-tool initializer14
after fully initializing itself but before beginning execution of any construct or routine. An15
initialize callback returns a non-zero value if it succeeds; otherwise, the OMPT interface16
state changes to OMPT inactive as described in Section 32.2.3.17

The lookup argument of an initialize callback is a pointer to a runtime entry point that a tool18
must use to obtain pointers to the other entry points in the OMPT interface. The initial_device_num19
argument provides the value that a call to omp_get_initial_device would return.20

C / C++
A callback of initialize OMPT type is a callback of type ompt_initialize_t.21

C / C++
Cross References22

• OMPT data Type, see Section 33.823

• omp_get_initial_device Routine, see Section 24.1024

• ompt_start_tool Procedure, see Section 32.2.125

• OMPT start_tool_result Type, see Section 33.3026

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 745

34.1.2 finalize Callback1

Name: finalize
Category: subroutine

Properties: C/C++-only, OMPT
2

Arguments3
Name Type Properties
tool_data data OMPT, pointer4

Type Signature5
C / C++

typedef void (*ompt_finalize_t) (ompt_data_t *tool_data);6

C / C++
Semantics7
A tool provides a finalize callback, which has the finalize OMPT type, in the non-null8
pointer to a start_tool_result OMPT type structure that its implementation of9
ompt_start_tool returns. An OpenMP implementation must call this OMPT-tool finalizer10
after the last OMPT event as the OpenMP implementation shuts down.11

C / C++
A callback of finalize OMPT type is a callback of type ompt_finalize_t.12

C / C++
Cross References13

• OMPT data Type, see Section 33.814

• ompt_start_tool Procedure, see Section 32.2.115

• OMPT start_tool_result Type, see Section 33.3016

34.1.3 thread_begin Callback17

Name: thread_begin
Category: subroutine

Properties: C/C++-only, OMPT
18

Arguments19
Name Type Properties
thread_type thread OMPT
thread_data data OMPT, pointer,

untraced-argument

20

Type Signature21
C / C++

typedef void (*ompt_callback_thread_begin_t) (22
ompt_thread_t thread_type, ompt_data_t *thread_data);23

C / C++

746 OpenMP API – Version 6.0 November 2024

Trace Record1
C / C++

typedef struct ompt_record_thread_begin_t {2
ompt_thread_t thread_type;3

} ompt_record_thread_begin_t;4

C / C++
Semantics5
A tool provides a thread_begin callback, which has the thread_begin OMPT type, that the6
OpenMP implementation dispatches when native threads are created. The thread_type argument7
indicates the type of the new thread: initial, worker, other, or unknown. The binding of the8
thread_data argument is the new thread.9

Cross References10

• OMPT data Type, see Section 33.811

• OMPT thread Type, see Section 33.3912

34.1.4 thread_end Callback13

Name: thread_end
Category: subroutine

Properties: C/C++-only, OMPT
14

Arguments15
Name Type Properties
thread_data data OMPT, pointer16

Type Signature17
C / C++

typedef void (*ompt_callback_thread_end_t) (18
ompt_data_t *thread_data);19

C / C++
Semantics20
A tool provides a thread_end callback, which has the thread_end OMPT type, that the21
OpenMP implementation dispatches when native threads are destroyed. The binding of the22
thread_data argument is the thread that will be destroyed.23

Cross References24

• OMPT data Type, see Section 33.825

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 747

34.2 error Callback1

Name: error
Category: subroutine

Properties: C/C++-only, OMPT
2

Arguments3
Name Type Properties
severity severity OMPT
message char intent(in), pointer
length size_t default
codeptr_ra void intent(in), pointer

4

Type Signature5
C / C++

typedef void (*ompt_callback_error_t) (ompt_severity_t severity,6
const char *message, size_t length, const void *codeptr_ra);7

C / C++
Trace Record8

C / C++
typedef struct ompt_record_error_t {9

ompt_severity_t severity;10
const char *message;11
size_t length;12
const void *codeptr_ra;13

} ompt_record_error_t;14

C / C++
Semantics15
A tool provides an error callback, which has the error OMPT type, that the OpenMP16
implementation dispatches when an error directive is encountered for which the action-time17
argument of the at clause is specified as execution. The severity argument passes the specified18
severity level. The message argument passes the C string from the message clause. The length19
argument provides the length of the C string.20

Cross References21

• error Directive, see Section 10.122

• OMPT severity Type, see Section 33.2923

34.3 Parallelism Generation Callback Signatures24

This section describes callbacks that are related to constructs for generating and controlling25
parallelism.26

748 OpenMP API – Version 6.0 November 2024

34.3.1 parallel_begin Callback1

Name: parallel_begin
Category: subroutine

Properties: C/C++-only, OMPT
2

Arguments3
Name Type Properties
encountering_task_data data OMPT, pointer
encountering_task_frame frame intent(in), OMPT,

pointer, untraced-
argument

parallel_data data OMPT, pointer
requested_parallelism integer unsigned
flags integer default
codeptr_ra void intent(in), pointer

4

Type Signature5
C / C++

typedef void (*ompt_callback_parallel_begin_t) (6
ompt_data_t *encountering_task_data,7
const ompt_frame_t *encountering_task_frame,8
ompt_data_t *parallel_data, unsigned int requested_parallelism,9
int flags, const void *codeptr_ra);10

C / C++
Trace Record11

C / C++
typedef struct ompt_record_parallel_begin_t {12

ompt_id_t encountering_task_id;13
ompt_id_t parallel_id;14
unsigned int requested_parallelism;15
int flags;16
const void *codeptr_ra;17

} ompt_record_parallel_begin_t;18

C / C++
Semantics19
A tool provides a parallel_begin callback, which has the parallel_begin OMPT type,20
that the OpenMP implementation dispatches when a parallel or teams region starts. The21
requested_parallelism argument indicates the number of threads or teams that the user requested.22
The flags argument indicates whether the code for the region is inlined into the application or23
invoked by the runtime and also whether the region is a parallel or teams region. Valid values24
for flags are a disjunction of elements in the parallel_flag OMPT type.25

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 749

Cross References1

• OMPT data Type, see Section 33.82

• OMPT frame Type, see Section 33.153

• OMPT id Type, see Section 33.184

• parallel Construct, see Section 12.15

• OMPT parallel_flag Type, see Section 33.226

• teams Construct, see Section 12.27

34.3.2 parallel_end Callback8

Name: parallel_end
Category: subroutine

Properties: C/C++-only, OMPT
9

Arguments10
Name Type Properties
parallel_data data OMPT, pointer
encountering_task_data data OMPT, pointer
flags integer default
codeptr_ra void intent(in), pointer

11

Type Signature12
C / C++

typedef void (*ompt_callback_parallel_end_t) (13
ompt_data_t *parallel_data, ompt_data_t *encountering_task_data,14
int flags, const void *codeptr_ra);15

C / C++
Trace Record16

C / C++
typedef struct ompt_record_parallel_end_t {17

ompt_id_t parallel_id;18
ompt_id_t encountering_task_id;19
int flags;20
const void *codeptr_ra;21

} ompt_record_parallel_end_t;22

C / C++
Semantics23
A tool provides a parallel_end callback, which has the parallel_end OMPT type, that the24
OpenMP implementation dispatches when a parallel or teams region ends. The flags25

750 OpenMP API – Version 6.0 November 2024

argument indicates whether the code for the region is inlined into the application or invoked by the1
runtime and also whether the region is a parallel or teams region. Valid values for flags are a2
disjunction of elements in the parallel_flag OMPT type.3

Cross References4

• OMPT data Type, see Section 33.85

• OMPT id Type, see Section 33.186

• parallel Construct, see Section 12.17

• OMPT parallel_flag Type, see Section 33.228

• teams Construct, see Section 12.29

34.3.3 masked Callback10

Name: masked
Category: subroutine

Properties: C/C++-only, OMPT
11

Arguments12
Name Type Properties
endpoint scope_endpoint OMPT
parallel_data data OMPT, pointer
task_data data OMPT, pointer
codeptr_ra void intent(in), pointer

13

Type Signature14
C / C++

typedef void (*ompt_callback_masked_t) (15
ompt_scope_endpoint_t endpoint, ompt_data_t *parallel_data,16
ompt_data_t *task_data, const void *codeptr_ra);17

C / C++
Trace Record18

C / C++
typedef struct ompt_record_masked_t {19

ompt_scope_endpoint_t endpoint;20
ompt_id_t parallel_id;21
ompt_id_t task_id;22
const void *codeptr_ra;23

} ompt_record_masked_t;24

C / C++
Semantics25
A tool provides a masked callback, which has the masked OMPT type, that the OpenMP26
implementation dispatches for masked regions.27

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 751

Cross References1

• OMPT data Type, see Section 33.82

• masked Construct, see Section 12.53

• OMPT id Type, see Section 33.184

• OMPT scope_endpoint Type, see Section 33.275

34.4 Work Distribution Callback Signatures6

This section describes callbacks that are related to work-distribution constructs.7

34.4.1 work Callback8

Name: work
Category: subroutine

Properties: C/C++-only, OMPT,
overlapping-type-name9

Arguments10
Name Type Properties
work_type work OMPT, overlapping-

type-name
endpoint scope_endpoint OMPT
parallel_data data OMPT, pointer
task_data data OMPT, pointer
count c_uint64_t default
codeptr_ra void intent(in), pointer

11

Type Signature12
C / C++

typedef void (*ompt_callback_work_t) (ompt_work_t work_type,13
ompt_scope_endpoint_t endpoint, ompt_data_t *parallel_data,14
ompt_data_t *task_data, uint64_t count, const void *codeptr_ra);15

C / C++
Trace Record16

C / C++
typedef struct ompt_record_work_t {17

ompt_work_t work_type;18
ompt_scope_endpoint_t endpoint;19
ompt_id_t parallel_id;20
ompt_id_t task_id;21
uint64_t count;22
const void *codeptr_ra;23

} ompt_record_work_t;24

C / C++

752 OpenMP API – Version 6.0 November 2024

Semantics1
A tool provides a work callback, which has the work OMPT type, that the OpenMP2
implementation dispatches for worksharing regions and taskloop regions. The work_type3
argument indicates the kind of region. The count argument is a measure of the quantity of work4
involved in the construct. For a worksharing-loop construct or taskloop construct, count5
represents the number of collapsed iterations. For a sections construct, count represents the6
number of sections. For a workshare or workdistribute construct, count represents the7
units of work, as defined by the workshare or workdistribute construct. For a single or8
scope construct, count is always 1. When the endpoint argument signals the end of a region, a9
count value of 0 indicates that the actual count value is not available.10

Cross References11

• OMPT data Type, see Section 33.812

• Work-Distribution Constructs, see Chapter 1313

• OMPT id Type, see Section 33.1814

• OMPT scope_endpoint Type, see Section 33.2715

• taskloop Construct, see Section 14.216

• OMPT work Type, see Section 33.4117

34.4.2 dispatch Callback18

Name: dispatch
Category: subroutine

Properties: C/C++-only, OMPT,
overlapping-type-name19

Arguments20
Name Type Properties
parallel_data data OMPT, pointer
task_data data OMPT, pointer
kind dispatch OMPT, overlapping-

type-name
instance data OMPT

21

Type Signature22
C / C++

typedef void (*ompt_callback_dispatch_t) (23
ompt_data_t *parallel_data, ompt_data_t *task_data,24
ompt_dispatch_t kind, ompt_data_t instance);25

C / C++

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 753

Trace Record1
C / C++

typedef struct ompt_record_dispatch_t {2
ompt_id_t parallel_id;3
ompt_id_t task_id;4
ompt_dispatch_t kind;5
ompt_id_t instance;6

} ompt_record_dispatch_t;7

C / C++
Semantics8
A tool provides a dispatch callback, which has the dispatch OMPT type (which has an9
overlapping type name with the dispatch OMPT type that applies to the kind argument of the10
callback), that the OpenMP implementation dispatches when a thread begins to execute a section or11
a collapsed iteration. The kind argument indicates whether a collapsed iteration or a section is12
being dispatched. If the kind argument is ompt_dispatch_iteration, the value field of13
the instance argument contains the logical iteration number. If the kind argument is14
ompt_dispatch_section, the ptr field of the instance argument contains a code address that15
identifies the structured block. In cases where a routine implements the structured block associated16
with this callback, the ptr field of the instance argument contains the return address of the call to17
the routine. In cases where the implementation of the structured block is inlined, the ptr field of18
the instance argument contains the return address of the invocation of this callback. If the kind19
argument is ompt_dispatch_ws_loop_chunk, ompt_dispatch_taskloop_chunk or20
ompt_dispatch_distribute_chunk, the ptr field of the instance argument points to a21
structure of type dispatch_chunk that contains the information for the chunk.22

Cross References23

• OMPT data Type, see Section 33.824

• OMPT dispatch Type, see Section 33.1325

• OMPT dispatch_chunk Type, see Section 33.1426

• Worksharing-Loop Constructs, see Section 13.627

• OMPT id Type, see Section 33.1828

• sections Construct, see Section 13.329

• taskloop Construct, see Section 14.230

754 OpenMP API – Version 6.0 November 2024

34.5 Tasking Callback Signatures1

This section describes callbacks that are related to tasks.2

34.5.1 task_create Callback3

Name: task_create
Category: subroutine

Properties: C/C++-only, OMPT
4

Arguments5
Name Type Properties
encountering_task_data data OMPT, pointer
encountering_task_frame frame intent(in), OMPT,

pointer, untraced-
argument

new_task_data data OMPT, pointer
flags integer default
has_dependences integer default
codeptr_ra void intent(in), pointer

6

Type Signature7
C / C++

typedef void (*ompt_callback_task_create_t) (8
ompt_data_t *encountering_task_data,9
const ompt_frame_t *encountering_task_frame,10
ompt_data_t *new_task_data, int flags, int has_dependences,11
const void *codeptr_ra);12

C / C++
Trace Record13

C / C++
typedef struct ompt_record_task_create_t {14

ompt_id_t encountering_task_id;15
ompt_id_t new_task_id;16
int flags;17
int has_dependences;18
const void *codeptr_ra;19

} ompt_record_task_create_t;20

C / C++

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 755

Semantics1
A tool provides a task_create callback, which has the task_create OMPT type, that the2
OpenMP implementation dispatches when task regions are generated. The binding of the3
new_task_data argument is the generated task. The flags argument indicates the kind of task4
(explicit task or target task) that is generated. Values for flags are a disjunction of elements in the5
task_flag OMPT type. The has_dependences argument is true if the generated task has6
dependences and false otherwise.7

Cross References8

• OMPT data Type, see Section 33.89

• OMPT frame Type, see Section 33.1510

• Initial Task, see Section 14.1311

• OMPT id Type, see Section 33.1812

• task Construct, see Section 14.113

• OMPT task_flag Type, see Section 33.3714

34.5.2 task_schedule Callback15

Name: task_schedule
Category: subroutine

Properties: C/C++-only, OMPT
16

Arguments17
Name Type Properties
prior_task_data data OMPT, pointer
prior_task_status task_status OMPT
next_task_data data OMPT, pointer

18

Type Signature19
C / C++

typedef void (*ompt_callback_task_schedule_t) (20
ompt_data_t *prior_task_data,21
ompt_task_status_t prior_task_status,22
ompt_data_t *next_task_data);23

C / C++

756 OpenMP API – Version 6.0 November 2024

Trace Record1
C / C++

typedef struct ompt_record_task_schedule_t {2
ompt_id_t prior_task_id;3
ompt_task_status_t prior_task_status;4
ompt_id_t next_task_id;5

} ompt_record_task_schedule_t;6

C / C++
Semantics7
A tool provides a task_schedule callback, which has the task_schedule OMPT type, that8
the OpenMP implementation dispatches when task scheduling decisions are made. The binding of9
the prior_task_data argument is the task that arrived at the task scheduling point. This argument10
can be NULL if no task was active when the next task is scheduled. The prior_task_status11
argument indicates the status of that prior task. The binding of the next_task_data argument is the12
task that is resumed at the task scheduling point. This argument is NULL if the callback is13
dispatched for a task-fulfill event or if the callback signals completion of a taskwait construct.14
This argument can be NULL if no task was active when the prior task was scheduled.15

Cross References16

• OMPT data Type, see Section 33.817

• Task Scheduling, see Section 14.1418

• OMPT id Type, see Section 33.1819

• OMPT task_status Type, see Section 33.3820

34.5.3 implicit_task Callback21

Name: implicit_task
Category: subroutine

Properties: C/C++-only, OMPT
22

Arguments23
Name Type Properties
endpoint scope_endpoint OMPT
parallel_data data OMPT, pointer
task_data data OMPT, pointer
actual_parallelism integer unsigned
index integer unsigned
flags integer default

24

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 757

Type Signature1
C / C++

typedef void (*ompt_callback_implicit_task_t) (2
ompt_scope_endpoint_t endpoint, ompt_data_t *parallel_data,3
ompt_data_t *task_data, unsigned int actual_parallelism,4
unsigned int index, int flags);5

C / C++
Trace Record6

C / C++
typedef struct ompt_record_implicit_task_t {7

ompt_scope_endpoint_t endpoint;8
ompt_id_t parallel_id;9
ompt_id_t task_id;10
unsigned int actual_parallelism;11
unsigned int index;12
int flags;13

} ompt_record_implicit_task_t;14

C / C++
Semantics15
A tool provides an implicit_task callback, which has the implicit_task OMPT type,16
that the OpenMP implementation dispatches when initial tasks and implicit tasks are generated and17
completed. The flags argument, which has the task_flag OMPT type, indicates the kind of task18
(initial task or implicit task). For the implicit-task-end and the initial-task-end events, the19
parallel_data argument is NULL.20

The actual_parallelism argument indicates the number of threads in the parallel region or the21
number of teams in the teams region. For initial tasks that are not closely nested in a teams22
construct, this argument is 1. For the implicit-task-end and the initial-task-end events, this23
argument is 0.24

The index argument indicates the thread number or team number of the calling thread, within the25
team or league that is executing the parallel region or teams region to which the implicit task26
region binds. For initial tasks that are not created by a teams construct, this argument is 1.27

758 OpenMP API – Version 6.0 November 2024

Cross References1

• OMPT data Type, see Section 33.82

• OMPT id Type, see Section 33.183

• parallel Construct, see Section 12.14

• OMPT scope_endpoint Type, see Section 33.275

• OMPT task_flag Type, see Section 33.376

• teams Construct, see Section 12.27

34.6 cancel Callback8

Name: cancel
Category: subroutine

Properties: C/C++-only, OMPT
9

Arguments10
Name Type Properties
task_data data OMPT, pointer
flags integer default
codeptr_ra void intent(in), pointer

11

Type Signature12
C / C++

typedef void (*ompt_callback_cancel_t) (ompt_data_t *task_data,13
int flags, const void *codeptr_ra);14

C / C++
Trace Record15

C / C++
typedef struct ompt_record_cancel_t {16

ompt_id_t task_id;17
int flags;18
const void *codeptr_ra;19

} ompt_record_cancel_t;20

C / C++
Semantics21
A tool provides a cancel callback, which has the cancel OMPT type, that the OpenMP22
implementation dispatches when cancellation, cancel and discarded-task events occur. The flags23
argument, which is defined by the cancel_flag OMPT type, indicates whether cancellation is24
activated by the encountering task or detected as being activated by another task. The construct that25
is being canceled is also described in the flags argument. When several constructs are detected as26
being concurrently canceled, each corresponding bit in the argument will be set.27

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 759

Cross References1

• OMPT cancel_flag Type, see Section 33.72

• OMPT data Type, see Section 33.83

• OMPT id Type, see Section 33.184

34.7 Synchronization Callback Signatures5

This section describes callbacks that are related to synchronization constructs and clauses.6

34.7.1 dependences Callback7

Name: dependences
Category: subroutine

Properties: C/C++-only, OMPT
8

Arguments9
Name Type Properties
task_data data OMPT, pointer
deps dependence intent(in), pointer
ndeps integer default

10

Type Signature11
C / C++

typedef void (*ompt_callback_dependences_t) (12
ompt_data_t *task_data, const ompt_dependence_t *deps, int ndeps);13

C / C++
Trace Record14

C / C++
typedef struct ompt_record_dependences_t {15

ompt_id_t task_id;16
ompt_dependence_t dep;17
int ndeps;18

} ompt_record_dependences_t;19

C / C++
Semantics20
A tool provides a dependences callback, which has the dependences OMPT type, that the21
OpenMP implementation dispatches when tasks are generated and when ordered constructs are22
encountered. The binding of the task_data argument is the generated task for a depend clause on23
a task construct, the target task for a depend clause on a device construct, the depend object in24
an asynchronous routine, or the encountering task for a doacross clause of the ordered25

760 OpenMP API – Version 6.0 November 2024

construct. The deps argument points to an array of structures of dependence OMPT type that1
represent dependences of the generated task or the iteration-specifier of the doacross clause.2
Dependences denoted with depend objects are described in terms of their dependence semantics.3
The ndeps argument specifies the length of the list passed by the deps argument. The memory for4
deps is owned by the caller; the tool cannot rely on the data after the callback returns.5

When the implementation logs dependences trace records for a given event, the ndeps field6
determines the number of trace records that are logged, one for each dependence. The dep field in a7
given trace record denotes a structure of dependence OMPT type that represents the dependence.8

Cross References9

• OMPT data Type, see Section 33.810

• depend Clause, see Section 17.9.511

• OMPT dependence Type, see Section 33.912

• OMPT id Type, see Section 33.1813

• Stand-alone ordered Construct, see Section 17.10.114

34.7.2 task_dependence Callback15

Name: task_dependence
Category: subroutine

Properties: C/C++-only, OMPT
16

Arguments17
Name Type Properties
src_task_data data OMPT, pointer
sink_task_data data OMPT, pointer

18

Type Signature19
C / C++

typedef void (*ompt_callback_task_dependence_t) (20
ompt_data_t *src_task_data, ompt_data_t *sink_task_data);21

C / C++
Trace Record22

C / C++
typedef struct ompt_record_task_dependence_t {23

ompt_id_t src_task_id;24
ompt_id_t sink_task_id;25

} ompt_record_task_dependence_t;26

C / C++

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 761

Semantics1
A tool provides a task_dependence callback, which has the task_dependence OMPT2
type, that the OpenMP implementation dispatches when it encounters an unfulfilled task3
dependence. The binding of the src_task_data argument is an uncompleted antecedent task. The4
binding of the sink_task_data argument is a corresponding dependent task.5

Cross References6

• OMPT data Type, see Section 33.87

• depend Clause, see Section 17.9.58

• OMPT id Type, see Section 33.189

34.7.3 OMPT sync_region Type10

Name: sync_region
Category: subroutine pointer

Properties: C/C++-only, OMPT,
overlapping-type-name11

Arguments12
Name Type Properties
kind sync_region OMPT
endpoint scope_endpoint OMPT
parallel_data data OMPT, pointer
task_data data OMPT, pointer
codeptr_ra void intent(in), pointer

13

Type Signature14
C / C++

typedef void (*ompt_callback_sync_region_t) (15
ompt_sync_region_t kind, ompt_scope_endpoint_t endpoint,16
ompt_data_t *parallel_data, ompt_data_t *task_data,17
const void *codeptr_ra);18

C / C++
Trace Record19

C / C++
typedef struct ompt_record_sync_region_t {20

ompt_sync_region_t kind;21
ompt_scope_endpoint_t endpoint;22
ompt_id_t parallel_id;23
ompt_id_t task_id;24
const void *codeptr_ra;25

} ompt_record_sync_region_t;26

C / C++

762 OpenMP API – Version 6.0 November 2024

Semantics1
Callbacks that have the sync_region OMPT type are synchronizing-region callbacks, which2
each have the synchronizing-region property. A tool provides these callbacks to mark the beginning3
and end of regions that have synchronizing semantics. The kind argument, which has the4
sync_region OMPT type, indicates the kind of synchronization.5

Cross References6

• OMPT data Type, see Section 33.87

• OMPT id Type, see Section 33.188

• OMPT scope_endpoint Type, see Section 33.279

• OMPT sync_region Type, see Section 33.3310

34.7.4 sync_region Callback11

Name: sync_region
Category: subroutine

Properties: C/C++-only, common-
type-callback, synchronizing-region,
OMPT

12

Type Signature13
sync_region14

Semantics15
A tool provides a sync_region callback, which has the sync_region OMPT type, that the16
OpenMP implementation dispatches when barrier regions, taskwait regions, and taskgroup17
regions begin and end. For the implicit-barrier-end event at the end of a parallel region,18
parallel_data argument is NULL.19

Cross References20

• barrier Construct, see Section 17.3.121

• Implicit Barriers, see Section 17.3.222

• OMPT sync_region Type, see Section 34.7.323

• taskgroup Construct, see Section 17.424

• taskwait Construct, see Section 17.525

34.7.5 sync_region_wait Callback26

Name: sync_region_wait
Category: subroutine

Properties: C/C++-only, common-
type-callback, synchronizing-region,
OMPT

27

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 763

Type Signature1
sync_region2

Semantics3
A tool provides a sync_region_wait callback, which has the sync_region OMPT type,4
that the OpenMP implementation dispatches when waiting begins and ends for barrier regions,5
taskwait regions, and taskgroup regions. For the implicit-barrier-wait-begin and6
implicit-barrier-wait-end events at the end of a parallel region, whether parallel_data is NULL or7
is the current parallel region is implementation defined.8

Cross References9

• barrier Construct, see Section 17.3.110

• Implicit Barriers, see Section 17.3.211

• OMPT sync_region Type, see Section 34.7.312

• taskgroup Construct, see Section 17.413

• taskwait Construct, see Section 17.514

34.7.6 reduction Callback15

Name: reduction
Category: subroutine

Properties: C/C++-only, common-
type-callback, synchronizing-region,
OMPT

16

Type Signature17
sync_region18

Semantics19
A tool provides a reduction callback, which is a synchronizing-region callback, that the20
OpenMP implementation dispatches when it performs reductions.21

Cross References22

• Properties Common to All Reduction Clauses, see Section 7.6.623

• OMPT sync_region Type, see Section 34.7.324

34.7.7 OMPT mutex_acquire Type25

Name: mutex_acquire
Category: subroutine pointer

Properties: C/C++-only, OMPT
26

764 OpenMP API – Version 6.0 November 2024

Arguments1
Name Type Properties
kind mutex OMPT, overlapping-

type-name
hint integer unsigned
impl integer unsigned
wait_id wait_id OMPT
codeptr_ra void intent(in), pointer

2

Type Signature3
C / C++

typedef void (*ompt_callback_mutex_acquire_t) (ompt_mutex_t kind,4
unsigned int hint, unsigned int impl, ompt_wait_id_t wait_id,5
const void *codeptr_ra);6

C / C++
Trace Record7

C / C++
typedef struct ompt_record_mutex_acquire_t {8

ompt_mutex_t kind;9
unsigned int hint;10
unsigned int impl;11
ompt_wait_id_t wait_id;12
const void *codeptr_ra;13

} ompt_record_mutex_acquire_t;14

C / C++
Semantics15
Callbacks that have the mutex_acquire OMPT type are mutex-acquiring callbacks, which each16
have the mutex-acquiring property. A tool provides these callbacks to monitor the beginning of17
regions associated with mutual-exclusion constructs, lock-initializing routines and lock-acquiring18
routines. The kind argument, which has the mutex OMPT type, indicates the kind of mutual19
exclusion event. The hint argument indicates the hint that was provided when initializing an20
implementation of mutual exclusion. If no hint is available when a thread initiates acquisition of21
mutual exclusion, the runtime may supply omp_sync_hint_none as the value for hint. The22
impl argument indicates the mechanism chosen by the runtime to implement the mutual exclusion.23

Cross References24

• OMPT mutex Type, see Section 33.2025

• OMPT wait_id Type, see Section 33.4026

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 765

34.7.8 mutex_acquire Callback1

Name: mutex_acquire
Category: subroutine

Properties: C/C++-only, common-
type-callback, mutex-acquiring, OMPT2

Type Signature3
mutex_acquire4

Semantics5
A tool provides a mutex_acquire callback, which has the mutex_acquire OMPT type, that6
the OpenMP implementation dispatches when regions associated with mutual-exclusion constructs,7
lock-acquiring routines and lock-testing routines are begun.8

Cross References9

• OMPT mutex_acquire Type, see Section 34.7.710

34.7.9 lock_init Callback11

Name: lock_init
Category: subroutine

Properties: C/C++-only, common-
type-callback, mutex-acquiring, OMPT12

Type Signature13
mutex_acquire14

Semantics15
A tool provides a lock_init callback, which has the mutex_acquire OMPT type, that the16
OpenMP implementation dispatches when lock-initializing routines are executed.17

Cross References18

• OMPT mutex_acquire Type, see Section 34.7.719

34.7.10 OMPT mutex Type20

Name: mutex
Category: subroutine pointer

Properties: C/C++-only, OMPT,
overlapping-type-name21

Arguments22
Name Type Properties
kind mutex OMPT, overlapping-

type-name
wait_id wait_id OMPT
codeptr_ra void intent(in), pointer

23

766 OpenMP API – Version 6.0 November 2024

Type Signature1
C / C++

typedef void (*ompt_callback_mutex_t) (ompt_mutex_t kind,2
ompt_wait_id_t wait_id, const void *codeptr_ra);3

C / C++
Trace Record4

C / C++
typedef struct ompt_record_mutex_t {5

ompt_mutex_t kind;6
ompt_wait_id_t wait_id;7
const void *codeptr_ra;8

} ompt_record_mutex_t;9

C / C++
Semantics10
Callbacks that have the mutex OMPT type are mutex-execution callbacks, which each have the11
mutex-execution property. A tool provides these callbacks to monitor the execution of a12
lock-destroying routine or the beginning or completion of execution of either the structured block13
associated with a mutual-exclusion construct, or the region guarded by a lock-acquiring routine or14
lock-testing routine paired with a lock-releasing routine. The kind argument, which has the mutex15
OMPT type, indicates the kind of mutual exclusion event.16

Cross References17

• Lock Acquiring Routines, see Section 28.318

• Lock Destroying Routines, see Section 28.219

• Lock Releasing Routines, see Section 28.420

• Lock Testing Routines, see Section 28.521

• OMPT mutex Type, see Section 33.2022

• OMPT wait_id Type, see Section 33.4023

34.7.11 lock_destroy Callback24

Name: lock_destroy
Category: subroutine

Properties: C/C++-only, common-
type-callback, mutex-execution, OMPT25

Type Signature26
mutex27

Semantics28
A tool provides a lock_destroy callback, which has the mutex OMPT type, that the OpenMP29
implementation dispatches when it executes a lock-destroying routine.30

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 767

Cross References1

• Lock Destroying Routines, see Section 28.22

• OMPT mutex Type, see Section 34.7.103

34.7.12 mutex_acquired Callback4

Name: mutex_acquired
Category: subroutine

Properties: C/C++-only, common-
type-callback, mutex-execution, OMPT5

Type Signature6
mutex7

Semantics8
A tool provides a mutex_acquired callback, which has the mutex OMPT type, that the9
OpenMP implementation dispatches when the structured block associated with a mutual-exclusion10
construct begins execution or when a region guarded by a lock-acquiring routine or lock-testing11
routine begins execution.12

Cross References13

• Lock Acquiring Routines, see Section 28.314

• Lock Testing Routines, see Section 28.515

• OMPT mutex Type, see Section 34.7.1016

34.7.13 mutex_released Callback17

Name: mutex_released
Category: subroutine

Properties: C/C++-only, common-
type-callback, mutex-execution, OMPT18

Type Signature19
mutex20

Semantics21
A tool provides a mutex_released callback, which has the mutex OMPT type, that the22
OpenMP implementation dispatches when the structured block associated with a mutual-exclusion23
construct completes execution or, similarly, when a region that a lock-releasing routine guards24
completes execution.25

Cross References26

• Lock Releasing Routines, see Section 28.427

• OMPT mutex Type, see Section 34.7.1028

768 OpenMP API – Version 6.0 November 2024

34.7.14 nest_lock Callback1

Name: nest_lock
Category: subroutine

Properties: C/C++-only, OMPT
2

Arguments3
Name Type Properties
endpoint scope_endpoint OMPT
wait_id wait_id OMPT
codeptr_ra void intent(in), pointer

4

Type Signature5
C / C++

typedef void (*ompt_callback_nest_lock_t) (6
ompt_scope_endpoint_t endpoint, ompt_wait_id_t wait_id,7
const void *codeptr_ra);8

C / C++
Trace Record9

C / C++
typedef struct ompt_record_nest_lock_t {10

ompt_scope_endpoint_t endpoint;11
ompt_wait_id_t wait_id;12
const void *codeptr_ra;13

} ompt_record_nest_lock_t;14

C / C++
Semantics15
A tool provides a nest_lock callback, which has the nest_lock OMPT type, that the16
OpenMP implementation dispatches when a thread that owns a nestable lock invokes a routine that17
alters the nesting count of the lock but does not relinquish its ownership.18

Cross References19

• OMPT scope_endpoint Type, see Section 33.2720

• OMPT wait_id Type, see Section 33.4021

34.7.15 flush Callback22

Name: flush
Category: subroutine

Properties: C/C++-only, OMPT
23

Arguments24
Name Type Properties
thread_data data OMPT, pointer,

untraced-argument
codeptr_ra void intent(in), pointer

25

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 769

Type Signature1
C / C++

typedef void (*ompt_callback_flush_t) (ompt_data_t *thread_data,2
const void *codeptr_ra);3

C / C++
Trace Record4

C / C++
typedef struct ompt_record_flush_t {5

const void *codeptr_ra;6
} ompt_record_flush_t;7

C / C++
Semantics8
A tool provides a flush callback, which has the flush OMPT type, that the OpenMP9
implementation dispatches when it encounters a flush construct. The binding of the thread_data10
argument is the encountering thread.11

Cross References12

• OMPT data Type, see Section 33.813

• flush Construct, see Section 17.8.614

34.8 control_tool Callback15

Name: control_tool
Category: function

Properties: C/C++-only, OMPT
16

Return Type and Arguments17
Name Type Properties
<return type> integer default
command c_uint64_t default
modifier c_uint64_t default
arg c_ptr iso_c, value, untraced-

argument
codeptr_ra void intent(in), pointer

18

Type Signature19
C / C++

typedef int (*ompt_callback_control_tool_t) (uint64_t command,20
uint64_t modifier, void *arg, const void *codeptr_ra);21

C / C++

770 OpenMP API – Version 6.0 November 2024

Trace Record1
C / C++

typedef struct ompt_record_control_tool_t {2
uint64_t command;3
uint64_t modifier;4
const void *codeptr_ra;5

} ompt_record_control_tool_t;6

C / C++
Semantics7
A tool provides a control_tool callback, which has the control_tool OMPT type, that the8
OpenMP implementation uses to dispatch tool-control events. This callback may return any9
non-negative value, which will be returned to the OpenMP program as the return value of the10
omp_control_tool call that triggered the callback.11

The command argument passes a command from an OpenMP program to a tool. Standard values12
for command are defined by the control_tool OpenMP type. The modifier argument passes a13
command modifier from an OpenMP program to a tool. The command and modifier arguments14
may have tool-defined values. Tools must ignore command values that they are not designed to15
handle. The arg argument is a void pointer that enables a tool and an OpenMP program to exchange16
arbitrary state. The arg argument may be NULL.17

Restrictions18
Restrictions on control_tool callbacks are as follows:19

• Tool-defined values for command must be greater than or equal to 64 and less than or equal20
to 2147483647 (INT32_MAX).21

• Tool-defined values for modifier must be non-negative and less than or equal to 214748364722
(INT32_MAX).23

Cross References24

• OpenMP control_tool Type, see Section 20.12.125

• omp_control_tool Routine, see Section 31.126

CHAPTER 34. GENERAL CALLBACKS AND TRACE RECORDS 771

35 Device Callbacks and Tracing1

This chapter describes device-tracing callbacks, which have the device-tracing property. An OMPT2
tool may register these callbacks to monitor and to trace events that involve device execution. The3
C/C++ header file (omp-tools.h) also provides the types that this chapter defines.4

35.1 device_initialize Callback5

Name: device_initialize
Category: subroutine

Properties: C/C++-only, device-
tracing, OMPT6

Arguments7
Name Type Properties
device_num integer default
type char intent(in), pointer
device device OMPT, opaque, pointer
lookup function_lookup OMPT
documentation char intent(in), pointer

8

Type Signature9
C / C++

typedef void (*ompt_callback_device_initialize_t) (10
int device_num, const char *type, ompt_device_t *device,11
ompt_function_lookup_t lookup, const char *documentation);12

C / C++
Semantics13
A tool provides device_initialize callbacks, which have the device_initialize14
OMPT type, that the OpenMP implementation can use to initialize asynchronous collection of15
traces for devices. The OpenMP implementation dispatches this callback after OpenMP is16
initialized for the device but before execution of any construct is started on the device.17

A device_initialize callback must fulfill several duties. First, the type argument should be18
used to determine if any special knowledge about the hardware or software of a device is employed.19
Second, the lookup argument should be used to look up pointers to device-tracing entry points for20
the device. Finally, these entry points should be used to set up tracing for the device. Initialization21
of tracing for a target device is described in Section 32.2.5.22

772 OpenMP API – Version 6.0 November 2024

The device_num argument indicates the device number of the device that is being initialized. The1
type argument is a C string that indicates the type of the device. A device type string is a2
semicolon-separated character string that includes, at a minimum, the vendor and model name of3
the device. These names may be followed by a semicolon-separated sequence of characteristics of4
the hardware or software of the device.5

The device argument is a pointer to an OpenMP object that represents the target device instance.6
Device-tracing entry points use this pointer to identify the device that is being addressed. The7
lookup argument points to a function_lookup entry point that a tool must use to obtain8
pointers to other device-tracing entry points. If a device does not support tracing then lookup is9
NULL. The documentation argument is a C string that describes how to use these entry points. This10
documentation string may be a pointer to external documentation, or it may be inline descriptions11
that include names and type signatures for any device-specific entry points that are available12
through the function_lookup entry point along with descriptions of how to use them to13
control monitoring and analysis of device traces.14

The type and documentation arguments are immutable strings that are defined for the lifetime of15
program execution.16

Cross References17

• OMPT device Type, see Section 33.1118

• function_lookup Entry Point, see Section 36.119

35.2 device_finalize Callback20

Name: device_finalize
Category: subroutine

Properties: C/C++-only, device-
tracing, OMPT21

Arguments22
Name Type Properties
device_num integer default23

Type Signature24
C / C++

typedef void (*ompt_callback_device_finalize_t) (int device_num);25

C / C++
Semantics26
A tool provides device_finalize callbacks, which have the device_finalize OMPT27
type, that the OpenMP implementation can use to finalize asynchronous collection of traces for28
devices. The OpenMP implementation dispatches this callback immediately prior to finalizing the29
device that the device_num argument identifies. Prior to dispatching a device_finalize30
callback for a device on which tracing is active, the OpenMP implementation stops tracing on the31
device and synchronously flushes all trace records for the device that have not yet been reported.32
These trace records are flushed through one or more buffer_complete callbacks as needed33
prior to the dispatch of the device_finalize callback.34

CHAPTER 35. DEVICE CALLBACKS AND TRACING 773

Cross References1

• buffer_complete Callback, see Section 35.62

35.3 device_load Callback3

Name: device_load
Category: subroutine

Properties: C/C++-only, device-
tracing, OMPT4

Arguments5
Name Type Properties
device_num integer default
filename char intent(in), pointer
offset_in_file c_int64_t iso_c, value
vma_in_file c_ptr iso_c, value
bytes c_size_t iso_c, value
host_addr c_ptr iso_c, value
device_addr c_ptr iso_c, value
module_id c_uint64_t default

6

Type Signature7
C / C++

typedef void (*ompt_callback_device_load_t) (int device_num,8
const char *filename, int64_t offset_in_file, void *vma_in_file,9
size_t bytes, void *host_addr, void *device_addr,10
uint64_t module_id);11

C / C++
Semantics12
A tool provides a device_load callback, which has the device_load OMPT type, that the13
OpenMP implementation can use to indicate that it has just loaded code onto the specified device.14
The device_num argument indicates the device number of the device that is being loaded. The15
filename argument indicates the name of a file in which the device code can be found. A NULL16
filename indicates that the code is not available in a file in the file system. The offset_in_file17
argument indicates an offset into filename at which the code can be found. A value of -1 indicates18
that no offset is provided. The vma_in_file argument indicates a virtual address in filename at which19
the code can be found. If no virtual address in the file is available then ompt_addr_none is20
used. The bytes argument indicates the size of the device code object in bytes.21

The host_addr argument indicates the address at which a copy of the device code is available in22
host memory. The device_addr argument indicates the address at which the device code has been23
loaded in device memory. Both host_addr and device_addr will be ompt_addr_none when no24
code address is available for the relevant device. The module_id argument is an identifier that is25
associated with the device code object.26

774 OpenMP API – Version 6.0 November 2024

35.4 device_unload Callback1

Name: device_unload
Category: subroutine

Properties: C/C++-only, device-
tracing, OMPT2

Arguments3
Name Type Properties
device_num integer default
module_id c_uint64_t default

4

Type Signature5
C / C++

typedef void (*ompt_callback_device_unload_t) (int device_num,6
uint64_t module_id);7

C / C++
Semantics8
A tool provides a device_unload callback, which has the device_unload OMPT type, that9
the OpenMP implementation can use to indicate that it is about to unload code from the specified10
device. The device_num argument indicates the device number of the device that is being unloaded.11
The module_id argument is an identifier that is associated with the device code object.12

35.5 buffer_request Callback13

Name: buffer_request
Category: subroutine

Properties: C/C++-only, device-
tracing, OMPT14

Arguments15
Name Type Properties
device_num integer default
buffer buffer pointer-to-pointer
bytes size_t pointer

16

Type Signature17
C / C++

typedef void (*ompt_callback_buffer_request_t) (int device_num,18
ompt_buffer_t **buffer, size_t *bytes);19

C / C++
Semantics20
A tool provides a buffer_request callback, which has the buffer_request OMPT type,21
that the OpenMP implementation dispatches to request a buffer in which to store trace records for22
the device specified by the device argument. The callback sets the location to which the buffer23
argument points to point to the location of the provided buffer. On entry to the callback, the24
location to which the bytes argument points holds the minimum size of the buffer in bytes that the25
implementation requests; the implementation must ensure that this size does not exceed the26

