OpenMIP

OpenMP
Application Programming
Interface

Version 5.1 November 2020

Copyright (©)1997-2020 OpenMP Architecture Review Board.

Permission to copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document appear. Notice is
given that copying is by permission of the OpenMP Architecture Review Board.

This page intentionally left blank in published version.

Contents

1 Overview of the OpenMP API 1
L1 Scope o o e e 1
1.2 Glossary o . e e e e e e 2

1.2.1 Threading Concepts 2
1.2.2 OpenMP Language Terminology 2
1.23 Loop Terminology 9
1.2.4 Synchronization Terminology 10
1.2.5 Tasking Terminology 12
1.2.6 DataTerminology i 14
1.2.7 Implementation Terminology 18
1.2.8 Tool Terminology it 19
1.3 ExecutionModel L 22
1.4 Memory Model 25
1.4.1 Structure of the OpenMP Memory Model 25
1.4.2 Device Data Environments 26
1.43 Memory Management 27
1.44 TheFlush Operation 27
1.4.5 Flush Synchronization and Happens Before 29
1.4.6 OpenMP Memory Consistency v v v v .. 30
1.5 Toollnterfaces e 31
1.5.1 OMPT e 32
1.52 OMPD 32
1.6 OpenMP Compliance 33
1.7 Normative References 33
1.8 Organization of this Document 35

2 Directives 37

2.1 Directive Format 38
2.1.1 Fixed Source Form Directives 43
2.1.2 Free Source Form Directives 44
2.1.3 Stand-Alone Directives 45
2.1.4 Array Shaping 45
2.1.5 Array Sections 46
2.1.6 Tterators 49

2.2 Conditional Compilation L 52
2.2.1 Fixed Source Form Conditional Compilation Sentinels 52
2.2.2 Free Source Form Conditional Compilation Sentinel 53

2.3 Variant Directives 53
23.1 OpenMPContext. e 53
232 Context Selectors 55
2.3.3 Matching and Scoring Context Selectors 59
2.3.4 Metadirectives Lo e 60
2.3.5 Declare Variant Directive 63
2.3.6 dispatchConstruct e 69

2.4 Internal Control Variables 71
24.1 ICV Descriptions e 72
2.4.2 ICV Imitialization 74
243 Modifying and Retrieving ICV Values 77
244 HowlICVsareScoped 79

2.4.4.1 How the Per-Data Environment ICVs Work 81
2.4.5 ICV Override Relationships 82

2.5 Informational and Utility Directives 83
2.5.1 requiresDirective 83
2.5.2 Assume Directive L 86
2.5.3 nothingDirective 89
254 errorDirective. e 90

2.6 parallel ConstrucCt v i v v v it et e e e e 92
2.6.1 Determining the Number of Threads for a parallel Region 96
2.6.2 Controlling OpenMP Thread Affinity 98

ii OpenMP API — Version 5.1 November 2020

277 teams ConstrucCt e 100

2.8 maskedConstruct. 104
2.9 scope Construct L e 106
2.10 Worksharing Constructs e 108
2.10.1 sectionsConstruct 109
2.10.2 single Construct. o it e e e e 112
2.10.3 workshare Construct 114
2.11 Loop-Related Directives 117
2.11.1 Canonical LoopNestForm 117
2.11.2 Consistent Loop Schedules 125
2113 orderClause i e 125
2.11.4 Worksharing-Loop Construct 126
2.11.4.1 Determining the Schedule of a Worksharing-Loop 133
2.11.5 SIMDDirectives 134
21151 simdConstruct L e 134
2.11.5.2 Worksharing-Loop SIMD Construct 138
2.11.5.3 declare simdDirective 140
2.11.6 distributeLoopConstructs 143
2.11.6.1 distributeConstruct 143
2.11.6.2 distribute simdConstruct. 147
2.11.6.3 Distribute Parallel Worksharing-Loop Construct 148
2.11.6.4 Distribute Parallel Worksharing-Loop SIMD Construct 149
2117 1oop CONStruct o v v v v et e e e e e e e e 151
2.11.8 scanDirective 154
2.11.9 Loop Transformation Constructs 157
2.119.1 tileConstruct 158
2.11.9.2 unroll Constructo v it i i 160
2.12 Tasking Constructs 161
2.12.1 task Construct e e e e 161
2.12.2 taskloop Construct v v i i e e 166
2.12.3 taskloop simdConstruct 171
2.12.4 taskyieldConstruct 173
2125 Inmitial Tasko 174