CHAPTER 35. DEVICE CALLBACKS AND TRACING 775

recommended buffer size returned by the get_buffer_limits entry point for that device. A1
buffer request callback may set the location to which bytes points to 0 if it does not provide a buffer.2
If a callback sets that location to a value less than the minimum requested buffer size, further3
recording of events for the device may be disabled until the next invocation of the start_trace4
entry point. This action causes the implementation to drop any trace records for the device until5
recording is restarted.6

Cross References7

• OMPT buffer Type, see Section 33.38

• get_buffer_limits Entry Point, see Section 37.69

35.6 buffer_complete Callback10

Name: buffer_complete
Category: subroutine

Properties: C/C++-only, device-
tracing, OMPT11

Arguments12
Name Type Properties
device_num integer default
buffer buffer pointer
bytes size_t default
begin buffer_cursor OMPT, opaque
buffer_owned integer default

13

Type Signature14
C / C++

typedef void (*ompt_callback_buffer_complete_t) (int device_num,15
ompt_buffer_t *buffer, size_t bytes, ompt_buffer_cursor_t begin,16
int buffer_owned);17

C / C++
Semantics18
A tool provides a buffer_complete callback, which has the buffer_complete OMPT19
type, that the OpenMP implementation dispatches to indicate that it will not record any more trace20
records in the buffer at the location to which the buffer argument points. The implementation21
guarantees that all trace records in the buffer, which was previously allocated by a22
buffer_request callback, are valid. The device argument specifies the device for which the23
trace records were gathered. The bytes argument indicates the full size of the buffer. The begin24
argument is a OpenMP object that indicates the position of the beginning of the first trace record in25
the buffer. The buffer_owned argument is 1 if the data to which buffer points can be deleted by the26
callback and 0 otherwise. If multiple devices accumulate events into a single buffer, this callback27
may be invoked with a pointer to one or more trace records in a shared buffer with buffer_owned28
equal to zero.29

776 OpenMP API – Version 6.0 November 2024

Typically, a tool will iterate through the trace records in the buffer and process them. The OpenMP1
implementation makes these callbacks on a native thread that is not an OpenMP thread so these2
buffer_complete callbacks are not required to be async signal safe.3

Restrictions4
Restrictions on buffer_complete callbacks are as follows:5

• The callback must not delete the buffer if buffer_owned is zero.6

Cross References7

• OMPT buffer Type, see Section 33.38

• OMPT buffer_cursor Type, see Section 33.49

35.7 target_data_op_emi Callback10

Name: target_data_op_emi
Category: subroutine

Properties: C/C++-only, device-
tracing, OMPT11

Arguments12
Name Type Properties
endpoint scope_endpoint OMPT, untraced-

argument
target_task_data data OMPT, pointer,

untraced-argument
target_data data OMPT, pointer,

untraced-argument
host_op_id id OMPT, pointer
optype target_data_op OMPT
dev1_addr c_ptr iso_c, value
dev1_device_num integer default
dev2_addr c_ptr iso_c, value
dev2_device_num integer default
bytes size_t default
codeptr_ra void intent(in), pointer

13

Type Signature14
C / C++

typedef void (*ompt_callback_target_data_op_emi_t) (15
ompt_scope_endpoint_t endpoint, ompt_data_t *target_task_data,16
ompt_data_t *target_data, ompt_id_t *host_op_id,17
ompt_target_data_op_t optype, void *dev1_addr,18
int dev1_device_num, void *dev2_addr, int dev2_device_num,19
size_t bytes, const void *codeptr_ra);20

C / C++

CHAPTER 35. DEVICE CALLBACKS AND TRACING 777

Trace Record1
C / C++

typedef struct ompt_record_target_data_op_emi_t {2
ompt_id_t host_op_id;3
ompt_target_data_op_t optype;4
void *dev1_addr;5
int dev1_device_num;6
void *dev2_addr;7
int dev2_device_num;8
size_t bytes;9
ompt_device_time_t end_time;10
const void *codeptr_ra;11

} ompt_record_target_data_op_emi_t;12

C / C++
Additional information13
The target_data_op callback may also be used. This callback has identical arguments to the14
target_data_op_emi callback except that the endpoint and target_task_data arguments are15
omitted and the target_data argument is replaced by the target_id argument, which has the id16
OMPT type, and the host_op_id argument is not a pointer and is provided by the implementation.17
If this callback is registered, it is dispatched for the target_data_op_end,18
target-data-allocation-end, target-data-free-begin, target-data-associate, target-global-data-op,19
and target-data-disassociate events. This callback has been deprecated. In addition to the standard20
trace record OMPT type name, the target_data_op name may be used to specify a trace21
record OMPT type with identical fields. This OMPT type name has been deprecated.22

Semantics23
A tool provides a target_data_op_emi callback, which has the target_data_op_emi24
OMPT type, that the OpenMP implementation dispatches when a device memory is allocated or25
freed, as well as when data is copied to or from a device.26

27

Note – An OpenMP implementation may aggregate variables and data operations upon them. For28
instance, an implementation may synthesize a composite to represent multiple scalar variables and29
then allocate, free, or copy this composite as a whole rather than performing data operations on30
each one individually. Thus, the implementation may not dispatch callbacks for separate data31
operations on each variable.32

33

The binding of the target_task_data argument is the target task region. The binding of the34
target_data argument is the device region. The host_op_id argument points to a tool-controlled35
integer value that identifies a data operation for a target device. The optype argument indicates the36
kind of data operation.37

778 OpenMP API – Version 6.0 November 2024

TABLE 35.1: Association of dev1 and dev2 arguments for target data operations

Data op dev1 dev2
allocate host/none device
transfer from device to device
delete host/none device
associate host device
disassociate host device
memset none device

The dev1_addr argument indicates the data address on the device given by Table 35.1 or NULL if1
the table indicates none for device memory routines that solely operate on device memory. For2
rectangular-memory-copying routines this argument points to a structure of subvolume OMPT3
type that describes a rectangular subvolume of a multi-dimensional array src, in the device data4
environment of device dev1_device_num. The address src of the array is referenced as base in the5
subvolume OMPT type. The dev1_device_num argument indicates the device number on the6
device given by Table 35.1. The dev2_addr argument indicates the data address on the device given7
by Table 35.1. For rectangular-memory-copying routines this argument points to a structure of8
subvolume OMPT type that describes a rectangular subvolume of a multi-dimensional array dst,9
in the device data environment of device dev2_device_num. The address dst of the array is10
referenced as base in the subvolume OMPT type. The dev2_device_num argument indicates the11
device number on the device given by Table 35.1. Whether in some operations dev1_addr or12
dev2_addr may point to an intermediate buffer is implementation defined. The bytes argument13
indicates the size of the data in bytes.14

If set_trace_ompt has configured the implementation to trace data operations to device15
memory then the implementation will log a target_data_op_emi trace record in a trace. The16
fields in the record are as follows:17

• The host_op_id field contains an identifier of a data operation for a target device; if the18
corresponding target_data_op_emi callback was dispatched, this identifier is the19
tool-controlled integer value to which the host_op_id argument of the callback points so that20
a tool may correlate the trace record with the callback, and otherwise the host_op_id field21
contains an implementation-controlled identifier;22

• The optype, dev1_addr, dev1_device_num, dev2_addr, dev2_device_num,23
bytes, and codeptr_ra fields contain the same values as the callback;24

• The time when the data operation began execution for the device is recorded in the time25
field of an enclosing trace record of record_ompt OMPT type; and26

• The time when the data operation completed execution for the device is recorded in the27
end_time field.28

CHAPTER 35. DEVICE CALLBACKS AND TRACING 779

Restrictions1
Restrictions to target_data_op_emi callbacks are as follows:2

• The deprecated target_data_op callback must not be registered if a3
target_data_op_emi callbacks is registered.4

Cross References5

• OMPT data Type, see Section 33.86

• OMPT device_time Type, see Section 33.127

• OMPT id Type, see Section 33.188

• map Clause, see Section 7.9.69

• OMPT scope_endpoint Type, see Section 33.2710

• OMPT target_data_op Type, see Section 33.3511

35.8 target_emi Callback12

Name: target_emi
Category: subroutine

Properties: C/C++-only, device-
tracing, OMPT13

Arguments14
Name Type Properties
kind target OMPT
endpoint scope_endpoint OMPT
device_num integer default
task_data data OMPT, pointer
target_task_data data OMPT, pointer,

untraced-argument
target_data data OMPT, pointer
codeptr_ra void intent(in), pointer

15

Type Signature16
C / C++

typedef void (*ompt_callback_target_emi_t) (ompt_target_t kind,17
ompt_scope_endpoint_t endpoint, int device_num,18
ompt_data_t *task_data, ompt_data_t *target_task_data,19
ompt_data_t *target_data, const void *codeptr_ra);20

C / C++

780 OpenMP API – Version 6.0 November 2024

Trace Record1
C / C++

typedef struct ompt_record_target_emi_t {2
ompt_target_t kind;3
ompt_scope_endpoint_t endpoint;4
int device_num;5
ompt_id_t task_id;6
ompt_id_t target_id;7
const void *codeptr_ra;8

} ompt_record_target_emi_t;9

C / C++
Additional information10
The target callback may also be used. This callback has identical arguments to the11
target_emi callback except that the target_task_data argument is omitted and the target_data12
argument is replaced by the target_id argument, which has the id OMPT type. If this callback is13
registered, it is dispatched for the target-begin, target-end, target-enter-data-begin,14
target-enter-data-end, target-exit-data-begin, target-exit-data-end, target-update-begin, and15
target-update-end events. This callback has been deprecated. In addition to the standard trace16
record OMPT type name, the target name may be used to specify a trace record OMPT type17
with identical fields. This OMPT type name has been deprecated.18

Semantics19
A tool provides a target_emi callback, which has the target_emi OMPT type, that the20
OpenMP implementation dispatches when a thread begins to execute a device construct. The kind21
argument indicates the kind of device region. The device_num argument specifies the device22
number of the target device associated with the region. The binding of the task_data argument is23
the encountering task. The binding of the target_task_data argument is the target task. If a device24
region does not have a target task or if the target task is a merged task, this argument is NULL. The25
binding of the target_data argument is the device region.26

Restrictions27
Restrictions to target_emi callbacks are as follows:28

• The deprecated target callback must not be registered if a target_emi callback is29
registered.30

Cross References31

• OMPT data Type, see Section 33.832

• OMPT id Type, see Section 33.1833

• OMPT scope_endpoint Type, see Section 33.2734

• target Construct, see Section 15.835

CHAPTER 35. DEVICE CALLBACKS AND TRACING 781

• OMPT target Type, see Section 33.341

• target_data Construct, see Section 15.72

• target_enter_data Construct, see Section 15.53

• target_exit_data Construct, see Section 15.64

• target_update Construct, see Section 15.95

35.9 target_map_emi Callback6

Name: target_map_emi
Category: subroutine

Properties: C/C++-only, device-
tracing, OMPT7

Arguments8
Name Type Properties
target_data data OMPT, pointer
nitems integer unsigned
host_addr void pointer-to-pointer
device_addr void pointer-to-pointer
bytes size_t pointer
mapping_flags integer unsigned, pointer
codeptr_ra void intent(in), pointer

9

Type Signature10
C / C++

typedef void (*ompt_callback_target_map_emi_t) (11
ompt_data_t *target_data, unsigned int nitems, void **host_addr,12
void **device_addr, size_t *bytes, unsigned int *mapping_flags,13
const void *codeptr_ra);14

C / C++
Trace Record15

C / C++
typedef struct ompt_record_target_map_emi_t {16

ompt_id_t target_id;17
unsigned int nitems;18
void **host_addr;19
void **device_addr;20
size_t *bytes;21
unsigned int *mapping_flags;22
const void *codeptr_ra;23

} ompt_record_target_map_emi_t;24

C / C++

782 OpenMP API – Version 6.0 November 2024

Additional information1
The target_map callback may also be used. This callback has identical arguments to the2
target_map_emi callback except that the target_data argument is replaced by the target_id3
argument, which has the id OMPT type. If this callback is registered, it is dispatched for any4
target-map events. This callback has been deprecated. In addition to the standard trace record5
OMPT type name, the target_map name may be used to specify a trace record OMPT type with6
identical fields. This OMPT type name has been deprecated.7

Semantics8
A tool provides a target_map_emi callback, which has the target_map_emi OMPT type,9
that the OpenMP implementation dispatches to indicate data mapping relationships. The10
implementation may report mappings associated with multiple map clauses that appear on the same11
construct with a single callback to report the effect of all mappings or multiple callbacks with each12
reporting a subset of the mappings. Further, the implementation may omit mappings that it13
determines are unnecessary. If the implementation issues multiple target_map_emi callbacks,14
these callbacks may be interleaved with target_data_op_emi callbacks that report data15
operations associated with the mappings.16

The binding of the target_data argument is the device region. The nitems argument indicates the17
number of data mappings that the callback reports. The host_addr argument indicates an array of18
host addresses. The device_addr argument indicates an array of device addresses. The bytes19
argument indicates an array of sizes of data. The mapping_flags argument indicates the kind of20
mapping operations, which may result from explicit map clauses or the implicit data-mapping rules21
(see Section 7.9). Flags for the mapping operations include one or more values specified by the22
target_map_flag type.23

Restrictions24
Restrictions to target_map_emi callbacks are as follows:25

• The deprecated target_map callback must not be registered if a target_map_emi26
callback is registered.27

Cross References28

• OMPT data Type, see Section 33.829

• OMPT id Type, see Section 33.1830

• map Clause, see Section 7.9.631

• target_data_op_emi Callback, see Section 35.732

• OMPT target_map_flag Type, see Section 33.3633

CHAPTER 35. DEVICE CALLBACKS AND TRACING 783

35.10 target_submit_emi Callback1

Name: target_submit_emi
Category: subroutine

Properties: C/C++-only, device-
tracing, OMPT2

Arguments3
Name Type Properties
endpoint scope_endpoint OMPT, untraced-

argument
target_data data OMPT, pointer,

untraced-argument
host_op_id id OMPT, pointer
requested_num_teams integer unsigned

4

Type Signature5
C / C++

typedef void (*ompt_callback_target_submit_emi_t) (6
ompt_scope_endpoint_t endpoint, ompt_data_t *target_data,7
ompt_id_t *host_op_id, unsigned int requested_num_teams);8

C / C++
Trace Record9

C / C++
typedef struct ompt_record_target_submit_emi_t {10

ompt_id_t host_op_id;11
unsigned int requested_num_teams;12
unsigned int granted_num_teams;13
ompt_device_time_t end_time;14

} ompt_record_target_submit_emi_t;15

C / C++
Additional information16
The target_submit callback may also be used. This callback has identical arguments to the17
target_submit_emi callback except that the endpoint argument is omitted and the target_data18
argument is replaced by the target_id argument, which has the id OMPT type, and the host_op_id19
argument is not a pointer and is provided by the implementation. If this callback is registered, it is20
dispatched for any target-submit-begin events. This callback has been deprecated. In addition to the21
standard trace record OMPT type name, the target_kernel name may be used to specify a22
trace record OMPT type with identical fields. This OMPT type name has been deprecated.23

784 OpenMP API – Version 6.0 November 2024

Semantics1
A tool provides a target_submit_emi callback, which has the target_submit_emi2
OMPT type, that the OpenMP implementation dispatches before and after a target task initiates3
creation of an initial task on a device. The binding of the target_data argument is the device region.4
The host_op_id argument points to a tool-controlled integer value that identifies an initial task on a5
target device. The requested_num_teams argument is the number of teams that the device construct6
requested to execute the region. The actual number of teams that execute the region may be smaller7
and generally will not be known until the region begins to execute on the device.8

If set_trace_ompt has configured the implementation to trace device region execution for a9
device then the implementation will log a target_submit_emi trace record. The fields in the10
record are as follows:11

• The host_op_id field contains an identifier that identifies the initial task on the device; if12
the corresponding target_submit_emi callback was dispatched, this identifier is the13
tool-controlled integer value to which the host_op_id argument of the callback points so that14
a tool may correlate the trace record with the callback, and otherwise the host_op_id field15
contains an implementation-controlled identifier;16

• The requested_num_teams field contains the number of teams that the device construct17
requested to execute the device region;18

• The granted_num_teams field contains the number of teams that the device actually19
used to execute the device region;20

• The time when the initial task began execution on the device is recorded in the time field of21
an enclosing trace record of record_ompt OMPT type; and22

• The time when the initial task completed execution on the device is recorded in the23
end_time field.24

Restrictions25
Restrictions to target_submit_emi callbacks are as follows:26

• The deprecated target_submit callback must not be registered if a27
target_submit_emi callback is registered.28

Cross References29

• OMPT data Type, see Section 33.830

• OMPT device_time Type, see Section 33.1231

• OMPT id Type, see Section 33.1832

• OMPT scope_endpoint Type, see Section 33.2733

• target Construct, see Section 15.834

CHAPTER 35. DEVICE CALLBACKS AND TRACING 785

36 General Entry Points1

OMPT supports two principal sets of runtime entry points for tools. For both sets, entry points2
should not be global symbols since tools cannot rely on the visibility of such symbols. This chapter3
defines the first set, which enables a tool to register callbacks for events and to inspect the state of4
threads while executing in a callback or a signal handler. The omp-tools.h C/C++ header file5
provides the definitions of the types that are specified throughout this chapter.6
OMPT also supports entry points for two classes of lookup entry points. The first class of lookup7
entry points contains a single member that is provided through the initialize callback: a8
function_lookup entry point that returns pointers to the set of entry points that are defined in9
this chapter. The second class of lookup entry points includes a unique lookup entry point for each10
kind of device that can return pointers to entry points in a device’s OMPT tracing interface.11
The binding thread set for each OMPT entry point is the encountering thread unless otherwise12
specified. The binding task set is the task executing on the encountering thread.13
Several entry points are async-signal-safe entry points, which means they each have the14
async-signal-safe property, which implies that they are async signal safe.15

Restrictions16
Restrictions on OMPT runtime entry points are as follows:17

• Entry points must not be called from a signal handler on a native thread before a18
native-thread-begin or after a native-thread-end event.19

• Device entry points must not be called after a device-finalize event for that device.20

36.1 function_lookup Entry Point21

Name: function_lookup
Category: function

Properties: C/C++-only, OMPT
22

Return Type and Arguments23
Name Type Properties
<return type> interface_fn default
interface_function_name char intent(in), pointer

24

Type Signature25
C / C++

typedef ompt_interface_fn_t (*ompt_function_lookup_t) (26
const char *interface_function_name);27

C / C++

786 OpenMP API – Version 6.0 November 2024

Semantics1
The function_lookup entry point, which has the function_lookup OMPT type, enables2
tools to look up pointers to OMPT entry points by name. When an OpenMP implementation3
invokes the initialize callback to configure the OMPT callback interface, it provides an entry4
point that provides pointers to other entry points that implement routines that are part of the OMPT5
callback interface. Alternatively, when it invokes a device_initialize callback to configure6
the OMPT tracing interface for a device, it provides an entry point that provides pointers to entry7
points that implement tracing control routines appropriate for that device.8
For these entry points, the interface_function_name argument is a C string that represents the name9
of the entry point to look up. If the name is unknown to the implementation, the entry point returns10
NULL. In a compliant implementation, the entry point that is provided by the initialize11
callback returns a valid function pointer for any entry point name listed in Table 32.1. Similarly, in12
a compliant implementation, the entry point that is provided by the device_initialize13
callback returns non-NULL function pointers for any entry point name listed in Table 32.3, except14
for set_trace_ompt and get_record_ompt, as described in Section 32.2.5.15

Cross References16

• device_initialize Callback, see Section 35.117

• Binding Entry Points, see Section 32.2.3.118

• Tracing Activity on Target Devices, see Section 32.2.519

• initialize Callback, see Section 34.1.120

• OMPT interface_fn Type, see Section 33.1921

36.2 enumerate_states Entry Point22

Name: enumerate_states
Category: function

Properties: C/C++-only, OMPT
23

Return Type and Arguments24
Name Type Properties
<return type> integer default
current_state integer default
next_state integer pointer
next_state_name const char intent(out), pointer-to-

pointer

25

Type Signature26
C / C++

typedef int (*ompt_enumerate_states_t) (int current_state,27
int *next_state, const char **next_state_name);28

C / C++

CHAPTER 36. GENERAL ENTRY POINTS 787

Semantics1
An OpenMP implementation may support only a subset of the thread states that the state OMPT2
type defines. An OpenMP implementation may also support implementation defined states. The3
enumerate_states entry point, which has the enumerate_states OMPT type, is the4
entry point that enables a tool to enumerate the supported thread states.5

When a supported thread state is passed as current_state, the entry point assigns the next thread6
state in the enumeration to the variable passed by reference in next_state and assigns the name7
associated with that state to the character pointer passed by reference in next_state_name; the8
returned string is immutable and defined for the lifetime of program execution. Whenever one or9
more states are left in the enumeration, the enumerate_states entry point returns 1. When the10
last state in the enumeration is passed as current_state, enumerate_states returns 0, which11
indicates that the enumeration is complete.12

To begin enumerating the supported states, a tool should pass ompt_state_undefined as13
current_state. Subsequent invocations of enumerate_states should pass the value assigned to14
the variable that was passed by reference in next_state to the previous call. The15
ompt_state_undefined value is returned to indicate an invalid thread state.16

Cross References17

• OMPT state Type, see Section 33.3118

36.3 enumerate_mutex_impls Entry Point19

Name: enumerate_mutex_impls
Category: function

Properties: C/C++-only, OMPT
20

Return Type and Arguments21
Name Type Properties
<return type> integer default
current_impl integer default
next_impl integer pointer
next_impl_name const char intent(out), pointer-to-

pointer

22

Type Signature23
C / C++

typedef int (*ompt_enumerate_mutex_impls_t) (int current_impl,24
int *next_impl, const char **next_impl_name);25

C / C++
Semantics26
Mutual exclusion for locks, critical regions, and atomic regions may be implemented in27
several ways. The enumerate_mutex_impls entry point, which has the28
enumerate_mutex_impls OMPT type, enables a tool to enumerate the supported mutual29
exclusion implementations.30

788 OpenMP API – Version 6.0 November 2024

When a supported mutex implementation is passed as current_impl, the entry point assigns the next1
mutex implementation in the enumeration to the variable passed by reference in next_impl and2
assigns the name associated with that mutex implementation to the character pointer passed by3
reference in next_impl_name; the returned string is immutable and defined for the lifetime of4
program execution. Whenever one or more mutex implementations are left in the enumeration, the5
enumerate_mutex_impls entry point returns 1. When the last mutex implementation in the6
enumeration is passed as current_impl, the entry point returns 0, which indicates that the7
enumeration is complete.8

To begin enumerating the supported mutex implementations, a tool should pass9
ompt_mutex_impl_none as current_impl. Subsequent invocations of10
enumerate_mutex_impls should pass the value assigned to the variable that was passed by11
reference in next_impl to the previous call. The value ompt_mutex_impl_none is returned to12
indicate an invalid mutex implementation.13

36.4 set_callback Entry Point14

Name: set_callback
Category: function

Properties: C/C++-only, OMPT
15

Return Type and Arguments16
Name Type Properties
<return type> set_result default
event callbacks OMPT
callback callback OMPT

17

Type Signature18
C / C++

typedef ompt_set_result_t (*ompt_set_callback_t) (19
ompt_callbacks_t event, ompt_callback_t callback);20

C / C++
Semantics21
OpenMP implementations can use callbacks to indicate the occurrence of events during the22
execution of an OpenMP program. The set_callback entry point, which has the23
set_callback OMPT type, enables a tool to register the callback indicated by the callback24
argument for the event indicated by the event argument on the current device. The return value of25
set_callback indicates the outcome of registering the callback and may be any value in the26
set_result OMPT type except ompt_set_impossible. If callback is NULL then27
callbacks associated with event are disabled. If callbacks are successfully disabled then28
ompt_set_always is returned.29

Restrictions30
Restrictions on the set_callback entry point are as follows:31

• The type signature for callback must match the type signature appropriate for the event.32

CHAPTER 36. GENERAL ENTRY POINTS 789

Cross References1

• OMPT callback Type, see Section 33.52

• OMPT callbacks Type, see Section 33.63

• Monitoring Activity on the Host with OMPT, see Section 32.2.44

• OMPT set_result Type, see Section 33.285

36.5 get_callback Entry Point6

Name: get_callback
Category: function

Properties: C/C++-only, OMPT
7

Return Type and Arguments8
Name Type Properties
<return type> integer default
event callbacks OMPT
callback callback OMPT, pointer

9

Type Signature10
C / C++

typedef int (*ompt_get_callback_t) (ompt_callbacks_t event,11
ompt_callback_t *callback);12

C / C++
Semantics13
The get_callback entry point, which has the get_callback OMPT type, enables a tool to14
retrieve a pointer to a registered callback (if any) that an OpenMP implementation invokes when a15
host event occurs. If the callback that is registered for the event that is specified by the event16
argument is not NULL, the pointer to the callback is assigned to the variable passed by reference in17
callback and get_callback returns 1; otherwise, it returns 0. If get_callback returns 0, the18
value of the variable passed by reference as callback is undefined.19

Restrictions20
Restrictions on the get_callback entry point are as follows:21

• The callback argument must not be NULL and must point to valid storage.22

Cross References23

• OMPT callback Type, see Section 33.524

• OMPT callbacks Type, see Section 33.625

• set_callback Entry Point, see Section 36.426

790 OpenMP API – Version 6.0 November 2024

36.6 get_thread_data Entry Point1

Name: get_thread_data
Category: function

Properties: async-signal-safe, C/C++-
only, OMPT2

Return Type3
Name Type Properties
<return type> data pointer4

Type Signature5
C / C++

typedef ompt_data_t *(*ompt_get_thread_data_t) (void);6

C / C++
Semantics7
Each thread can have an associated thread data object of data OMPT type. The8
get_thread_data entry point, which has the get_thread_data OMPT type, enables a tool9
to retrieve a pointer to the thread data object, if any, that is associated with the encountering thread.10
A tool may use a pointer to a thread’s data object that get_thread_data retrieves to inspect or11
to modify the value of the data object. When a thread is created, its data object is initialized with12
the value ompt_data_none.13

Cross References14

• OMPT data Type, see Section 33.815

36.7 get_num_procs Entry Point16

Name: get_num_procs
Category: function

Properties: all-device-threads-binding,
async-signal-safe, C/C++-only, OMPT17

Return Type18
Name Type Properties
<return type> integer default19

Type Signature20
C / C++

typedef int (*ompt_get_num_procs_t) (void);21

C / C++
Semantics22
The get_num_procs entry point, which has the get_num_procs OMPT type, enables a tool23
to retrieve the number of processors that are available on the host device at the time the entry point24
is called. This value may change between the time that it is determined and the time that it is read in25
the calling context due to system actions outside the control of the OpenMP implementation. The26
binding thread set of this entry point is all threads on the host device.27

CHAPTER 36. GENERAL ENTRY POINTS 791

36.8 get_num_places Entry Point1

Name: get_num_places
Category: function

Properties: all-device-threads-binding,
async-signal-safe, C/C++-only, OMPT2

Return Type3
Name Type Properties
<return type> integer default4

Type Signature5
C / C++

typedef int (*ompt_get_num_places_t) (void);6

C / C++
Semantics7
The get_num_places entry point, which has the get_num_places OMPT type, enables a8
tool to retrieve the number of places in the place list. This value is equal to the number of places in9
the place-partition-var ICV in the execution environment of the initial task. The binding thread set10
of this entry point is all threads on the host device.11

Cross References12

• OMP_PLACES, see Section 4.1.613

• place-partition-var ICV, see Table 3.114

36.9 get_place_proc_ids Entry Point15

Name: get_place_proc_ids
Category: function

Properties: all-device-threads-binding,
C/C++-only, OMPT16

Return Type and Arguments17
Name Type Properties
<return type> integer default
place_num integer default
ids_size integer default
ids integer pointer

18

Type Signature19
C / C++

typedef int (*ompt_get_place_proc_ids_t) (int place_num,20
int ids_size, int *ids);21

C / C++
Semantics22
The get_place_proc_ids entry point, which has the get_place_proc_ids OMPT type,23
enables a tool to retrieve the numerical identifiers of each processor that is associated with the place24
specified by the place_num argument. The ids argument is an array in which the entry point can25

792 OpenMP API – Version 6.0 November 2024

return a vector of processor identifiers in the specified place; these identifiers are non-negative, and1
their meaning is implementation defined. The ids_size argument indicates the size of the result2
array that is specified by ids. The binding thread set of this entry point is all threads on the device.3

If the ids array of size ids_size is large enough to contain all identifiers then they are returned in ids4
and their order in the array is implementation defined. Otherwise, if the ids array is too small, the5
values in ids when the entry point returns are undefined. The entry point always returns the number6
of numerical identifiers of the processors that are available to the execution environment in the7
specified place.8

36.10 get_place_num Entry Point9

Name: get_place_num
Category: function

Properties: async-signal-safe, C/C++-
only, OMPT10

Return Type11
Name Type Properties
<return type> integer default12

Type Signature13
C / C++

typedef int (*ompt_get_place_num_t) (void);14

C / C++
Semantics15
When the encountering thread is bound to a place, the get_place_num entry point, which has16
the get_place_num OMPT type, enables a tool to retrieve the place number associated with the17
thread. The returned value is between zero and one less than the value returned by18
get_num_places, inclusive. When the encountering thread is not bound to a place, the entry19
point returns −1.20

36.11 get_partition_place_nums Entry Point21

Name: get_partition_place_nums
Category: function

Properties: async-signal-safe, C/C++-
only, OMPT22

Return Type and Arguments23
Name Type Properties
<return type> integer default
place_nums_size integer default
place_nums integer pointer

24

CHAPTER 36. GENERAL ENTRY POINTS 793

Type Signature1
C / C++

typedef int (*ompt_get_partition_place_nums_t) (2
int place_nums_size, int *place_nums);3

C / C++
Semantics4
The get_partition_place_nums entry point, which has the5
get_partition_place_nums OMPT type, enables a tool to retrieve a list of place numbers6
that correspond to the places in the place-partition-var ICV of the innermost implicit task. The7
place_nums argument is an array in which the entry point can return a vector of place identifiers.8
The place_nums_size argument indicates the size of that array.9

If the place_nums array of size place_nums_size is large enough to contain all identifiers then they10
are returned in place_nums and their order in the array is implementation defined. Otherwise, if the11
place_nums array is too small, the values in place_nums when the entry point returns are12
undefined. The entry point always returns the number of places in the place-partition-var ICV of13
the innermost implicit task.14

Cross References15

• OMP_PLACES, see Section 4.1.616

• place-partition-var ICV, see Table 3.117

36.12 get_proc_id Entry Point18

Name: get_proc_id
Category: function

Properties: async-signal-safe, C/C++-
only, OMPT19

Return Type20
Name Type Properties
<return type> integer default21

Type Signature22
C / C++

typedef int (*ompt_get_proc_id_t) (void);23

C / C++
The get_proc_id entry point, which has the get_proc_id OMPT type, enables a tool to24
retrieve the numerical identifier of the processor of the encountering thread. A defined numerical25
identifier is non-negative, and its meaning is implementation defined. A negative number indicates26
a failure to retrieve the numerical identifier.27

794 OpenMP API – Version 6.0 November 2024

36.13 get_state Entry Point1

Name: get_state
Category: function

Properties: async-signal-safe, C/C++-
only, OMPT2

Return Type and Arguments3
Name Type Properties
<return type> integer default
wait_id wait_id OMPT, pointer

4

Type Signature5
C / C++

typedef int (*ompt_get_state_t) (ompt_wait_id_t *wait_id);6

C / C++
Semantics7
Each thread has an associated state and a wait identifier. If the thread state indicates that the thread8
is waiting for mutual exclusion then its wait identifier contains a handle that indicates the data9
object upon which the thread is waiting. The get_state entry point, which has the get_state10
OMPT type, enables a tool to retrieve the state and the wait identifier of the encountering thread.11
The returned value may be any one of the states predefined by the state OMPT type or a value12
that represents an implementation defined state. The tool may obtain a string representation for13
each state with the enumerate_states entry point. If the returned state indicates that the14
thread is waiting for a lock, nestable lock, critical region, atomic region, or ordered15
region and the wait identifier passed as the wait_id argument is not NULL then the value of the wait16
identifier is assigned to that argument, which is a pointer to a handle. If the returned state is not one17
of the specified wait states then the value of that handle is undefined after the call.18

Restrictions19
Restrictions on the get_state entry point are as follows:20

• The wait_id argument must be a reference to a variable of the wait_id OMPT type or21
NULL.22

Cross References23

• enumerate_states Entry Point, see Section 36.224

• OMPT state Type, see Section 33.3125

• OMPT wait_id Type, see Section 33.4026

36.14 get_parallel_info Entry Point27

Name: get_parallel_info
Category: function

Properties: async-signal-safe, C/C++-
only, OMPT28

CHAPTER 36. GENERAL ENTRY POINTS 795

Return Type and Arguments1
Name Type Properties
<return type> integer default
ancestor_level integer default
parallel_data data OMPT, pointer-to-

pointer
team_size integer pointer

2

Type Signature3
C / C++

typedef int (*ompt_get_parallel_info_t) (int ancestor_level,4
ompt_data_t **parallel_data, int *team_size);5

C / C++
Semantics6
During execution, an OpenMP program may employ nested parallel regions. The7
get_parallel_info entry point, which has the get_parallel_info OMPT type, enables8
a tool to retrieve information about the current parallel region and any enclosing parallel regions for9
the current execution context.10

The ancestor_level argument specifies the parallel region of interest by its ancestor level. Ancestor11
level 0 refers to the innermost parallel region; information about enclosing parallel regions may be12
obtained using larger values for ancestor_level. Information about a parallel region may not be13
available if the ancestor level is 0; otherwise it must be available if a parallel region exists at the14
specified ancestor level. The entry point returns 2 if a parallel region exists at the specified ancestor15
level and the information is available, 1 if a parallel region exists at the specified ancestor level but16
the information is currently unavailable, and 0 otherwise. The parallel_data argument returns the17
parallel data if the argument is not NULL. The team_size argument returns the team size if the18
argument is not NULL. If no parallel region exists at the specified ancestor level or the information19
is unavailable then the values of variables passed by reference to the entry point are undefined when20
get_parallel_info returns.21

A tool may use the pointer to the data object of a parallel region that it obtains from this entry point22
to inspect or to modify the value of the data object. When a parallel region is created, its data object23
will be initialized with the value ompt_data_none. Between a parallel-begin event and an24
implicit-task-begin event, a call to get_parallel_info with an ancestor_level value of 0 may25
return information about the outer team or the new team. If a thread is in the26
ompt_state_wait_barrier_implicit_parallel state then a call to27
get_parallel_info may return a pointer to a copy of the specified parallel region’s28
parallel_data rather than a pointer to the data word for the region itself. This convention enables29
the primary thread for a parallel region to free storage for the region immediately after the region30
ends, yet avoid having some other thread in the team that is executing the region potentially31
reference the parallel_data object for the region after it has been freed.32

If get_parallel_info returns two then the entry point has the following effects:33

796 OpenMP API – Version 6.0 November 2024

• If a non-null value was passed for parallel_data, the value returned in parallel_data is a1
pointer to a data word that is associated with the parallel region at the specified level; and2

• If a non-null value was passed for team_size, the value returned in the integer to which3
team_size points is the number of threads in the team that is associated with the parallel4
region.5

Restrictions6
Restrictions on the get_parallel_info entry point are as follows:7

• While the ancestor_level argument is passed by value, all other arguments must be valid8
pointers to variables of the specified types or NULL.9

Cross References10

• OMPT data Type, see Section 33.811

• OMPT state Type, see Section 33.3112

36.15 get_task_info Entry Point13

Name: get_task_info
Category: function

Properties: async-signal-safe, C/C++-
only, OMPT14

Return Type and Arguments15
Name Type Properties
<return type> integer default
ancestor_level integer default
flags integer pointer
task_data data OMPT, pointer-to-

pointer
task_frame frame OMPT, pointer-to-

pointer
parallel_data data OMPT, pointer-to-

pointer
thread_num integer pointer

16

Type Signature17
C / C++

typedef int (*ompt_get_task_info_t) (int ancestor_level,18
int *flags, ompt_data_t **task_data, ompt_frame_t **task_frame,19
ompt_data_t **parallel_data, int *thread_num);20

C / C++

CHAPTER 36. GENERAL ENTRY POINTS 797

Semantics1
During execution, a thread may be executing a task. Additionally, the stack of the thread may2
contain procedure frames that are associated with suspended tasks or routines. The3
get_task_info entry point, which has the get_task_info OMPT type, enables a tool to4
retrieve information about any task on the stack of the encountering thread.5

The ancestor_level argument specifies the task region of interest by its ancestor level. Ancestor6
level 0 refers to the encountering task; information about other tasks with associated frames present7
on the stack in the current execution context may be queried at higher ancestor levels. Information8
about a task region may not be available if the ancestor level is 0; otherwise it must be available if a9
task region exists at the specified ancestor level. The entry point returns 2 if a task region exists at10
the specified ancestor level and the information is available, 1 if a task region exists at the specified11
ancestor level but the information is currently unavailable, and 0 otherwise.12

If a task exists at the specified ancestor level and the information is available then information is13
returned in the variables passed by reference to the entry point. The flags argument returns the task14
type if the argument is not NULL. The task_data argument returns the task data if the argument is15
not NULL. The task_frame argument returns the task frame pointer if the argument is not NULL.16
The parallel_data argument returns the parallel data if the argument is not NULL. The thread_num17
argument returns the thread number if the argument is not NULL. If no task region exists at the18
specified ancestor level or the information is unavailable then the values of variables passed by19
reference to the entry point are undefined when get_task_info returns.20

A tool may use a pointer to a data object for a task or parallel region that it obtains from21
get_task_info to inspect or to modify the value of the data object. When either a parallel22
region or a task region is created, its data object will be initialized with the value23
ompt_data_none.24

If get_task_info returns 2 then the entry point has the following effects:25

• If a non-null value was passed for flags then the value returned in the integer to which flags26
points represents the type of the task at the specified level; possible task types include initial27
task, implicit task, explicit task, and target task;28

• If a non-null value was passed for task_data then the value that is returned in the object to29
which it points is a pointer to a data word that is associated with the task at the specified level;30

• If a non-null value was passed for task_frame then the value that is returned in the object to31
which task_frame points is a pointer to the frame OMPT type structure that is associated32
with the task at the specified level;33

• If a non-null value was passed for parallel_data then the value that is returned in the object to34
which parallel_data points is a pointer to a data word that is associated with the parallel35
region that contains the task at the specified level or, if the task at the specified level is an36
initial task, NULL; and37

• If a non-null value was passed for thread_num, then the value that is returned in the object to38
which thread_num points indicates the number of the thread in the parallel region that is39
executing the task at the specified level.40

798 OpenMP API – Version 6.0 November 2024

Restrictions1
Restrictions on the get_task_info entry point are as follows:2

• While the ancestor_level argument is passed by value, all other arguments must be valid3
pointers to variables of the specified types or NULL.4

Cross References5

• OMPT data Type, see Section 33.86

• OMPT frame Type, see Section 33.157

• OMPT task_flag Type, see Section 33.378

36.16 get_task_memory Entry Point9

Name: get_task_memory
Category: function

Properties: async-signal-safe, C/C++-
only, OMPT10

Return Type and Arguments11
Name Type Properties
<return type> integer default
addr void pointer-to-pointer
size size_t pointer
block integer default

12

Type Signature13
C / C++

typedef int (*ompt_get_task_memory_t) (void **addr, size_t *size,14
int block);15

C / C++
Semantics16
During execution, a thread may be executing a task. The OpenMP implementation must preserve17
the data environment from the generation of the task for its execution. The get_task_memory18
entry point, which has the get_task_memory OMPT type, enables a tool to retrieve information19
about memory ranges that store the data environment for the encountering task. Multiple memory20
ranges may be used to store these data. The addr argument is a pointer to a void pointer return21
value to provide the start address of a memory range. The size argument is a pointer to a size type22
return value to provide the size of the memory range. The block argument, which is an integer23
value to specify the memory block of interest, supports iteration over the memory ranges. The24
get_task_memory entry point returns one if more memory ranges are available, and zero25
otherwise. If no memory is used for a task, size is set to zero. In this case, the value to which addr26
points is undefined.27

CHAPTER 36. GENERAL ENTRY POINTS 799

36.17 get_target_info Entry Point1

Name: get_target_info
Category: function

Properties: async-signal-safe, C/C++-
only, OMPT2

Return Type and Arguments3
Name Type Properties
<return type> integer default
device_num c_uint64_t pointer
target_id id OMPT, pointer
host_op_id id OMPT, pointer-to-

pointer

4

Type Signature5
C / C++

typedef int (*ompt_get_target_info_t) (uint64_t *device_num,6
ompt_id_t *target_id, ompt_id_t **host_op_id);7

C / C++
Semantics8
The get_target_info entry point, which has the get_target_info OMPT type, enables a9
tool to retrieve identifiers that specify the current target region and target operation ID of the10
encountering thread, if any. This entry point returns one if the encountering thread is in a target11
region and zero otherwise. If the entry point returns zero then the values of the variables passed by12
reference as its arguments are undefined. If the encountering thread is in a target region then13
get_target_info returns information about the current device, active target region, and14
active host operation, if any. In this case, the device_num argument returns the device number of15
the target region and the target_id argument returns the target region identifier. If the16
encountering thread is in the process of initiating an operation on a target device (for example,17
copying data to or from a device) then host_op_id returns the identifier for the operation; otherwise,18
host_op_id returns ompt_id_none.19

Restrictions20
Restrictions on the get_target_info entry point are as follows:21

• All arguments must be valid pointers to variables of the specified types.22

Cross References23

• OMPT id Type, see Section 33.1824

36.18 get_num_devices Entry Point25

Name: get_num_devices
Category: function

Properties: async-signal-safe, C/C++-
only, OMPT26

800 OpenMP API – Version 6.0 November 2024

Return Type1
Name Type Properties
<return type> integer default2

Type Signature3
C / C++

typedef int (*ompt_get_num_devices_t) (void);4

C / C++
Semantics5
The get_num_devices entry point, which has the get_num_devices OMPT type, is the6
entry point that enables a tool to retrieve the number of devices available to an OpenMP program.7

36.19 get_unique_id Entry Point8

Name: get_unique_id
Category: function

Properties: async-signal-safe, C/C++-
only, OMPT9

Return Type10
Name Type Properties
<return type> c_uint64_t default11

Type Signature12
C / C++

typedef uint64_t (*ompt_get_unique_id_t) (void);13

C / C++
Semantics14
The get_unique_id entry point, which has the get_unique_id OMPT type, enables a tool15
to retrieve a number that is unique for the duration of an OpenMP program. Successive invocations16
may not result in consecutive or even increasing numbers.17

36.20 finalize_tool Entry Point18

Name: finalize_tool
Category: subroutine

Properties: C/C++-only, OMPT
19

Type Signature20
C / C++

typedef void (*ompt_finalize_tool_t) (void);21

C / C++

CHAPTER 36. GENERAL ENTRY POINTS 801

Semantics1
A tool may detect that the execution of an OpenMP program is ending before the OpenMP2
implementation does. To facilitate clean termination of the tool, the tool may invoke the3
finalize_tool entry point, which has the finalize_tool OMPT type. Upon completion4
of finalize_tool, no OMPT callbacks are dispatched. The entry point detaches the tool from5
the runtime, unregisters all callbacks and invalidates all OMPT entry points passed to the tool by6
function_lookup. Upon completion of finalize_tool, no further callbacks will be issued7
on any thread. Before the callbacks are unregistered, the OpenMP runtime will dispatch all8
callbacks as if the program were exiting.9

Restrictions10
Restrictions on the finalize_tool entry point are as follows:11

• The entry point must not be called from inside an explicit region.12

• As finalize_tool should only be called when a tool detects that the execution of an13
OpenMP program is ending, a thread encountering an explicit region after the entry point has14
completed results in unspecified behavior.15

802 OpenMP API – Version 6.0 November 2024

37 Device Tracing Entry Points1

The second set of OMPT entry points enables a tool to trace activities on a device. When directed2
by the tracing interface, an OpenMP implementation will trace activities on a device, collect buffers3
of trace records, and invoke callbacks on the host device to process these trace records. This4
chapter defines that set of entry points.5

Several OMPT entry points have a device argument. This argument is a pointer to an OpenMP6
object that represents the target device. Callbacks in the device tracing interface use a pointer to7
this device object to identify the device being addressed.8

37.1 get_device_num_procs Entry Point9

Name: get_device_num_procs
Category: function

Properties: C/C++-only, OMPT
10

Return Type and Arguments11
Name Type Properties
<return type> integer default
device device OMPT, pointer

12

Type Signature13
C / C++

typedef int (*ompt_get_device_num_procs_t) (14
ompt_device_t *device);15

C / C++
Semantics16
The get_device_num_procs entry point, which has the get_device_num_procs OMPT17
type, enables a tool to retrieve the number of processors that are available on the device at the time18
the entry point is called. This value may change between the time that it is determined and the time19
that it is read in the calling context due to system actions outside the control of the OpenMP20
implementation.21

Cross References22

• OMPT device Type, see Section 33.1123

CHAPTER 37. DEVICE TRACING ENTRY POINTS 803

37.2 get_device_time Entry Point1

Name: get_device_time
Category: function

Properties: C/C++-only, OMPT
2

Return Type and Arguments3
Name Type Properties
<return type> device_time default
device device OMPT, pointer

4

Type Signature5
C / C++

typedef ompt_device_time_t (*ompt_get_device_time_t) (6
ompt_device_t *device);7

C / C++
Semantics8
Host devices and target devices are typically distinct and run independently. If the host device and9
any target devices are different hardware components, they may use different clock generators. For10
this reason, a common time base for ordering host-side and device-side events may not be available.11
The get_device_time entry point, which has the get_device_time OMPT type, enables a12
tool to retrieve the current time on the device specified by the device argument. A tool can use the13
information retrieved by get_device_time to align time stamps from different devices.14

Cross References15

• OMPT device Type, see Section 33.1116

• OMPT device_time Type, see Section 33.1217

37.3 translate_time Entry Point18

Name: translate_time
Category: function

Properties: C/C++-only, OMPT
19

Return Type and Arguments20
Name Type Properties
<return type> double default
device device OMPT, pointer
time device_time OMPT

21

Type Signature22
C / C++

typedef double (*ompt_translate_time_t) (ompt_device_t *device,23
ompt_device_time_t time);24

C / C++

804 OpenMP API – Version 6.0 November 2024

Semantics1
The translate_time entry point, which has the translate_time OMPT type, enables a2
tool to translate a time value, specified by the time argument, obtained from the device specified by3
the device argument to a corresponding time value on the host device. The returned value for the4
host time has the same meaning as the value returned from omp_get_wtime.5

Cross References6

• OMPT device Type, see Section 33.117

• OMPT device_time Type, see Section 33.128

• omp_get_wtime Routine, see Section 30.3.19

37.4 set_trace_ompt Entry Point10

Name: set_trace_ompt
Category: function

Properties: C/C++-only, OMPT
11

Return Type and Arguments12
Name Type Properties
<return type> set_result default
device device OMPT, pointer
enable integer OMPT, unsigned
etype integer OMPT, unsigned

13

Type Signature14
C / C++

typedef ompt_set_result_t (*ompt_set_trace_ompt_t) (15
ompt_device_t *device, unsigned int enable, unsigned int etype);16

C / C++
Semantics17
A tool uses the set_trace_ompt entry point, which has the set_trace_ompt OMPT type,18
to enable or to disable the recording of standard trace records for one or more types of events that19
the etype argument indicates. If the value of etype is zero then the invocation applies to all events.20
If etype is positive then it applies to the event in the callbacks OMPT type that matches that21
value. The enable argument indicates whether tracing should be enabled or disabled for the events22
that etype specifies; a positive value indicates that recording should be enabled while a value of23
zero indicates that recording should be disabled. If etype specifies any of the events that correspond24
to the target_data_op_emi or target_submit_emi callbacks then tracing, if supported,25
is enabled or disabled for those events when they occur on the host device. If etype specifies any26
other events then tracing, if supported, is enabled or disabled for those events when they occur on27
the specified target device. The return value of set_trace_ompt indicates the outcome of28
enabling or disabling the recording of the trace records and can be any value in the set_result29
OMPT type except ompt_set_sometimes_paired.30

CHAPTER 37. DEVICE TRACING ENTRY POINTS 805

Cross References1

• OMPT callbacks Type, see Section 33.62

• OMPT device Type, see Section 33.113

• Tracing Activity on Target Devices, see Section 32.2.54

• OMPT set_result Type, see Section 33.285

37.5 set_trace_native Entry Point6

Name: set_trace_native
Category: function

Properties: C/C++-only, OMPT
7

Return Type and Arguments8
Name Type Properties
<return type> set_result default
device device OMPT, pointer
enable integer default
flags integer default

9

Type Signature10
C / C++

typedef ompt_set_result_t (*ompt_set_trace_native_t) (11
ompt_device_t *device, int enable, int flags);12

C / C++
Semantics13
A tool uses the set_trace_native entry point, which has the set_trace_native OMPT14
type, to enable or to disable the recording of native trace records. The enable argument indicates15
whether this invocation should enable or disable recording of events. The flags argument specifies16
the kinds of native device monitoring to enable or to disable. Each kind of monitoring is specified17
by a flag bit. Flags can be composed by using logical or to combine enumeration values of the18
native_mon_flag OMPT type. The return value of set_trace_native indicates the19
outcome of enabling or disabling the recording of the trace records and can be any value in the20
set_result OMPT type except ompt_set_sometimes_paired.21

This interface is designed for use by a tool that cannot directly use native control procedures for the22
device. If a tool can directly use the native control procedures then it can invoke them directly using23
pointers that the function_lookup entry point associated with the device provides and that are24
described in the documentation string that is provided to its device_initialize callback.25

806 OpenMP API – Version 6.0 November 2024

Cross References1

• OMPT device Type, see Section 33.112

• Tracing Activity on Target Devices, see Section 32.2.53

• OMPT native_mon_flag Type, see Section 33.214

• OMPT set_result Type, see Section 33.285

37.6 get_buffer_limits Entry Point6

Name: get_buffer_limits
Category: subroutine

Properties: C/C++-only, OMPT
7

Arguments8
Name Type Properties
device device OMPT, pointer
max_concurrent_allocs integer pointer
recommended_bytes size_t pointer

9

Type Signature10
C / C++

typedef void (*ompt_get_buffer_limits_t) (ompt_device_t *device,11
int *max_concurrent_allocs, size_t *recommended_bytes);12

C / C++
Semantics13
The get_buffer_limits entry point, which has the get_buffer_limits OMPT type,14
enables a tool to retrieve the maximum number of concurrent buffer allocations and the15
recommended size of any buffer allocation that will be requested of the tool for a specified device.16
The max_concurrent_allocs points to a location in which the entry point returns the maximum17
number of buffer allocations that the implementation may request for tracing activity on the target18
device without the implementation performing callback dispatch of buffer_complete19
callbacks with its buffer_owned argument set to a non-zero value for any of the buffers. The20
recommended_bytes argument points to a location in which the entry point returns the21
recommended buffer size of the buffer to be returned by the tool when the implementation22
dispatches a buffer_request callback for the target device.23

A tool may use this entry point prior to a call to the start_trace entry point to determine the24
total size of the buffers that the implementation would need for tracing activity on the device at any25
given time. The limits that this entry point returns remain the same on each successive invocation26
unless the stop_trace entry point is called for the same target device between the successive27
invocations.28

CHAPTER 37. DEVICE TRACING ENTRY POINTS 807

Cross References1

• buffer_complete Callback, see Section 35.62

• buffer_request Callback, see Section 35.53

• OMPT device Type, see Section 33.114

• start_trace Entry Point, see Section 37.75

• stop_trace Entry Point, see Section 37.106

37.7 start_trace Entry Point7

Name: start_trace
Category: function

Properties: C/C++-only, OMPT
8

Return Type and Arguments9
Name Type Properties
<return type> integer default
device device OMPT, pointer
request buffer_request OMPT, procedure
complete buffer_complete OMPT, procedure

10

Type Signature11
C / C++

typedef int (*ompt_start_trace_t) (ompt_device_t *device,12
ompt_callback_buffer_request_t request,13
ompt_callback_buffer_complete_t complete);14

C / C++
Semantics15
The start_trace entry point, which has the start_trace OMPT type, enables a tool to start16
tracing of activity on a specified device. The request argument specifies a callback that supplies a17
buffer in which a device can deposit events. The complete argument specifies a callback that the18
OpenMP implementation invokes to empty a buffer that contains trace records.19

Under normal operating conditions, every event buffer that a tool callback provides for a device is20
returned to the tool before the OpenMP runtime shuts down. If an exceptional condition terminates21
execution of an OpenMP program, the runtime may not return buffers provided for the device. An22
invocation of start_trace returns one if the entry point succeeds and zero otherwise.23

Cross References24

• buffer_complete Callback, see Section 35.625

• buffer_request Callback, see Section 35.526

• OMPT device Type, see Section 33.1127

808 OpenMP API – Version 6.0 November 2024

37.8 pause_trace Entry Point1

Name: pause_trace
Category: function

Properties: C/C++-only, OMPT
2

Return Type and Arguments3
Name Type Properties
<return type> integer default
device device OMPT, pointer
begin_pause integer default

4

Type Signature5
C / C++

typedef int (*ompt_pause_trace_t) (ompt_device_t *device,6
int begin_pause);7

C / C++
Semantics8
The pause_trace entry point, which has the pause_trace OMPT type, enables a tool to9
pause or to resume tracing on a device. The begin_pause argument indicates whether to pause or to10
resume tracing. To resume tracing, zero should be supplied for begin_pause; to pause tracing, any11
other value should be supplied. An invocation of pause_trace returns one if it succeeds and12
zero otherwise. Redundant pause or resume commands are idempotent and will return the same13
value as the prior command.14

Cross References15

• OMPT device Type, see Section 33.1116

37.9 flush_trace Entry Point17

Name: flush_trace
Category: function

Properties: C/C++-only, OMPT
18

Return Type and Arguments19
Name Type Properties
<return type> integer default
device device OMPT, pointer

20

Type Signature21
C / C++

typedef int (*ompt_flush_trace_t) (ompt_device_t *device);22

C / C++

CHAPTER 37. DEVICE TRACING ENTRY POINTS 809

Semantics1
The flush_trace entry point, which has the flush_trace OMPT type, enables a tool to2
cause the OpenMP implementation to issue a sequence of zero or more buffer_complete3
callbacks to deliver all trace records that have been collected prior to the flush for the specified4
device. An invocation of flush_trace returns one if the entry point succeeds and zero5
otherwise.6

Cross References7

• OMPT device Type, see Section 33.118

37.10 stop_trace Entry Point9

Name: stop_trace
Category: function

Properties: C/C++-only, OMPT
10

Return Type and Arguments11
Name Type Properties
<return type> integer default
device device OMPT, pointer

12

Type Signature13
C / C++

typedef int (*ompt_stop_trace_t) (ompt_device_t *device);14

C / C++
Semantics15
The stop_trace entry point, which has the stop_trace OMPT type, provides a superset of16
the functionality of the flush_trace entry point. Specifically, the stop_trace entry point17
stops tracing for the specified device in addition to flushing pending trace records. An invocation of18
stop_trace returns one if the entry point succeeds and zero otherwise.19

Cross References20

• OMPT device Type, see Section 33.1121

• flush_trace Entry Point, see Section 37.922

37.11 advance_buffer_cursor Entry Point23

Name: advance_buffer_cursor
Category: function

Properties: C/C++-only, OMPT
24

810 OpenMP API – Version 6.0 November 2024

Return Type and Arguments1
Name Type Properties
<return type> integer default
device device OMPT, pointer
buffer buffer OMPT, pointer
size size_t default
current buffer_cursor OMPT, opaque
next buffer_cursor OMPT, opaque, pointer

2

Type Signature3
C / C++

typedef int (*ompt_advance_buffer_cursor_t) (4
ompt_device_t *device, ompt_buffer_t *buffer, size_t size,5
ompt_buffer_cursor_t current, ompt_buffer_cursor_t *next);6

C / C++
Semantics7
The advance_buffer_cursor entry point, which has the advance_buffer_cursor8
OMPT type, enables a tool to advance the trace buffer pointer for the buffer that the buffer9
argument indicates to the next trace record. The size argument indicates the size of buffer in bytes.10
The current argument is an OpenMP object that indicates the current position, while the next11
argument returns an OpenMP object with the next value. An invocation of12
advance_buffer_cursor returns true if the advance is successful and the next position in the13
buffer is valid. Otherwise, it returns false.14

Cross References15

• OMPT buffer Type, see Section 33.316

• OMPT buffer_cursor Type, see Section 33.417

• OMPT device Type, see Section 33.1118

37.12 get_record_type Entry Point19

Name: get_record_type
Category: function

Properties: C/C++-only, OMPT
20

Return Type and Arguments21
Name Type Properties
<return type> record default
buffer buffer OMPT, pointer
current buffer_cursor OMPT

22

CHAPTER 37. DEVICE TRACING ENTRY POINTS 811

Type Signature1
C / C++

typedef ompt_record_t (*ompt_get_record_type_t) (2
ompt_buffer_t *buffer, ompt_buffer_cursor_t current);3

C / C++
Semantics4
Trace records for a device may be in one of two forms: native trace format, which may be5
device-specific, or standard trace format, in which each trace record corresponds to an OpenMP6
event and most fields in the trace record structure are the arguments that would be passed to the7
callback for the event. For the buffer specified by the buffer argument, the get_record_type8
entry point, which has the get_record_type OMPT type, enables a tool to inspect the type of a9
trace record at the position that the current argument specifies and to determine whether the trace10
record is an OMPT trace record, a native trace record, or is an invalid record, which is returned if11
the cursor is out of bounds.12

Cross References13

• OMPT buffer Type, see Section 33.314

• OMPT buffer_cursor Type, see Section 33.415

• OMPT record Type, see Section 33.2316

37.13 get_record_ompt Entry Point17

Name: get_record_ompt
Category: function

Properties: C/C++-only, OMPT
18

Return Type and Arguments19
Name Type Properties
<return type> record_ompt pointer
buffer buffer OMPT, pointer
current buffer_cursor OMPT, opaque

20

Type Signature21
C / C++

typedef ompt_record_ompt_t *(*ompt_get_record_ompt_t) (22
ompt_buffer_t *buffer, ompt_buffer_cursor_t current);23

C / C++
Semantics24
The get_record_ompt entry point, which has the get_record_ompt OMPT type, enables a25
tool to obtain a pointer to an OMPT trace record from a trace buffer associated with a device. The26
pointer may point to storage in the buffer indicated by the buffer argument or it may point to a trace27
record in thread-local storage in which the information extracted from a trace record was28

812 OpenMP API – Version 6.0 November 2024

assembled. The information available for an event depends upon its type. The current argument is1
an OpenMP object that indicates the position from which to extract the trace record. The return2
value of the record_ompt OMPT type includes a field of the any_record_ompt OMPT type,3
which is a union that can represent information for any OMPT trace record type. Another call to the4
entry point may overwrite the contents of the fields in a trace record returned by a prior invocation.5

Cross References6

• OMPT any_record_ompt Type, see Section 33.27

• OMPT buffer Type, see Section 33.38

• OMPT buffer_cursor Type, see Section 33.49

• OMPT device Type, see Section 33.1110

• OMPT record_ompt Type, see Section 33.2611

37.14 get_record_native Entry Point12

Name: get_record_native
Category: function

Properties: C/C++-only, OMPT
13

Return Type and Arguments14
Name Type Properties
<return type> c_ptr default
buffer buffer OMPT, pointer
current buffer_cursor OMPT, opaque
host_op_id id OMPT, pointer

15

Type Signature16
C / C++

typedef void *(*ompt_get_record_native_t) (17
ompt_buffer_t *buffer, ompt_buffer_cursor_t current,18
ompt_id_t *host_op_id);19

C / C++
Semantics20
The get_record_native entry point, which has the get_record_native OMPT type,21
enables a tool to obtain a pointer to a native trace record from a trace buffer associated with a22
device. The pointer may point to storage in the buffer indicated by the buffer argument or it may23
point to a trace record in thread-local storage in which the information extracted from a trace record24
was assembled. The information available for a native event depends upon its type. The current25
argument is an OpenMP object that indicates the position from which to extract the trace record. If26
the entry point returns a non-null pointer result, it will also set the object to which the host_op_id27
argument points to a host-side identifier for the operation that is associated with the trace record on28

CHAPTER 37. DEVICE TRACING ENTRY POINTS 813

the target device and was created when the operation was initiated by the host device. Another call1
to the entry point may overwrite the contents of the fields in a trace record returned by a prior2
invocation.3

Cross References4

• OMPT buffer Type, see Section 33.35

• OMPT buffer_cursor Type, see Section 33.46

• OMPT id Type, see Section 33.187

37.15 get_record_abstract Entry Point8

Name: get_record_abstract
Category: function

Properties: C/C++-only, OMPT
9

Return Type and Arguments10
Name Type Properties
<return type> record_abstract pointer
native_record void pointer

11

Type Signature12
C / C++

typedef ompt_record_abstract_t *13
(*ompt_get_record_abstract_t) (void *native_record);14

C / C++
Semantics15
An OpenMP implementation may execute on a device that logs trace records in a native trace16
format that a tool cannot interpret directly. The get_record_abstract entry point, which has17
the get_record_abstract OMPT type, enables a tool to translate a native trace record to18
which the native_record argument points into a standard form.19

Cross References20

• OMPT record_abstract Type, see Section 33.2421

814 OpenMP API – Version 6.0 November 2024

Part V1

OMPD2

815

38 OMPD Overview1

This chapter provides an overview of OMPD, which is an interface for third-party tools, such as a2
debugger. Third-party tools exist in separate processes from the OpenMP program. To provide3
OMPD support, an OpenMP implementation must provide an OMPD library that the third-party4
tool can load. An OpenMP implementation does not need to maintain any extra information to5
support OMPD inquiries from third-party tools unless it is explicitly instructed to do so.6

OMPD allows third-party tools to inspect the OpenMP state of a live OpenMP program or core file7
in an implementation-agnostic manner. Thus, a third-party tool that uses OMPD should work with8
any compliant implementation. An OpenMP implementation provides a library for OMPD that a9
third-party tool can dynamically load. The third-party tool can use the interface exported by the10
OMPD library to inspect the OpenMP state of an OpenMP program. In order to satisfy requests11
from the third-party tool, the OMPD library may need to read data from the OpenMP program, or12
to find the addresses of symbols in it. The OMPD library provides this functionality through a13
callback interface that the third-party tool must instantiate for the OMPD library.14

To use OMPD, the third-party tool loads the OMPD library, which exports the OMPD API and15
which the third-party tool uses to determine OpenMP information about the OpenMP program.16
The OMPD library must look up symbols and read data out of the program. It does not perform17
these operations directly but instead directs the third-party tool to perform them by using the18
callback interface that the third-party tool exports.19

The OMPD design insulates third-party tools from the internal structure of the OpenMP runtime,20
while the OMPD library is insulated from the details of how to access the OpenMP program. This21
decoupled design allows for flexibility in how the OpenMP program and third-party tool are22
deployed, so that, for example, the third-party tool and the OpenMP program are not required to23
execute on the same machine.24

Generally, the third-party tool does not interact directly with the OpenMP runtime but instead25
interacts with the runtime through the OMPD library. However, a few cases require the third-party26
tool to access the OpenMP runtime directly. These cases fall into two broad categories. The first is27
during initialization where the third-party tool must look up symbols and read variables in the28
OpenMP runtime in order to identify the OMPD library that it should use, which is discussed in29
Section 38.3.2 and Section 38.3.3. The second category relates to arranging for the third-party tool30
to be notified when certain events occur during the execution of the OpenMP program. For this31
purpose, the OpenMP implementation must define certain symbols in the runtime code, as is32
discussed in Chapter 42. Each of these symbols corresponds to an event type. The OpenMP33
runtime must ensure that control passes through the appropriate named location when events occur.34
If the third-party tool requires notification of an event, it can plant a breakpoint at the matching35

816 OpenMP API – Version 6.0 November 2024

location. The location can, but may not, be a function. It can, for example, simply be a label.1
However, the names of the locations must have external C linkage.2

38.1 OMPD Interfaces Definitions3

C / C++
A compliant implementation must supply a set of definitions for the OMPD third-party tool4
callback signatures, third-party tool interface routines and the special data types of their parameters5
and return values. These definitions, which are listed throughout the OMPD chapters, and their6
associated declarations shall be provided in a header file named omp-tools.h. In addition, the7
set of definitions may specify other implementation defined values. The ompd_dll_locations8
variable and all OMPD third-party tool interface routines are external symbols with C linkage.9

C / C++

38.2 Thread and Signal Safety10

The OMPD library does not need to be reentrant. The third-party tool must ensure that only one11
native thread enters the OMPD library at a time. The OMPD library must not install signal handlers12
or otherwise interfere with the signal configuration of the third-party tool.13

38.3 Activating a Third-Party Tool14

The third-party tool and the OpenMP program exist as separate processes. Thus, OMPD requires15
coordination between the OpenMP runtime and the third-party tool.16

38.3.1 Enabling Runtime Support for OMPD17

In order to support third-party tools, the OpenMP runtime may need to collect and to store18
information that it may not otherwise maintain. The OpenMP runtime collects whatever19
information is necessary to support OMPD if the debug-var ICV is set to enabled.20

Cross References21

• debug-var ICV, see Table 3.122

38.3.2 ompd_dll_locations23

Format24
C

extern const char **ompd_dll_locations;25

C

CHAPTER 38. OMPD OVERVIEW 817

Semantics1
An OpenMP runtime may have more than one OMPD library. The third-party tool must be able to2
locate the right library to use for the program that it is examining. The ompd_dll_locations3
global variable points to the locations of OMPD libraries that are compatible with the OpenMP4
implementation. The OpenMP runtime system must provide this public variable, which is an5
argv-style vector of pathname string pointers that provide the names of the compatible OMPD6
libraries. This variable must have C linkage. The third-party tool uses the name of the variable7
verbatim and, in particular, does not apply any name mangling before performing the look up.8

The architecture on which the third-party tool and, thus, the OMPD library execute does not have to9
match the architecture on which the OpenMP program that is being examined executes. The10
third-party tool must interpret the contents of ompd_dll_locations to find a suitable OMPD11
library that matches its own architectural characteristics. On platforms that support different12
architectures (for example, 32-bit vs 64-bit), OpenMP implementations should provide an OMPD13
library for each supported architecture that can handle OpenMP programs that run on any14
supported architecture. Thus, for example, a 32-bit debugger that uses OMPD should be able to15
debug a 64-bit OpenMP program by loading a 32-bit OMPD implementation that can manage a16
64-bit OpenMP runtime.17

The ompd_dll_locations variable points to a NULL-terminated vector of zero or more18
null-terminated pathname strings that do not have any filename conventions. This vector must be19
fully initialized before ompd_dll_locations is set to a non-null value. Thus, if a third-party20
tool stops execution of the OpenMP program at any point at which ompd_dll_locations is a21
non-null value, the vector of strings to which it points shall be valid and complete.22

38.3.3 ompd_dll_locations_valid Breakpoint23

Format24
C

void ompd_dll_locations_valid(void);25

C
Semantics26
Since ompd_dll_locations may not be a static variable, it may require runtime initialization.27
The OpenMP runtime notifies third-party tools that ompd_dll_locations is valid by having28
execution pass through a location that the symbol ompd_dll_locations_valid identifies. If29
ompd_dll_locations is NULL, a third-party tool can place a breakpoint at30
ompd_dll_locations_valid to be notified that ompd_dll_locations is initialized. In31
practice, the symbol ompd_dll_locations_valid may not be a function; instead, it may be a32
labeled machine instruction through which execution passes once the vector is valid.33

818 OpenMP API – Version 6.0 November 2024

39 OMPD Data Types1

This chapter defines OMPD types, which support interactions with the OMPD library and provide2
information about the device architecture.3

39.1 OMPD addr Type4

Name: addr
Properties: C/C++-only, OMPD

Base Type: c_uint64_t
5

Type Definition6
C / C++

typedef uint64_t ompd_addr_t;7

C / C++
Semantics8
The addr OMPD type represents an address in an OpenMP process as an unsigned integer.9

39.2 OMPD address Type10

Name: address
Properties: C/C++-only, OMPD

Base Type: structure
11

Fields12
Name Type Properties
segment seg C/C++-only, OMPD
address addr C/C++-only, OMPD

13

Type Definition14
C / C++

typedef struct ompd_address_t {15
ompd_seg_t segment;16
ompd_addr_t address;17

} ompd_address_t;18

C / C++

CHAPTER 39. OMPD DATA TYPES 819

Semantics1
The address type is a structure that OMPD uses to specify addresses, which may or may not be2
segmented. For non-segmented architectures, ompd_segment_none is used in the segment3
field of the address OMPD type.4

Cross References5

• OMPD addr Type, see Section 39.16

• OMPD seg Type, see Section 39.107

39.3 OMPD address_space_context Type8

Name: address_space_context
Properties: C/C++-only, handle, OMPD

Base Type: aspace_cont
9

Type Definition10
C / C++

typedef struct _ompd_aspace_cont ompd_address_space_context_t;11

C / C++
Semantics12
A third-party tool uses the address_space_context OMPD type, which represents handles13
that are opaque to the OMPD library and that define an address space context uniquely, to identify14
the address space of the OpenMP process that it is monitoring.15

39.4 OMPD callbacks Type16

Name: callbacks
Properties: C/C++-only, OMPD

Base Type: structure
17

Fields18
Name Type Properties
alloc_memory memory_alloc C-only, OMPD
free_memory memory_free C-only, OMPD
print_string print_string C-only, OMPD
sizeof_type sizeof C-only, OMPD
symbol_addr_lookup symbol_addr C-only, OMPD
read_memory memory_read C-only, OMPD
write_memory memory_write C-only, OMPD
read_string memory_read C-only, OMPD
device_to_host device_host C-only, OMPD
host_to_device device_host C-only, OMPD
get_thread_context_for_thread_id get_thread_context_for_thread_id C-only, OMPD

19

820 OpenMP API – Version 6.0 November 2024

Type Definition1
C / C++

typedef struct ompd_callbacks_t {2
ompd_callback_memory_alloc_fn_t alloc_memory;3
ompd_callback_memory_free_fn_t free_memory;4
ompd_callback_print_string_fn_t print_string;5
ompd_callback_sizeof_fn_t sizeof_type;6
ompd_callback_symbol_addr_fn_t symbol_addr_lookup;7
ompd_callback_memory_read_fn_t read_memory;8
ompd_callback_memory_write_fn_t write_memory;9
ompd_callback_memory_read_fn_t read_string;10
ompd_callback_device_host_fn_t device_to_host;11
ompd_callback_device_host_fn_t host_to_device;12
ompd_callback_get_thread_context_for_thread_id_fn_t13
get_thread_context_for_thread_id;14

} ompd_callbacks_t;15

C / C++
Semantics16
All OMPD library interactions with the OpenMP program must be through a set of callbacks that17
the third-party tool provides. These callbacks must also be used for allocating or releasing18
resources, such as memory, that the OMPD library needs. The set of callbacks that the OMPD19
library must use is collected in an instance of the callbacks OMPD type that is passed to the20
OMPD library as an argument to ompd_initialize. Each field points to a procedure that the21
OMPD library must use to interact with the OpenMP program or for memory operations.22

The alloc_memory and free_memory fields are pointers to alloc_memory and23
free_memory callbacks, which the OMPD library uses to allocate and to release dynamic24
memory. The print_string field points to a print_string callback that prints a string.25

The architecture on which the OMPD library and third-party tool execute may be different from the26
architecture on which the OpenMP program that is being examined executes. The sizeof_type27
field points to a sizeof_type callback that allows the OMPD library to determine the sizes of28
the basic integer and pointer types that the OpenMP program uses. Because of the potential29
differences in the targeted architectures, the conventions for representing data in the OMPD library30
and the OpenMP program may be different. The device_to_host field points to a31
device_to_host callback that translates data from the conventions that the OpenMP program32
uses to those that the third-party tool and OMPD library use. The reverse operation is performed by33
the host_to_device callback to which the host_to_device field points.34

The symbol_addr_lookup field points to a symbol_addr_lookup callback, which the35
OMPD library can use to find the address of a global or thread local storage symbol. The36
read_memory, read_string and write_memory fields are pointers to read_memory,37
read_string and write_memory callbacks for reading from and writing to global memory or38
thread local storage in the OpenMP program.39

CHAPTER 39. OMPD DATA TYPES 821

The get_thread_context_for_thread_id field is a pointer to a1
get_thread_context_for_thread_id callback that the OMPD library can use to obtain a2
native thread context that corresponds to a native thread identifier.3

Cross References4

• alloc_memory Callback, see Section 40.1.15

• device_to_host Callback, see Section 40.4.26

• free_memory Callback, see Section 40.1.27

• get_thread_context_for_thread_id Callback, see Section 40.3.18

• host_to_device Callback, see Section 40.4.39

• ompd_initialize Routine, see Section 41.1.110

• print_string Callback, see Section 40.511

• read_memory Callback, see Section 40.2.2.112

• read_string Callback, see Section 40.2.2.213

• sizeof_type Callback, see Section 40.3.214

• symbol_addr_lookup Callback, see Section 40.2.115

• write_memory Callback, see Section 40.2.316

39.5 OMPD device Type17

Name: device
Properties: C/C++-only, OMPD

Base Type: c_uint64_t
18

Type Definition19
C / C++

typedef uint64_t ompd_device_t;20

C / C++
Semantics21
The device OMPD type provides information about OpenMP devices. OpenMP runtimes may22
utilize different underlying devices, each represented by a device identifier. The device identifiers23
can vary in size and format and, thus, are not explicitly represented in OMPD. Instead, a device24
identifier is passed across the interface via its device kind, its size in bytes and a pointer to where25
it is stored. The OMPD library and the third-party tool use the device kind to interpret the format26
of the device identifier that is referenced by the pointer argument. Each different device identifier27
kind is represented by a unique unsigned 64-bit integer value. Recommended values of device28
kinds are defined in the ompd-types.h header file, which is contained in the Supplementary29
Source Code package available via https://www.openmp.org/specifications/.30

822 OpenMP API – Version 6.0 November 2024

https://www.openmp.org/specifications/

39.6 OMPD device_type_sizes Type1

Name: device_type_sizes
Properties: C/C++-only, OMPD

Base Type: structure
2

Fields3
Name Type Properties
sizeof_char c_uint8_t C/C++-only, OMPD
sizeof_short c_uint8_t C/C++-only, OMPD
sizeof_int c_uint8_t C/C++-only, OMPD
sizeof_long c_uint8_t C/C++-only, OMPD
sizeof_long_long c_uint8_t C/C++-only, OMPD
sizeof_pointer c_uint8_t C/C++-only, OMPD

4

Type Definition5
C / C++

typedef struct ompd_device_type_sizes_t {6
uint8_t sizeof_char;7
uint8_t sizeof_short;8
uint8_t sizeof_int;9
uint8_t sizeof_long;10
uint8_t sizeof_long_long;11
uint8_t sizeof_pointer;12

} ompd_device_type_sizes_t;13

C / C++
Semantics14
The device_type_sizes OMPD type is used in OMPD callbacks through which the OMPD15
library can interrogate a third-party tool about the size of primitive types for the target architecture16
of the OpenMP runtime, as returned by the sizeof operator. The fields of17
device_type_sizes give the sizes of the eponymous basic types used by the OpenMP18
runtime. As the third-party tool and the OMPD library, by definition, execute on the same19
architecture, the size of the fields can be given as uint8_t.20

Cross References21

• sizeof_type Callback, see Section 40.3.222

39.7 OMPD frame_info Type23

Name: frame_info
Properties: C/C++-only, OMPD

Base Type: structure
24

CHAPTER 39. OMPD DATA TYPES 823

Fields1
Name Type Properties
frame_address address C/C++-only, OMPD
frame_flag word C/C++-only, OMPD

2

Type Definition3
C / C++

typedef struct ompd_frame_info_t {4
ompd_address_t frame_address;5
ompd_word_t frame_flag;6

} ompd_frame_info_t;7

C / C++
Semantics8
The frame_info OMPD type is a structure type that OMPD uses to specify frame information.9
The frame_address field of frame_info identifies a frame. The frame_flag field of10
frame_info indicates what type of information is provided in frame_address. The values11
and meaning are the same as are defined for the frame_flag OMPT type.12

Cross References13

• OMPD address Type, see Section 39.214

• OMPT frame_flag Type, see Section 33.1615

• OMPD word Type, see Section 39.1716

39.8 OMPD icv_id Type17

Name: icv_id
Properties: C/C++-only, OMPD

Base Type: c_uint64_t
18

Predefined Identifiers19
Name Value Properties
ompd_icv_undefined 0 C/C++-only, OMPD20

Type Definition21
C / C++

typedef uint64_t ompd_icv_id_t;22

C / C++
Semantics23
The icv_id OMPD type identifies ICVs.24

824 OpenMP API – Version 6.0 November 2024

39.9 OMPD rc Type1

Name: rc
Properties: C/C++-only, OMPD

Base Type: enumeration
2

Values3
Name Value Properties
ompd_rc_ok 0 C-only, OMPD
ompd_rc_unavailable 1 C-only, OMPD
ompd_rc_stale_handle 2 C-only, OMPD
ompd_rc_bad_input 3 C-only, OMPD
ompd_rc_error 4 C-only, OMPD
ompd_rc_unsupported 5 C-only, OMPD
ompd_rc_needs_state_tracking 6 C-only, OMPD
ompd_rc_incompatible 7 C-only, OMPD
ompd_rc_device_read_error 8 C-only, OMPD
ompd_rc_device_write_error 9 C-only, OMPD
ompd_rc_nomem 10 C-only, OMPD
ompd_rc_incomplete 11 C-only, OMPD
ompd_rc_callback_error 12 C-only, OMPD
ompd_rc_incompatible_handle 13 C-only, OMPD

4

Type Definition5
C / C++

typedef enum ompd_rc_t {6
ompd_rc_ok = 0,7
ompd_rc_unavailable = 1,8
ompd_rc_stale_handle = 2,9
ompd_rc_bad_input = 3,10
ompd_rc_error = 4,11
ompd_rc_unsupported = 5,12
ompd_rc_needs_state_tracking = 6,13
ompd_rc_incompatible = 7,14
ompd_rc_device_read_error = 8,15
ompd_rc_device_write_error = 9,16
ompd_rc_nomem = 10,17
ompd_rc_incomplete = 11,18
ompd_rc_callback_error = 12,19
ompd_rc_incompatible_handle = 1320

} ompd_rc_t;21

C / C++

CHAPTER 39. OMPD DATA TYPES 825

The rc OMPD type is the return code type of OMPD routines and OMPD callbacks. The values of1
the rc OMPD type and their semantics are defined as follows:2

• ompd_rc_ok: The routine or callback procedure was successful;3

• ompd_rc_unavailable: Information was not available for the specified context;4

• ompd_rc_stale_handle: The specified handle was not valid;5

• ompd_rc_bad_input: The arguments (other than handles) are invalid;6

• ompd_rc_error: A fatal error occurred;7

• ompd_rc_unsupported: The requested routine or callback is not supported for the8
specified arguments;9

• ompd_rc_needs_state_tracking: The state tracking operation failed because state10
tracking was not enabled;11

• ompd_rc_incompatible: The selected OMPD library was incompatible with the12
OpenMP program or was incapable of handling it;13

• ompd_rc_device_read_error: A read operation failed on the device;14

• ompd_rc_device_write_error: A write operation failed on the device;15

• ompd_rc_nomem: A memory allocation failed;16

• ompd_rc_incomplete: The information provided on return was incomplete, while the17
arguments were set to valid values;18

• ompd_rc_callback_error: The callback interface or one of the required callback19
procedures provided by the third-party tool was invalid; and20

• ompd_rc_incompatible_handle: The specified handle was incompatible with the21
routine or callback.22

39.10 OMPD seg Type23

Name: seg
Properties: C/C++-only, OMPD

Base Type: c_uint64_t
24

Predefined Identifiers25
Name Value Properties
ompd_segment_none 0 C/C++-only, OMPD26

Type Definition27
C / C++

typedef uint64_t ompd_seg_t;28

C / C++
Semantics29
The seg OMPD type represents a segment value as an unsigned integer.30

826 OpenMP API – Version 6.0 November 2024

39.11 OMPD scope Type1

Name: scope
Properties: C/C++-only, OMPD

Base Type: enumeration
2

Values3
Name Value Properties
ompd_scope_global 1 C-only, OMPD
ompd_scope_address_space 2 C-only, OMPD
ompd_scope_thread 3 C-only, OMPD
ompd_scope_parallel 4 C-only, OMPD
ompd_scope_implicit_task 5 C-only, OMPD
ompd_scope_task 6 C-only, OMPD
ompd_scope_teams 7 C-only, OMPD
ompd_scope_target 8 C-only, OMPD

4

Type Definition5
C / C++

typedef enum ompd_scope_t {6
ompd_scope_global = 1,7
ompd_scope_address_space = 2,8
ompd_scope_thread = 3,9
ompd_scope_parallel = 4,10
ompd_scope_implicit_task = 5,11
ompd_scope_task = 6,12
ompd_scope_teams = 7,13
ompd_scope_target = 814

} ompd_scope_t;15

C / C++
Semantics16
The scope OMPD type is used for scope handles to identify OpenMP scopes, including those17
related to parallel regions and tasks. When used in an OMPD routine or OMPD callback procedure,18
the scope OMPD type and the OMPD handle must match according to Table 39.1.19

39.12 OMPD size Type20

Name: size
Properties: C/C++-only, OMPD

Base Type: c_uint64_t
21

CHAPTER 39. OMPD DATA TYPES 827

TABLE 39.1: Mapping of Scope Type and OMPD Handles

Scope types Handles
ompd_scope_global Address space handle for the host device
ompd_scope_address_space Any address space handle
ompd_scope_thread Any native thread handle
ompd_scope_parallel Any parallel handle
ompd_scope_implicit_task Task handle for an implicit task
ompd_scope_teams Parallel handle for an implicit parallel region

generated from a teams construct
ompd_scope_target Parallel handle for an implicit parallel region

generated from a target construct
ompd_scope_task Any task handle

Type Definition1
C / C++

typedef uint64_t ompd_size_t;2

C / C++
The size OMPD type specifies the number of bytes in opaque data objects that are passed across3
the OMPD API.4

39.13 OMPD team_generator Type5

Name: team_generator
Properties: C/C++-only, OMPD

Base Type: enumeration
6

Values7
Name Value Properties
ompd_generator_program 0 C-only, OMPD
ompd_generator_parallel 1 C-only, OMPD
ompd_generator_teams 2 C-only, OMPD
ompd_generator_target 3 C-only, OMPD

8

Type Definition9
C / C++

typedef enum ompd_team_generator_t {10
ompd_generator_program = 0,11
ompd_generator_parallel = 1,12
ompd_generator_teams = 2,13
ompd_generator_target = 314

} ompd_team_generator_t;15

C / C++

828 OpenMP API – Version 6.0 November 2024

Semantics1
The team_generator OMPD type represents the value of the team-generator-var ICV. The2
ompd_generator_program value indicates that the team is the initial team created at the start3
of the OpenMP program. The ompd_generator_parallel, ompd_generator_teams,4
and ompd_generator_target values indicate that the team was created by an encountered5
parallel construct, teams construct, or target construct, respectively.6

39.14 OMPD thread_context Type7

Name: thread_context
Properties: C/C++-only, handle, OMPD

Base Type: thread_cont
8

Type Definition9
C / C++

typedef struct _ompd_thread_cont ompd_thread_context_t;10

C / C++
Semantics11
A third-party tool uses the thread_context OMPD type, which represents handles that are12
opaque to the OMPD library and that uniquely identify a native thread of the OpenMP process that13
it is monitoring.14

39.15 OMPD thread_id Type15

Name: thread_id
Properties: C/C++-only, OMPD

Base Type: c_uint64_t
16

Type Definition17
C / C++

typedef uint64_t ompd_thread_id_t;18

C / C++
Semantics19
The thread_id OMPD type provides information about native threads. OpenMP runtimes may20
use different native thread implementations. Native thread identifiers for these implementations can21
vary in size and format and, thus, are not explicitly represented in OMPD. Instead, a native thread22
identifier is passed across the interface via the thread_id OMPD type, its size in bytes and a23

CHAPTER 39. OMPD DATA TYPES 829

pointer to where it is stored. The OMPD library and the third-party tool use the thread_id1
OMPD type to interpret the format of the native thread identifier that is referenced by the pointer2
argument. Each different native thread identifier kind is represented by a unique unsigned 64-bit3
integer value. Recommended values of the thread_id OMPD type and formats for some4
corresponding native thread identifiers are defined in the ompd-types.h header file, which is5
contained in the Supplementary Source Code package available via6
https://www.openmp.org/specifications/.7