Contents iii

iv

2.12.6 Task Scheduling 175
2.13 Memory Management Directives 177
2.13.1 Memory Spaces e e 177
2.13.2 Memory Allocators 178
2.13.3 allocateDirective 181
2.13.4 allocateClause 184
2.14 Device Directives e 186
2.14.1 Device Initialization L L 186
2.14.2 targetdataConstruct 187
2.14.3 target enterdataConstruct. 191
2.144 target exitdataConstruct 193
2145 target Construct. Lo 197
2.14.6 target update Construct 205
2.14.7 Declare Target Directive 210
2.15 Interoperability 216
2.15.1 interopConstruct 217
2.15.2 Interoperability Requirement Set 220
2.16 Combined Constructs vt e e 221
2.16.1 Parallel Worksharing-Loop Construct 221
2.16.2 parallel loop Construct oo v v v v i 222
2.16.3 parallel sectionsConstruct 223
2.164 parallel workshare Construct 224
2.16.5 Parallel Worksharing-Loop SIMD Construct 225
2.16.6 parallelmaskedConstruct 226
2.16.7 masked taskloop Construct 228
2.16.8 maskedtaskloop simd Construct 229
2.169 parallel maskedtaskloop Construct 230
2.16.10 parallel masked taskloop simd Construct. 231
2.16.11 teams distribute Construct 233
2.16.12 teams distribute simd Construct 234
2.16.13 Teams Distribute Parallel Worksharing-Loop Construct 235
2.16.14 Teams Distribute Parallel Worksharing-Loop SIMD Construct 236
2.16.15 teams loop Construct 237

OpenMP API — Version 5.1 November 2020

2.16.16 target parallel Construct v v v vttt 238

2.16.17 Target Parallel Worksharing-Loop Construct 239
2.16.18 Target Parallel Worksharing-Loop SIMD Construct 241
2.16.19 target parallel loop Construct 242
2.16.20 target simd Construct 244
2.16.21 target teams Construct 245
2.16.22 target teams distribute Construct 246
2.16.23 target teams distribute simd Construct 247
2.16.24 target teams loopConstruct 248
2.16.25 Target Teams Distribute Parallel Worksharing-Loop Construct 249
2.16.26 Target Teams Distribute Parallel Worksharing-Loop SIMD Construct 251
2.17 Clauses on Combined and Composite Constructs 252
218 AEClause e 254
2.19 Synchronization Constructs and Clauses 255
2.19.1 eriticalConstruct o 255
2.19.2 barrier Constructo 258
2.19.3 Implicit Barriers 260
2.19.4 Implementation-Specific Barriers 261
2.19.5 taskwait Construct Lo 261
2.19.6 taskgroup Construct 264
2.19.7 atomic Construct. 266
2.19.8 flushConstruct 275
2.19.8.1 TImplicitFlushes 279
2.19.9 ordered Construct e 283
2.19.10 Depend Objects 286
2.19.10.1 depobj COoNnstruct v v v v v i e e e e 287
2.19.11 depend Clause i it it 288
2.19.12 SynchronizationHints 0oL 293
2.20 Cancellation Constructs oL 295
220.1 ecancel Construct. v v vttt 295
2.20.2 cancellationpoint Construct 300

Contents v

vi

2.21 Data Environment e 302

2.21.1 Data-Sharing Attribute Rules, 302
2.21.1.1 Variables Referenced in a Construct 302
2.21.1.2 Variables Referenced in a Region but not in a Construct 306

2.21.2 threadprivateDirective 307

2.21.3 ListItem Privatization 312

2.21.4 Data-Sharing Attribute Clauses 315
2214.1 defaultClause 315
22142 sharedClause i 316
22143 privateClause 318
22144 firstprivateClause 318
22145 1lastprivateClauseo 321
22146 linearClause i i it 323

2.21.5 Reduction Clauses and Directives 325
2.21.5.1 Properties Common to All Reduction Clauses 326
2.21.5.2 Reduction Scoping Clauses 331
2.21.5.3 Reduction Participating Clauses 332
22154 reductionClause 332
22155 task_reductionClause 335
22156 in reductionClause 335
2.21.57 declare reduction Directive 336

221.6 DataCopying Clauses vt 341
2.21.6.1 copyinClause e 342
22162 copyprivateClause 343

2.21.7 Data-Mapping Attribute Rules, Clauses, and Directives 345
221.7.1 mapClause e e 347
2.21.7.2 Pointer Initialization for Device Data Environments 356
22173 defaultmapClause 357
22174 declaremapper Directive., . 358