39.16 OMPD wait_id Type8

Name: wait_id
Properties: C/C++-only, OMPD

Base Type: c_uint64_t
9

Type Definition10
C / C++

typedef uint64_t ompd_wait_id_t;11

C / C++
Semantics12
A variable of wait_id OMPD type identifies the object on which a thread waits. The values and13
meaning of wait_id are the same as those defined for the wait_id OMPT type.14

Cross References15

• OMPT wait_id Type, see Section 33.4016

39.17 OMPD word Type17

Name: word
Properties: C/C++-only, OMPD

Base Type: c_int64_t
18

Type Definition19
C / C++

typedef int64_t ompd_word_t;20

C / C++
Semantics21
The word OMPD type represents a data word from the OpenMP runtime as a signed integer.22

830 OpenMP API – Version 6.0 November 2024

https://www.openmp.org/specifications/

39.18 OMPD Handle Types1

The OMPD library defines handles, which have OMPD types that are handle types (i.e., they have2
the handle property). These handles are used to refer to address spaces, threads, parallel regions and3
tasks and are managed by the OpenMP runtime. The internal structures that these handles represent4
are opaque to the third-party tool. Defining externally visible type names in this way introduces5
type safety to the interface and helps to catch instances where incorrect handles are passed by a6
third-party tool to the OMPD library. The structures do not need to be defined; instead, the OMPD7
library must cast incoming (pointers to) handles to the appropriate internal, private types.8

Each OMPD routine or OMPD callback procedure that applies to a particular address space, thread,9
parallel region or task must explicitly specify a corresponding handle. A handle remains constant10
and valid while the associated entity is managed by the OpenMP runtime or until it is released with11
the corresponding OMPD routine for releasing handles of that type. If a third-party tool receives12
notification of the end of the lifetime of a managed entity (see Chapter 42) or it releases the handle,13
the handle may no longer be referenced.14

39.18.1 OMPD address_space_handle Type15

Name: address_space_handle
Properties: C/C++-only, handle, OMPD

Base Type: aspace_handle
16

Type Definition17
C / C++

typedef struct _ompd_aspace_handle ompd_address_space_handle_t;18

C / C++
Semantics19
The address_space_handle OMPD type is used for handles that represent address spaces.20

39.18.2 OMPD parallel_handle Type21

Name: parallel_handle
Properties: C/C++-only, handle, OMPD

Base Type: parallel_handle
22

Type Definition23
C / C++

typedef struct _ompd_parallel_handle ompd_parallel_handle_t;24

C / C++
Semantics25
The parallel_handle OMPD type is used for parallel handles that represent parallel regions.26

CHAPTER 39. OMPD DATA TYPES 831

39.18.3 OMPD task_handle Type1

Name: task_handle
Properties: C/C++-only, handle, OMPD

Base Type: task_handle
2

Type Definition3
C / C++

typedef struct _ompd_task_handle ompd_task_handle_t;4

C / C++
Semantics5
The task_handle OMPD type is used for handles that represent tasks.6

39.18.4 OMPD thread_handle Type7

Name: thread_handle
Properties: C/C++-only, handle, OMPD

Base Type: thread_handle
8

Type Definition9
C / C++

typedef struct _ompd_thread_handle ompd_thread_handle_t;10

C / C++
Semantics11
The thread_handle OMPD type is used for handles that represent threads.12

832 OpenMP API – Version 6.0 November 2024

40 OMPD Callback Interface1

For the OMPD library to provide information about the internal state of the OpenMP runtime2
system in an OpenMP process or core file, it must be able to extract information from the OpenMP3
process that the third-party tool is examining. The process on which the tool is operating may be4
either a live process or a core file, and a thread may be either a live thread in a live process or a5
thread in a core file. To enable the OMPD library to extract state information from a process or core6
file, the tool must supply the OMPD library with callbacks to inquire about the size of primitive7
types in the device of the process, to look up the addresses of symbols, and to read and to write8
memory in the device. The OMPD library uses these callbacks to implement its interface9
operations. The OMPD library only invokes the OMPD callbacks in response to calls to the OMPD10
library. The names of the OMPD callbacks correspond to the names of the fields of the11
callbacks OMPD type.12

Restrictions13
The following restrictions apply to all OMPD callbacks:14

• Unless explicitly specified otherwise, all OMPD callbacks must return ompd_rc_ok or15
ompd_rc_stale_handle.16

40.1 Memory Management of OMPD Library17

A tool provides alloc_memory and free_memory callbacks to obtain and to release heap18
memory. This mechanism ensures that the OMPD library does not interfere with any custom19
memory management scheme that the tool may use.20

If the OMPD library is implemented in C++ then memory management operators, like new and21
delete and their variants, must all be overloaded and implemented in terms of the callbacks that22
the third-party tool provides. The OMPD library must be implemented such that any of its23
definitions of new and delete do not interfere with any that the tool defines. In some cases, the24
OMPD library must allocate memory to return results to the tool. The tool then owns this memory25
and has the responsibility to release it. Thus, the OMPD library and the tool must use the same26
memory manager.27

The OMPD library creates OMPD handles, which are opaque to tools and may have a complex28
internal structure. A tool cannot determine if the handle pointers that OMPD returns correspond to29
discrete heap allocations. Thus, the tool must not simply deallocate a handle by passing an address30
that it receives from the OMPD library to its own memory manager. Instead, OMPD includes31
routines that the tool must use when it no longer needs a handle.32

CHAPTER 40. OMPD CALLBACK INTERFACE 833

A tool creates tool contexts and passes them to the OMPD library. The OMPD library does not1
release tool contexts; instead the tool releases them after it releases any handles that may reference2
the tool contexts.3

Cross References4

• alloc_memory Callback, see Section 40.1.15

• free_memory Callback, see Section 40.1.26

40.1.1 alloc_memory Callback7

Name: alloc_memory
Category: function

Properties: C-only, OMPD
8

Return Type and Arguments9
Name Type Properties
<return type> rc default
nbytes size default
ptr void pointer-to-pointer

10

Type Signature11
C

typedef ompd_rc_t (*ompd_callback_memory_alloc_fn_t) (12
ompd_size_t nbytes, void **ptr);13

C
Semantics14
A tool provides an alloc_memory callback, which has the memory_alloc OMPD type, that15
the OMPD library may call to allocate memory. The nbytes argument is the size in bytes of the16
block of memory to allocate. The address of the newly allocated block of memory is returned in the17
location to which the ptr argument points. The newly allocated block is suitably aligned for any18
type of variable but is not guaranteed to be set to zero.19

Cross References20

• OMPD rc Type, see Section 39.921

• OMPD size Type, see Section 39.1222

40.1.2 free_memory Callback23

Name: free_memory
Category: function

Properties: C-only, OMPD
24

Return Type and Arguments25
Name Type Properties
<return type> rc default
ptr void pointer

26

834 OpenMP API – Version 6.0 November 2024

Type Signature1
C

typedef ompd_rc_t (*ompd_callback_memory_free_fn_t) (void *ptr);2

C
Semantics3
A tool provides a free_memory callback, which has the memory_free OMPD type, that the4
OMPD library may call to deallocate memory that was obtained from a prior call to the5
alloc_memory callback. The ptr argument is the address of the block to be deallocated.6

Cross References7

• alloc_memory Callback, see Section 40.1.18

• OMPD rc Type, see Section 39.99

40.2 Accessing Program or Runtime Memory10

The OMPD library cannot directly read from or write to memory of the OpenMP program. Instead11
the OMPD library must use callbacks into the third-party tool that perform the operation.12

40.2.1 symbol_addr_lookup Callback13

Name: symbol_addr_lookup
Category: function

Properties: C-only, OMPD
14

Return Type and Arguments15
Name Type Properties
<return type> rc default
address_space_context address_space_context pointer
thread_context thread_context pointer
symbol_name char intent(in), pointer
symbol_addr address pointer
file_name char intent(in), pointer

16

Type Signature17
C

typedef ompd_rc_t (*ompd_callback_symbol_addr_fn_t) (18
ompd_address_space_context_t *address_space_context,19
ompd_thread_context_t *thread_context, const char *symbol_name,20
ompd_address_t *symbol_addr, const char *file_name);21

C

CHAPTER 40. OMPD CALLBACK INTERFACE 835

Semantics1
A tool provides a symbol_addr_lookup callback, which has the symbol_addr OMPD type,2
that the OMPD library may call to look up the address of the symbol provided in the symbol_name3
argument within the address space specified by the address_space_context argument. This4
argument provides the tool’s representation of the address space of the process, core file, or device.5

The thread_context argument is NULL for global memory accesses. If thread_context is not6
NULL, thread_context gives the native thread context for the symbol lookup for the purpose of7
calculating thread local storage addresses. In this case, the native thread to which thread_context8
refers must be associated with either the OpenMP process or the device that corresponds to the9
address_space_context argument.10

The tool uses the symbol_name argument that the OMPD library supplies verbatim. In particular,11
no name mangling, demangling or other transformations are performed before the lookup. The12
symbol_name parameter must correspond to a statically allocated symbol within the specified13
address space. The symbol can correspond to any type of object, such as a variable, thread local14
storage variable, procedure, or untyped label. The symbol can have local, global, or weak binding.15
The callback returns the address of the symbol in the location to which symbol_addr points.16

The file_name argument is an optional input argument that indicates the name of the shared library17
in which the symbol is defined, and it is intended to help the third-party tool disambiguate symbols18
that are defined multiple times across the executable or shared library files. The shared library19
name may not be an exact match for the name seen by the third-party tool. If file_name is NULL20
then the third-party tool first tries to find the symbol in the executable file, and, if the symbol is not21
found, the third-party tool tries to find the symbol in the shared libraries in the order in which the22
shared libraries are loaded into the address space. If file_name is a non-null value then the23
third-party tool first tries to find the symbol in the libraries that match the name in the file_name24
argument, and, if the symbol is not found, the third-party tool then uses the same lookup order as25
when file_name is NULL.26

In addition to the general return codes for OMPD callbacks, symbol_addr_lookup callbacks27
may also return the following return codes:28

• ompd_rc_error if the symbol that the symbol_name argument specifies is not found; or29

• ompd_rc_bad_input if no symbol name is provided.30

Restrictions31
Restrictions on symbol_addr_lookup callbacks are as follows:32

• The address_space_context argument must be a non-null value.33

• The callback does not support finding either symbols that are dynamically allocated on the34
call stack or statically allocated symbols that are defined within the scope of a procedure.35

Cross References36

• OMPD address Type, see Section 39.237

836 OpenMP API – Version 6.0 November 2024

• OMPD address_space_context Type, see Section 39.31

• OMPD rc Type, see Section 39.92

• OMPD thread_context Type, see Section 39.143

40.2.2 OMPD memory_read Type4

Name: memory_read
Category: function pointer

Properties: C-only, OMPD
5

Return Type and Arguments6
Name Type Properties
<return type> rc default
address_space_context address_space_context pointer
thread_context thread_context pointer
addr address intent(in), pointer
nbytes size default
buffer void pointer

7

Type Signature8
C

typedef ompd_rc_t (*ompd_callback_memory_read_fn_t) (9
ompd_address_space_context_t *address_space_context,10
ompd_thread_context_t *thread_context,11
const ompd_address_t *addr, ompd_size_t nbytes, void *buffer);12

C
Callbacks that have the memory_read OMPD type are memory-reading callbacks, which each13
have the memory-reading property. A tool provides these callbacks to read memory from an14
OpenMP program. The thread_context argument of this type should be NULL for global memory15
accesses. If it is a non-null value, the thread_context argument identifies the native thread context16
for the memory access for the purpose of accessing thread local storage. The data are returned17
through the buffer argument, which is allocated and owned by the OMPD library. The contents of18
the buffer are unstructured, raw bytes. The OMPD library must use the device_to_host19
callback to perform any transformations such as byte-swapping that may be necessary.20

In addition to the general return codes for OMPD callbacks, memory-reading callbacks may also21
return the following return code:22

• ompd_rc_error if unallocated memory is reached while reading nbytes.23

CHAPTER 40. OMPD CALLBACK INTERFACE 837

Cross References1

• OMPD address Type, see Section 39.22

• OMPD address_space_context Type, see Section 39.33

• device_to_host Callback, see Section 40.4.24

• OMPD rc Type, see Section 39.95

• OMPD size Type, see Section 39.126

• OMPD thread_context Type, see Section 39.147

40.2.2.1 read_memory Callback8

Name: read_memory
Category: function

Properties: C-only, common-type-
callback, memory-reading, OMPD9

Type Signature10
memory_read11

Semantics12
A tool provides a read_memory callback, which is a memory-reading callback, that the OMPD13
library may call to copy a block of data from addr within the address space given by14
address_space_context to the tool buffer.15

Cross References16

• OMPD address Type, see Section 39.217

• OMPD address_space_context Type, see Section 39.318

• OMPD memory_read Type, see Section 40.2.219

40.2.2.2 read_string Callback20

Name: read_string
Category: function

Properties: C-only, common-type-
callback, memory-reading, OMPD21

Type Signature22
memory_read23

Semantics24
A tool provides a read_string callback, which is a memory-reading callback, that the OMPD25
library may call to copy a string to which addr points, including the terminating null byte (’\0’),26
to the tool buffer. At most nbytes bytes are copied. If a null byte is not among the first nbytes bytes,27
the string placed in buffer is not null-terminated.28

In addition to the general return codes for memory-reading callbacks, read_string callbacks29
may also return the following return code:30

838 OpenMP API – Version 6.0 November 2024

• ompd_rc_incomplete if no terminating null byte is found while reading nbytes using the1
read_string callback.2

Cross References3

• OMPD rc Type, see Section 39.94

• OMPD size Type, see Section 39.125

40.2.3 write_memory Callback6

Name: write_memory
Category: function

Properties: C-only, OMPD
7

Return Type and Arguments8
Name Type Properties
<return type> rc default
address_space_context address_space_context pointer
thread_context thread_context pointer
addr address intent(in), pointer
nbytes size default
buffer void pointer

9

Type Signature10
C

typedef ompd_rc_t (*ompd_callback_memory_write_fn_t) (11
ompd_address_space_context_t *address_space_context,12
ompd_thread_context_t *thread_context,13
const ompd_address_t *addr, ompd_size_t nbytes, void *buffer);14

C
Semantics15
A tool provides a write_memory callback, which has the memory_write OMPD type, that the16
OMPD library may call to have the tool write a block of data to a location within an address space17
from a provided buffer. The address to which the data are to be written in the OpenMP program18
that address_space_context specifies is given by addr. The nbytes argument is the number of bytes19
to be transferred. The thread_context argument for global memory accesses should be NULL. If it20
is a non-null value, then thread_context identifies the native thread context for the memory access21
for the purpose of accessing thread local storage.22

The data to be written are passed through buffer, which is allocated and owned by the OMPD23
library. The contents of the buffer are unstructured, raw bytes. The OMPD library must use the24
host_to_device callback to perform any transformations such as byte-swapping that may be25
necessary to render the data into a form that is compatible with the OpenMP runtime.26

In addition to the general return codes for OMPD callbacks, write_memory callbacks may also27
return the following return codes:28

CHAPTER 40. OMPD CALLBACK INTERFACE 839

• ompd_rc_error if unallocated memory is reached while writing nbytes.1

Cross References2

• OMPD address Type, see Section 39.23

• OMPD address_space_context Type, see Section 39.34

• host_to_device Callback, see Section 40.4.35

• OMPD rc Type, see Section 39.96

• OMPD size Type, see Section 39.127

• OMPD thread_context Type, see Section 39.148

40.3 Context Management and Navigation9

Summary10
A tool provides callbacks to manage and to navigate tool context relationships.11

40.3.1 get_thread_context_for_thread_id Callback12

Name:
get_thread_context_for_thread_id
Category: function

Properties: C-only, OMPD
13

Return Type and Arguments14
Name Type Properties
<return type> rc default
address_space_context address_space_context opaque, pointer
kind thread_id default
sizeof_thread_id size default
thread_id void intent(in), pointer
thread_context thread_context pointer-to-pointer

15

Type Signature16
C

typedef ompd_rc_t17
(*ompd_callback_get_thread_context_for_thread_id_fn_t) (18
ompd_address_space_context_t *address_space_context,19
ompd_thread_id_t kind, ompd_size_t sizeof_thread_id,20
const void *thread_id, ompd_thread_context_t **thread_context);21

C

840 OpenMP API – Version 6.0 November 2024

Semantics1
A tool provides a get_thread_context_for_thread_id callback, which has the2
get_thread_context_for_thread_id OMPD type, that the OMPD library may call to3
map a native thread identifier to a third-party tool native thread context. The native thread identifier4
is within the address space that address_space_context identifies. The OMPD library can use the5
native thread context, for example, to access thread local storage.6

The address_space_context argument is an opaque handle that the tool provides to reference an7
address space. The kind, sizeof_thread_id, and thread_id arguments represent a native thread8
identifier. On return, the thread_context argument provides a handle that maps a native thread9
identifier to a tool native thread context.10

In addition to the general return codes for OMPD callbacks,11
get_thread_context_for_thread_id callbacks may also return the following return12
codes:13

• ompd_rc_bad_input if a different value in sizeof_thread_id is expected for the native14
thread identifier kind given by kind; or15

• ompd_rc_unsupported if the native thread identifier kind is not supported.16

Restrictions17
Restrictions on get_thread_context_for_thread_id callbacks are as follows:18

• The provided thread_context must be valid until the OMPD library returns from the tool19
procedure.20

Cross References21

• OMPD address_space_context Type, see Section 39.322

• OMPD rc Type, see Section 39.923

• OMPD size Type, see Section 39.1224

• OMPD thread_context Type, see Section 39.1425

• OMPD thread_id Type, see Section 39.1526

40.3.2 sizeof_type Callback27

Name: sizeof_type
Category: function

Properties: C-only, OMPD
28

Return Type and Arguments29
Name Type Properties
<return type> rc default
address_space_context address_space_context pointer
sizes device_type_sizes pointer

30

CHAPTER 40. OMPD CALLBACK INTERFACE 841

Type Signature1
C

typedef ompd_rc_t (*ompd_callback_sizeof_fn_t) (2
ompd_address_space_context_t *address_space_context,3
ompd_device_type_sizes_t *sizes);4

C
Semantics5
A tool provides a sizeof_type callback, which has the sizeof OMPD type, that the OMPD6
library may call to query the sizes of the basic primitive types for the address space that the7
address_space_context argument specifies in the location to which sizes points.8

Cross References9

• OMPD address_space_context Type, see Section 39.310

• OMPD device_type_sizes Type, see Section 39.611

• OMPD rc Type, see Section 39.912

40.4 Device Translating Callbacks13

Summary14
A tool provides device-translating callbacks, which have the device-translating property, to perform15
any necessary translations between devices on which the tool and OMPD library run and on which16
the OpenMP program runs.17

40.4.1 OMPD device_host Type18

Name: device_host
Category: function pointer

Properties: C-only, OMPD
19

Return Type and Arguments20
Name Type Properties
<return type> rc default
address_space_context address_space_context pointer
input void intent(in), pointer
unit_size size default
count size default
output void pointer

21

Type Signature22
C

typedef ompd_rc_t (*ompd_callback_device_host_fn_t) (23
ompd_address_space_context_t *address_space_context,24
const void *input, ompd_size_t unit_size, ompd_size_t count,25
void *output);26

C

842 OpenMP API – Version 6.0 November 2024

Semantics1
The architecture on which the third-party tool and the OMPD library execute may be different from2
the architecture on which the OpenMP program that is being examined executes. Thus, the3
conventions for representing data may differ. The callback interface includes operations to convert4
between the conventions, such as the byte order (endianness), that the tool and OMPD library use5
and the ones that the OpenMP program uses. The device_host OMPD type is the type6
signature of the device_to_host and host_to_device callbacks that the tool provides to7
convert data between formats.8

The address_space_context argument specifies the address space that is associated with the data.9
The input argument is the source buffer and the output argument is the destination buffer. The10
unit_size argument is the size of each of the elements to be converted. The count argument is the11
number of elements to be transformed.12

The OMPD library allocates and owns the input and output buffers. It must ensure that the buffers13
have the correct size and are eventually deallocated when they are no longer needed.14

Cross References15

• OMPD address_space_context Type, see Section 39.316

• device_to_host Callback, see Section 40.4.217

• host_to_device Callback, see Section 40.4.318

• OMPD rc Type, see Section 39.919

• OMPD size Type, see Section 39.1220

40.4.2 device_to_host Callback21

Name: device_to_host
Category: function

Properties: C-only, common-type-
callback, device-translating, OMPD22

Type Signature23
device_host24

Semantics25
The device_to_host is the device-translating callback that translates data that is read from the26
OpenMP program.27

Cross References28

• OMPD device_host Type, see Section 40.4.129

40.4.3 host_to_device Callback30

Name: host_to_device
Category: function

Properties: C-only, common-type-
callback, device-translating, OMPD31

CHAPTER 40. OMPD CALLBACK INTERFACE 843

Type Signature1
device_host2

Semantics3
The host_to_device is the device-translating callback that translates data that is to be written4
to the OpenMP program.5

Cross References6

• OMPD device_host Type, see Section 40.4.17

40.5 print_string Callback8

Name: print_string
Category: function

Properties: C-only, OMPD
9

Return Type and Arguments10
Name Type Properties
<return type> rc default
string char intent(in), pointer
category integer default

11

Type Signature12
C

typedef ompd_rc_t (*ompd_callback_print_string_fn_t) (13
const char *string, int category);14

C
Semantics15
A tool provides a print_string callback, which has the print_string OMPD type, that the16
OMPD library may call to emit output, such as logging or debug information. The tool may set the17
print_string callback to NULL to prevent the OMPD library from emitting output. The18
OMPD library may not write to file descriptors that it did not open. The string argument is the19
null-terminated string to be printed; no conversion or formatting is performed on the string. The20
category argument is the implementation defined category of the string to be printed.21

Cross References22

• OMPD rc Type, see Section 39.923

844 OpenMP API – Version 6.0 November 2024

41 OMPD Routines1

This chapter defines the OMPD routines, which are routines that have the OMPD property and,2
thus, are provided by the OMPD library to be used by third-party tools. Some OMPD routines3
require one or more specified threads to be stopped for the returned values to be meaningful. In this4
context, a stopped thread is a thread that is not modifying the observable OpenMP runtime state.5

41.1 OMPD Library Initialization and Finalization6

The OMPD library must be initialized exactly once after it is loaded, and finalized exactly once7
before it is unloaded. Per OpenMP process or core file initialization and finalization are also8
required. Once loaded, the tool can determine the version of the OMPD API that the library9
supports by calling ompd_get_api_version. If the tool supports the version that10
ompd_get_api_version returns, the tool starts the initialization by calling11
ompd_initialize using the version of the OMPD API that the library supports. If the tool12
does not support the version that ompd_get_api_version returns, it may attempt to call13
ompd_initialize with a different version.14

Cross References15

• ompd_get_api_version Routine, see Section 41.1.216

• ompd_initialize Routine, see Section 41.1.117

41.1.1 ompd_initialize Routine18

Name: ompd_initialize
Category: function

Properties: C-only, OMPD
19

Return Type and Arguments20
Name Type Properties
<return type> rc default
api_version word default
callbacks callbacks intent(in), pointer

21

Prototypes22
C

ompd_rc_t ompd_initialize(ompd_word_t api_version,23
const ompd_callbacks_t *callbacks);24

C

CHAPTER 41. OMPD ROUTINES 845

Semantics1
A tool that uses OMPD calls ompd_initialize to initialize each OMPD library that it loads.2
More than one library may be present in a third-party tool because the tool may control multiple3
devices, which may use different runtime systems that require different OMPD libraries. This4
initialization must be performed exactly once before the tool can begin to operate on an OpenMP5
process or core file.6

The api_version argument is the OMPD API version that the tool requests to use. The tool may call7
ompd_get_api_version to obtain the latest OMPD API version that the OMPD library8
supports.9

The tool provides the OMPD library with a set of callbacks in the callbacks input argument, which10
enables the OMPD library to allocate and to deallocate memory in the address space of the tool, to11
lookup the sizes of basic primitive types in the device, to lookup symbols in the device, and to read12
and to write memory in the device.13

This routine returns ompd_rc_bad_input if invalid callbacks are provided. In addition to the14
return codes permitted for all OMPD routines, this routine may return ompd_rc_unsupported15
if the requested API version cannot be provided.16

Cross References17

• OMPD callbacks Type, see Section 39.418

• ompd_get_api_version Routine, see Section 41.1.219

• OMPD rc Type, see Section 39.920

• OMPD word Type, see Section 39.1721

41.1.2 ompd_get_api_version Routine22

Name: ompd_get_api_version
Category: function

Properties: C-only, OMPD
23

Return Type and Arguments24
Name Type Properties
<return type> rc default
api_version word pointer

25

Prototypes26
C

ompd_rc_t ompd_get_api_version(ompd_word_t *api_version);27

C
Semantics28
The tool may call the ompd_get_api_version routine to obtain the latest OMPD API version29
number of the OMPD library. The OMPD API version number is equal to the value of the30
_OPENMP macro defined in the associated OpenMP implementation, if the C preprocessor is31

846 OpenMP API – Version 6.0 November 2024

supported. If the associated OpenMP implementation compiles Fortran codes without the use of a1
C preprocessor, the OMPD API version number is equal to the value of the openmp_version2
predefined identifier. The latest version number is returned into the location to which the version3
argument points.4

Cross References5

• ompd_initialize Routine, see Section 41.1.16

• OMPD rc Type, see Section 39.97

• OMPD word Type, see Section 39.178

41.1.3 ompd_get_version_string Routine9

Name: ompd_get_version_string
Category: function

Properties: C-only, OMPD
10

Return Type and Arguments11
Name Type Properties
<return type> rc default
string const char intent(out), pointer-to-

pointer

12

Prototypes13
C

ompd_rc_t ompd_get_version_string(const char **string);14

C
Semantics15
The ompd_get_version_string routine returns a pointer to a descriptive version string of16
the OMPD library vendor, implementation, internal version, date, or any other information that may17
be useful to a tool user or vendor. An implementation should provide a different string for every18
change to its source code or build that could be visible to the OMPD user.19

A pointer to a descriptive version string is placed into the location to which the string output20
argument points. The OMPD library owns the string that the OMPD library returns; the tool must21
not modify or release this string. The string remains valid for as long as the library is loaded. The22
ompd_get_version_string routine may be called before ompd_initialize.23
Accordingly, the OMPD library must not use heap or stack memory for the string.24

The signatures of ompd_get_api_version and ompd_get_version_string are25
guaranteed not to change in future versions of OMPD. In contrast, the type definitions and26
prototypes in the rest of OMPD do not carry the same guarantee. Therefore a tool that uses OMPD27
should check the version of the loaded OMPD library before it calls any other OMPD routine.28

CHAPTER 41. OMPD ROUTINES 847

Cross References1

• OMPD address_space_handle Type, see Section 39.18.12

• ompd_get_api_version Routine, see Section 41.1.23

• OMPD rc Type, see Section 39.94

41.1.4 ompd_finalize Routine5

Name: ompd_finalize
Category: function

Properties: C-only, OMPD
6

Return Type7
Name Type Properties
<return type> rc default8

Prototypes9
C

ompd_rc_t ompd_finalize(void);10

C
Semantics11
When the tool is finished with the OMPD library, it should call ompd_finalize before it12
unloads the library. The call to the ompd_finalize routine must be the last OMPD call that the13
tool makes before it unloads the library. This routine allows the OMPD library to free any resources14
that it may be holding. The OMPD library may implement a finalizer section, which executes as the15
library is unloaded and therefore after the call to ompd_finalize. During finalization, the16
OMPD library may use the callbacks that the tool provided earlier during the call to17
ompd_initialize. In addition to the return codes permitted for all OMPD routines, this18
routine returns ompd_rc_unsupported if the OMPD library is not initialized.19

Cross References20

• OMPD rc Type, see Section 39.921

41.2 Process Initialization and Finalization22

41.2.1 ompd_process_initialize Routine23

Name: ompd_process_initialize
Category: function

Properties: C-only, OMPD
24

848 OpenMP API – Version 6.0 November 2024

Return Type and Arguments1
Name Type Properties
<return type> rc default
context address_space_context opaque, pointer
host_handle address_space_handle opaque, pointer-to-

pointer

2

Prototypes3
C

ompd_rc_t ompd_process_initialize(4
ompd_address_space_context_t *context,5
ompd_address_space_handle_t **host_handle);6

C
Semantics7
A tool calls ompd_process_initialize to obtain an address space handle for the host device8
when it initializes a session on an OpenMP process or core file. On return from9
ompd_process_initialize, the tool owns the address space handle, which it must release10
with ompd_rel_address_space_handle. The initialization function must be called before11
any OMPD operations are performed on the OpenMP process or core file. This routine allows the12
OMPD library to confirm that it can handle the OpenMP process or core file that context identifies.13

The context argument is an opaque handle that the tool provides to address an address space from14
the host device. On return, the host_handle argument provides an opaque handle to the tool for this15
address space, which the tool must release when it is no longer needed.16

In addition to the return codes permitted for all OMPD routines, this routine returns17
ompd_rc_incompatible if the OMPD library is incompatible with the runtime library loaded18
in the process.19

Cross References20

• OMPD address_space_context Type, see Section 39.321

• OMPD address_space_handle Type, see Section 39.18.122

• ompd_rel_address_space_handle Routine, see Section 41.8.123

• OMPD rc Type, see Section 39.924

41.2.2 ompd_device_initialize Routine25

Name: ompd_device_initialize
Category: function

Properties: C-only, OMPD
26

CHAPTER 41. OMPD ROUTINES 849

Return Type and Arguments1
Name Type Properties
<return type> rc default
host_handle address_space_handle opaque, pointer
device_context address_space_context opaque, pointer
kind device default
sizeof_id size pointer
id void pointer
device_handle address_space_handle opaque, pointer-to-

pointer

2

Prototypes3
C

ompd_rc_t ompd_device_initialize(4
ompd_address_space_handle_t *host_handle,5
ompd_address_space_context_t *device_context,6
ompd_device_t kind, ompd_size_t *sizeof_id, void *id,7
ompd_address_space_handle_t **device_handle);8

C
Semantics9
A tool calls ompd_device_initialize to obtain an address space handle for a non-host10
device that has at least one active target region. On return from11
ompd_device_initialize, the tool owns the address space handle. The host_handle12
argument is an opaque handle that the tool provides to reference the host device address space13
associated with an OpenMP process or core file. The device_context argument is an opaque handle14
that the tool provides to reference a non-host device address space. The kind, sizeof_id, and id15
arguments represent a device identifier. On return the device_handle argument provides an opaque16
handle to the tool for this address space.17

In addition to the return codes permitted for all OMPD routines, this routine may return18
ompd_rc_unsupported if the OMPD library has no support for the specific device.19

Cross References20

• OMPD address_space_context Type, see Section 39.321

• OMPD address_space_handle Type, see Section 39.18.122

• OMPD device Type, see Section 39.523

• OMPD rc Type, see Section 39.924

• OMPD size Type, see Section 39.1225

850 OpenMP API – Version 6.0 November 2024

41.2.3 ompd_get_device_thread_id_kinds Routine1

Name:
ompd_get_device_thread_id_kinds
Category: function

Properties: C-only, OMPD
2

Return Type and Arguments3
Name Type Properties
<return type> rc default
device_handle address_space_handle opaque, pointer
kinds thread_id pointer-to-pointer
thread_id_sizes size pointer-to-pointer
count integer pointer

4

Prototypes5
C

ompd_rc_t ompd_get_device_thread_id_kinds(6
ompd_address_space_handle_t *device_handle,7
ompd_thread_id_t **kinds, ompd_size_t **thread_id_sizes,8
int *count);9

C
Semantics10
The ompd_get_device_thread_id_kinds routine returns an array of supported native11
thread identifier kinds and a corresponding array of their respective sizes for a given device. The12
OMPD library allocates storage for the arrays with the memory allocation callback that the tool13
provides. Each supported native thread identifier kind is guaranteed to be recognizable by the14
OMPD library and may be mapped to and from any OpenMP thread that executes on the device.15
The third-party tool owns the storage for the array of kinds and the array of sizes that is returned via16
the kinds and thread_id_sizes arguments, and it is responsible for freeing that storage.17

The device_handle argument is a pointer to an opaque address space handle that represents a host18
device (returned by ompd_process_initialize) or a non-host device (returned by19
ompd_device_initialize). On return, the kinds argument is the address of a pointer to an20
array of native thread identifier kinds, the thread_id_sizes argument is the address of a pointer to an21
array of the corresponding native thread identifier sizes used by the OMPD library, and the count22
argument is the address of a variable that indicates the sizes of the returned arrays.23

Cross References24

• OMPD address_space_handle Type, see Section 39.18.125

• ompd_device_initialize Routine, see Section 41.2.226

• ompd_process_initialize Routine, see Section 41.2.127

• OMPD rc Type, see Section 39.928

CHAPTER 41. OMPD ROUTINES 851

• OMPD size Type, see Section 39.121

• OMPD thread_id Type, see Section 39.152

41.3 Address Space Information3

41.3.1 ompd_get_omp_version Routine4

Name: ompd_get_omp_version
Category: function

Properties: C-only, OMPD
5

Return Type and Arguments6
Name Type Properties
<return type> rc default
address_space address_space_handle opaque, pointer
omp_version word pointer

7

Prototypes8
C

ompd_rc_t ompd_get_omp_version(9
ompd_address_space_handle_t *address_space,10
ompd_word_t *omp_version);11

C
Semantics12
The tool may call the ompd_get_omp_version routine to obtain the version of the OpenMP13
API that is associated with the address space address_space. The address_space argument is an14
opaque handle that the tool provides to reference the address space of the process or device. Upon15
return, the omp_version argument contains the version of the OpenMP runtime in the _OPENMP16
version macro format.17

Cross References18

• OMPD address_space_handle Type, see Section 39.18.119

• OMPD rc Type, see Section 39.920

• OMPD word Type, see Section 39.1721

41.3.2 ompd_get_omp_version_string Routine22

Name: ompd_get_omp_version_string
Category: function

Properties: C-only, OMPD
23

852 OpenMP API – Version 6.0 November 2024

Return Type and Arguments1
Name Type Properties
<return type> rc default
address_space address_space_handle opaque, pointer
string const char intent(out), pointer-to-

pointer

2

Prototypes3
C

ompd_rc_t ompd_get_omp_version_string(4
ompd_address_space_handle_t *address_space, const char **string);5

C
Semantics6
The ompd_get_omp_version_string routine returns a descriptive string for the OpenMP7
API version that is associated with an address space. The address_space argument is an opaque8
handle that the tool provides to reference the address space of a process or device. A pointer to a9
descriptive version string is placed into the location to which the string output argument points.10
After returning from the routine, the tool owns the string. The OMPD library must use the memory11
allocation callback that the tool provides to allocate the string storage. The tool is responsible for12
releasing the memory.13

Cross References14

• OMPD Handle Types, see Section 39.1815

• OMPD rc Type, see Section 39.916

41.4 Thread Handle Routines17

41.4.1 ompd_get_thread_in_parallel Routine18

Name: ompd_get_thread_in_parallel
Category: function

Properties: C-only, OMPD
19

Return Type and Arguments20
Name Type Properties
<return type> rc default
parallel_handle parallel_handle opaque, pointer
thread_num integer default
thread_handle thread_handle opaque, pointer-to-

pointer

21

CHAPTER 41. OMPD ROUTINES 853

Prototypes1
C

ompd_rc_t ompd_get_thread_in_parallel(2
ompd_parallel_handle_t *parallel_handle, int thread_num,3
ompd_thread_handle_t **thread_handle);4

C
Semantics5
The ompd_get_thread_in_parallel routine enables a tool to obtain handles for OpenMP6
threads that are associated with a parallel region. A successful invocation of7
ompd_get_thread_in_parallel returns a pointer to a native thread handle in the location8
to which thread_handle points. This routine yields meaningful results only if all OpenMP threads9
in the team that is executing the parallel region are stopped.10

The parallel_handle argument is an opaque handle for a parallel region and selects the parallel11
region on which to operate. The thread_num argument represents the thread number and selects the12
thread, the handle for which is to be returned. On return, the thread_handle argument is a handle13
for the selected thread.14

This routine returns ompd_rc_bad_input if the thread_num argument is greater than or equal15
to the team-size-var ICV or negative, in which case the value returned in thread_handle is invalid.16

Cross References17

• ompd_get_icv_from_scope Routine, see Section 41.11.218

• OMPD parallel_handle Type, see Section 39.18.219

• OMPD rc Type, see Section 39.920

• OMPD thread_handle Type, see Section 39.18.421

41.4.2 ompd_get_thread_handle Routine22

Name: ompd_get_thread_handle
Category: function

Properties: C-only, OMPD
23

Return Type and Arguments24
Name Type Properties
<return type> rc default
handle address_space_handle pointer
kind thread_id default
sizeof_thread_id size default
thread_id void intent(in), pointer
thread_handle thread_handle pointer-to-pointer

25

854 OpenMP API – Version 6.0 November 2024

Prototypes1
C

ompd_rc_t ompd_get_thread_handle(2
ompd_address_space_handle_t *handle, ompd_thread_id_t kind,3
ompd_size_t sizeof_thread_id, const void *thread_id,4
ompd_thread_handle_t **thread_handle);5

C
Semantics6
The ompd_get_thread_handle routine maps a native thread to a native thread handle.7
Further, the routine determines if the native thread identifier to which thread_id points represents an8
OpenMP thread. If so, the routine returns ompd_rc_ok and the location to which thread_handle9
points is set to the native thread handle for the native thread to which the OpenMP thread is mapped.10

The handle argument is a handle that the tool provides to reference an address space. The kind,11
sizeof_thread_id, and thread_id arguments represent a native thread identifier. On return, the12
thread_handle argument provides a handle to the native thread within the provided address space.13

The native thread identifier to which thread_id points must be valid for the duration of the call to14
the routine. If the OMPD library must retain the native thread identifier, it must copy it.15

This routine returns ompd_rc_bad_input if a different value in sizeof_thread_id is expected16
for a thread kind of kind. In addition to the return codes permitted for all OMPD routines, this17
routine returns ompd_rc_unsupported if the kind of thread is not supported and it returns18
ompd_rc_unavailable if the native thread is not an OpenMP thread.19

Cross References20

• OMPD address_space_handle Type, see Section 39.18.121

• OMPD rc Type, see Section 39.922

• OMPD size Type, see Section 39.1223

• OMPD thread_handle Type, see Section 39.18.424

• OMPD thread_id Type, see Section 39.1525

41.4.3 ompd_get_thread_id Routine26

Name: ompd_get_thread_id
Category: function

Properties: C-only, OMPD
27

CHAPTER 41. OMPD ROUTINES 855

Return Type and Arguments1
Name Type Properties
<return type> rc default
thread_handle thread_handle pointer
kind thread_id default
sizeof_thread_id size default
thread_id void pointer

2

Prototypes3
C

ompd_rc_t ompd_get_thread_id(ompd_thread_handle_t *thread_handle,4
ompd_thread_id_t kind, ompd_size_t sizeof_thread_id,5
void *thread_id);6

C
Semantics7
The ompd_get_thread_id routine maps a native thread handle to a native thread identifier.8
This routine yields meaningful results only if the referenced OpenMP thread is stopped. The9
thread_handle argument is a native thread handle. The kind argument represents the native thread10
identifier. The sizeof_thread_id argument represents the size of the native thread identifier. On11
return, the thread_id argument is a buffer that represents a native thread identifier.12

This routine returns ompd_rc_bad_input if a different value in sizeof_thread_id is expected13
for a native thread kind of kind. In addition to the return codes permitted for all OMPD routines,14
this routine returns ompd_rc_unsupported if the kind of native thread is not supported.15

Cross References16

• OMPD rc Type, see Section 39.917

• OMPD size Type, see Section 39.1218

• OMPD thread_handle Type, see Section 39.18.419

• OMPD thread_id Type, see Section 39.1520

41.4.4 ompd_get_device_from_thread Routine21

Name: ompd_get_device_from_thread
Category: function

Properties: C-only, OMPD
22

Return Type and Arguments23
Name Type Properties
<return type> rc default
thread_handle thread_handle pointer
device address_space_handle pointer-to-pointer

24

856 OpenMP API – Version 6.0 November 2024

Prototypes1
C

ompd_rc_t ompd_get_device_from_thread(2
ompd_thread_handle_t *thread_handle,3
ompd_address_space_handle_t **device);4

C
Semantics5
The ompd_get_device_from_thread routine obtains a pointer to the address space handle6
for a device on which an OpenMP thread is executing. The returned pointer will be the same as the7
address space handle pointer that was previously returned by a call to8
ompd_process_initialize (for a host device) or a call to ompd_device_initialize9
(for a non-host device). This routine yields meaningful results only if the referenced OpenMP10
thread is stopped.11

The thread_handle argument is a pointer to a native thread handle that represents a native thread to12
which an OpenMP thread is mapped. On return, the device argument is the address of a pointer to13
an address space handle.14

Cross References15

• OMPD address_space_handle Type, see Section 39.18.116

• OMPD rc Type, see Section 39.917

• OMPD thread_handle Type, see Section 39.18.418

41.5 Parallel Region Handle Routines19

41.5.1 ompd_get_curr_parallel_handle Routine20

Name: ompd_get_curr_parallel_handle
Category: function

Properties: C-only, OMPD
21

Return Type and Arguments22
Name Type Properties
<return type> rc default
thread_handle thread_handle opaque, pointer
parallel_handle parallel_handle opaque, pointer-to-

pointer

23

CHAPTER 41. OMPD ROUTINES 857

Prototypes1
C

ompd_rc_t ompd_get_curr_parallel_handle(2
ompd_thread_handle_t *thread_handle,3
ompd_parallel_handle_t **parallel_handle);4

C
Semantics5
The ompd_get_curr_parallel_handle routine enables a tool to obtain a pointer to the6
parallel handle for the innermost parallel region that is associated with an OpenMP thread. This7
routine yields meaningful results only if the referenced OpenMP thread is stopped. The parallel8
handle is owned by the tool and it must be released by calling ompd_rel_parallel_handle.9

The thread_handle argument is an opaque handle for a thread and selects the thread on which to10
operate. On return, the parallel_handle argument is set to a handle for the parallel region that the11
associated thread is currently executing, if any.12

In addition to the return codes permitted for all OMPD routines, this routine returns13
ompd_rc_unavailable if the thread is not currently part of a team.14

Cross References15

• ompd_rel_parallel_handle Routine, see Section 41.8.216

• OMPD parallel_handle Type, see Section 39.18.217

• OMPD rc Type, see Section 39.918

• OMPD thread_handle Type, see Section 39.18.419

41.5.2 ompd_get_enclosing_parallel_handle Routine20

Name:
ompd_get_enclosing_parallel_handle
Category: function

Properties: C-only, OMPD
21

Return Type and Arguments22
Name Type Properties
<return type> rc default
parallel_handle parallel_handle opaque, pointer
enclosing_parallel_handle parallel_handle opaque, pointer-to-

pointer

23

858 OpenMP API – Version 6.0 November 2024

Prototypes1
C

ompd_rc_t ompd_get_enclosing_parallel_handle(2
ompd_parallel_handle_t *parallel_handle,3
ompd_parallel_handle_t **enclosing_parallel_handle);4

C
Semantics5
The ompd_get_enclosing_parallel_handle routine enables a tool to obtain a pointer to6
the parallel handle for the parallel region that encloses the parallel region that parallel_handle7
specifies. This routine yields meaningful results only if at least one thread in the team that is8
executing the parallel region is stopped. A pointer to the parallel handle for the enclosing region is9
returned in the location to which enclosing_parallel_handle points. After a call to this routine, the10
tool owns the handle; the tool must release the handle with ompd_rel_parallel_handle11
when it is no longer required. The parallel_handle argument is an opaque handle for a parallel12
region that selects the parallel region on which to operate.13

In addition to the return codes permitted for all OMPD routines, this routine returns14
ompd_rc_unavailable if no enclosing parallel region exists.15

Cross References16

• ompd_rel_parallel_handle Routine, see Section 41.8.217

• OMPD parallel_handle Type, see Section 39.18.218

• OMPD rc Type, see Section 39.919

41.5.3 ompd_get_task_parallel_handle Routine20

Name: ompd_get_task_parallel_handle
Category: function

Properties: C-only, OMPD
21

Return Type and Arguments22
Name Type Properties
<return type> rc default
task_handle task_handle pointer
task_parallel_handle parallel_handle pointer-to-pointer

23

Prototypes24
C

ompd_rc_t ompd_get_task_parallel_handle(25
ompd_task_handle_t *task_handle,26
ompd_parallel_handle_t **task_parallel_handle);27

C

CHAPTER 41. OMPD ROUTINES 859

Semantics1
The ompd_get_task_parallel_handle routine enables a tool to obtain a pointer to the2
parallel handle for the parallel region that encloses the task region that task_handle specifies. This3
routine yields meaningful results only if at least one thread in the team that is executing the parallel4
region is stopped. A pointer to the parallel handle is returned in the location to which5
task_parallel_handle points. The tool owns that parallel handle, which it must release with6
ompd_rel_parallel_handle.7

Cross References8

• ompd_rel_parallel_handle Routine, see Section 41.8.29

• OMPD parallel_handle Type, see Section 39.18.210

• OMPD rc Type, see Section 39.911

• OMPD task_handle Type, see Section 39.18.312

41.6 Task Handle Routines13

41.6.1 ompd_get_curr_task_handle Routine14

Name: ompd_get_curr_task_handle
Category: function

Properties: C-only, OMPD
15

Return Type and Arguments16
Name Type Properties
<return type> rc default
thread_handle thread_handle opaque, pointer
task_handle task_handle opaque, pointer-to-

pointer

17

Prototypes18
C

ompd_rc_t ompd_get_curr_task_handle(19
ompd_thread_handle_t *thread_handle,20
ompd_task_handle_t **task_handle);21

C
Semantics22
The ompd_get_curr_task_handle routine obtains a pointer to the task handle for the23
current task region that is associated with an OpenMP thread. This routine yields meaningful24
results only if the thread for which the handle is provided is stopped. The task handle must be25
released with ompd_rel_task_handle. The thread_handle argument is an opaque handle that26
selects the thread on which to operate. On return, the task_handle argument points to a location that27
points to a handle for the task that the thread is currently executing. In addition to the return codes28
permitted for all OMPD routines, this routine returns ompd_rc_unavailable if the thread is29
currently not executing a task.30

860 OpenMP API – Version 6.0 November 2024

Cross References1

• ompd_rel_task_handle Routine, see Section 41.8.32

• OMPD rc Type, see Section 39.93

• OMPD task_handle Type, see Section 39.18.34

• OMPD thread_handle Type, see Section 39.18.45

41.6.2 ompd_get_generating_task_handle Routine6

Name:
ompd_get_generating_task_handle
Category: function

Properties: C-only, OMPD
7

Return Type and Arguments8
Name Type Properties
<return type> rc default
task_handle task_handle pointer
generating_task_handle task_handle pointer-to-pointer

9

Prototypes10
C

ompd_rc_t ompd_get_generating_task_handle(11
ompd_task_handle_t *task_handle,12
ompd_task_handle_t **generating_task_handle);13

C
Semantics14
The ompd_get_generating_task_handle routine obtains a pointer to the task handle of15
the generating task region. The generating task is the task that was active when the task specified by16
task_handle was created. This routine yields meaningful results only if the thread that is executing17
the task that task_handle specifies is stopped while executing the task. The generating task handle18
must be released with ompd_rel_task_handle. On return, the generating_task_handle19
argument points to a location that points to a handle for the generating task. In addition to the return20
codes permitted for all OMPD routines, this routine returns ompd_rc_unavailable if no21
generating task region exists.22

Cross References23

• ompd_rel_task_handle Routine, see Section 41.8.324

• OMPD rc Type, see Section 39.925

• OMPD task_handle Type, see Section 39.18.326

CHAPTER 41. OMPD ROUTINES 861

41.6.3 ompd_get_scheduling_task_handle Routine1

Name:
ompd_get_scheduling_task_handle
Category: function

Properties: C-only, OMPD
2

Return Type and Arguments3
Name Type Properties
<return type> rc default
task_handle task_handle pointer
scheduling_task_handle task_handle pointer-to-pointer

4

Prototypes5
C

ompd_rc_t ompd_get_scheduling_task_handle(6
ompd_task_handle_t *task_handle,7
ompd_task_handle_t **scheduling_task_handle);8

C
Semantics9
The ompd_get_scheduling_task_handle routine obtains a task handle for the task that10
was active when the task that task_handle represents was scheduled. An implicit task does not have11
a scheduling task. This routine yields meaningful results only if the thread that is executing the task12
that task_handle specifies is stopped while executing the task. On return, the13
scheduling_task_handle argument points to a location that points to a handle for the task that is still14
on the stack of execution on the same thread and was deferred in favor of executing the selected15
task. This task handle must be released with ompd_rel_task_handle. In addition to the16
return codes permitted for all OMPD routines, this routine returns ompd_rc_unavailable if17
no scheduling task exists.18

Cross References19

• ompd_rel_task_handle Routine, see Section 41.8.320

• OMPD rc Type, see Section 39.921

• OMPD task_handle Type, see Section 39.18.322

41.6.4 ompd_get_task_in_parallel Routine23

Name: ompd_get_task_in_parallel
Category: function

Properties: C-only, OMPD
24

862 OpenMP API – Version 6.0 November 2024

Return Type and Arguments1
Name Type Properties
<return type> rc default
parallel_handle parallel_handle opaque, pointer
thread_num integer default
task_handle task_handle opaque, pointer-to-

pointer

2

Prototypes3
C

ompd_rc_t ompd_get_task_in_parallel(4
ompd_parallel_handle_t *parallel_handle, int thread_num,5
ompd_task_handle_t **task_handle);6

C
Semantics7
The ompd_get_task_in_parallel routine obtains handles for the implicit tasks that are8
associated with a parallel region. A successful invocation of ompd_get_task_in_parallel9
returns a pointer to a task handle in the location to which task_handle points. This routine yields10
meaningful results only if all OpenMP threads in the parallel region are stopped. The11
parallel_handle argument is an opaque handle that selects the parallel region on which to operate.12
The thread_num argument selects the implicit task of the team to be returned. The thread_num13
argument is equal to the thread-num-var ICV value of the selected implicit task. This routine14
returns ompd_rc_bad_input if the thread_num argument is greater than or equal to the15
team-size-var ICV or negative.16

Cross References17

• ompd_get_icv_from_scope Routine, see Section 41.11.218

• OMPD parallel_handle Type, see Section 39.18.219

• OMPD rc Type, see Section 39.920

• OMPD task_handle Type, see Section 39.18.321

41.6.5 ompd_get_task_function Routine22

Name: ompd_get_task_function
Category: function

Properties: C-only, OMPD
23

Return Type and Arguments24
Name Type Properties
<return type> rc default
task_handle task_handle opaque, pointer
entry_point address pointer

25

CHAPTER 41. OMPD ROUTINES 863

Prototypes1
C

ompd_rc_t ompd_get_task_function(ompd_task_handle_t *task_handle,2
ompd_address_t *entry_point);3

C
Semantics4
The ompd_get_task_function routine returns the entry point of the code that corresponds to5
the body of code that the task executes. This routine returns meaningful results only if the thread6
that is executing the task that task_handle specifies is stopped while executing the task. That7
argument is an opaque handle that selects the task on which to operate. On return, the entry_point8
argument is set to an address that describes the beginning of application code that executes the task9
region.10

Cross References11

• OMPD address Type, see Section 39.212

• OMPD rc Type, see Section 39.913

• OMPD task_handle Type, see Section 39.18.314

41.6.6 ompd_get_task_frame Routine15

Name: ompd_get_task_frame
Category: function

Properties: C-only, OMPD
16

Return Type and Arguments17
Name Type Properties
<return type> rc default
task_handle task_handle pointer
exit_frame frame_info pointer
enter_frame frame_info pointer

18

Prototypes19
C

ompd_rc_t ompd_get_task_frame(ompd_task_handle_t *task_handle,20
ompd_frame_info_t *exit_frame, ompd_frame_info_t *enter_frame);21

C
Semantics22
The ompd_get_task_frame routine extracts the frame pointers of a task. An OpenMP23
implementation maintains an object of frame OMPT type for every implicit task and explicit task.24
The ompd_get_task_frame routine extracts the enter_frame and exit_frame fields of25
the frame object of the task that task_handle identifies. This routine yields meaningful results only26
if the thread that is executing the task that task_handle specifies is stopped while executing the task.27

864 OpenMP API – Version 6.0 November 2024

On return, the exit_frame argument points to a frame_info object that has the frame information1
with the same semantics as the exit_frame field in the frame object that is associated with the2
specified task. On return, the enter_frame argument points to a frame_info object that has the3
frame information with the same semantics as the enter_frame field in the frame object that is4
associated with the specified task.5

Cross References6

• OMPD address Type, see Section 39.27

• OMPT frame Type, see Section 33.158

• OMPD frame_info Type, see Section 39.79

• OMPD rc Type, see Section 39.910

• OMPD task_handle Type, see Section 39.18.311

41.7 Handle Comparing Routines12

This section describes handle-comparing routines, which are routines that have the13
handle-comparing property and, thus, enable the comparison of two handles. The internal structure14
of handles is opaque to tools. While tools can easily compare pointers to handles, they cannot15
determine whether handles at two different addresses refer to the same underlying context and16
instead must use a handle-comparing routine.17

On success, a handle-comparing routine returns, in the location to which its cmp_value argument18
points, a signed integer value that indicates how the underlying contexts compare. A value less than,19
equal to, or greater than 0 indicates that the context to which <handle-type>_handle_1 corresponds20
is, respectively, less than, equal to, or greater than that to which <handle-type>_handle_221
corresponds. The <handle-type>_handle_1 and <handle-type>_handle_2 arguments are handles22
that correspond to the type of handle that the routine compares. In each handle-comparing routine,23
<handle-type> is replaced with the name of the type of handle that the routine compares. For all24
types of handles, the means by which two handles are ordered is implementation defined.25

41.7.1 ompd_parallel_handle_compare Routine26

Name: ompd_parallel_handle_compare
Category: function

Properties: C-only, handle-comparing,
OMPD27

Return Type and Arguments28
Name Type Properties
<return type> rc default
parallel_handle_1 parallel_handle opaque, pointer
parallel_handle_2 parallel_handle opaque, pointer
cmp_value integer pointer

29

CHAPTER 41. OMPD ROUTINES 865

Prototypes1
C

ompd_rc_t ompd_parallel_handle_compare(2
ompd_parallel_handle_t *parallel_handle_1,3
ompd_parallel_handle_t *parallel_handle_2, int *cmp_value);4

C
Semantics5
The ompd_parallel_handle_compare routine compares two parallel handles. The6
parallel_handle_1 and parallel_handle_2 arguments are parallel handles that correspond to parallel7
regions.8

Cross References9

• OMPD parallel_handle Type, see Section 39.18.210

• OMPD rc Type, see Section 39.911

41.7.2 ompd_task_handle_compare Routine12

Name: ompd_task_handle_compare
Category: function

Properties: C-only, handle-comparing,
OMPD13

Return Type and Arguments14
Name Type Properties
<return type> rc default
task_handle_1 task_handle opaque, pointer
task_handle_2 task_handle opaque, pointer
cmp_value integer pointer

15

Prototypes16
C

ompd_rc_t ompd_task_handle_compare(17
ompd_task_handle_t *task_handle_1,18
ompd_task_handle_t *task_handle_2, int *cmp_value);19

C
Semantics20
The ompd_task_handle_compare routine compares two task handles. The task_handle_121
and task_handle_2 arguments are task handles that correspond to tasks.22

Cross References23

• OMPD rc Type, see Section 39.924

• OMPD task_handle Type, see Section 39.18.325

866 OpenMP API – Version 6.0 November 2024

41.7.3 ompd_thread_handle_compare Routine1

Name: ompd_thread_handle_compare
Category: function

Properties: C-only, handle-comparing,
OMPD2

Return Type and Arguments3
Name Type Properties
<return type> rc default
thread_handle_1 thread_handle opaque, pointer
thread_handle_2 thread_handle opaque, pointer
cmp_value integer pointer

4

Prototypes5
C

ompd_rc_t ompd_thread_handle_compare(6
ompd_thread_handle_t *thread_handle_1,7
ompd_thread_handle_t *thread_handle_2, int *cmp_value);8

C
Semantics9
The ompd_thread_handle_compare routine compares two native thread handles. The10
thread_handle_1 and thread_handle_2 arguments are native thread handles that correspond to11
native threads.12

Cross References13

• OMPD rc Type, see Section 39.914

• OMPD thread_handle Type, see Section 39.18.415

41.8 Handle Releasing Routines16

This section describes handle-releasing routines, which are routines that have the handle-releasing17
property and, thus, release a handle owned by a tool. When a tool finishes with a handle that a18
handle argument identifies, it should release it with the corresponding handle-releasing routine so19
the OMPD library can release any resources that it has related to the corresponding context.20

Restrictions21
Restrictions to handle-releasing routines are as follows:22

• A context must not be used after its corresponding handle is released.23

41.8.1 ompd_rel_address_space_handle Routine24

Name: ompd_rel_address_space_handle
Category: function

Properties: C-only, handle-releasing,
OMPD25

CHAPTER 41. OMPD ROUTINES 867

Return Type and Arguments1
Name Type Properties
<return type> rc default
handle address_space_handle opaque, pointer

2

Prototypes3
C

ompd_rc_t ompd_rel_address_space_handle(4
ompd_address_space_handle_t *handle);5

C
Semantics6
A tool calls ompd_rel_address_space_handle to release an address space handle.7

Cross References8

• OMPD address_space_handle Type, see Section 39.18.19

• OMPD rc Type, see Section 39.910

41.8.2 ompd_rel_parallel_handle Routine11

Name: ompd_rel_parallel_handle
Category: function

Properties: C-only, handle-releasing,
OMPD12

Return Type and Arguments13
Name Type Properties
<return type> rc default
parallel_handle parallel_handle opaque, pointer

14

Prototypes15
C

ompd_rc_t ompd_rel_parallel_handle(16
ompd_parallel_handle_t *parallel_handle);17

C
Semantics18
A tool calls ompd_rel_parallel_handle to release a parallel handle.19

Cross References20

• OMPD parallel_handle Type, see Section 39.18.221

• OMPD rc Type, see Section 39.922

41.8.3 ompd_rel_task_handle Routine23

Name: ompd_rel_task_handle
Category: function

Properties: C-only, handle-releasing,
OMPD24

868 OpenMP API – Version 6.0 November 2024

Return Type and Arguments1
Name Type Properties
<return type> rc default
task_handle task_handle opaque, pointer

2

Prototypes3
C

ompd_rc_t ompd_rel_task_handle(ompd_task_handle_t *task_handle);4

C
Semantics5
A tool calls ompd_rel_task_handle to release a task handle.6

Cross References7

• OMPD rc Type, see Section 39.98

• OMPD task_handle Type, see Section 39.18.39

41.8.4 ompd_rel_thread_handle Routine10

Name: ompd_rel_thread_handle
Category: function

Properties: C-only, handle-releasing,
OMPD11

Return Type and Arguments12
Name Type Properties
<return type> rc default
thread_handle thread_handle opaque, pointer

13

Prototypes14
C

ompd_rc_t ompd_rel_thread_handle(15
ompd_thread_handle_t *thread_handle);16

C
Semantics17
A tool calls ompd_rel_thread_handle to release a native thread handle.18

Cross References19

• OMPD rc Type, see Section 39.920

• OMPD thread_handle Type, see Section 39.18.421

41.9 Querying Thread States22

41.9.1 ompd_enumerate_states Routine23

Name: ompd_enumerate_states
Category: function

Properties: C-only, OMPD
24

CHAPTER 41. OMPD ROUTINES 869

Return Type and Arguments1
Name Type Properties
<return type> rc default
address_space_handle address_space_handle opaque, pointer
current_state word default
next_state word pointer
next_state_name const char intent(out), pointer-to-

pointer
more_enums word pointer

2

Prototypes3
C

ompd_rc_t ompd_enumerate_states(4
ompd_address_space_handle_t *address_space_handle,5
ompd_word_t current_state, ompd_word_t *next_state,6
const char **next_state_name, ompd_word_t *more_enums);7

C
Semantics8
An OpenMP implementation may support only a subset of the states that the state OMPT type9
defines. In addition, an OpenMP implementation may support implementation defined states. The10
ompd_enumerate_states routine enumerates the thread states that an OpenMP11
implementation supports.12

When the current_state argument is a thread state that an OpenMP implementation supports, the13
routine assigns the value and string name of the next thread state in the enumeration to the locations14
to which the next_state and next_state_name arguments point. On return, the tool owns the15
next_state_name string. The OMPD library allocates storage for the string with the16
alloc_memory callback that the tool provides. The tool is responsible for releasing the storage.17
On return, the location to which the more_enums argument points has the value 1 whenever one or18
more states are left in the enumeration. On return, the location to which the more_enums argument19
points has the value 0 when current_state is the last state in the enumeration.20

The address_space_handle argument identifies the address space. The current_state argument must21
be a thread state that the OpenMP implementation supports. To begin enumerating the supported22
states, a tool should pass ompt_state_undefined as the value of current_state. Subsequent23
calls to ompd_enumerate_states by the tool should pass the value that the routine returned in24
the next_state argument. This routine returns ompd_rc_bad_input if an unknown value is25
provided in current_state.26

870 OpenMP API – Version 6.0 November 2024

Cross References1

• OMPD address_space_handle Type, see Section 39.18.12

• OMPD rc Type, see Section 39.93

• OMPT state Type, see Section 33.314

• OMPD word Type, see Section 39.175

41.9.2 ompd_get_state Routine6

Name: ompd_get_state
Category: function

Properties: C-only, OMPD
7

Return Type and Arguments8
Name Type Properties
<return type> rc default
thread_handle thread_handle opaque, pointer
state word pointer
wait_id wait_id pointer

9

Prototypes10
C

ompd_rc_t ompd_get_state(ompd_thread_handle_t *thread_handle,11
ompd_word_t *state, ompd_wait_id_t *wait_id);12

C
Semantics13
The ompd_get_state routine returns the state of an OpenMP thread. This routine yields14
meaningful results only if the referenced thread is stopped. The thread_handle argument identifies15
the thread. The state argument represents the state of that thread as represented by a value that16
ompd_enumerate_states returns. On return, if the wait_id argument is a non-null value then17
it points to a handle that corresponds to the wait_id wait identifier of the thread. If the thread state18
is not one of the specified wait states, the value to which wait_id points is undefined.19

Cross References20

• ompd_enumerate_states Routine, see Section 41.9.121

• OMPD rc Type, see Section 39.922

• OMPD thread_handle Type, see Section 39.18.423

• OMPD wait_id Type, see Section 39.1624

• OMPD word Type, see Section 39.1725

CHAPTER 41. OMPD ROUTINES 871

41.10 Display Control Variables1

41.10.1 ompd_get_display_control_vars Routine2

Name: ompd_get_display_control_vars
Category: function

Properties: C-only, OMPD
3

Return Type and Arguments4
Name Type Properties
<return type> rc default
address_space_handle address_space_handle opaque, pointer
control_vars const char * const * intent(out), pointer

5

Prototypes6
C

ompd_rc_t ompd_get_display_control_vars(7
ompd_address_space_handle_t *address_space_handle,8
const char * const * *control_vars);9

C
Semantics10
The ompd_get_display_control_vars routine returns a list of OpenMP control variables11
as a NULL-terminated vector of null-terminated strings of name/value pairs. These control12
variables have user-controllable settings and are important to the operation or performance of an13
OpenMP runtime system. The control variables that this interface exposes include all OpenMP14
environment variables, settings that may come from vendor or platform-specific environment15
variables, and other settings that affect the operation or functioning of an OpenMP runtime. The16
format of the strings is NAME ’=’ VALUE. NAME corresponds to the control variable name,17
optionally prepended with a bracketed DEVICE. VALUE corresponds to the value of the control18
variable.19

On return, the tool owns the vector and the strings. The OMPD library must satisfy the termination20
constraints; it may use static or dynamic memory for the vector and/or the strings and is21
unconstrained in how it arranges them in memory. If it uses dynamic memory then the OMPD22
library must use the alloc_memory callback that the tool provides. The tool must use the23
ompd_rel_display_control_vars routine to release the vector and the strings.24

The address_space_handle argument identifies the address space. On return, the control_vars25
argument points to the vector of display control variables.26

Cross References27

• OMPD address_space_handle Type, see Section 39.18.128

• ompd_initialize Routine, see Section 41.1.129

• ompd_rel_display_control_vars Routine, see Section 41.10.230

• OMPD rc Type, see Section 39.931

872 OpenMP API – Version 6.0 November 2024

41.10.2 ompd_rel_display_control_vars Routine1

Name: ompd_rel_display_control_vars
Category: function

Properties: C-only, OMPD
2

Return Type and Arguments3
Name Type Properties
<return type> rc default
control_vars const char * const * pointer

4

Prototypes5
C

ompd_rc_t ompd_rel_display_control_vars(6
const char * const * *control_vars);7

C
Semantics8
After a tool calls ompd_get_display_control_vars, it owns the vector and strings that it9
acquires. The tool must call ompd_rel_display_control_vars to release them. The10
control_vars argument is the vector of display control variables to be released.11

Cross References12

• ompd_get_display_control_vars Routine, see Section 41.10.113

• OMPD rc Type, see Section 39.914

41.11 Accessing Scope-Specific Information15

41.11.1 ompd_enumerate_icvs Routine16

Name: ompd_enumerate_icvs
Category: function

Properties: C-only, OMPD
17

Return Type and Arguments18
Name Type Properties
<return type> rc default
handle address_space_handle opaque, pointer
current icv_id default
next_id icv_id pointer
next_icv_name const char intent(out), pointer-to-

pointer
next_scope scope pointer
more integer pointer

19

CHAPTER 41. OMPD ROUTINES 873

Prototypes1
C

ompd_rc_t ompd_enumerate_icvs(2
ompd_address_space_handle_t *handle, ompd_icv_id_t current,3
ompd_icv_id_t *next_id, const char **next_icv_name,4
ompd_scope_t *next_scope, int *more);5

C
Semantics6
The ompd_enumerate_icvs routine enables a tool to enumerate the ICVs that an OpenMP7
implementation supports and their related scopes. An OpenMP implementation must support all8
ICVs listed in Section 3.1. An OpenMP implementation may support additional implementation9
defined ICVs. An implementation may store ICVs in a different scope than Section 3.1 indicates.10

When the current argument is set to the identifier of a supported ICV, ompd_enumerate_icvs11
assigns the value, string name, and scope of the next ICV in the enumeration to the locations to12
which the next_id, next_icv_name, and next_scope arguments point. On return, the tool owns the13
next_icv_name string. The OMPD library uses the alloc_memory callback that the tool provides14
to allocate the string storage; the tool is responsible for releasing the memory.15

On return, the location to which the more argument points has the value of 1 whenever one or more16
ICVs are left in the enumeration. On return, that location has the value 0 when current is the last17
ICV in the enumeration. The address_space_handle argument identifies the address space. The18
current argument must be an ICV that the OpenMP implementation supports. To begin19
enumerating the ICVs, a tool should pass ompd_icv_undefined as the value of current.20
Subsequent calls to ompd_enumerate_icvs should pass the value returned by the routine in the21
next_id output argument. On return, the next_id argument points to an integer with the value of the22
ID of the next ICV in the enumeration. On return, the next_icv_name argument points to a character23
string with the name of the next ICV. On return, the value to which the next_scope argument points24
identifies the scope of the next ICV. On return, the more_enums argument points to an integer with25
the value of 1 when more ICVs are left to enumerate and the value of 0 when no more ICVs are26
left. This routine returns ompd_rc_bad_input if an unknown value is provided in current.27

Cross References28

• OMPD address_space_handle Type, see Section 39.18.129

• OMPD icv_id Type, see Section 39.830

• OMPD rc Type, see Section 39.931

• OMPD scope Type, see Section 39.1132

874 OpenMP API – Version 6.0 November 2024

41.11.2 ompd_get_icv_from_scope Routine1

Name: ompd_get_icv_from_scope
Category: function

Properties: C-only, OMPD
2

Return Type and Arguments3
Name Type Properties
<return type> rc default
handle void opaque, pointer
scope scope default
icv_id icv_id default
icv_value word pointer

4

Prototypes5
C

ompd_rc_t ompd_get_icv_from_scope(void *handle,6
ompd_scope_t scope, ompd_icv_id_t icv_id, ompd_word_t *icv_value);7

C
Summary8
The ompd_get_icv_from_scope routine returns the value of an ICV. The handle argument9
provides an OpenMP scope handle. The scope argument specifies the kind of scope provided in10
handle. The icv_id argument specifies the ID of the requested ICV. On return, the icv_value11
argument points to a location with the value of the requested ICV.12

This routine returns ompd_rc_bad_input if an unknown value is provided in icv_id. In13
addition to the return codes permitted for all OMPD routines, this routine returns14
ompd_rc_incomplete if only the first item of the ICV is returned in the integer (e.g., if15
nthreads-var has more than one list item). Further, it returns ompd_rc_incompatible if the16
ICV cannot be represented as an integer or if the scope of the handle matches neither the scope as17
defined in Section 39.8 nor the scope for icv_id as identified by ompd_enumerate_icvs.18

Cross References19

• OMPD Handle Types, see Section 39.1820

• OMPD icv_id Type, see Section 39.821

• ompd_enumerate_icvs Routine, see Section 41.11.122

• OMPD rc Type, see Section 39.923

• OMPD scope Type, see Section 39.1124

• OMPD word Type, see Section 39.1725

CHAPTER 41. OMPD ROUTINES 875

41.11.3 ompd_get_icv_string_from_scope Routine1

Name: ompd_get_icv_string_from_scope
Category: function

Properties: C-only, OMPD
2

Return Type and Arguments3
Name Type Properties
<return type> rc default
handle void opaque, pointer
scope scope default
icv_id icv_id default
icv_string const char intent(out), pointer-to-

pointer

4

Prototypes5
C

ompd_rc_t ompd_get_icv_string_from_scope(void *handle,6
ompd_scope_t scope, ompd_icv_id_t icv_id,7
const char **icv_string);8

C
Semantics9
The ompd_get_icv_string_from_scope routine returns the value of an ICV. The handle10
argument provides an OpenMP scope handle. The scope argument specifies the kind of scope11
provided in handle. The icv_id argument specifies the ID of the requested ICV. On return, the12
icv_string argument points to a string representation of the requested ICV; on return, the tool owns13
the string. The OMPD library allocates the string storage with the alloc_memory callback that14
the tool provides. The tool is responsible for releasing the memory.15

This routine returns ompd_rc_bad_input if an unknown value is provided in icv_id. In16
addition to the return codes permitted for all OMPD routines, this routine returns17
ompd_rc_incompatible if the scope of the handle does not match the scope as defined in18
Section 39.8 or if it does not match the scope for icv_id as identified by19
ompd_enumerate_icvs.20

Cross References21

• OMPD Handle Types, see Section 39.1822

• OMPD icv_id Type, see Section 39.823

• ompd_enumerate_icvs Routine, see Section 41.11.124

• OMPD rc Type, see Section 39.925

• OMPD scope Type, see Section 39.1126

876 OpenMP API – Version 6.0 November 2024

41.11.4 ompd_get_tool_data Routine1

Name: ompd_get_tool_data
Category: function

Properties: C-only, OMPD
2

Return Type and Arguments3
Name Type Properties
<return type> rc default
handle void opaque, pointer
scope scope default
value word pointer
ptr address pointer

4

Prototypes5
C

ompd_rc_t ompd_get_tool_data(void *handle, ompd_scope_t scope,6
ompd_word_t *value, ompd_address_t *ptr);7

C
Semantics8
The ompd_get_tool_data routine provides access to the OMPT tool data stored for each9
scope. The handle argument provides an OpenMP scope handle. The scope argument specifies the10
kind of scope provided in handle. On return, the value argument points to the value field of the11
data OMPT type stored for the selected scope. On return, the ptr argument points to the ptr field12
of the data OMPT type stored for the selected scope. In addition to the return codes permitted for13
all OMPD routines, this routine returns ompd_rc_unsupported if the runtime library does not14
support OMPT.15

Cross References16

• OMPD address Type, see Section 39.217

• OMPT data Type, see Section 33.818

• OMPD Handle Types, see Section 39.1819

• OMPD rc Type, see Section 39.920

• OMPD scope Type, see Section 39.1121

• OMPD word Type, see Section 39.1722

CHAPTER 41. OMPD ROUTINES 877

42 OMPD Breakpoint Symbol Names1

The OpenMP implementation must define several symbols through which execution must pass2
when particular events occur and data collection for OMPD is enabled. A third-party tool can3
enable notification of an event by setting a breakpoint at the address of the symbol.4

OMPD symbols have external C linkage and do not require demangling or other transformations to5
look up their names to obtain the address in the OpenMP program. While each OMPD symbol6
conceptually has a function type signature, it may not be a function. It may be a labeled location.7

42.1 ompd_bp_thread_begin Breakpoint8

Format9
C

void ompd_bp_thread_begin(void);10

C
Semantics11
When starting a native thread that will be used as an OpenMP thread, the implementation must12
execute ompd_bp_thread_begin. Thus, the OpenMP implementation must execute13
ompd_bp_thread_begin at every native-thread-begin and initial-thread-begin event. This14
execution occurs before the thread starts the execution of any OpenMP region.15

42.2 ompd_bp_thread_end Breakpoint16

Format17
C

void ompd_bp_thread_end(void);18

C
Semantics19
When terminating an OpenMP thread or a native thread that has been used as an OpenMP thread,20
the implementation must execute ompd_bp_thread_end. Thus, the OpenMP implementation21
must execute ompd_bp_thread_end at every native-thread-end and initial-thread-end event.22
This execution occurs after the thread completes the execution of all OpenMP regions. After23
executing ompd_bp_thread_end, any thread_handle that was acquired for this thread is invalid24
and should be released by calling ompd_rel_thread_handle.25

Cross References26

• ompd_rel_thread_handle Routine, see Section 41.8.427

878 OpenMP API – Version 6.0 November 2024

42.3 ompd_bp_device_begin Breakpoint1

Format2
C

void ompd_bp_device_begin(void);3

C
Semantics4
When initializing a device for execution of target regions, the implementation must execute5
ompd_bp_device_begin. Thus, the OpenMP implementation must execute6
ompd_bp_device_begin at every device-initialize event. This execution occurs before the7
work associated with any OpenMP region executes on the device.8

Cross References9

• Device Initialization, see Section 15.410

• target Construct, see Section 15.811

42.4 ompd_bp_device_end Breakpoint12

Format13
C

void ompd_bp_device_end(void);14

C
Semantics15
When terminating use of a device, the implementation must execute ompd_bp_device_end.16
Thus, the OpenMP implementation must execute ompd_bp_device_end at every17
device-finalize event. This execution occurs after the device executes all OpenMP regions. After18
execution of ompd_bp_device_end, any address_space_handle that was acquired for this19
device is invalid and should be released by calling ompd_rel_address_space_handle.20

Cross References21

• Device Initialization, see Section 15.422

• ompd_rel_address_space_handle Routine, see Section 41.8.123

42.5 ompd_bp_parallel_begin Breakpoint24

Format25
C

void ompd_bp_parallel_begin(void);26

C

CHAPTER 42. OMPD BREAKPOINT SYMBOL NAMES 879

Semantics1
Before starting execution of a parallel region, the implementation must execute2
ompd_bp_parallel_begin. Thus, the OpenMP implementation must execute3
ompd_bp_parallel_begin at every parallel-begin event. When the implementation reaches4
ompd_bp_parallel_begin, the binding region for5
ompd_get_curr_parallel_handle is the parallel region that is beginning and the6
binding task set for ompd_get_curr_task_handle is the encountering task for the7
parallel construct.8

Cross References9

• ompd_get_curr_parallel_handle Routine, see Section 41.5.110

• ompd_get_curr_task_handle Routine, see Section 41.6.111

• parallel Construct, see Section 12.112

42.6 ompd_bp_parallel_end Breakpoint13

Format14
C

void ompd_bp_parallel_end(void);15

C
Semantics16
After finishing execution of a parallel region, the implementation must execute17
ompd_bp_parallel_end. Thus, the OpenMP implementation must execute18
ompd_bp_parallel_end at every parallel-end event. When the implementation reaches19
ompd_bp_parallel_end, the binding region for ompd_get_curr_parallel_handle is20
the parallel region that is ending and the binding task set for21
ompd_get_curr_task_handle is the encountering task for the parallel construct. After22
execution of ompd_bp_parallel_end, any parallel_handle that was acquired for the23
parallel region is invalid and should be released by calling ompd_rel_parallel_handle.24

Cross References25

• ompd_get_curr_parallel_handle Routine, see Section 41.5.126

• ompd_get_curr_task_handle Routine, see Section 41.6.127

• ompd_rel_parallel_handle Routine, see Section 41.8.228

• parallel Construct, see Section 12.129

880 OpenMP API – Version 6.0 November 2024

42.7 ompd_bp_teams_begin Breakpoint1

Format2
C

void ompd_bp_teams_begin(void);3

C
Semantics4
Before starting execution of a teams region, the implementation must execute5
ompd_bp_teams_begin. Thus, the OpenMP implementation must execute6
ompd_bp_teams_begin at every teams-begin event. When the implementation reaches7
ompd_bp_teams_begin, the binding region for ompd_get_curr_parallel_handle is8
the teams region that is beginning and the binding task set for9
ompd_get_curr_task_handle is the encountering task for the teams construct.10

Cross References11

• ompd_get_curr_parallel_handle Routine, see Section 41.5.112

• ompd_get_curr_task_handle Routine, see Section 41.6.113

• teams Construct, see Section 12.214

42.8 ompd_bp_teams_end Breakpoint15

Format16
C

void ompd_bp_teams_end(void);17

C
Semantics18
After finishing execution of a teams region, the implementation must execute19
ompd_bp_teams_end. Thus, the OpenMP implementation must execute20
ompd_bp_teams_end at every teams-end event. When the implementation reaches21
ompd_bp_teams_end, the binding region for ompd_get_curr_parallel_handle is the22
teams region that is ending and the binding task set for ompd_get_curr_task_handle is23
the encountering task for the teams construct. After execution of ompd_bp_teams_end, any24
parallel_handle that was acquired for the teams region is invalid and should be released by calling25
ompd_rel_parallel_handle.26

Cross References27

• ompd_get_curr_parallel_handle Routine, see Section 41.5.128

• ompd_get_curr_task_handle Routine, see Section 41.6.129

• ompd_rel_parallel_handle Routine, see Section 41.8.230

• teams Construct, see Section 12.231

CHAPTER 42. OMPD BREAKPOINT SYMBOL NAMES 881

42.9 ompd_bp_task_begin Breakpoint1

Format2
C

void ompd_bp_task_begin(void);3

C
Semantics4
Before starting execution of a task region, the implementation must execute5
ompd_bp_task_begin. Thus, the OpenMP implementation must execute6
ompd_bp_task_begin immediately before starting execution of a structured block that is7
associated with a non-merged task. When the implementation reaches ompd_bp_task_begin,8
the binding task set for ompd_get_curr_task_handle is the task that is scheduled to execute.9

Cross References10

• ompd_get_curr_task_handle Routine, see Section 41.6.111

42.10 ompd_bp_task_end Breakpoint12

Format13
C

void ompd_bp_task_end(void);14

C
Semantics15
After finishing execution of a task region, the implementation must execute16
ompd_bp_task_end. Thus, the OpenMP implementation must execute ompd_bp_task_end17
immediately after completion of a structured block that is associated with a non-merged task. When18
the implementation reaches ompd_bp_task_end, the binding task set for19
ompd_get_curr_task_handle is the task that finished execution. After execution of20
ompd_bp_task_end, any task_handle that was acquired for the task region is invalid and should21
be released by calling ompd_rel_task_handle.22

Cross References23

• ompd_get_curr_task_handle Routine, see Section 41.6.124

• ompd_rel_task_handle Routine, see Section 41.8.325

42.11 ompd_bp_target_begin Breakpoint26

Format27
C

void ompd_bp_target_begin(void);28

C

882 OpenMP API – Version 6.0 November 2024

Semantics1
Before starting execution of a target region, the implementation must execute2
ompd_bp_target_begin. Thus, the OpenMP implementation must execute3
ompd_bp_target_begin at every initial-task-begin event that results from the execution of an4
initial task enclosing a target region. When the implementation reaches5
ompd_bp_target_begin, the binding region for ompd_get_curr_parallel_handle is6
the target region that is beginning and the binding task set for7
ompd_get_curr_task_handle is the initial task on the device.8

Cross References9

• ompd_get_curr_parallel_handle Routine, see Section 41.5.110

• ompd_get_curr_task_handle Routine, see Section 41.6.111

• target Construct, see Section 15.812

42.12 ompd_bp_target_end Breakpoint13

Format14
C

void ompd_bp_target_end(void);15

C
Semantics16
After finishing execution of a target region, the implementation must execute17
ompd_bp_target_end. Thus, the OpenMP implementation must execute18
ompd_bp_target_end at every initial-task-end event that results from the execution of an19
initial task enclosing a target region. When the implementation reaches20
ompd_bp_target_end, the binding region for ompd_get_curr_parallel_handle is21
the target region that is ending and the binding task set for ompd_get_curr_task_handle22
is the initial task on the device. After execution of ompd_bp_target_end, any parallel_handle23
that was acquired for the target region is invalid and should be released by calling24
ompd_rel_parallel_handle.25

Cross References26

• ompd_get_curr_parallel_handle Routine, see Section 41.5.127

• ompd_get_curr_task_handle Routine, see Section 41.6.128

• ompd_rel_parallel_handle Routine, see Section 41.8.229

• target Construct, see Section 15.830

CHAPTER 42. OMPD BREAKPOINT SYMBOL NAMES 883

Part VI1

Appendices2

884 OpenMP API – Version 6.0 November 2024

A OpenMP Implementation-Defined1

Behaviors2

This appendix summarizes the behaviors that are described as implementation defined in the3
OpenMP API. Each behavior is cross-referenced back to its description in the main specification.4
An implementation is required to define and to document its behavior in these cases.5

Chapter 1:6

• Memory model: The minimum size at which a memory update may also read and write back7
adjacent variables that are part of an aggregate variable is implementation defined but is no8
larger than the base language requires. The manner in which a program can obtain the9
referenced device address from a device pointer, outside the mechanisms specified by10
OpenMP, is implementation defined (see Section 1.3.1).11

• Device data environments: Whether a variable with static storage duration that is accessible12
on a device and is not a device-local variable is mapped with a persistent self map at the13
beginning of the program is implementation defined (see Section 1.3.2).14

Chapter 2:15

• Processor: A hardware unit that is implementation defined (see Chapter 2).16

• Device: An implementation defined logical execution engine (see Chapter 2).17

• Device pointer: An implementation defined handle that refers to a device address (see18
Chapter 2).19

• Supported active levels of parallelism: The maximum number of active parallel regions20
that may enclose any region of code in an OpenMP program is implementation defined (see21
Chapter 2).22

• Deprecated features: For any deprecated feature, whether any modifications provided by its23
replacement feature (if any) apply to the deprecated feature is implementation defined (see24
Chapter 2).25

Chapter 3:26
• Internal control variables: The initial values of dyn-var, nthreads-var, run-sched-var,27

bind-var, stacksize-var, wait-policy-var, thread-limit-var, max-active-levels-var,28
place-partition-var, affinity-format-var, default-device-var, num-procs-var and29
def-allocator-var are implementation defined (see Section 3.2).30

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 885

Chapter 4:1

• OMP_DYNAMIC environment variable: If the value is neither true nor false, the2
behavior of the program is implementation defined (see Section 4.1.2).3

• OMP_NUM_THREADS environment variable: If any value of the specified list leads to a4
number of threads that is greater than the implementation can support, or if any value is not a5
positive integer, then the behavior of the program is implementation defined (see6
Section 4.1.3).7

• OMP_THREAD_LIMIT environment variable: If the requested value is greater than the8
number of threads that an implementation can support, or if the value is not a positive integer,9
the behavior of the program is implementation defined (see Section 4.1.4).10

• OMP_MAX_ACTIVE_LEVELS environment variable: If the value is a negative integer or is11
greater than the maximum number of nested active levels that an implementation can support12
then the behavior of the program is implementation defined (see Section 4.1.5).13

• OMP_PLACES environment variable: The meaning of the numbers specified in the14
environment variable and how the numbering is done are implementation defined. The15
precise definitions of the abstract names are implementation defined. An implementation16
may add implementation defined abstract names as appropriate for the target platform. When17
creating a place list of n elements by appending the number n to an abstract name, the18
determination of which resources to include in the place list is implementation defined. When19
requesting more resources than available, the length of the place list is also implementation20
defined. The behavior of the program is implementation defined when the execution21
environment cannot map a numerical value (either explicitly defined or implicitly derived22
from an interval) within the OMP_PLACES list to a processor on the target platform, or if it23
maps to an unavailable processor. The behavior is also implementation defined when the24
OMP_PLACES environment variable is defined using an abstract name (see Section 4.1.6).25

• OMP_PROC_BIND environment variable: If the value is not true, false, or a comma26
separated list of primary, close, or spread, the behavior is implementation defined.27
The behavior is also implementation defined if an initial thread cannot be bound to the first28
place in the OpenMP place list. The thread affinity policy is implementation defined if the29
value is true (see Section 4.1.7).30

• OMP_SCHEDULE environment variable: If the value does not conform to the specified31
format then the behavior of the program is implementation defined (see Section 4.3.1).32

• OMP_STACKSIZE environment variable: If the value does not conform to the specified33
format or the implementation cannot provide a stack of the specified size then the behavior is34
implementation defined (see Section 4.3.2).35

• OMP_WAIT_POLICY environment variable: The details of the active and passive36
behaviors are implementation defined (see Section 4.3.3).37

• OMP_DISPLAY_AFFINITY environment variable: For all values of the environment38
variable other than true or false, the display action is implementation defined (see39
Section 4.3.4).40

886 OpenMP API – Version 6.0 November 2024

• OMP_AFFINITY_FORMAT environment variable: Additional implementation defined1
field types can be added (see Section 4.3.5).2

• OMP_CANCELLATION environment variable: If the value is set to neither true nor3
false, the behavior of the program is implementation defined (see Section 4.3.6).4

• OMP_TARGET_OFFLOAD environment variable: The support of disabled is5
implementation defined (see Section 4.3.9).6

• OMP_THREADS_RESERVE environment variable: If the requested values are greater than7
OMP_THREAD_LIMIT, the behavior of the program is implementation defined (see8
Section 4.3.10).9

• OMP_TOOL_LIBRARIES environment variable: Whether the value of the environment10
variable is case sensitive is implementation defined (see Section 4.5.2).11

• OMP_TOOL_VERBOSE_INIT environment variable: Support for logging to stdout or12
stderr is implementation defined. Whether the value of the environment variable is case13
sensitive when it is treated as a filename is implementation defined. The format and detail of14
the log is implementation defined (see Section 4.5.3).15

• OMP_DEBUG environment variable: If the value is neither disabled nor enabled, the16
behavior is implementation defined (see Section 4.6.1).17

• OMP_NUM_TEAMS environment variable: If the value is not a positive integer or is greater18
than the number of teams that an implementation can support, the behavior of the program is19
implementation defined (see Section 4.2.1).20

• OMP_TEAMS_THREAD_LIMIT environment variable: If the value is not a positive integer21
or is greater than the number of threads that an implementation can support, the behavior of22
the program is implementation defined (see Section 4.2.2).23

Chapter 5:24
C / C++

• A pragma directive that uses ompx as the first processing token is implementation defined25
(see Chapter 5).26

• The attribute namespace of an attribute specifier or the optional namespace qualifier within a27
sequence attribute that uses ompx is implementation defined (see Chapter 5).28

C / C++
C++

• Whether a throw executed inside a region that arises from an exception-aborting directive29
results in runtime error termination is implementation defined (see Chapter 5).30

C++
Fortran

• Any directive that uses omx or ompx in the sentinel is implementation defined (see31
Chapter 5).32

Fortran

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 887

Chapter 6:1

• Collapsed loops: The particular integer type used to compute the iteration count for the2
collapsed loop is implementation defined (see Section 6.4.3).3

Chapter 7:4
Fortran

• data-sharing attributes: The data-sharing attributes of dummy arguments that do not have5
the VALUE attribute are implementation defined if the associated actual argument is shared6
unless the actual argument is a scalar variable, structure, an array that is not a pointer or7
assumed-shape array, or a simply contiguous array section (see Section 7.1.2).8

• threadprivate directive: If the conditions for values of data in the threadprivate9
memories of threads (other than an initial thread) to persist between two consecutive active10
parallel regions do not all hold, the allocation status of an allocatable variable in the second11
region is implementation defined (see Section 7.3).12

Fortran
• is_device_ptr clause: Support for pointers created outside of the OpenMP device13

memory routines is implementation defined (see Section 7.5.7).14

Fortran
• has_device_addr and use_device_addr clauses: The result of inquiring about list15

item properties other than the CONTIGUOUS attribute, storage location, storage size, array16
bounds, character length, association status and allocation status is implementation defined17
(see Section 7.5.9 and Section 7.5.10).18

Fortran
• aligned clause: If the alignment modifier is not specified, the default alignments for19

SIMD instructions on the target platforms are implementation defined (see Section 7.12).20

Chapter 8:21

• Memory spaces: The actual storage resources that each memory space defined in Table 8.122
represents are implementation defined. The mechanism that provides the constant value of23
the variables allocated in the omp_const_mem_space memory space is implementation24
defined (see Section 8.1).25

• Memory allocators: The minimum size for partitioning allocated memory over storage26
resources is implementation defined. The default value for the omp_atk_pool_size27
allocator trait (see Table 8.2) is implementation defined. The memory spaces associated with28
the predefined omp_cgroup_mem_alloc, omp_pteam_mem_alloc and29
omp_thread_mem_alloc allocators (see Table 8.3) are implementation defined (see30
Section 8.2).31

888 OpenMP API – Version 6.0 November 2024

Chapter 9:1

• OpenMP context: The accepted isa-name values for the isa trait, the accepted arch-name2
values for the arch trait and the accepted extension-name values for the extension trait are3
implementation defined (see Section 9.1).4

• Metadirectives: The number of times that each expression of the context selector of a when5
clause is evaluated is implementation defined (see Section 9.4.1).6

• Declare variant directives: If two replacement candidates have the same score then their7
order is implementation defined. The number of times each expression of the context selector8
of a match clause is evaluated is implementation defined. For calls to constexpr base9
functions that are evaluated in constant expressions, whether any variant replacement occurs10
is implementation defined. Any differences that the specific OpenMP context requires in the11
prototype of the variant from the base function prototype are implementation defined (see12
Section 9.6).13

• declare_simd directive: If a SIMD version is created and the simdlen clause is not14
specified, the number of concurrent arguments for the procedure is implementation defined15
(see Section 9.8).16

• Declare target directives: Whether the same version is generated for different devices, or17
whether a version that is called in a target region differs from the version that is called18
outside a target region, is implementation defined (see Section 9.9).19

Chapter 10:20

• requires directive: Support for any feature specified by a requirement clause on a21
requires directive is implementation defined (see Section 10.5).22

Chapter 11:23

• stripe construct: If a generated offsetting loop and a generated grid loop are associated24
with the same construct, the grid loops may execute additional empty logical iterations. The25
number of empty logical iterations is implementation defined (see Section 11.7).26

• tile construct: If a generated grid loop and a generated tile loop are associated with the27
same construct, the tile loops may execute additional empty logical iterations. The number of28
empty logical iterations is implementation defined (see Section 11.8).29

• unroll construct: If no clauses are specified, if and how the loop is unrolled is30
implementation defined. If the partial clause is specified without an unroll-factor31
argument then the unroll factor is a positive integer that is implementation defined (see32
Section 11.9).33

Chapter 12:34
• Default safesync for non-host devices: Unless indicated otherwise by a35
device_safesync requirement clause, if the parallel construct is encountered on a36
non-host device then the default behavior is as if the safesync clause appears on the37
directive with a width value that is implementation defined (see Section 12.1).38

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 889

• Dynamic adjustment of threads: Providing the ability to adjust the number of threads1
dynamically is implementation defined (see Section 12.1.1).2

• Compile-time message: If the implementation determines that the requested number of3
threads can never be provided and therefore performs compile-time error termination, the4
effect of any message clause associated with the directive is implementation defined (see5
Section 12.1.2).6

• Thread affinity: If another OpenMP thread is bound to the place associated with its position,7
the place to which a free-agent thread is bound is implementation defined. For the spread8
thread affinity, if T ≤ P and T does not divide P evenly, which subpartitions contain ⌈⌈P/T⌉⌉9
places is implementation defined. For the close and spread thread affinity policies, if10
ET is not zero, which sets have AT positions and which sets have BT positions is11
implementation defined. Further, the positions assigned to the groups that are assigned sets12
with BT positions to make the number of positions assigned to each group AT is13
implementation defined. The determination of whether the thread affinity request can be14
fulfilled is implementation defined. If the thread affinity request cannot be fulfilled, then the15
thread affinity of threads in the team is implementation defined (see Section 12.1.3).16

• teams construct: The number of teams that are created is implementation defined, but it is17
greater than or equal to the lower bound and less than or equal to the upper bound values of18
the num_teams clause if specified. If the num_teams clause is not specified, the number19
of teams is less than or equal to the value of the nteams-var ICV if its value is positive.20
Otherwise it is an implementation defined positive value (see Section 12.2).21

• simd construct: The number of iterations that are executed concurrently at any given time22
is implementation defined (see Section 12.4).23

Chapter 13:24

• single construct: The method of choosing a thread to execute the structured block each25
time the team encounters the construct is implementation defined (see Section 13.1).26

• sections construct: The method of scheduling the structured block sequences among27
threads in the team is implementation defined (see Section 13.3).28

• Worksharing-loop construct: The schedule that is used is implementation defined if the29
schedule clause is not specified or if the specified schedule has the kind auto. The value30
of simd_width for the simd schedule modifier is implementation defined (see Section 13.6).31

• distribute construct: If no dist_schedule clause is specified then the schedule for32
the distribute construct is implementation defined (see Section 13.7).33

Chapter 14:34

• taskloop construct: The number of logical iterations assigned to a task created from a35
taskloop construct is implementation defined, unless the grainsize or num_tasks36
clause is specified (see Section 14.2).37

890 OpenMP API – Version 6.0 November 2024

C++
• taskloop construct: For firstprivate variables of class type, the number of invocations of1

copy constructors to perform the initialization is implementation defined (see Section 14.2).2

• taskgraph construct: Whether foreign tasks are recorded or not in a taskgraph record and3
the manner in which they are executed during a replay execution if they are recorded is4
implementation defined (see Section 14.3).5

C++
Chapter 15:6

• thread_limit clause: The maximum number of threads that participate in executing7
tasks in the contention group that each team initiates is implementation defined if no8
thread_limit clause is specified on the construct. Otherwise, it has the implementation9
defined upper bound of the teams-thread-limit-var ICV, if the value of this ICV is positive10
(see Section 15.3).11

• target construct: If a device clause is specified with the ancestor device-modifier,12
whether a storage block on the encountering device that has no corresponding storage on the13
specified device may be mapped is implementation defined (see Section 15.8).14

Chapter 16:15

• prefer-type modifier: The supported preference specifications are implementation defined,16
including the supported foreign runtime identifiers, which may be non-standard names17
compatible with the modifier. The default preference specification when the implementation18
supports multiple values is implementation defined (see Section 16.1.3).19

Chapter 17:20

• atomic construct: A compliant implementation may enforce exclusive access between21
atomic regions that update different storage locations. The circumstances under which this22
occurs are implementation defined. If the storage location designated by x is not size-aligned23
(that is, if the byte alignment of x is not a multiple of the size of x), then the behavior of the24
atomic region is implementation defined (see Section 17.8.5).25

Chapter 18:26

• None.27

Chapter 19:28

• None.29

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 891

Chapter 20:1

• Runtime routines: Routine names that begin with the ompx_ prefix are implementation2
defined extensions to the OpenMP Runtime API (see Chapter 20).3

C / C++
• Runtime library definitions: The types for the allocator_handle, event_handle,4
interop_fr, memspace_handle and interop OpenMP types are implementation5
defined. The value of the omp_invalid_device predefined identifier is implementation6
defined. The value of the omp_unassigned_thread predefined identifier is7
implementation defined (see Chapter 20).8

C / C++
Fortran

• Runtime library definitions: Whether the deprecated include file omp_lib.h or the9
module omp_lib (or both) is provided is implementation defined. Whether the10
omp_lib.h file provides derived-type definitions or those routines that require an explicit11
interface is implementation defined. Whether any of the OpenMP API routines that take an12
argument are extended with a generic interface so arguments of different KIND type can be13
accommodated is implementation defined. The value of the omp_invalid_device14
predefined identifier is implementation defined (see Chapter 20).15

Fortran
• Routine arguments: The behavior is implementation defined if a routine argument is16

specified with a value that does not conform to the constraints that are implied by the17
properties of the argument (see Section 20.3).18

• Interoperability objects: Implementation defined properties may use non-negative values19
for properties associated with an interoperability object (see Section 20.7).20

Chapter 21:21

• omp_set_schedule routine: For any implementation defined schedule types, the values22
and associated meanings of the second argument are implementation defined (see23
Section 21.9).24

• omp_get_schedule routine: The value returned by the second argument is25
implementation defined for any schedule types other than omp_sched_static,26
omp_sched_dynamic and omp_sched_guided (see Section 21.10).27

• omp_get_supported_active_levels routine: The number of active levels28
supported by the implementation is implementation defined, but must be positive (see29
Section 21.11).30

• omp_set_max_active_levels routine: If the argument is a negative integer then the31
behavior is implementation defined. If the argument is less than the active-levels-var ICV,32
the max-active-levels-var ICV is set to an implementation defined value between the value of33
the argument and the value of active-levels-var, inclusive (see Section 21.12).34

892 OpenMP API – Version 6.0 November 2024

Chapter 22:1

• omp_set_num_teams routine: If the argument does not evaluate to a positive integer, the2
behavior of this routine is implementation defined (see Section 22.2).3

• omp_set_teams_thread_limit routine: If the argument is not a positive integer, the4
behavior is implementation defined (see Section 22.6).5

Chapter 23:6

• None.7

Chapter 24:8

• None.9

Chapter 25:10

• Rectangular-memory-copying routine: The maximum number of dimensions supported is11
implementation defined, but must be at least three (see Section 25.7).12

Chapter 26:13

• None.14

Chapter 27:15

• None.16

Chapter 28:17

• Lock routines: If a lock contains a synchronization hint, the effect of the hint is18
implementation defined (see Chapter 28).19

Chapter 29:20

• omp_get_place_proc_ids routine: The meaning of the non-negative numerical21
identifiers returned by the omp_get_place_proc_ids routine is implementation22
defined. The order of the numerical identifiers returned in the array ids is implementation23
defined (see Section 29.4).24

• omp_set_affinity_format routine: When called from within any parallel or25
teams region, the binding thread set (and binding region, if required) for the26
omp_set_affinity_format region and the effect of this routine are implementation27
defined (see Section 29.8).28

• omp_get_affinity_format routine: When called from within any parallel or29
teams region, the binding thread set (and binding region, if required) for the30
omp_get_affinity_format region is implementation defined (see Section 29.9).31

• omp_display_affinity routine: If the format argument does not conform to the32
specified format then the result is implementation defined (see Section 29.10).33

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 893

• omp_capture_affinity routine: If the format argument does not conform to the1
specified format then the result is implementation defined (see Section 29.11).2

Chapter 30:3

• omp_display_env routine: Whether ICVs with the same value are combined or4
displayed in multiple lines is implementation defined (see Section 30.4).5

Chapter 31:6

• None.7

Chapter 32:8

• Tool callbacks: If a tool attempts to register a callback not listed in Table 32.2, whether the9
registered callback may never, sometimes or always invoke this callback for the associated10
events is implementation defined (see Section 32.2.4).11

• Device tracing: Whether a target device supports tracing or not is implementation defined. If12
a target device does not support tracing, a NULL may be supplied for the lookup function to13
the device initializer of a tool (see Section 32.2.5).14

• set_trace_ompt and get_record_ompt entry points: Whether a device-specific15
tracing interface defines this entry point, indicating that it can collect traces in standard trace16
format, is implementation defined. The kinds of trace records available for a device is17
implementation defined (see Section 32.2.5).18

Chapter 33:19

• dispatch_chunk OMPT type: Whether the chunk of a taskloop region is contiguous20
is implementation defined (see Section 33.14).21

• record_abstract OMPT type: The meaning of a hwid value for a device is22
implementation defined (see Section 33.24).23

• state OMPT type: The set of OMPT thread states supported is implementation defined24
(see Section 33.31).25

Chapter 34:26

• sync_region_wait callback: For the implicit-barrier-wait-begin and27
implicit-barrier-wait-end events at the end of a parallel region, whether the parallel_data28
argument is NULL or points to the parallel data of the current parallel region is29
implementation defined (see Section 34.7.5).30

Chapter 35:31

• target_data_op_emi callbacks: Whether dev1_addr or dev2_addr points to an32
intermediate buffer in some operations is implementation defined (see Section 35.7).33

894 OpenMP API – Version 6.0 November 2024

Chapter 36:1

• get_place_proc_ids entry point: The meaning of the numerical identifiers returned is2
implementation defined. The order of ids returned in the array is implementation defined (see3
Section 36.9).4

• get_partition_place_nums entry point: The order of the identifiers returned in the5
place_nums array is implementation defined (see Section 36.11).6

• get_proc_id entry point: The meaning of the numerical identifier returned is7
implementation defined (see Section 36.12).8

Chapter 37:9

• None.10

Chapter 38:11

• None.12

Chapter 39:13

• None.14

Chapter 40:15

• print_string callback: The value of the category argument is implementation defined16
(see Section 40.5).17

Chapter 41:18

• handle-comparing routines: For all types of handles, the means by which two handles are19
ordered is implementation defined (see Section 41.7).20

Chapter 42:21

• None.22

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 895

B Features History1

This appendix summarizes the major changes between OpenMP API versions since version 2.5.2

B.1 Deprecated Features3

The following features were deprecated in Version 6.0:4

Fortran
• Omitting the optional white space to separate adjacent keywords in the directive-name in free5

source form and fixed source form directives is deprecated (see Section 5.1.1 and6
Section 5.1.2).7

Fortran
• The syntax of the declare_reduction directive that specifies the combiner expression8

in the directive argument was deprecated (see Section 7.6.14).9

• The Fortran include file omp_lib.h has been deprecated (see Chapter 20).10

• The target, target_data_op, target_submit and target_map values of the11
callbacks OMPT types and the associated trace record OMPT type names were12
deprecated (see Section 33.6).13

• The ompt_target_data_transfer_to_device,14
ompt_target_data_transfer_from_device,15
ompt_target_data_transfer_to_device_async, and16
ompt_target_data_transfer_from_device_async values in the17
target_data_op OMPT type were deprecated (see Section 33.35).18

• The target_data_op, target, target_map and target_submit callbacks and19
the associated trace record OMPT type names were deprecated (see Section 35.7,20
Section 35.8, Section 35.9 and Section 35.10).21

B.2 Version 5.2 to 6.0 Differences22

• All features deprecated in versions 5.0, 5.1 and 5.2 were removed.23

• Full support for C23, C++23, and Fortran 2023 was added (see Section 1.6).24

• Full support of Fortran 2018 was completed (see Section 1.6).25

• The environment variable syntax was extended to support initializing ICVs for the host device26
and non-host devices with a single environment variable (see Section 3.2 and Chapter 4).27

896 OpenMP API – Version 6.0 November 2024

• The handling of the nthreads-var ICV was updated (see Section 3.4) and the nthreads1
argument of the num_threads clause was changed to a list (see Section 12.1.2) to support2
context-specific reservation of inner parallelism.3

• Numeric abstract name values are now allowed for the OMP_NUM_THREADS,4
OMP_THREAD_LIMIT and OMP_TEAMS_THREAD_LIMIT environment variables (see5
Section 4.1.3, Section 4.1.4 and Section 4.2.2).6

• The environment variable OMP_PLACES was extended to support an increment between7
consecutive places when creating a place list from an abstract name (see Section 4.1.6).8

• The environment variable OMP_AVAILABLE_DEVICES was added and the environment9
variable OMP_DEFAULT_DEVICE was extended to support device selection by traits (see10
Section 4.3.7 and Section 4.3.8).11

• The uid trait was added to the permissible traits in the environment variables12
OMP_AVAILABLE_DEVICES and OMP_DEFAULT_DEVICE and to the target device trait13
set (see Section 4.3.7, Section 4.3.8 and Section 9.2).14

• The environment variable OMP_THREADS_RESERVE was added to reserve a number of15
structured threads and free-agent threads (see Section 4.3.10).16

C++
• The decl attribute was added to improve the attribute syntax for declarative directives (see17

Section 5.1).18

C++
C

• The OpenMP directive syntax was extended to include C attribute specifiers (see19
Section 5.1).20

C
Fortran

• Support for directives with the pure property in DO CONCURRENT constructs has been added21
(see Section 5.1).22

Fortran
• To improve consistency in clause format, all inarguable clauses were extended to take an23

optional argument for which the default value yields equivalent semantics to the existing24
inarguable semantics (see Section 5.2).25

• The adjust_args clause was extended to support positional specification of arguments26
(see Section 5.2.1 and Section 9.6.2)27

Fortran
• The definitions of locator list items and assignable OpenMP types were extended to include28

function references that have data pointer results (see Section 5.2.1).29

Fortran

APPENDIX B. FEATURES HISTORY 897

C / C++
• The array section definition was extended to permit, where explicitly allowed, omission of1

the length when the size of the array dimension is not known (see Section 5.2.5).2

C / C++
• To support greater specificity on compound constructs, all clauses were extended to accept3

the directive-name-modifier, which identifies the constituent directives to which the clause4
applies (see Section 5.4).5

• To allow specification of all modifiers of the init clause, extensions to the interop6
operation of the append_args clause were added (see Section 5.6 and Section 9.6.3).7

• The init clause was added to the depobj construct, and the construct now permits8
repeatable init, update, and destroy clauses (see Section 5.6 and Section 17.9.3).9

• The syntax that omits the argument to the destroy clause for the depobj construct was10
undeprecated (see Section 5.7).11

Fortran
• Atomic structured blocks were extended to allow the BLOCK construct, pointer assignments12

and two intrinsic functions for enum and enumeration types (see Section 6.3.3).13

• conditional-update-statement was extended to allow more forms and comparisons (see14
Section 6.3.3).15

Fortran
• The concept of canonical loop sequences and the looprange clause were defined (see16

Section 6.4.2 and Section 6.4.7).17

Fortran
• For polymorphic types, restrictions were changed and behavior clarified for data-sharing18

attribute clauses and data-mapping attribute clauses (see Chapter 7).19

Fortran
• The saved modifier, the replayable clause, and the taskgraph construct were added to20

support the recording and efficient replay execution of a sequence of task-generating21
constructs (see Section 7.2, Section 14.6, and Section 14.3).22

• The default clause is now allowed on the target directive, and, similarly to the23
defaultmap clause, now accepts the variable-category modifier (see Section 7.5.1).24

• The semantics of the use_device_ptr and use_device_addr clauses on a25
target_data construct were altered to imply a reference count update on entry and exit26
from the region for the corresponding objects that they reference in the device data27
environment (see Section 7.5.8 and Section 7.5.10).28

• Support for induction operations was added (see Section 7.6) through the induction29
clause (see Section 7.6.13) and the declare_induction directive (see Section 7.6.17),30
which supports user-defined induction.31

• Support for reductions over private variables with the reduction clause has been added32
(see Section 7.6).33

898 OpenMP API – Version 6.0 November 2024

C++
• The circumstances under which implicitly declared reduction identifiers are supported for1

variables of class type were clarified (see Section 7.6.3 and Section 7.6.6).2

C++
• The scan directive was extended to accept the init_complete clause to enable the3

identification of an initialization phase within the final-loop-body of an enclosing simd4
construct or worksharing-loop construct (or a composite construct that combines them) (see5
Section 7.7 and Section 7.7.3).6

• The storage map-type modifier was added as the preferred map-type when the mapping7
operation only allocates or releases storage on the target device (see Section 7.9.1).8

• The ref modifier was added to the map clause to add more control over how the clause9
affects list items that are C++ references or Fortran pointer/allocatable variables (see10
Section 7.9.5 and Section 7.9.6).11

• The property of the map-type modifier was changed to default so that it can be freely placed12
and omitted even if other modifiers are used (see Section 7.9.6).13

• The self map-type-modifier was added to the map clause and the self implicit-behavior14
was added to the defaultmap clause to request explicitly that the corresponding list item15
refers to the same object as the original list item (see Section 7.9.6 and Section 7.9.9).16

• The map clause was extended to permit mapping of assumed-size arrays (see Section 7.9.6).17

• The delete keyword on the map clause was reformulated to be the delete-modifier (see18
Section 7.9.6).19

Fortran
• The automap modifier was added to the enter clause to support automatic mapping and20

unmapping of Fortran allocatable variables when allocated and deallocated, respectively (see21
Section 7.9.7).22

Fortran
• The groupprivate directive was added to specify that variables should be privatized with23

respect to a contention group (see Section 7.13).24

• The local clause was added to the declare_target directive to specify that variables25
should be replicated locally for each device (see Section 7.14).26

• The allocator trait omp_atk_part_size was added to specify the size of the27
omp_atv_interleaved allocator partitions (see Section 8.2).28

• The omp_atk_pin_device, omp_atk_preferred_device and29
omp_atk_target_access memory allocator traits were defined to provide greater30
control of memory allocations that may be accessible from multiple devices (see Section 8.2).31

APPENDIX B. FEATURES HISTORY 899

• The device value of the access allocator trait was defined as the default access1
allocator trait and to provide the semantics that an allocator with the trait corresponds to2
memory that all threads on a specific device can access. The semantics of an allocator with3
the all value were updated to correspond to memory that all threads in the system can4
access (see Section 8.2).5

• The omp_atv_partitioner value was added to the possible values of the6
omp_atk_partition allocator trait to allow ad-hoc user partitions (see Section 8.2).7

• The uses_allocators clause was extended to permit more than one8
clause-argument-specification (see Section 8.8).9

• The need_device_addr modifier was added to the adjust_args clause to support10
adjustment of arguments passed by reference (see Section 9.6.2).11

• The dispatch construct was extended with the interop clause to support appending12
arguments specific to a call site (see Section 9.7 and Section 9.7.1).13

C / C++
• A declare_target directive that specifies list items must now be placed at the same14

scope as the declaration of those list items, and if the directive does not specify list items then15
it is treated as declaration-associated (see Section 9.9.1).16

C / C++
• The message and severity clauses were added to the parallel directive to support17

customization of any error termination associated with the directive (see Section 10.3,18
Section 10.4, and Section 12.1).19

• The self_maps requirement clause was added to require that all mapping operations are20
self maps (see Section 10.5.1.6).21

• The assumption clause group was extended with the no_openmp_constructs clause to22
support identification of regions in which no constructs will be encountered (see23
Section 10.6.1 and Section 10.6.1.5).24

• A restriction for loop-transforming constructs was added that the generated loop must not be25
a doacross-affected loop, which implies that, in an unroll construct with an unroll-factor26
of one, a stand-alone ordered directive is now non-conforming (see Chapter 11,27
Section 11.9 and Section 17.10.1).28

• The apply clause was added to enable more flexible composition of loop-transforming29
constructs (see Section 11.1).30

• The sizes clause was updated to allow non-constant list items (see Section 11.2).31

• The fuse construct was added to fuse two or more loops in a canonical loop sequence (see32
Section 11.3).33

• The interchange construct was added to permute the order of loops in a loop nest (see34
Section 11.4).35

• The reverse construct was added to reverse the iteration order of a loop (see Section 11.5).36

900 OpenMP API – Version 6.0 November 2024

• The split loop-transforming construct was added to apply index-set splitting to canonical1
loop nests (see Section 11.6).2

• The stripe loop-transforming construct was added to apply striping to canonical loop nests3
(see Section 11.7).4

• The tile construct was extended to allow grid loops and tile loops to be affected by the5
same construct (see Section 11.8).6

• The prescriptiveness modifier was added to the num_threads clause and strict7
semantics were defined for the clause (see Section 12.1.2).8

• To control which synchronizing threads are guaranteed to make progress eventually, the9
safesync clause on the parallel construct (see Section 12.1.5), the10
omp_curr_progress_width identifier (see Section 20.1) and the11
omp_get_max_progress_width routine were addded (see Section 24.6).12

• To make the loop construct and other constructs that specify the order clause with13
concurrent ordering more usable, calls to procedures in the region may now contain14
certain OpenMP directives (see Section 12.3).15

• To support a wider range of synchronization choices, the atomic construct was added to the16
constructs that may be encountered inside a region that corresponds to a construct with an17
order clause that specifies concurrent (see Section 12.3).18

• The constructs that may be encountered during the execution of a region that corresponds to19
a construct on which the order clause is specified with concurrent ordering, when the20
corresponding regions are not strictly nested regions, are no longer restricted (see21
Section 12.3).22

Fortran
• The workdistribute directive was added to support Fortran array expressions in teams23

constructs (see Section 13.5).24

• The loop construct was extended to allow a DO CONCURRENT loop as the collapsed loop25
(see Section 13.8).26

Fortran
• The taskloop construct now includes the task_iteration directive as a subsidiary27

directive so that the tasks that it generates can include the semantics of the affinity and28
depend clauses (see Section 14.2, Section 14.2.3, Section 14.10 and Section 17.9.5).29

• The threadset clause was added to task-generating constructs to specify the binding30
thread set of the generated task (see Section 14.8).31

• The priority clause was added to the target_enter_data, target_exit_data,32
target_data, target and target_update directives (see Section 14.9,33
Section 15.5, Section 15.6, Section 15.7, Section 15.8 and Section 15.9).34

• The device_type clause was added to the clauses that may appear on the target35
construct (see Section 15.1 and Section 15.8).36

APPENDIX B. FEATURES HISTORY 901

• When the device clause is specified with the ancestor device-modifier on the target1
construct, the nowait clause may now also be specified (see Section 15.2, Section 15.8 and2
Section 17.6).3

• The target_data directive description was updated to make it a composite construct, to4
include a taskgroup region and to make the clauses that may appear on it reflect its5
constituent constructs and the taskgroup region (see Section 15.7).6

• The prefer-type modifier of the init clause was updated to allow preferences other than7
foreign runtime identifiers (see Section 16.1.3).8

• The do_not_synchronize argument for the nowait clause (see Section 17.6) and nogroup9
clause (see Section 17.7) was updated to permit non-constant expressions.10

• The memscope clause was added to the atomic and flush constructs to allow the binding11
thread set to span multiple devices (see Section 17.8.4, Section 17.8.5 and Section 17.8.6).12

• The transparent clause was added to support multi-generational task dependence graphs13
(see Section 17.9.6).14

• The cancel construct was extended to complete tasks that have not yet been fulfilled15
through an event variable and the omp_fulfill_event routine was restricted such that16
an event handle must be fulfilled before execution continues beyond a barrier (see17
Section 18.2 and Section 23.2.1).18

• The rules for compound-directive names were simplified to be more intuitive and to allow19
more valid combinations of immediately nested constructs (see Section 19.1).20

• The omp_is_free_agent and omp_ancestor_is_free_agent routines were21
added to test whether the encountering thread, or the ancestor thread, is a free-agent thread22
(see Section 23.1.4 and Section 23.1.5).23

• The omp_get_device_from_uid and omp_get_uid_from_device routines were24
added to convert between unique identifiers and device numbers of devices (see Section 24.725
and Section 24.8).26

• The omp_get_device_num_teams, omp_set_device_num_teams,27
omp_get_device_teams_thread_limit, and28
omp_set_device_teams_thread_limit routine were added to support getting and29
setting the nteams-var and teams-thread-limit-var ICVs for specific devices (see30
Section 24.11, Section 24.12, Section 24.13, and Section 24.14).31

• The omp_target_memset and omp_target_memset_async routines were added to32
fill memory in a device data environment of a device (see Section 25.8.1 and Section 25.8.2).33

Fortran
• Fortran versions of the runtime routines to operate on interoperability objects were added34

(see Chapter 26).35

Fortran

902 OpenMP API – Version 6.0 November 2024

• New routines were added to obtain memory spaces and memory allocators to allocate remote1
and shared memory (see Chapter 27).2

• The omp_get_memspace_num_resources routine was added to support querying the3
number of available resources of a memory space (see Section 27.2).4

• The omp_get_memspace_pagesize routine was added to obtain the page size5
supported by a given memory space (see Section 27.3).6

• The omp_get_submemspace routine was added to obtain a memory space with a subset7
of the original storage resources (see Section 27.4).8

• The omp_init_mempartitioner, omp_destroy_mempartitioner,9
omp_init_mempartition, omp_destroy_mempartition,10
omp_mempartition_set_part, omp_mempartition_get_user_data routines11
were added to manipulate the mempartitioner and mempartition objects (see12
Section 27.5).13

• The set of callbacks for which set_callback must return ompt_set_always no14
longer includes the target_data_op, target, target_map and target_submit15
callbacks, which were deprecated (see Section 32.2.4, Section 35.7, Section 35.8,16
Section 35.9 and Section 35.10).17

• The more general values ompt_target_data_transfer and18
ompt_target_data_transfer_async were added to the target_data_op19
OMPT type and supersede the values ompt_target_data_transfer_to_device,20
ompt_target_data_transfer_from_device,21
ompt_target_data_transfer_to_device_async and22
ompt_target_data_transfer_from_device_async (see Section 33.35). The23
superseded values were deprecated.24

• The get_buffer_limits entry point was added to the OMPT device tracing interface so25
that a first-party tool can obtain an upper limit on the sizes of the trace buffers that it should26
make available to the implementation (see Section 37.6).27

B.3 Version 5.1 to 5.2 Differences28

• Major reorganization and numerous changes were made to improve the quality of the29
specification of OpenMP syntax and to increase consistency of restrictions and their wording.30
These changes frequently result in the possible perception of differences to preceding versions31
of the OpenMP specification. However, those differences almost always resolve ambiguities,32
which may nonetheless have implications for existing implementations and programs.33

• The explicit-task-var ICV replaced the implicit-task-var ICV, with the opposite meaning and34
semantics (see Chapter 3). The omp_in_explicit_task routine was added to query if a35
code region is executed from an explicit task region (see Section 23.1.2).36

APPENDIX B. FEATURES HISTORY 903

Fortran
• Expanded the directives that may be encountered in a pure procedure (see Chapter 5) by1

adding the pure property to metadirectives (see Section 9.4.3), assumption directives (see2
Section 10.6), the nothing directive (see Section 10.7), the error directive (see3
Section 10.1) and loop-transforming constructs (see Chapter 11).4

Fortran
• For OpenMP directives, the omp sentinel and, for implementation defined directives that5

extend the OpenMP directives, the ompx sentinel for C/C++ and free source form Fortran6
and the omx sentinel for fixed source form Fortran (to accommodate character position7
requirements) were reserved (see Chapter 5. Reserved clause names that begin with the8
ompx_ prefix for implementation defined clauses on OpenMP directives (see Chapter 5.9
Reserved names in the base language that start with the omp_,ompt_, ompd_ and ompx_10
prefixes and reserved the omp, ompx, ompt and ompd namespaces for the OpenMP runtime11
API and for implementation defined extensions to that API (see Chapter 5.12

• Allowed any clause that can be specified on a paired end directive to be specified on the13
directive (see Section 5.1), including, in Fortran, the copyprivate clause (see14
Section 7.8.2) and the nowait clause (see Section 17.6).15

• Allowed the if clause on the teams construct (see Section 5.5 and Section 12.2).16

• For consistency with the syntax of other definitions of the clause, the syntax of the destroy17
clause on the depobj construct with no argument was deprecated (see Section 5.7).18

• For consistency with the syntax of other clauses, the syntax of the linear clause that19
specifies its argument and linear-modifier as linear-modifier(list) was deprecated and the20
step modifier was added for specifying the linear step (see Section 7.5.6).21

• The minus (-) operator for reductions was deprecated (see Section 7.6.6).22

• The syntax of modifiers without comma separators in the map clause was deprecated (see23
Section 7.9.6).24

• To support the complete range of user-defined mappers and to improve consistency of map25
clause usage, the declare_mapper directive was extended to accept iterator modifiers26
and the present map-type-modifier (see Section 7.9.6 and Section 7.9.10).27

• Mapping of a pointer list item was updated such that if a matched candidate is not found in28
the data environment, firstprivate semantics apply and the pointer retains its original value29
(see Section 7.9.6).30

• The enter clause was added as a synonym for the to clause on declare target directives,31
and the corresponding to clause was deprecated to reduce parsing ambiguity (see32
Section 7.9.7 and Section 9.9).33

Fortran
• The allocators construct was added to support the use of OpenMP allocators for34

variables that are allocated by a Fortran ALLOCATE statement, and the application of35
allocate directives to an ALLOCATE statement was deprecated (see Section 8.7).36

Fortran

904 OpenMP API – Version 6.0 November 2024

• To support the full range of allocators and to improve consistency with the syntax of other1
clauses, the argument that specified the arguments of the uses_allocators clause as a2
comma-separated list in which each list item is a clause-argument-specification of the form3
allocator[(traits)] was deprecated (see Section 8.8).4

• To improve code clarity and to reduce ambiguity in this specification, the otherwise5
clause was added as a synonym for the default clause on metadirectives and the6
corresponding default clause syntax was deprecated (see Section 9.4.2).7

Fortran
• For consistency with other constructs with associated base language code, the dispatch8

construct was extended to allow an optional paired end directive to be specified (see9
Section 9.7).10

Fortran
C / C++

• To improve overall syntax consistency and to reduce redundancy, the delimited form of the11
declare_target directive was deprecated (see Section 9.9.2).12

C / C++
• The behavior of the order clause with the concurrent argument was changed so that it only13

affects whether a loop schedule is reproducible if a modifier is explicitly specified (see14
Section 12.3).15

• Support for the allocate and firstprivate clauses on the scope directive was16
added (see Section 13.2).17

• The work OMPT type values for worksharing-loop constructs were added (see Section 13.6).18

• To simplify usage, the map clause on a target_enter_data or target_exit_data,19
construct now has a default map type that provides the same behavior as the to or from map20
types, respectively (see Section 15.5 and Section 15.6).21

• The interop construct was updated to allow the init clause to accept an interop_type in22
any position of the modifier list (see Section 16.1).23

• The doacross clause was added as a synonym for the depend clause with the keywords24
source and sink as dependence-type modifiers and the corresponding depend clause25
syntax was deprecated to improve code clarity and to reduce parsing ambiguity. Also, the26
omp_cur_iteration keyword was added to represent a logical iteration vector that27
refers to the current logical iteration (see Section 17.9.7).28

• The omp_pause_stop_tool value was added to the pause_resource OpenMP type29
(see Section 20.11.1).30

B.4 Version 5.0 to 5.1 Differences31

• Full support of C11, C++11, C++14, C++17, C++20 and Fortran 2008 was completed (see32
Section 1.6).33

APPENDIX B. FEATURES HISTORY 905

• Various changes throughout the specification were made to provide initial support of Fortran1
2018 (see Section 1.6).2

• To support device-specific ICV settings the environment variable syntax was extended to3
support device-specific environment variables (see Section 3.2 and Chapter 4).4

• The OMP_PLACES syntax was extended (see Section 4.1.6).5

• The OMP_NUM_TEAMS and OMP_TEAMS_THREAD_LIMIT environment variables were6
added to control the number and size of teams on the teams construct (see Section 4.2.1 and7
Section 4.2.2).8

• The OpenMP directive syntax was extended to include C++ attribute specifiers (see9
Section 5.1).10

• The omp_all_memory reserved locator was added (see Section 5.2.2), and the depend11
clause was extended to allow its use (see Section 17.9.5).12

• Support for private and firstprivate as an argument to the default clause in C13
and C++ was added (see Section 7.5.1).14

• The has_device_addr clause was added to the target construct to allow access to15
variables or array sections that already have a device address (see Section 7.5.9 and16
Section 15.8).17

• Support was added so that iterators may be defined and used in map clauses (see18
Section 7.9.6) or in data-motion clauses on a target_update directive (see Section 15.9).19

• The present argument was added to the defaultmap clause (see Section 7.9.9).20

• Support for the align clause on the allocate directive and allocator and align modifiers21
on the allocate clause was added (see Chapter 8).22

• The target_device trait set was added to the OpenMP context (see Section 9.1), and the23
target_device selector set was added to context selectors (see Section 9.2).24

• For C/C++, the declare variant directives were extended to support elision of preprocessed25
code and to allow enclosed function definitions to be interpreted as function variants (see26
Section 9.6).27

• The declare_variant directive was extended with new clauses (adjust_args and28
append_args) that support adjustment of the interface between the original function and29
its function variants (see Section 9.6.4).30

• The dispatch construct was added to allow users to control when variant substitution31
happens and to define additional information that can be passed as arguments to function32
variants (see Section 9.7).33

• Support was added for indirect calls to the device version of a procedure in target regions34
(see Section 9.9).35

• To allow users to control the compilation process and runtime error actions, the error36
directive was added (see Section 10.1).37

• Assumption directives were added to allow users to specify invariants (see Section 10.6).38

906 OpenMP API – Version 6.0 November 2024

• To support clarity in metadirectives, the nothing directive was added (see Section 10.7).1

• Loop-transforming constructs were added (see Chapter 11).2

• The masked construct was added to support restricting execution to a specific thread to3
replace the deprecated master construct (see Section 12.5).4

• The scope directive was added to support reductions without requiring a parallel or5
worksharing region (see Section 13.2).6

• The grainsize and num_tasks clauses for the taskloop construct were extended7
with a strict prescriptiveness modifier to ensure a deterministic distribution of logical8
iterations to tasks (see Section 14.2).9

• The thread_limit clause was added to the target construct to control the upper bound10
on the number of threads in the created contention group (see Section 15.8).11

• The interop directive was added to enable portable interoperability with foreign execution12
contexts (see Section 16.1). Runtime routines that facilitate use of interoperability objects13
were also added (see Chapter 26).14

• The nowait clause was added to the taskwait directive to support insertion of15
non-blocking join operations in a task dependence graph (see Section 17.5).16

• Specification of the seq_cst clause on a flush construct was allowed, with the same17
meaning as a flush construct without a list and without a clause (see Section 17.8.1.5 and18
Section 17.8.6).19

• Support was added for compare-and-swap and (for C and C++) minimum and maximum20
atomic operations through the compare clause. Support was also added for the specification21
of the memory order to apply to a failed atomic conditional update with the fail clause (see22
Section 17.8.3.2 and Section 17.8.3.3).23

• To support inout sets, the inoutset task-dependence-type modifier was added to the24
depend clause (see Section 17.9.5).25

• For the alloctrait_key OpenMP type, the omp_atv_serialized value was added26
and the omp_atv_default value was changed (see Section 20.8).27

• The omp_set_num_teams and omp_set_teams_thread_limit routines were28
added to control the number of teams and the size of those teams on the teams construct29
(see Section 22.2 and Section 22.6). Additionally, the omp_get_max_teams and30
omp_get_teams_thread_limit routines were added to retrieve the values that will be31
used in the next teams construct (see Section 22.4 and Section 22.5).32

• The omp_target_is_accessible routine was added to test whether a host address is33
accessible from a given device (see Section 25.2.2).34

• The omp_get_mapped_ptr routine was added to support obtaining the device pointer35
that is associated with a host pointer for a given device (see Section 25.2.3).36

• To support asynchronous device memory management, omp_target_memcpy_async37
and omp_target_memcpy_rect_async routines were added (see Section 25.7.3 and38
Section 25.7.4).39

APPENDIX B. FEATURES HISTORY 907

• The omp_calloc, omp_realloc, omp_aligned_alloc and1
omp_aligned_calloc routines were added (see Chapter 27).2

• The omp_display_env routine was added to provide information about ICVs and settings3
of environment variables (see Section 30.4).4

• The ompt_scope_beginend value was added to the scope_endpoint OMPT type to5
indicate the coincident beginning and end of a scope (see Section 33.27).6

• The ompt_state_wait_barrier_implementation and7
ompt_state_wait_barrier_teams values were added to the state OMPT type8
(see Section 33.31).9

• The ompt_sync_region_barrier_implicit_workshare,10
ompt_sync_region_barrier_implicit_parallel, and11
ompt_sync_region_barrier_teams values were added to the sync_region12
OMPT type (see Section 33.33).13

• Values for asynchronous data transfers were added to the target_data_op OMPT type14
(see Section 33.35).15

• The error callback was added (see Section 34.2).16

• The target_data_op_emi, target_emi, target_map_emi, and17
target_submit_emi callbacks were added to support external monitoring interfaces18
(see Section 35.7, Section 35.8, Section 35.9 and Section 35.10).19

B.5 Version 4.5 to 5.0 Differences20

• The memory model was extended to distinguish different types of flushes according to21
specified flush properties (see Section 1.3.4) and to define a happens-before order based on22
synchronizing flushes (see Section 1.3.5).23

• Various changes throughout the specification were made to provide initial support of C11,24
C++11, C++14, C++17 and Fortran 2008 (see Section 1.6).25

• Full support of Fortran 2003 was completed (see Section 1.6).26

• The target-offload-var ICV (see Chapter 3) and the OMP_TARGET_OFFLOAD environment27
variable (see Section 4.3.9) were added to support runtime control of the execution of device28
constructs.29

• Control over whether nested parallelism is enabled or disabled was integrated into the30
max-active-levels-var ICV (see Section 3.2), the default value of which was made31
implementation defined, unless determined according to the values of the32
OMP_NUM_THREADS (see Section 4.1.3) or OMP_PROC_BIND (see Section 4.1.7)33
environment variables.34

• The OMP_DISPLAY_AFFINITY (see Section 4.3.4) and OMP_AFFINITY_FORMAT (see35
Section 4.3.5) environment variables and the omp_set_affinity_format (see36
Section 29.8), omp_get_affinity_format (see Section 29.9),37

908 OpenMP API – Version 6.0 November 2024

omp_display_affinity (see Section 29.10), and omp_capture_affinity (see1
Section 29.11) routines were added to provide OpenMP runtime thread affinity information.2

• The omp_set_nested and omp_get_nested routines and the OMP_NESTED3
environment variable were deprecated.4

• Support for array shaping (see Section 5.2.4) and for array sections with non-unit strides in C5
and C++ (see Section 5.2.5) was added to facilitate specification of discontiguous storage,6
and the target_update construct (see Section 15.9) and the depend clause (see7
Section 17.9.5) were extended to allow the use of shape-operators (see Section 5.2.4).8

• The iterator modifier (see Section 5.2.6) was added to support expressions in a list that9
expand to multiple expressions.10

• The canonical loop nest form was defined for Fortran and, for all base languages, extended to11
permit non-rectangular loops (see Section 6.4.1).12

• The relational-op in a canonical loop nest for C/C++ was extended to include != (see13
Section 6.4.1).14

• To support conditional assignment to lastprivate variables, the conditional modifier was15
added to the lastprivate clause (see Section 7.5.5).16

• The semantics of the use_device_ptr clause for pointer variables was clarified and the17
use_device_addr clause for using the device address of non-pointer variables inside the18
target_data construct was added (see Section 7.5.8, Section 7.5.10 and Section 15.7).19

• The inscan modifier for the reduction clause (see Section 7.6.10) and the scan directive20
(see Section 7.7) were added to support inclusive scan and exclusive scan computations.21

• To support task reductions, the task modifier was added to the reduction clause (see22
Section 7.6.10), the task_reduction clause (see Section 7.6.11) was added to the23
taskgroup construct (see Section 17.4), and the in_reduction clause (see24
Section 7.6.12) was added to the task (see Section 14.1) and target (see Section 15.8)25
constructs.26

• To support taskloop reductions, the reduction (see Section 7.6.10) and27
in_reduction (see Section 7.6.12) clauses were added to the taskloop construct (see28
Section 14.2).29

• The description of the map clause was modified to clarify the mapping order when multiple30
map-type modifiers are specified for a variable or structure members of a variable on the31
same construct. The close-modifier was added as a hint for the runtime to allocate memory32
close to the target device (see Section 7.9.6).33

• The capability to map C/C++ pointer variables and to assign the address of device memory34
that is mapped by an array section to them was added. Support for mapping of Fortran35
pointer and allocatable variables, including pointer and allocatable components of variables,36
was added (see Section 7.9.6).37

• All uses of the map clause (see Section 7.9.6), as well as the to and from clauses on the38
target_update construct (see Section 15.9) and the depend clause on task-generating39

APPENDIX B. FEATURES HISTORY 909

constructs (see Section 17.9.5) were extended to allow any lvalue expression as a list item for1
C/C++.2

• The defaultmap clause (see Section 7.9.9) was extended to allow specification of the3
data-mapping attributes or data-sharing attributes for any of the scalar, aggregate, pointer, or4
allocatable classes on a per-region basis. Additionally, the none argument was added to5
support the requirement that all variables referenced in the construct must be explicitly6
mapped or privatized.7

• The declare_mapper directive was added to support mapping of data types with direct8
and indirect members (see Section 7.9.10).9

• Predefined memory spaces, predefined memory allocators and allocator traits and directives,10
clauses and routines (see Chapter 8 and Chapter 27) to use them were added to support11
different kinds of memories.12

• Metadirectives (see Section 9.4) and declare variant directives (see Section 9.6) were added13
to support selection of directive variants and function variants at a call site, respectively,14
based on compile-time traits of the enclosing context.15

• Support for nested declare target directives was added (see Section 9.9).16

• To reduce programmer effort, implicit declare target directives for some procedures were17
added (see Section 9.9 and Section 15.8).18

• The requires directive (see Section 10.5) was added to support applications that require19
implementation-specific features.20

• The teams construct (see Section 12.2) was extended to support execution on the host21
device without an enclosing target construct (see Section 15.8).22

• The loop construct and the order clause with the concurrent argument were added to23
support compiler optimization and parallelization of loops for which logical iterations may24
execute in any order, including concurrently (see Section 12.3 and Section 13.8).25

• The collapse of affected loops that are imperfectly nested loops was defined for simd26
constructs (see Section 12.4), worksharing-loop constructs (see Section 13.6), distribute27
constructs (see Section 13.7) and taskloop constructs (see Section 14.2).28

• The simd construct (see Section 12.4) was extended to accept the if and nontemporal29
clauses and, with the concurrent argument, order clauses and to allow the use of30
atomic constructs within it.31

• The default ordering-modifier for the schedule clause on worksharing-loop constructs32
when the kind argument is not static and the ordered clause does not appear on the33
construct was changed to nonmonotonic (see Section 13.6.3).34

• The clauses that can be specified on the task construct (see Section 14.1) were extended35
with the affinity clause (see Section 14.10) to support hints that indicate data affinity of36
explicit tasks.37

• To support execution of detachable tasks, the detach clause for the task construct (see38
Section 14.1) and the omp_fulfill_event routine (see Section 23.2.1) were added.39

910 OpenMP API – Version 6.0 November 2024

• The taskloop construct (see Section 14.2) was added to the list of constructs that can be1
canceled by the cancel constructs (see Section 18.2).2

• To support reverse-offload regions, the ancestor modifier was added to the device clause3
for the target construct (see Section 15.2 and Section 15.8).4

• The target_update construct (see Section 15.9) was modified to allow array sections5
that specify discontiguous storage.6

• The taskwait construct was extended to accept the depend clause (see Section 17.5 and7
Section 17.9.5).8

• To support acquire and release semantics with weak memory ordering, the acq_rel,9
acquire, and release clauses (see Section 17.8.1) were added to the atomic construct10
(see Section 17.8.5) and flush construct (see Section 17.8.6), and the memory ordering11
semantics of implicit flushes on various constructs and routines were clarified (see12
Section 17.8.7).13

• The atomic construct was extended with the hint clause (see Section 17.8.5).14

• To support mutually exclusive inout sets, a mutexinoutset task-dependence-type was15
added to the depend clause (see Section 17.9.1 and Section 17.9.5).16

• The depend clause (see Section 17.9.5) was extended to support iterator modifiers and to17
support depend objects that can be created with the new depobj construct (see18
Section 17.9.3).19

• New combined constructs (master taskloop, parallel master, parallel20
master taskloop, master taskloop simd and parallel master21
taskloop simd) (see Section 19.1) were added.22

• Lock hints were renamed to synchronization hints, and the old names were deprecated (see23
Section 20.9.5).24

• The omp_get_supported_active_levels routine was added to query the number of25
active levels of parallelism supported by the implementation (see Section 21.11).26

• The omp_get_device_num routine (see Section 24.4) was added to support27
determination of the device on which a thread is executing.28

• The omp_pause_resource and omp_pause_resource_all routines were added to29
allow the runtime to relinquish resources used by OpenMP (see Section 30.2.1 and30
Section 30.2.2).31

• Support for a first-party tool interface (see Chapter 32) was added.32

• Support for a third-party tool interface (see Chapter 38) was added.33

• Stubs for runtime library routines (previously Appendix A) were moved to a separate34
document.35

• Interface declarations (previously Appendix B) were moved to a separate document.36

APPENDIX B. FEATURES HISTORY 911

B.6 Version 4.0 to 4.5 Differences1

• Support for several features of Fortran 2003 was added (see Section 1.6).2

• The OMP_MAX_TASK_PRIORITY environment variable was added to control the3
maximum task priority value allowed (see Section 4.3.11).4

• The if clause was extended to accept a directive-name-modifier that allows it to apply to5
combined constructs (see Section 5.4 and Section 5.5).6

• An argument was added to the ordered clause of the worksharing-loop construct and the7
ordered construct was modified to support doacross loop nests (see Section 6.4.6,8
Section 13.6 and Section 17.10.2)9

• The implicitly determined data-sharing attribute for scalar variables in target regions was10
changed to firstprivate (see Section 7.1.1).11

• Use of some C++ reference types was allowed in some data-sharing attribute clauses (see12
Section 7.5).13

• The private, firstprivate and defaultmap clauses were added to the target14
construct (see Section 7.5.3, Section 7.5.4, Section 7.9.9 and Section 15.8).15

• The linear-modifier was added to the linear clause (see Section 7.5.6).16

• The linear clause was added to the worksharing-loop construct (see Section 7.5.6 and17
Section 13.6).18

• To support interaction with native device implementations, the is_device_ptr clause19
was added to the target construct and the use_device_ptr clause was added to the20
target_data construct (see Section 7.5.7, Section 7.5.8, Section 15.7 and Section 15.8).21

• Semantics for reductions on C/C++ array sections were added and restrictions on the use of22
arrays and pointers in reductions were removed (see Section 7.6.10).23

• Support was added to the map clause to handle structure elements (see Section 7.9.6).24

• To support unstructured data mapping for devices, the map clause (see Section 7.9.6) was25
updated and the target_enter_data (see Section 15.5) and target_exit_data26
(see Section 15.6) constructs were added.27

• The declare_target directive was extended to allow mapping of global variables to be28
deferred to specific device executions and to allow an extended-list to be specified in C/C++29
(see Section 9.9).30

• The simdlen clause was added to the simd construct to support specification of the exact31
number of logical iterations desired per SIMD chunk (see Section 12.4).32

• To support the use of the simd construct on loops with loop-carried backward dependences33
with or without a worksharing-loop construct, clauses were added to the ordered construct34
(see Section 12.4, Section 13.6) and Section 17.10).35

• The task construct was extended to accept hints that the priority clause specifies (see36
Section 14.1 and Section 14.9).37

912 OpenMP API – Version 6.0 November 2024

• The taskloop construct was added to support nestable parallel loops that create explicit1
tasks (see Section 14.2).2

• To improve support for asynchronous execution of target regions, the target construct3
was extended to accept the nowait and depend clauses (see Section 15.8, Section 17.64
and Section 17.9.5).5

• The hint clause was added to the critical construct (see Section 17.2).6

• The source and sink dependence types were added to the depend clause to support7
doacross loop nests (see Section 17.9.5).8

• To support a more complete set of compound constructs for devices, the compound9
constructs target parallel, target parallel for (C/C++),10
target parallel for simd (C/C++), target parallel do (Fortran) and11
target parallel do simd (Fortran) were added (see Section 19.1).12

• The omp_get_max_task_priority routine was added to return the maximum13
supported task priority value (see Section 23.1.1).14

• Device memory routines were added to allow explicit memory allocations, deallocations and15
transfers and memory associations (see Chapter 25).16

• The lock API was extended with lock routines that support storing a hint with a lock to select17
a desired lock implementation for the intended usage of the lock by the application code (see18
Section 28.1.3 and Section 28.1.4).19

• Query routines for thread affinity were added (see Section 29.2 to Section 29.7).20

• C/C++ grammar (previously Appendix B) was moved to a separate document.21

B.7 Version 3.1 to 4.0 Differences22

• Various changes throughout the specification were made to provide initial support of Fortran23
2003 (see Section 1.6).24

• The OMP_PLACES environment variable (see Section 4.1.6), the proc_bind clause (see25
Section 12.1.3), and the omp_get_proc_bind routine (see Section 29.1) were added to26
support thread affinity policies.27

• The OMP_CANCELLATION environment variable (see Section 4.3.6), the cancel construct28
(see Section 18.2), the cancellation point construct (see Section 18.3), and the29
omp_get_cancellation routine (see Section 30.1) were added to support the concept30
of cancellation.31

• The OMP_DEFAULT_DEVICE environment variable (see Section 4.3.8), device constructs32
(see Chapter 15), and the omp_get_num_teams, omp_get_team_num,33
omp_set_default_device, omp_get_default_device,34
omp_get_num_devices, and omp_is_initial_device routines (see Chapter 2235
and Chapter 24) were added to support execution on devices.36

APPENDIX B. FEATURES HISTORY 913

• The OMP_DISPLAY_ENV environment variable (see Section 4.7) was added to display the1
value of ICVs associated with the OpenMP environment variables.2

• C/C++ array syntax was extended to support array sections (see Section 5.2.5).3

• The reduction clause (see Section 7.6.10) was extended and the declare_reduction4
construct (see Section 7.6.14) was added to support user-defined reductions.5

• SIMD directives were added to support SIMD parallelism (see Section 12.4).6

• Implementation defined task scheduling points for untied tasks were removed (see7
Section 14.14).8

• The taskgroup construct (see Section 17.4) was added to support deep task9
synchronization.10

• The atomic construct was extended to support atomic captured updates with the capture11
clause, to allow new atomic update forms, and to support sequentially consistent atomic12
operations with the seq_cst clause (see Section 17.8.1.5, Section 17.8.3.1 and13
Section 17.8.5).14

• The depend clause (see Section 17.9.5) was added to support task dependences.15

• Examples (previously Appendix A) were moved to a separate document.16

B.8 Version 3.0 to 3.1 Differences17

• The bind-var ICV (see Section 3.1) and the OMP_PROC_BIND environment variable (see18
Section 4.1.7) were added to support control of whether threads are bound to processors.19

• The nthreads-var ICV was modified to be a list of the number of threads to use at each nested20
parallel region level (see Section 3.1) and the algorithm for determining the number of21
threads used in a parallel region was modified to handle a list (see Section 12.1.1).22

• Data environment restrictions were changed to allow intent(in) and const-qualified23
types for the firstprivate clause (see Section 7.5.4).24

• Data environment restrictions were changed to allow Fortran pointers in firstprivate25
(see Section 7.5.4) and lastprivate (see Section 7.5.5) clauses.26

• New reduction operators min and max were added for C/C++ (see Section 7.6.3).27

• The mergeable and final clauses (see Section 14.5 and Section 14.7) were added to the28
task construct (see Section 14.1) to support optimization of task data environments.29

• The taskyield construct was added to allow user-defined task scheduling points (see30
Section 14.12).31

• The atomic construct was extended to include read, write, and capture forms, and an32
update clause was added to apply the already existing form of the atomic construct (see33
Section 17.8.2, Section 17.8.3.1 and Section 17.8.5).34

914 OpenMP API – Version 6.0 November 2024

• The nesting restrictions were clarified to disallow closely nested regions within an atomic1
region so that an atomic region can be consistently defined with other regions to include all2
code in the atomic construct (see Section 19.1).3

• The omp_in_final routine was added to support specialization of final task regions (see4
Section 23.1.3).5

• Descriptions of examples (previously Appendix A) were expanded and clarified.6

• Incorrect use of omp_integer_kind in Fortran interfaces was replaced with7
selected_int_kind(8).8

B.9 Version 2.5 to 3.0 Differences9

• The concept of tasks was added to the execution model (see Section 1.2 and Chapter 2).10

• The OpenMP memory model was extended to cover atomicity of memory accesses (see11
Section 1.3.1). The description of the behavior of volatile in terms of flushes was12
removed.13

• The definition of active parallel region was changed so that a parallel region is active if it14
is executed by a team to which more than one thread is assigned (see Chapter 2).15

• The definition of the nest-var, dyn-var, nthreads-var and run-sched-var ICVs were modified16
to provide one copy of these ICVs per task instead of one copy for the whole OpenMP17
program (see Section 3.1). The omp_set_num_threads and omp_set_dynamic18
routines were specified to support their use from inside a parallel region (see19
Section 21.1 and Section 21.7).20

• The thread-limit-var ICV, the OMP_THREAD_LIMIT environment variable and the21
omp_get_thread_limit routine were added to support control of the maximum22
number of threads (see Section 3.1, Section 4.1.4 and Section 21.5).23

• The max-active-levels-var ICV, the OMP_MAX_ACTIVE_LEVELS environment variable24
and the omp_set_max_active_levels and omp_get_max_active_levels25
routines, and were added to support control of the number of nested active parallel regions26
(see Section 3.1, Section 4.1.5, Section 21.12 and Section 21.13).27

• The stacksize-var ICV and the OMP_STACKSIZE environment variable were added to28
support control of thread stack sizes (see Section 3.1 and Section 4.3.2).29

• The wait-policy-var ICV and the OMP_WAIT_POLICY environment variable were added to30
control the desired behavior of waiting threads (see Section 3.1 and Section 4.3.3).31

• Predetermined data-sharing attributes were defined for Fortran assumed-size arrays (see32
Section 7.1.1).33

• Static class member variables were allowed in threadprivate directives (see34
Section 7.3).35

• Invocations of constructors and destructors for private and threadprivate class type variables36
were clarified (see Section 7.3, Section 7.5.3, Section 7.5.4, Section 7.8.1 and Section 7.8.2).37

APPENDIX B. FEATURES HISTORY 915

• The use of Fortran allocatable arrays was allowed in private, firstprivate,1
lastprivate, reduction, copyin and copyprivate clauses (see Section 7.3,2
Section 7.5.3, Section 7.5.4, Section 7.5.5, Section 7.6.10, Section 7.8.1 and Section 7.8.2).3

• Support for firstprivate was added to the default clause in Fortran (see4
Section 7.5.1).5

• Implementations were precluded from using the storage of the original list item to hold the6
new list item on the primary thread for list item in the private clause, and the value was7
made well defined on exit from the parallel region if no attempt is made to reference the8
original list item inside the parallel region (see Section 7.5.3).9

• Determination of the number of threads in parallel regions was updated (see10
Section 12.1.1).11

• The assignment of logical iterations to threads in a worksharing-loop construct with a12
static schedule kind was made deterministic (see Section 13.6).13

• The worksharing-loop construct was extended to support association with more than one14
perfectly nested loop through the collapse clause (see Section 13.6).15

• Loop-iteration variables for worksharing-loop constructs were allowed to be random access16
iterators or of unsigned integer type (see Section 13.6).17

• The schedule kind auto was added to allow the implementation to choose any possible18
mapping of logical iterations in a worksharing-loop constructs to threads in the team (see19
Section 13.6).20

• The task construct was added to support explicit tasks (see Section 14.1).21

• The taskwait construct was added to support task synchronization (see Section 17.5).22

• The omp_set_schedule and omp_get_schedule routines were added to set and to23
retrieve the value of the run-sched-var ICV (see Section 21.9 and Section 21.10).24

• The omp_get_level routine was added to return the number of nested parallel regions25
that enclose the task that contains the call (see Section 21.14).26

• The omp_get_ancestor_thread_num routine was added to return the thread number27
of the ancestor thread of the current thread (see Section 21.15).28

• The omp_get_team_size routine was added to return the size of the team to which the29
ancestor thread of the current thread belongs (see Section 21.16).30

• The omp_get_active_level routine was added to return the number of active parallel31
regions that enclose the task that contains the call (see Section 21.17).32

• Lock ownership was defined in terms of tasks instead of threads (see Chapter 28).33

916 OpenMP API – Version 6.0 November 2024

C Nesting of Regions1

This appendix describes a set of restrictions on the nesting of regions. The restrictions on nesting2
are as follows:3

• A teams region must be strictly nested either within the implicit parallel region that4
surrounds the whole OpenMP program or within a target region. If a teams construct is5
nested within a target construct, that target construct must contain no statements,6
declarations or directives outside of the teams construct (see Section 12.2).7

• Only regions that are generated by teams-nestable constructs or teams-nestable routines8
may be strictly nested regions of teams regions (see Section 12.2).9

• The only routines for which a call may be nested inside a region that corresponds to a10
construct on which the order clause is specified with concurrent as the ordering11
argument are order-concurrent-nestable routines (see Section 12.3).12

• Only regions that correspond to order-concurrent-nestable constructs or13
order-concurrent-nestable routines may be strictly nested regions of regions that14
correspond to constructs on which the order clause is specified with concurrent as the15
ordering argument (see Section 12.3).16

• The only OpenMP constructs that can be encountered during execution of a simd region are17
SIMDizable constructs (see Section 12.4).18

• A team-executed region may not be closely nested inside a partitioned worksharing region, a19
region that corresponds to a thread-exclusive construct, or a region that corresponds to a20
task-generating construct that is not a team-generating construct. This follows from various21
restrictions requiring, in general, that team-executed regions (which include worksharing22
regions and barrier regions) are executed by all threads in a team or by none at all (see23
Chapter 13 and Section 17.3.1).24

• A distribute region must be strictly nested inside a teams region (see Section 13.7).25

• A loop region that binds to a teams region must be strictly nested inside a teams region26
(see Section 13.8.1).27

• During execution of a target region, other than target constructs for which a device28
clause on which the ancestor device-modifier appears, device-affecting constructs must not29
be encountered (see Section 15.8).30

• A critical region must not be nested (closely or otherwise) inside a critical region31
with the same name (see Section 17.2).32

APPENDIX C. NESTING OF REGIONS 917

• OpenMP constructs may not be encountered during execution of an atomic region (see1
Section 17.8.5).2

• An ordered region that corresponds to an ordered construct with the threads or3
doacross clause may not be closely nested inside a critical, ordered, loop, task,4
or taskloop region (see Section 17.10).5

• If the simd parallelization-level clause is specified on an ordered construct, the6
ordered region must bind to a simd region or one that corresponds to a compound7
construct for which the simd construct is a leaf construct (see Section 17.10.2).8

• If the threads parallelization-level clause is specified on an ordered construct, the9
ordered region must bind to a worksharing-loop region or one that corresponds to a10
compound construct for which a worksharing-loop construct is a leaf construct (see11
Section 17.10.2).12

• If the threads parallelization-level clause is specified on an ordered construct and the13
binding region corresponds to a compound construct then the simd construct must not be a14
leaf construct unless the simd parallelization-level clause is also specified (see15
Section 17.10.2).16

• If cancel-directive-name is taskgroup, the cancel construct must be closely nested17
inside a task construct and the cancel region must be closely nested inside a18
taskgroup region. Otherwise, the cancel construct must be closely nested inside a19
construct for which directive-name is cancel-directive-name (see Section 18.2).20

• A cancellation point construct for which cancel-directive-name is taskgroup21
must be closely nested inside a task construct, and the cancellation point region22
must be closely nested inside a taskgroup region. Otherwise, a cancellation23
point construct must be closely nested inside a construct for which directive-name is24
cancel-directive-name (see Section 18.3).25

918 OpenMP API – Version 6.0 November 2024

D Conforming Compound Directive1

Names2

This appendix provides the grammar from which one may derive the full list of conforming3
compound-directive names (see Section 19.1) after excluding any productions for4
compound-directive name that would violate the following constraints:5

• Leaf-directive names must be unique.6

• The nesting of constructs indicated by the compound construct must be conforming.7

• For Fortran, where spaces are optional, the resulting compound-directive name must have8
unambiguous leaf-directive names (e.g., plus signs should be used to separate leaf-directive9
names to disambiguate taskloop and task loop as constituent-directive names).10

compound-dir-name:11
composite-loop-dir-name12
parallelism-generating-combined-dir-name13
thread-selecting-combined-dir-name14

15
composite-loop-dir-name:16

distribute-composite-dir-name17
taskloop-composite-dir-name18
worksharing-loop-composite-dir-name19

20
parallelism-generating-combined-dir-name:21

parallel-combined-dir-name22
target-combined-dir-name23
target_data-combined-dir-name24
task-combined-dir-name25
teams-combined-dir-name26

27
thread-selecting-combined-dir-name:28

masked-combined-dir-name29
single-combined-dir-name30

31
distribute-composite-dir-name:32

distribute parallel-worksharing-loop-dir-name33
distribute simd-dir-name34

35

APPENDIX D. CONFORMING COMPOUND DIRECTIVE NAMES 919

taskloop-composite-dir-name:1
taskloop simd-dir-name2

3
worksharing-loop-composite-dir-name:4

for simd-dir-name5
do simd-dir-name6

7
parallel-combined-dir-name:8

parallel partitioned-worksharing-dir-name9
parallel simd-dir-name10
parallel target-task-generating-dir-name11
parallel task-dir-name12
parallel taskloop-dir-name13
parallel thread-selecting-dir-name14

15
target-combined-dir-name:16

target loop-dir-name17
target parallel-dir-name18
target simd-dir-name19
target task-dir-name20
target taskloop-dir-name21
target teams-dir-name22

23
target_data-combined-dir-name:24

target_data loop-dir-name25
target_data parallel-dir-name26
target_data simd-dir-name27

28
task-combined-dir-name:29

task loop-dir-name30
task parallel-dir-name31
task simd-dir-name32

33
teams-combined-dir-name:34

teams parallel-dir-name35
teams partitioned-nonworksharing-workdist-dir-name36
teams simd-dir-name37
teams target-task-generating-dir-name38
teams task-dir-name39
teams taskloop-dir-name40

41
masked-combined-dir-name:42

masked loop-dir-name43

920 OpenMP API – Version 6.0 November 2024

masked parallel-dir-name1
masked simd-dir-name2
masked target-task-generating-dir-name3
masked task-dir-name4
masked taskloop-dir-name5

6
single-combined-dir-name:7

single loop-dir-name8
single parallel-dir-name9
single simd-dir-name10
single target-task-generating-dir-name11
single task-dir-name12
single taskloop-dir-name13

14
parallel-worksharing-loop-dir-name:15

parallel worksharing-loop-dir-name16
17

simd-dir-name:18
simd19

20
partitioned-worksharing-dir-name:21

loop-dir-name22
single-dir-name23
worksharing-loop-dir-name24
sections25
workshare26

27
target-task-generating-dir-name:28

target_data-dir-name29
target-dir-name30
target_enter_data31
target_exit_data32
target_update33

34
task-dir-name:35

task-combined-dir-name36
task37

38
taskloop-dir-name:39

taskloop-composite-dir-name40
taskloop41

42
thread-selecting-dir-name:43

APPENDIX D. CONFORMING COMPOUND DIRECTIVE NAMES 921

masked-dir-name1
single-dir-name2

3
loop-dir-name:4

loop5
6

parallel-dir-name:7
parallel-combined-dir-name8
parallel9

10
teams-dir-name:11

teams-combined-dir-name12
teams13

14
partitioned-nonworksharing-workdist-dir-name:15

distribute-dir-name16
loop-dir-name17
workdistribute18

19
worksharing-loop-dir-name:20

worksharing-loop-composite-dir-name21
for22
do23

24
single-dir-name:25

single-combined-dir-name26
single27

28
target_data-dir-name:29

target_data-combined-dir-name30
target_data31

32
target-dir-name:33

target-combined-dir-name34
target35

36
masked-dir-name:37

masked-combined-dir-name38
masked39

40
distribute-dir-name:41

distribute-composite-dir-name42
distribute43

922 OpenMP API – Version 6.0 November 2024

Index

Symbols
_OPENMP macro, 136, 137, 147, 171

A
absent, 363
acq_rel, 484
acquire, 485
acquire flush, 11
adjust_args, 331
affinity, 389
affinity, 444
align, 309
aligned, 300
alloc_memory, 834
allocate, 310, 312
allocator, 310
allocator_handle type, 544
allocators, 315
alloctrait type, 545
alloctrait_key type, 547
alloctrait_val type, 552
alloctrait_value type, 550
append_args, 333
apply Clause, 372
array sections, 166
array shaping, 165
assumes, 368, 369
assumption clauses, 363
assumption directives, 362
asynchronous device memory routines, 604
at, 353
atomic, 494
atomic, 488
atomic construct, 891
atomic_default_mem_order, 356
attribute clauses, 222

attributes, data-mapping, 274, 276
attributes, data-sharing, 210
auto, 419

B
barrier, 475
barrier, implicit, 476
base language format, 183
begin declare_target, 349
begin declare_variant, 336
begin metadirective, 327
begin assumes, 369
bind, 424
branch, 343
buffer_complete, 776
buffer_request, 775

C
callback_device_host_fn, 842
device_finalize, 773
callbacks, 820
cancel, 520, 759
cancel-directive-name, 519
cancellation constructs, 519

cancel, 520
cancellation_point, 524

cancellation_point, 524
canonical loop nest form, 196
canonical loop sequence form, 202
capture, 490
capture, atomic, 494
clause format, 157
clauses

absent, 363
acq_rel, 484
acquire, 485

Index 923

adjust_args, 331
affinity, 444
align, 309
aligned, 300
allocate, 312
allocator, 310
append_args, 333
apply Clause, 372
assumption, 363
at, 353
atomic, 488
atomic_default_mem_order,

356
attribute data-sharing, 222
bind, 424
branch, 343
cancel-directive-name, 519
capture, 490
collapse, 205
collector, 266
combiner, 262
compare, 491
contains, 364
copyin, 271
copyprivate, 272
counts, 378
data copying, 270
data-sharing, 222
default, 223
defaultmap, 291
depend, 507
destroy, 182
detach, 445
device, 451
device_safesync, 362
device_type, 450
dist_schedule, 422
doacross, 511
dynamic_allocators, 357
enter, 289
exclusive, 269
extended-atomic, 490
fail, 492

filter, 403
final, 441
firstprivate, 227
from, 298
full, 382
grainsize, 432
graph_id, 438
has_device_addr, 237
hint, 472
holds, 364
if Clause, 179
in_reduction, 256
inbranch, 343
inclusive, 269
indirect, 350
induction, 257
inductor, 265
init, 180
init_complete, 270
initializer, 262
interop, 339
is_device_ptr, 235
lastprivate, 229
linear, 232
link, 290
local, 303
map, 279
match, 330
memory-order, 484
memscope, 493
mergeable, 440
message, 353
no_openmp, 365
no_openmp_constructs, 366
no_openmp_routines, 366
no_parallelism, 367
nocontext, 340
nogroup, 483
nontemporal, 400
notinbranch, 344
novariants, 340
nowait, 481
num_tasks, 433

924 OpenMP API – Version 6.0 November 2024

num_teams, 397
num_threads, 388
order, 397
ordered, 206
otherwise, 326
parallelization-level, 517
partial, 383
permutation, 376
priority, 443
private, 225
proc_bind, 392
read, 488
reduction, 252
relaxed, 486
release, 486
replayable, 440
requirement, 356
reverse_offload, 358
safelen, 401
safesync, 393
schedule, 418
self_maps, 361
seq_cst, 487
severity, 354
shared, 224
simd, 518
simdlen, 401
sizes, 374
looprange, 207
task_reduction, 255
thread_limit, 452
threads, 517
threadset, 442
to, 297
transparent, 510
unified_address, 359
unified_shared_memory, 360
uniform, 299
untied, 439
update, 489, 506
use, 469
use_device_addr, 238
use_device_ptr, 236

uses_allocators, 315
weak, 492
when, 325
write, 489

collapse, 205
combined and composite directive

names, 525
compare, 491
compare, atomic, 494
compilation sentinels, 172, 173
compliance, 15
composition of constructs, 525
compound construct semantics, 531
compound directive names, 525
conditional compilation, 171
consistent loop schedules, 205
construct syntax, 148
constructs

allocators, 315
atomic, 494
barrier, 475
cancel, 520
cancellation constructs, 519
cancellation_point, 524
compound constructs, 531
critical, 473
depobj, 505
device constructs, 450
dispatch, 337
distribute, 420
do, 417
flush, 498
for, 416
fuse, 374
interop, 468
loop, 423
masked, 402
ordered, 513–515
parallel, 384
reverse, 377
scope, 406
sections, 407
simd, 399

Index 925

single, 405
split, 377
stripe, 379
target, 460
target data, 458
target enter data, 454
target exit data, 456
target update, 465
task, 426
task_iteration, 434
taskgraph, 435
taskgroup, 478
tasking constructs, 426
taskloop, 429
taskwait, 479
taskyield, 446
teams, 394
interchange, 375
tile, 380
unroll, 381
work-distribution, 404
workdistribute, 412
workshare, 409
worksharing, 404
worksharing-loop construct, 414

contains, 364
control_tool, 770
control_tool type, 565
control_tool_result type, 566
controlling OpenMP thread affinity, 389
copyin, 271
copyprivate, 272
counts, 378
critical, 473

D
data copying clauses, 270
data environment, 210
data-mapping control, 274
data-motion clauses, 295
data-sharing attribute clauses, 222
data-sharing attribute rules, 210
declare induction, 263
declare mapper, 293

declare reduction, 260
Declare Target, 345
declare variant, 328
declare_simd, 341
declare_target, 346
declare_variant, 334
default, 223
defaultmap, 291
depend, 507
depend object, 505
depend type, 558
dependences, 504
dependences, 760
depobj, 505
deprecated features, 896
destroy, 182
detach, 445
device, 451
device constructs

device constructs, 450
target, 460
target update, 465

device data environments, 8, 454, 456
device directives, 450
device information routines, 592
device memory information routines, 604
device memory routines, 603
device_initialize, 772
device_load, 774
device_safesync, 362
device_to_host, 843
device_type, 450
device_unload, 775
directive format, 150
directive syntax, 148
directive-name-modifier, 173
directives, 919

allocate, 310
assumes, 368, 369
assumptions, 362
begin assumes, 369
begin declare_target, 349
begin declare_variant, 336

926 OpenMP API – Version 6.0 November 2024

begin metadirective, 327
declare induction, 263
declare mapper, 293
declare reduction, 260
Declare Target, 345
declare variant, 328
declare_simd, 341
declare_target, 346
declare_variant, 334
error, 352
groupprivate, 301
memory management directives, 304
metadirective, 324, 327
nothing, 369
requires, 355
scan Directive, 266
section, 408
threadprivate, 215
variant directives, 318

dispatch, 337, 753
dist_schedule, 422
distribute, 420
do, 417
doacross, 511
dynamic, 418
dynamic thread adjustment, 889
dynamic_allocators, 357

E
enter, 289
environment variables, 127

OMP_AFFINITY_FORMAT, 137
OMP_ALLOCATOR, 143
OMP_AVAILABLE_DEVICES, 139
OMP_CANCELLATION, 139
OMP_DEBUG, 146
OMP_DEFAULT_DEVICE, 140
OMP_DISPLAY_AFFINITY, 136
OMP_DISPLAY_ENV, 147
OMP_DYNAMIC, 128
OMP_MAX_ACTIVE_LEVELS, 130
OMP_MAX_TASK_PRIORITY, 143
OMP_NUM_TEAMS, 133
OMP_NUM_THREADS, 129

OMP_PLACES, 130
OMP_PROC_BIND, 132
OMP_SCHEDULE, 134
OMP_STACKSIZE, 135
OMP_TARGET_OFFLOAD, 141
OMP_TEAMS_THREAD_LIMIT, 134
OMP_THREAD_LIMIT, 130
OMP_THREADS_RESERVE, 141
OMP_TOOL, 144
OMP_TOOL_LIBRARIES, 145
OMP_TOOL_VERBOSE_INIT, 145
OMP_WAIT_POLICY, 135

event, 589
event callback registration, 703
event routines, 589
event_handle type, 538
exclusive, 269
execution control, 688
execution model, 2
extended-atomic, 490

F
fail, 492
features history, 896
filter, 403
final, 441
firstprivate, 227
fixed source form conditional compilation

sentinels, 173
fixed source form directives, 157
flush, 498, 769
flush operation, 10
flush synchronization, 11
flush-set, 10
for, 416
frames, 719
free source form conditional compilation

sentinel, 172
free source form directives, 156
free_memory, 834
from, 298
full, 382
fuse, 374

Index 927

G
general OpenMP types, 536
get_thread_context_for_thread_id,

840
glossary, 19
grainsize, 432
graph_id, 438
groupprivate, 301
guided, 418

H
happens before, 11
has_device_addr, 237
header files, 533
hint, 472
history of features, 896
holds, 364
host_to_device, 843

I
ICVs (internal control variables), 115
if Clause, 179
impex type, 558
implementation, 885
implicit barrier, 476
implicit data-mapping attribute rules, 276
implicit flushes, 500
implicit_task, 757
in_reduction, 256
inbranch, 343
include files, 533
inclusive, 269
indirect, 350
induction, 257
inductor, 265
informational and utility directives, 352
init, 180
init_complete, 270
internal control variables, 885
internal control variables (ICVs), 115
interop, 339
interop type, 538
interop_rc type, 539–541
interoperability, 468

Interoperability routines, 622
intptr type, 536
introduction, 2
is_device_ptr, 235
iterators, 169

L
lastprivate, 229
linear, 232
link, 290
list item privatization, 219
local, 303
lock routines, 663
lock type, 559
lock_destroy, 767
lock_init, 766
loop, 423
loop concepts, 195
loop iteration spaces, 203
loop iteration vectors, 203
loop-transforming constructs, 371

M
map, 279
map type decay, 275
map-type, 274
mapper, 278
mapper identifiers, 278
masked, 402, 751
match, 330
memory allocator retrieving routines, 647
memory allocators, 305
memory copying routines, 612
memory management, 304
memory management directives

memory management directives, 304
memory management routines, 630
memory model, 7
memory setting routines, 618
memory space retrieving routines, 630, 654
memory spaces, 304
memory-order, 484
memory_read, 837
mempartition type, 553

928 OpenMP API – Version 6.0 November 2024

mempartitioner routines, 637
mempartitioner type, 553
mempartitioner_compute_proc

type, 554
mempartitioner_lifetime type, 554
mempartitioner_release_proc

type, 556
memscope, 493
memspace_handle type, 557
mergeable, 440
message, 353
metadirective, 324
metadirective, 327
modifier

directive-name-modifierdirective-name-
modifier, 173

map-typemap-type, 274
reduction-identifierreduction-identifier,

251
ref-modifierref-modifier, 279
task-dependence-typetask-dependence-

type, 504
modifying and retrieving ICV values, 121
modifying ICVs, 118
mutex_acquire, 764, 766
mutex_acquired, 766, 768
mutex_released, 768

N
nest_lock, 769
nest_lock type, 560
nesting, 917
no_openmp, 365
no_openmp_constructs, 366
no_openmp_routines, 366
no_parallelism, 367
nocontext, 340
nogroup, 483
nontemporal, 400
normative references, 16
nothing, 369
notinbranch, 344
novariants, 340
nowait, 481

num_tasks, 433
num_teams, 397
num_threads, 388

O
OMP_AFFINITY_FORMAT, 137
omp_aligned_alloc, 657
omp_caligned_alloc, 659
omp_alloc, 656
OMP_ALLOCATOR, 143
omp_ancestor_is_free_agent, 588
OMP_AVAILABLE_DEVICES, 139
omp_calloc, 658
OMP_CANCELLATION, 139
omp_capture_affinity, 686
OMP_DEBUG, 146
OMP_DEFAULT_DEVICE, 140
omp_destroy_allocator, 646
omp_destroy_lock, 668
omp_destroy_mempartition, 641
omp_destroy_mempartitioner, 639
omp_destroy_nest_lock, 669
OMP_DISPLAY_AFFINITY, 136
omp_display_affinity, 685
OMP_DISPLAY_ENV, 147
omp_display_env, 692
OMP_DYNAMIC, 128
omp_free, 661
omp_fulfill_event, 589
omp_get_active_level, 579
omp_get_affinity_format, 684
omp_get_ancestor_thread_num, 577
omp_get_cancellation, 688
omp_get_default_allocator, 653
omp_get_default_device, 593
omp_get_device_allocator, 648
omp_get_device_and_host_allocator,

650
omp_get_device_and_host_memspace,

633
omp_get_device_from_uid, 596
omp_get_device_memspace, 632
omp_get_device_num, 594
omp_get_device_num_teams, 599

Index 929

omp_get_device_teams_thread_limit,
601

omp_get_devices_all_allocator,
651

omp_get_devices_all_memspace,
634

omp_get_devices_allocator, 647
omp_get_devices_and_host_allocator,

649
omp_get_devices_and_host_memspace,

632
omp_get_devices_memspace, 631
omp_get_dynamic, 572
omp_get_initial_device, 598
omp_get_interop_int, 623
omp_get_interop_name, 626
omp_get_interop_ptr, 624
omp_get_interop_rc_desc, 628
omp_get_interop_str, 625
omp_get_interop_type_desc, 627
omp_get_level, 577
omp_get_mapped_ptr, 606
omp_get_max_active_levels, 576
omp_get_max_progress_width, 595
omp_get_max_task_priority, 586
omp_get_max_teams, 583
omp_get_max_threads, 570
omp_get_memspaces_num_resources,

634
omp_get_num_devices, 593
omp_get_num_interop_properties,

623
omp_get_num_places, 679
omp_get_num_procs, 594
omp_get_num_teams, 581
omp_get_num_threads, 569
omp_get_partition_num_places,

681
omp_get_partition_place_nums,

682
omp_get_place_num, 681
omp_get_place_num_procs, 679
omp_get_place_proc_ids, 680

omp_get_proc_bind, 678
omp_get_schedule, 574
omp_get_submemspace, 636
omp_get_supported_active

_levels, 575
omp_get_team_num, 582
omp_get_team_size, 578
omp_get_teams_thread_limit, 584
omp_get_thread_limit, 570
omp_get_thread_num, 569
omp_get_uid_from_device, 596
omp_get_wtick, 691
omp_get_wtime, 691
omp_in_explicit_task, 587
omp_in_final, 587
omp_in_parallel, 571
omp_init_allocator, 644
omp_init_lock, 664, 666
omp_init_mempartition, 640
omp_init_mempartitioner, 638
omp_init_nest_lock, 665, 667
omp_is_free_agent, 588
omp_is_initial_device, 597
OMP_MAX_ACTIVE_LEVELS, 130
OMP_MAX_TASK_PRIORITY, 143
omp_mempartion_get_user_data,

643
omp_mempartion_set_part, 642
omp_memspace_get_pagesize, 635
OMP_NUM_TEAMS, 133
OMP_NUM_THREADS, 129
omp_pause_resource, 689
omp_pause_resource_all, 690
OMP_PLACES, 130
omp_pool, 442
OMP_PROC_BIND, 132
omp_realloc, 660
OMP_SCHEDULE, 134
omp_set_affinity_format, 683
omp_set_default_allocator, 652
omp_set_default_device, 592
omp_set_device_num_teams, 599
omp_set_device_teams_thread_limit,

930 OpenMP API – Version 6.0 November 2024

601
omp_set_dynamic, 572
omp_set_lock, 670
omp_set_max_active_levels, 575
omp_set_nest_lock, 671
omp_set_num_teams, 582
omp_set_num_threads, 568
omp_set_schedule, 573
omp_set_teams_thread_limit, 584
OMP_STACKSIZE, 135
omp_target_alloc, 606
omp_target_associate_ptr, 609
omp_target_disassociate_ptr, 611
omp_target_free, 608
omp_target_is_accessible, 605
omp_target_is_present, 604
omp_target_memcpy, 613
omp_target_memcpy_async, 615
omp_target_memcpy_rect, 614
omp_target_memcpy_rect_async,

617
omp_target_memset, 619
omp_target_memset_async, 620
OMP_TARGET_OFFLOAD, 141
omp_team, 442
OMP_TEAMS_THREAD_LIMIT, 134
omp_test_lock, 675
omp_test_nest_lock, 676
OMP_THREAD_LIMIT, 130
OMP_THREADS_RESERVE, 141
OMP_TOOL, 144
OMP_TOOL_LIBRARIES, 145
OMP_TOOL_VERBOSE_INIT, 145
omp_unset_lock, 673
omp_unset_nest_lock, 674
OMP_WAIT_POLICY, 135
ompd_bp_device_begin, 879
ompd_bp_device_end, 879
ompd_bp_parallel_begin, 879
ompd_bp_parallel_end, 880
ompd_bp_target_begin, 882
ompd_bp_target_end, 883
ompd_bp_task_begin, 882

ompd_bp_task_end, 882
ompd_bp_teams_begin, 881
ompd_bp_teams_end, 881
ompd_bp_thread_begin, 878
ompd_bp_thread_end, 878
ompd_dll_locations_valid, 818
ompd_dll_locations, 817
OMPT predefined identifiers, 708
ompt_callback_error_t, 748
OpenMP affinity support types, 562
OpenMP allocator structured blocks, 187
OpenMP argument lists, 162
OpenMP atomic structured blocks, 188
OpenMP compliance, 15
OpenMP context-specific structured

blocks, 186
OpenMP function dispatch structured

blocks, 187
OpenMP interoparability support types, 538
OpenMP operations, 165
OpenMP parallel region support types, 536
OpenMP resource relinquishing types, 563
OpenMP stylized expressions, 185
OpenMP synchronization types, 558
OpenMP tasking support types, 538
OpenMP tool types, 565
OpenMP types, 183
order, 397
ordered, 206, 513–515
otherwise, 326

P
parallel, 384
parallel region support routines, 568
parallel_begin, 749
parallel_end, 750
parallelism generating constructs, 384
parallelization-level, 517
partial, 383
pause_resource type, 563
permutation, 376
predefined identifiers, 534
prefer_type, 470
print_string, 844

Index 931

priority, 443
private, 225
proc_bind, 392
proc_bind type, 562

R
rc, 825
read, 488
read, atomic, 494
read_memory, 838
read_string, 838
collector, 266
combiner, 262
initializer, 262
reduction, 252, 764
reduction clauses, 239
task-dependence-type, 251
ref-modifier, 279
relaxed, 486
release, 486
release flush, 11
replayable, 440
requirement, 356
requires, 355
reserved locators, 164
resource relinquishing routines, 689
reverse, 377
reverse_offload, 358
routine argument properties, 535
routine bindings, 535
runtime, 419
runtime library definitions, 533

S
safelen, 401
safesync, 393
saved, 215
scan Directive, 266
sched type, 536
schedule, 418
scheduling, 447
scope, 406
section, 408
sections, 407

self_maps, 361
seq_cst, 487
severity, 354
shared, 224
simd, 399, 518
simdlen, 401
single, 405
sizeof_type, 841
sizes, 374
looprange, 207
split, 377
stand-alone directives, 155
static, 418
strip, 379
strong flush, 10
structured blocks, 186
symbol_addr_lookup, 835
sync_region, 762, 763
sync_region_wait, 763
synchronization constructs, 472
synchronization constructs and clauses, 472
synchronization hint type, 560

T
target, 460, 780
target asynchronous device memory

routines, 604
target data, 458
target memory copying routines, 612
target memory information routines, 604
target memory routines, 603
target memory setting routines, 618
target update, 465
target_data_op, 777
target_data_op_emi, 777
target_emi, 780
target_map, 782
target_map_emi, 782
target_submit, 784
target_submit_emi, 784
task, 426
task scheduling, 447
task-dependence-type, 504
task_create, 755

932 OpenMP API – Version 6.0 November 2024

task_dependence, 761
task_iteration, 434
task_reduction, 255
task_schedule, 756
taskgraph, 435
taskgroup, 478
tasking constructs, 426
tasking routines, 586
tasking support, 586
taskloop, 429
taskwait, 479
taskyield, 446
teams, 394
teams region routines, 581
thread affinity, 389
thread affinity routines, 678
thread_begin, 746
thread_end, 747
thread_limit, 452
threadprivate, 215
threads, 517
threadset, 442
interchange, 375
tile, 380
timer, 691
timing routines, 691
to, 297
tool control, 694
tool initialization, 700
tool interfaces definitions, 697, 817
tool support, 694
tools header files, 697, 817
tracing device activity, 704
transparent, 510
types

allocator_handle, 544
alloctrait, 545
alloctrait_key, 547
impex, 558
alloctrait_val, 552
alloctrait_value, 550
control_tool, 565
control_tool_result, 566

depend, 558
event_handle, 538
interop_rc, 539–541
interop, 538
intptr, 536
lock, 559
mempartition, 553
mempartitioner, 553
mempartitioner_compute_proc,

554
mempartitioner_lifetime, 554
mempartitioner_release_proc,

556
memspace_handle, 557
nest_lock, 560
pause_resource, 563
proc_bind, 562
sched, 536
sync_hint, 560
uintptr, 536

U
uintptr type, 536
unified_address, 359
unified_shared_memory, 360
uniform, 299
unroll, 381
untied, 439
update, 489, 506
update, atomic, 494
use, 469
use_device_addr, 238
use_device_ptr, 236
uses_allocators, 315

V
variables, environment, 127
variant directives, 318

W
wait identifier, 742
wall clock timer, 691
error, 352
weak, 492

Index 933

when, 325
work, 752
work-distribution

constructs, 404
work-distribution constructs, 404
workdistribute, 412
workshare, 409
worksharing

constructs, 404
worksharing constructs, 404
worksharing-loop construct, 414
write, 489
write, atomic, 494
write_memory, 839

934 OpenMP API – Version 6.0 November 2024

	I Definitions
	1 Overview of the OpenMP API
	1.1 Scope
	1.2 Execution Model
	1.3 Memory Model
	1.3.1 Structure of the OpenMP Memory Model
	1.3.2 Device Data Environments
	1.3.3 Memory Management
	1.3.4 The Flush Operation
	1.3.5 Flush Synchronization and Happens-Before Order
	1.3.6 OpenMP Memory Consistency

	1.4 Tool Interfaces
	1.4.1 OMPT
	1.4.2 OMPD

	1.5 OpenMP Compliance
	1.6 Normative References
	1.7 Organization of this Document

	2 Glossary
	3 Internal Control Variables
	3.1 ICV Descriptions
	3.2 ICV Initialization
	3.3 Modifying and Retrieving ICV Values
	3.4 How the Per-Data Environment ICVs Work
	3.5 ICV Override Relationships

	4 Environment Variables
	4.1 Parallel Region Environment Variables
	4.1.1 Abstract Name Values
	4.1.2 OMP_DYNAMIC
	4.1.3 OMP_NUM_THREADS
	4.1.4 OMP_THREAD_LIMIT
	4.1.5 OMP_MAX_ACTIVE_LEVELS
	4.1.6 OMP_PLACES
	4.1.7 OMP_PROC_BIND

	4.2 Teams Environment Variables
	4.2.1 OMP_NUM_TEAMS
	4.2.2 OMP_TEAMS_THREAD_LIMIT

	4.3 Program Execution Environment Variables
	4.3.1 OMP_SCHEDULE
	4.3.2 OMP_STACKSIZE
	4.3.3 OMP_WAIT_POLICY
	4.3.4 OMP_DISPLAY_AFFINITY
	4.3.5 OMP_AFFINITY_FORMAT
	4.3.6 OMP_CANCELLATION
	4.3.7 OMP_AVAILABLE_DEVICES
	4.3.8 OMP_DEFAULT_DEVICE
	4.3.9 OMP_TARGET_OFFLOAD
	4.3.10 OMP_THREADS_RESERVE
	4.3.11 OMP_MAX_TASK_PRIORITY

	4.4 Memory Allocation Environment Variables
	4.4.1 OMP_ALLOCATOR

	4.5 OMPT Environment Variables
	4.5.1 OMP_TOOL
	4.5.2 OMP_TOOL_LIBRARIES
	4.5.3 OMP_TOOL_VERBOSE_INIT

	4.6 OMPD Environment Variables
	4.6.1 OMP_DEBUG

	4.7 OMP_DISPLAY_ENV

	5 Directive and Construct Syntax
	5.1 Directive Format
	5.1.1 Free Source Form Directives
	5.1.2 Fixed Source Form Directives

	5.2 Clause Format
	5.2.1 OpenMP Argument Lists
	5.2.2 Reserved Locators
	5.2.3 OpenMP Operations
	5.2.4 Array Shaping
	5.2.5 Array Sections
	5.2.6 iterator Modifier

	5.3 Conditional Compilation
	5.3.1 Free Source Form Conditional Compilation Sentinel
	5.3.2 Fixed Source Form Conditional Compilation Sentinels

	5.4 directive-name-modifier Modifier
	5.5 if Clause
	5.6 init Clause
	5.7 destroy Clause

	6 Base Language Formats and Restrictions
	6.1 OpenMP Types and Identifiers
	6.2 OpenMP Stylized Expressions
	6.3 Structured Blocks
	6.3.1 OpenMP Allocator Structured Blocks
	6.3.2 OpenMP Function Dispatch Structured Blocks
	6.3.3 OpenMP Atomic Structured Blocks

	6.4 Loop Concepts
	6.4.1 Canonical Loop Nest Form
	6.4.2 Canonical Loop Sequence Form
	6.4.3 OpenMP Loop-Iteration Spaces and Vectors
	6.4.4 Consistent Loop Schedules
	6.4.5 collapse Clause
	6.4.6 ordered Clause
	6.4.7 looprange Clause

	II Directives and Clauses
	7 Data Environment
	7.1 Data-Sharing Attribute Rules
	7.1.1 Variables Referenced in a Construct
	7.1.2 Variables Referenced in a Region but not in a Construct

	7.2 saved Modifier
	7.3 threadprivate Directive
	7.4 List Item Privatization
	7.5 Data-Sharing Attribute Clauses
	7.5.1 default Clause
	7.5.2 shared Clause
	7.5.3 private Clause
	7.5.4 firstprivate Clause
	7.5.5 lastprivate Clause
	7.5.6 linear Clause
	7.5.7 is_device_ptr Clause
	7.5.8 use_device_ptr Clause
	7.5.9 has_device_addr Clause
	7.5.10 use_device_addr Clause

	7.6 Reduction and Induction Clauses and Directives
	7.6.1 OpenMP Reduction and Induction Identifiers
	7.6.2 OpenMP Reduction and Induction Expressions
	7.6.2.1 OpenMP Combiner Expressions
	7.6.2.2 OpenMP Initializer Expressions
	7.6.2.3 OpenMP Inductor Expressions
	7.6.2.4 OpenMP Collector Expressions

	7.6.3 Implicitly Declared OpenMP Reduction Identifiers
	7.6.4 Implicitly Declared OpenMP Induction Identifiers
	7.6.5 Properties Common to Reduction and induction Clauses
	7.6.6 Properties Common to All Reduction Clauses
	7.6.7 Reduction Scoping Clauses
	7.6.8 Reduction Participating Clauses
	7.6.9 reduction-identifier Modifier
	7.6.10 reduction Clause
	7.6.11 task_reduction Clause
	7.6.12 in_reduction Clause
	7.6.13 induction Clause
	7.6.14 declare_reduction Directive
	7.6.15 combiner Clause
	7.6.16 initializer Clause
	7.6.17 declare_induction Directive
	7.6.18 inductor Clause
	7.6.19 collector Clause

	7.7 scan Directive
	7.7.1 inclusive Clause
	7.7.2 exclusive Clause
	7.7.3 init_complete Clause

	7.8 Data Copying Clauses
	7.8.1 copyin Clause
	7.8.2 copyprivate Clause

	7.9 Data-Mapping Control
	7.9.1 map-type Modifier
	7.9.2 Map Type Decay
	7.9.3 Implicit Data-Mapping Attribute Rules
	7.9.4 Mapper Identifiers and mapper Modifiers
	7.9.5 ref-modifier Modifier
	7.9.6 map Clause
	7.9.7 enter Clause
	7.9.8 link Clause
	7.9.9 defaultmap Clause
	7.9.10 declare_mapper Directive

	7.10 Data-Motion Clauses
	7.10.1 to Clause
	7.10.2 from Clause

	7.11 uniform Clause
	7.12 aligned Clause
	7.13 groupprivate Directive
	7.14 local Clause

	8 Memory Management
	8.1 Memory Spaces
	8.2 Memory Allocators
	8.3 align Clause
	8.4 allocator Clause
	8.5 allocate Directive
	8.6 allocate Clause
	8.7 allocators Construct
	8.8 uses_allocators Clause

	9 Variant Directives
	9.1 OpenMP Contexts
	9.2 Context Selectors
	9.3 Matching and Scoring Context Selectors
	9.4 Metadirectives
	9.4.1 when Clause
	9.4.2 otherwise Clause
	9.4.3 metadirective
	9.4.4 begin metadirective

	9.5 Semantic Requirement Set
	9.6 Declare Variant Directives
	9.6.1 match Clause
	9.6.2 adjust_args Clause
	9.6.3 append_args Clause
	9.6.4 declare_variant Directive
	9.6.5 begin declare_variant Directive

	9.7 dispatch Construct
	9.7.1 interop Clause
	9.7.2 novariants Clause
	9.7.3 nocontext Clause

	9.8 declare_simd Directive
	9.8.1 branch Clauses
	9.8.1.1 inbranch Clause
	9.8.1.2 notinbranch Clause

	9.9 Declare Target Directives
	9.9.1 declare_target Directive
	9.9.2 begin declare_target Directive
	9.9.3 indirect Clause

	10 Informational and Utility Directives
	10.1 error Directive
	10.2 at Clause
	10.3 message Clause
	10.4 severity Clause
	10.5 requires Directive
	10.5.1 requirement Clauses
	10.5.1.1 atomic_default_mem_order Clause
	10.5.1.2 dynamic_allocators Clause
	10.5.1.3 reverse_offload Clause
	10.5.1.4 unified_address Clause
	10.5.1.5 unified_shared_memory Clause
	10.5.1.6 self_maps Clause
	10.5.1.7 device_safesync Clause

	10.6 Assumption Directives
	10.6.1 assumption Clauses
	10.6.1.1 absent Clause
	10.6.1.2 contains Clause
	10.6.1.3 holds Clause
	10.6.1.4 no_openmp Clause
	10.6.1.5 no_openmp_constructs Clause
	10.6.1.6 no_openmp_routines Clause
	10.6.1.7 no_parallelism Clause

	10.6.2 assumes Directive
	10.6.3 assume Directive
	10.6.4 begin assumes Directive

	10.7 nothing Directive

	11 Loop-Transforming Constructs
	11.1 apply Clause
	11.2 sizes Clause
	11.3 fuse Construct
	11.4 interchange Construct
	11.4.1 permutation Clause

	11.5 reverse Construct
	11.6 split Construct
	11.6.1 counts Clause

	11.7 stripe Construct
	11.8 tile Construct
	11.9 unroll Construct
	11.9.1 full Clause
	11.9.2 partial Clause

	12 Parallelism Generation and Control
	12.1 parallel Construct
	12.1.1 Determining the Number of Threads for a parallel Region
	12.1.2 num_threads Clause
	12.1.3 Controlling OpenMP Thread Affinity
	12.1.4 proc_bind Clause
	12.1.5 safesync Clause

	12.2 teams Construct
	12.2.1 num_teams Clause

	12.3 order Clause
	12.4 simd Construct
	12.4.1 nontemporal Clause
	12.4.2 safelen Clause
	12.4.3 simdlen Clause

	12.5 masked Construct
	12.5.1 filter Clause

	13 Work-Distribution Constructs
	13.1 single Construct
	13.2 scope Construct
	13.3 sections Construct
	13.3.1 section Directive

	13.4 workshare Construct
	13.5 workdistribute Construct
	13.6 Worksharing-Loop Constructs
	13.6.1 for Construct
	13.6.2 do Construct
	13.6.3 schedule Clause

	13.7 distribute Construct
	13.7.1 dist_schedule Clause

	13.8 loop Construct
	13.8.1 bind Clause

	14 Tasking Constructs
	14.1 task Construct
	14.2 taskloop Construct
	14.2.1 grainsize Clause
	14.2.2 num_tasks Clause
	14.2.3 task_iteration Directive

	14.3 taskgraph Construct
	14.3.1 graph_id Clause
	14.3.2 graph_reset Clause

	14.4 untied Clause
	14.5 mergeable Clause
	14.6 replayable Clause
	14.7 final Clause
	14.8 threadset Clause
	14.9 priority Clause
	14.10 affinity Clause
	14.11 detach Clause
	14.12 taskyield Construct
	14.13 Initial Task
	14.14 Task Scheduling

	15 Device Directives and Clauses
	15.1 device_type Clause
	15.2 device Clause
	15.3 thread_limit Clause
	15.4 Device Initialization
	15.5 target_enter_data Construct
	15.6 target_exit_data Construct
	15.7 target_data Construct
	15.8 target Construct
	15.9 target_update Construct

	16 Interoperability
	16.1 interop Construct
	16.1.1 OpenMP Foreign Runtime Identifiers
	16.1.2 use Clause
	16.1.3 prefer-type Modifier

	17 Synchronization Constructs and Clauses
	17.1 hint Clause
	17.2 critical Construct
	17.3 Barriers
	17.3.1 barrier Construct
	17.3.2 Implicit Barriers
	17.3.3 Implementation-Specific Barriers

	17.4 taskgroup Construct
	17.5 taskwait Construct
	17.6 nowait Clause
	17.7 nogroup Clause
	17.8 OpenMP Memory Ordering
	17.8.1 memory-order Clauses
	17.8.1.1 acq_rel Clause
	17.8.1.2 acquire Clause
	17.8.1.3 relaxed Clause
	17.8.1.4 release Clause
	17.8.1.5 seq_cst Clause

	17.8.2 atomic Clauses
	17.8.2.1 read Clause
	17.8.2.2 update Clause
	17.8.2.3 write Clause

	17.8.3 extended-atomic Clauses
	17.8.3.1 capture Clause
	17.8.3.2 compare Clause
	17.8.3.3 fail Clause
	17.8.3.4 weak Clause

	17.8.4 memscope Clause
	17.8.5 atomic Construct
	17.8.6 flush Construct
	17.8.7 Implicit Flushes

	17.9 OpenMP Dependences
	17.9.1 task-dependence-type Modifier
	17.9.2 Depend Objects
	17.9.3 depobj Construct
	17.9.4 update Clause
	17.9.5 depend Clause
	17.9.6 transparent Clause
	17.9.7 doacross Clause

	17.10 ordered Construct
	17.10.1 Stand-alone ordered Construct
	17.10.2 Block-associated ordered Construct
	17.10.3 parallelization-level Clauses
	17.10.3.1 threads Clause
	17.10.3.2 simd Clause

	18 Cancellation Constructs
	18.1 cancel-directive-name Clauses
	18.2 cancel Construct
	18.3 cancellation_point Construct

	19 Composition of Constructs
	19.1 Compound Directive Names
	19.2 Clauses on Compound Constructs
	19.3 Compound Construct Semantics

	III Runtime Library Routines
	20 Runtime Library Definitions
	20.1 Predefined Identifiers
	20.2 Routine Bindings
	20.3 Routine Argument Properties
	20.4 General OpenMP Types
	20.4.1 OpenMP intptr Type
	20.4.2 OpenMP uintptr Type

	20.5 OpenMP Parallel Region Support Types
	20.5.1 OpenMP sched Type

	20.6 OpenMP Tasking Support Types
	20.6.1 OpenMP event_handle Type

	20.7 OpenMP Interoperability Support Types
	20.7.1 OpenMP interop Type
	20.7.2 OpenMP interop_fr Type
	20.7.3 OpenMP interop_property Type
	20.7.4 OpenMP interop_rc Type

	20.8 OpenMP Memory Management Types
	20.8.1 OpenMP allocator_handle Type
	20.8.2 OpenMP alloctrait Type
	20.8.3 OpenMP alloctrait_key Type
	20.8.4 OpenMP alloctrait_value Type
	20.8.5 OpenMP alloctrait_val Type
	20.8.6 OpenMP mempartition Type
	20.8.7 OpenMP mempartitioner Type
	20.8.8 OpenMP mempartitioner_lifetime Type
	20.8.9 OpenMP mempartitioner_compute_proc Type
	20.8.10 OpenMP mempartitioner_release_proc Type
	20.8.11 OpenMP memspace_handle Type

	20.9 OpenMP Synchronization Types
	20.9.1 OpenMP depend Type
	20.9.2 OpenMP impex Type
	20.9.3 OpenMP lock Type
	20.9.4 OpenMP nest_lock Type
	20.9.5 OpenMP sync_hint Type

	20.10 OpenMP Affinity Support Types
	20.10.1 OpenMP proc_bind Type

	20.11 OpenMP Resource Relinquishing Types
	20.11.1 OpenMP pause_resource Type

	20.12 OpenMP Tool Types
	20.12.1 OpenMP control_tool Type
	20.12.2 OpenMP control_tool_result Type

	21 Parallel Region Support Routines
	21.1 omp_set_num_threads Routine
	21.2 omp_get_num_threads Routine
	21.3 omp_get_thread_num Routine
	21.4 omp_get_max_threads Routine
	21.5 omp_get_thread_limit Routine
	21.6 omp_in_parallel Routine
	21.7 omp_set_dynamic Routine
	21.8 omp_get_dynamic Routine
	21.9 omp_set_schedule Routine
	21.10 omp_get_schedule Routine
	21.11 omp_get_supported_active_levels Routine
	21.12 omp_set_max_active_levels Routine
	21.13 omp_get_max_active_levels Routine
	21.14 omp_get_level Routine
	21.15 omp_get_ancestor_thread_num Routine
	21.16 omp_get_team_size Routine
	21.17 omp_get_active_level Routine

	22 Teams Region Routines
	22.1 omp_get_num_teams Routine
	22.2 omp_set_num_teams Routine
	22.3 omp_get_team_num Routine
	22.4 omp_get_max_teams Routine
	22.5 omp_get_teams_thread_limit Routine
	22.6 omp_set_teams_thread_limit Routine

	23 Tasking Support Routines
	23.1 Tasking Routines
	23.1.1 omp_get_max_task_priority Routine
	23.1.2 omp_in_explicit_task Routine
	23.1.3 omp_in_final Routine
	23.1.4 omp_is_free_agent Routine
	23.1.5 omp_ancestor_is_free_agent Routine

	23.2 Event Routine
	23.2.1 omp_fulfill_event Routine

	24 Device Information Routines
	24.1 omp_set_default_device Routine
	24.2 omp_get_default_device Routine
	24.3 omp_get_num_devices Routine
	24.4 omp_get_device_num Routine
	24.5 omp_get_num_procs Routine
	24.6 omp_get_max_progress_width Routine
	24.7 omp_get_device_from_uid Routine
	24.8 omp_get_uid_from_device Routine
	24.9 omp_is_initial_device Routine
	24.10 omp_get_initial_device Routine
	24.11 omp_get_device_num_teams Routine
	24.12 omp_set_device_num_teams Routine
	24.13 omp_get_device_teams_thread_limit Routine
	24.14 omp_set_device_teams_thread_limit Routine

	25 Device Memory Routines
	25.1 Asynchronous Device Memory Routines
	25.2 Device Memory Information Routines
	25.2.1 omp_target_is_present Routine
	25.2.2 omp_target_is_accessible Routine
	25.2.3 omp_get_mapped_ptr Routine

	25.3 omp_target_alloc Routine
	25.4 omp_target_free Routine
	25.5 omp_target_associate_ptr Routine
	25.6 omp_target_disassociate_ptr Routine
	25.7 Memory Copying Routines
	25.7.1 omp_target_memcpy Routine
	25.7.2 omp_target_memcpy_rect Routine
	25.7.3 omp_target_memcpy_async Routine
	25.7.4 omp_target_memcpy_rect_async Routine

	25.8 Memory Setting Routines
	25.8.1 omp_target_memset Routine
	25.8.2 omp_target_memset_async Routine

	26 Interoperability Routines
	26.1 omp_get_num_interop_properties Routine
	26.2 omp_get_interop_int Routine
	26.3 omp_get_interop_ptr Routine
	26.4 omp_get_interop_str Routine
	26.5 omp_get_interop_name Routine
	26.6 omp_get_interop_type_desc Routine
	26.7 omp_get_interop_rc_desc Routine

	27 Memory Management Routines
	27.1 Memory Space Retrieving Routines
	27.1.1 omp_get_devices_memspace Routine
	27.1.2 omp_get_device_memspace Routine
	27.1.3 omp_get_devices_and_host_memspace Routine
	27.1.4 omp_get_device_and_host_memspace Routine
	27.1.5 omp_get_devices_all_memspace Routine

	27.2 omp_get_memspace_num_resources Routine
	27.3 omp_get_memspace_pagesize Routine
	27.4 omp_get_submemspace Routine
	27.5 OpenMP Memory Partitioning Routines
	27.5.1 omp_init_mempartitioner Routine
	27.5.2 omp_destroy_mempartitioner Routine
	27.5.3 omp_init_mempartition Routine
	27.5.4 omp_destroy_mempartition Routine
	27.5.5 omp_mempartition_set_part Routine
	27.5.6 omp_mempartition_get_user_data Routine

	27.6 omp_init_allocator Routine
	27.7 omp_destroy_allocator Routine
	27.8 Memory Allocator Retrieving Routines
	27.8.1 omp_get_devices_allocator Routine
	27.8.2 omp_get_device_allocator Routine
	27.8.3 omp_get_devices_and_host_allocator Routine
	27.8.4 omp_get_device_and_host_allocator Routine
	27.8.5 omp_get_devices_all_allocator Routine

	27.9 omp_set_default_allocator Routine
	27.10 omp_get_default_allocator Routine
	27.11 Memory Allocating Routines
	27.11.1 omp_alloc Routine
	27.11.2 omp_aligned_alloc Routine
	27.11.3 omp_calloc Routine
	27.11.4 omp_aligned_calloc Routine
	27.11.5 omp_realloc Routine

	27.12 omp_free Routine

	28 Lock Routines
	28.1 Lock Initializing Routines
	28.1.1 omp_init_lock Routine
	28.1.2 omp_init_nest_lock Routine
	28.1.3 omp_init_lock_with_hint Routine
	28.1.4 omp_init_nest_lock_with_hint Routine

	28.2 Lock Destroying Routines
	28.2.1 omp_destroy_lock Routine
	28.2.2 omp_destroy_nest_lock Routine

	28.3 Lock Acquiring Routines
	28.3.1 omp_set_lock Routine
	28.3.2 omp_set_nest_lock Routine

	28.4 Lock Releasing Routines
	28.4.1 omp_unset_lock Routine
	28.4.2 omp_unset_nest_lock Routine

	28.5 Lock Testing Routines
	28.5.1 omp_test_lock Routine
	28.5.2 omp_test_nest_lock Routine

	29 Thread Affinity Routines
	29.1 omp_get_proc_bind Routine
	29.2 omp_get_num_places Routine
	29.3 omp_get_place_num_procs Routine
	29.4 omp_get_place_proc_ids Routine
	29.5 omp_get_place_num Routine
	29.6 omp_get_partition_num_places Routine
	29.7 omp_get_partition_place_nums Routine
	29.8 omp_set_affinity_format Routine
	29.9 omp_get_affinity_format Routine
	29.10 omp_display_affinity Routine
	29.11 omp_capture_affinity Routine

	30 Execution Control Routines
	30.1 omp_get_cancellation Routine
	30.2 Resource Relinquishing Routines
	30.2.1 omp_pause_resource Routine
	30.2.2 omp_pause_resource_all Routine

	30.3 Timing Routines
	30.3.1 omp_get_wtime Routine
	30.3.2 omp_get_wtick Routine

	30.4 omp_display_env Routine

	31 Tool Support Routines
	31.1 omp_control_tool Routine

	IV OMPT
	32 OMPT Overview
	32.1 OMPT Interfaces Definitions
	32.2 Activating a First-Party Tool
	32.2.1 ompt_start_tool Procedure
	32.2.2 Determining Whether to Initialize a First-Party Tool
	32.2.3 Initializing a First-Party Tool
	32.2.3.1 Binding Entry Points

	32.2.4 Monitoring Activity on the Host with OMPT
	32.2.5 Tracing Activity on Target Devices

	32.3 Finalizing a First-Party Tool

	33 OMPT Data Types
	33.1 OMPT Predefined Identifiers
	33.2 OMPT any_record_ompt Type
	33.3 OMPT buffer Type
	33.4 OMPT buffer_cursor Type
	33.5 OMPT callback Type
	33.6 OMPT callbacks Type
	33.7 OMPT cancel_flag Type
	33.8 OMPT data Type
	33.9 OMPT dependence Type
	33.10 OMPT dependence_type Type
	33.11 OMPT device Type
	33.12 OMPT device_time Type
	33.13 OMPT dispatch Type
	33.14 OMPT dispatch_chunk Type
	33.15 OMPT frame Type
	33.16 OMPT frame_flag Type
	33.17 OMPT hwid Type
	33.18 OMPT id Type
	33.19 OMPT interface_fn Type
	33.20 OMPT mutex Type
	33.21 OMPT native_mon_flag Type
	33.22 OMPT parallel_flag Type
	33.23 OMPT record Type
	33.24 OMPT record_abstract Type
	33.25 OMPT record_native Type
	33.26 OMPT record_ompt Type
	33.27 OMPT scope_endpoint Type
	33.28 OMPT set_result Type
	33.29 OMPT severity Type
	33.30 OMPT start_tool_result Type
	33.31 OMPT state Type
	33.32 OMPT subvolume Type
	33.33 OMPT sync_region Type
	33.34 OMPT target Type
	33.35 OMPT target_data_op Type
	33.36 OMPT target_map_flag Type
	33.37 OMPT task_flag Type
	33.38 OMPT task_status Type
	33.39 OMPT thread Type
	33.40 OMPT wait_id Type
	33.41 OMPT work Type

	34 General Callbacks and Trace Records
	34.1 Initialization and Finalization Callbacks
	34.1.1 initialize Callback
	34.1.2 finalize Callback
	34.1.3 thread_begin Callback
	34.1.4 thread_end Callback

	34.2 error Callback
	34.3 Parallelism Generation Callback Signatures
	34.3.1 parallel_begin Callback
	34.3.2 parallel_end Callback
	34.3.3 masked Callback

	34.4 Work Distribution Callback Signatures
	34.4.1 work Callback
	34.4.2 dispatch Callback

	34.5 Tasking Callback Signatures
	34.5.1 task_create Callback
	34.5.2 task_schedule Callback
	34.5.3 implicit_task Callback

	34.6 cancel Callback
	34.7 Synchronization Callback Signatures
	34.7.1 dependences Callback
	34.7.2 task_dependence Callback
	34.7.3 OMPT sync_region Type
	34.7.4 sync_region Callback
	34.7.5 sync_region_wait Callback
	34.7.6 reduction Callback
	34.7.7 OMPT mutex_acquire Type
	34.7.8 mutex_acquire Callback
	34.7.9 lock_init Callback
	34.7.10 OMPT mutex Type
	34.7.11 lock_destroy Callback
	34.7.12 mutex_acquired Callback
	34.7.13 mutex_released Callback
	34.7.14 nest_lock Callback
	34.7.15 flush Callback

	34.8 control_tool Callback

	35 Device Callbacks and Tracing
	35.1 device_initialize Callback
	35.2 device_finalize Callback
	35.3 device_load Callback
	35.4 device_unload Callback
	35.5 buffer_request Callback
	35.6 buffer_complete Callback
	35.7 target_data_op_emi Callback
	35.8 target_emi Callback
	35.9 target_map_emi Callback
	35.10 target_submit_emi Callback

	36 General Entry Points
	36.1 function_lookup Entry Point
	36.2 enumerate_states Entry Point
	36.3 enumerate_mutex_impls Entry Point
	36.4 set_callback Entry Point
	36.5 get_callback Entry Point
	36.6 get_thread_data Entry Point
	36.7 get_num_procs Entry Point
	36.8 get_num_places Entry Point
	36.9 get_place_proc_ids Entry Point
	36.10 get_place_num Entry Point
	36.11 get_partition_place_nums Entry Point
	36.12 get_proc_id Entry Point
	36.13 get_state Entry Point
	36.14 get_parallel_info Entry Point
	36.15 get_task_info Entry Point
	36.16 get_task_memory Entry Point
	36.17 get_target_info Entry Point
	36.18 get_num_devices Entry Point
	36.19 get_unique_id Entry Point
	36.20 finalize_tool Entry Point

	37 Device Tracing Entry Points
	37.1 get_device_num_procs Entry Point
	37.2 get_device_time Entry Point
	37.3 translate_time Entry Point
	37.4 set_trace_ompt Entry Point
	37.5 set_trace_native Entry Point
	37.6 get_buffer_limits Entry Point
	37.7 start_trace Entry Point
	37.8 pause_trace Entry Point
	37.9 flush_trace Entry Point
	37.10 stop_trace Entry Point
	37.11 advance_buffer_cursor Entry Point
	37.12 get_record_type Entry Point
	37.13 get_record_ompt Entry Point
	37.14 get_record_native Entry Point
	37.15 get_record_abstract Entry Point

	V OMPD
	38 OMPD Overview
	38.1 OMPD Interfaces Definitions
	38.2 Thread and Signal Safety
	38.3 Activating a Third-Party Tool
	38.3.1 Enabling Runtime Support for OMPD
	38.3.2 ompd_dll_locations
	38.3.3 ompd_dll_locations_valid Breakpoint

	39 OMPD Data Types
	39.1 OMPD addr Type
	39.2 OMPD address Type
	39.3 OMPD address_space_context Type
	39.4 OMPD callbacks Type
	39.5 OMPD device Type
	39.6 OMPD device_type_sizes Type
	39.7 OMPD frame_info Type
	39.8 OMPD icv_id Type
	39.9 OMPD rc Type
	39.10 OMPD seg Type
	39.11 OMPD scope Type
	39.12 OMPD size Type
	39.13 OMPD team_generator Type
	39.14 OMPD thread_context Type
	39.15 OMPD thread_id Type
	39.16 OMPD wait_id Type
	39.17 OMPD word Type
	39.18 OMPD Handle Types
	39.18.1 OMPD address_space_handle Type
	39.18.2 OMPD parallel_handle Type
	39.18.3 OMPD task_handle Type
	39.18.4 OMPD thread_handle Type

	40 OMPD Callback Interface
	40.1 Memory Management of OMPD Library
	40.1.1 alloc_memory Callback
	40.1.2 free_memory Callback

	40.2 Accessing Program or Runtime Memory
	40.2.1 symbol_addr_lookup Callback
	40.2.2 OMPD memory_read Type
	40.2.2.1 read_memory Callback
	40.2.2.2 read_string Callback

	40.2.3 write_memory Callback

	40.3 Context Management and Navigation
	40.3.1 get_thread_context_for_thread_id Callback
	40.3.2 sizeof_type Callback

	40.4 Device Translating Callbacks
	40.4.1 OMPD device_host Type
	40.4.2 device_to_host Callback
	40.4.3 host_to_device Callback

	40.5 print_string Callback

	41 OMPD Routines
	41.1 OMPD Library Initialization and Finalization
	41.1.1 ompd_initialize Routine
	41.1.2 ompd_get_api_version Routine
	41.1.3 ompd_get_version_string Routine
	41.1.4 ompd_finalize Routine

	41.2 Process Initialization and Finalization
	41.2.1 ompd_process_initialize Routine
	41.2.2 ompd_device_initialize Routine
	41.2.3 ompd_get_device_thread_id_kinds Routine

	41.3 Address Space Information
	41.3.1 ompd_get_omp_version Routine
	41.3.2 ompd_get_omp_version_string Routine

	41.4 Thread Handle Routines
	41.4.1 ompd_get_thread_in_parallel Routine
	41.4.2 ompd_get_thread_handle Routine
	41.4.3 ompd_get_thread_id Routine
	41.4.4 ompd_get_device_from_thread Routine

	41.5 Parallel Region Handle Routines
	41.5.1 ompd_get_curr_parallel_handle Routine
	41.5.2 ompd_get_enclosing_parallel_handle Routine
	41.5.3 ompd_get_task_parallel_handle Routine

	41.6 Task Handle Routines
	41.6.1 ompd_get_curr_task_handle Routine
	41.6.2 ompd_get_generating_task_handle Routine
	41.6.3 ompd_get_scheduling_task_handle Routine
	41.6.4 ompd_get_task_in_parallel Routine
	41.6.5 ompd_get_task_function Routine
	41.6.6 ompd_get_task_frame Routine

	41.7 Handle Comparing Routines
	41.7.1 ompd_parallel_handle_compare Routine
	41.7.2 ompd_task_handle_compare Routine
	41.7.3 ompd_thread_handle_compare Routine

	41.8 Handle Releasing Routines
	41.8.1 ompd_rel_address_space_handle Routine
	41.8.2 ompd_rel_parallel_handle Routine
	41.8.3 ompd_rel_task_handle Routine
	41.8.4 ompd_rel_thread_handle Routine

	41.9 Querying Thread States
	41.9.1 ompd_enumerate_states Routine
	41.9.2 ompd_get_state Routine

	41.10 Display Control Variables
	41.10.1 ompd_get_display_control_vars Routine
	41.10.2 ompd_rel_display_control_vars Routine

	41.11 Accessing Scope-Specific Information
	41.11.1 ompd_enumerate_icvs Routine
	41.11.2 ompd_get_icv_from_scope Routine
	41.11.3 ompd_get_icv_string_from_scope Routine
	41.11.4 ompd_get_tool_data Routine

	42 OMPD Breakpoint Symbol Names
	42.1 ompd_bp_thread_begin Breakpoint
	42.2 ompd_bp_thread_end Breakpoint
	42.3 ompd_bp_device_begin Breakpoint
	42.4 ompd_bp_device_end Breakpoint
	42.5 ompd_bp_parallel_begin Breakpoint
	42.6 ompd_bp_parallel_end Breakpoint
	42.7 ompd_bp_teams_begin Breakpoint
	42.8 ompd_bp_teams_end Breakpoint
	42.9 ompd_bp_task_begin Breakpoint
	42.10 ompd_bp_task_end Breakpoint
	42.11 ompd_bp_target_begin Breakpoint
	42.12 ompd_bp_target_end Breakpoint

	VI Appendices
	A OpenMP Implementation-Defined Behaviors
	B Features History
	B.1 Deprecated Features
	B.2 Version 5.2 to 6.0 Differences
	B.3 Version 5.1 to 5.2 Differences
	B.4 Version 5.0 to 5.1 Differences
	B.5 Version 4.5 to 5.0 Differences
	B.6 Version 4.0 to 4.5 Differences
	B.7 Version 3.1 to 4.0 Differences
	B.8 Version 3.0 to 3.1 Differences
	B.9 Version 2.5 to 3.0 Differences

	C Nesting of Regions
	D Conforming Compound Directive Names
	Index