222 Nestingof Regions 362
3 Runtime Library Routines 365
3.1 Runtime Library Definitions 365

OpenMP API — Version 5.1 November 2020

3.2 Thread Team Routines 368

3.2.1 omp_set_num threads 368
322 omp_get_num threads 369
3.2.3 omp_get_max_threads 370
324 omp_get_thread num 371
325 omp_in_parallel 372
326 omp_set_dynamic 373
327 omp_get_dynamic 373
32.8 omp_get_cancellation 374
329 omp_set_nested(Deprecated) 375
3.2.10 omp_get_nested (Deprecated) 376
3.2.11 omp_set_schedule 376
3.2.12 omp_get_schedule 379
3.2.13 omp_get_thread limit 380
3.2.14 omp_get_supported_active_levels 380
3.2.15 omp_set_max_active_levels 381
3.2.16 omp_get_max_active_levels 382
3217 omp_get_level e 383
3.2.18 omp_get_ancestor_thread num 384
3.2.19 omp_get_team size 385
3220 omp_get_active_level 385
3.3 Thread Affinity Routines 386
33.1 omp_get_proc_bind 386
332 omp_get_num placest 388
333 omp_get_place_num ProCS e v v 389
334 omp_get_place proc_ids 389
335 omp_get_place num 390
33.6 omp_get_partition_num places 391
3377 omp_get_partition_place_nums 392
33.8 omp_set_affinity format 393
339 omp_get_affinity format 394
33.10 omp_display affinity 395
3.3.11 omp_capture_affinity 396

Contents vii

34 Teams RegionRoutineso o 397

3.4.1 omp_get_num teams 397
342 omp_get_team numo 398
34.3 omp_set_num_teams 399
344 omp_get_max_teams 400
345 omp_set_teams_thread limit 400
346 omp_get teams_thread limit 401
3.5 TaskingRoutines 402
3.5.1 omp_get_max_task priority 402
352 omp_din_final e 403
3.6 Resource Relinquishing Routines 404
3.6.1 omp_pause_resSouUXCe 404
3.6.2 omp_pause_resource_all 406
3.7 Device Information Routines oL 407
37.1 omp_get_nuUm PrOCS v it it 407
372 omp_set_default_device 408
3.7.3 omp_get_default_device 408
374 omp_get_num devices 409
375 omp_get_device_num 410
376 omp_is_initial device, 411
37777 omp_get_initial device, 411
3.8 Device Memory Routines 412
38.1 omp_target_alloC 412
38.2 omp_target_free 414
383 omp_target_is present 416
384 omp_target_is_accessible. 417
3.8.5 omp_target mMemCPYttt e 418
38.6 omp_target memcpy rect 419
3.8.7 omp_target_memcpy _async 422
3.8.8 omp_target_memcpy_rect_async 424
38.9 omp_target_associate_ ptr. 426
3.8.10 omp_target_disassociate_ ptr 429
38.11 omp_get_mapped ptr 430

viii OpenMP API — Version 5.1 November 2020

39 LockRoutines e 432

3.9.1 omp_init_lock and omp_init_nest_lock 434
392 omp_init_lock_with_hint and
omp_init_nest_lock _with hint 435
393 omp_destroy lock and omp_destroy nest_lock. 436
394 omp_set_lockandomp_set_nest_lock 437
395 omp_unset_lock and omp_unset_nest_lock 439
39.6 omp_test_lockandomp_test_nest_lock 440
3.10 Timing Routines 442
3.10.1 omp_get_wtime 442
3102 omp_get_wtick 442
3.11 EventRoutine 443
3.11.1 omp_fulfill event 443
3.12 Interoperability Routines 444
3.12.1 omp_get_num_interop_properties 446
3.12.2 omp_get_interop_int 446
3.123 omp_get_interop_ ptr 447
3.124 omp_get_interop_str 448
3.125 omp_get_interop_name 449
3.12.6 omp_get_interop_type_ desc 450
3.1277 omp_get_interop_rc_desc 450
3.13 Memory Management Routines 451
3.13.1 Memory Management Types 451
3.13.2 omp_init_allocator 454
3.13.3 omp_destroy_allocator 455
3.134 omp_set_default_allocator 456
3.13.5 omp_get_default_allocator 457
3.13.6 omp_allocand omp_aligned alloc 458
3.13.7 omp_free e 459
3.13.8 omp_callocand omp_aligned _calloc 461
3,139 omp_realloC e e e 463
3.14 Tool Control Routine 465
3.15 Environment Display Routine 468

Contents ix

4 OMPT Interface 471

4.1 OMPT Interfaces Definitions 471
4.2 Activating a First-Party Tool 471
421 ompt_start_tool 471
422 Determining Whether a First-Party Tool Should be Initialized 473
423 [Initializing a First-Party Tool 474
4.2.3.1 Binding Entry Points in the OMPT Callback Interface 475
424 Monitoring Activity on the Host with OMPT 476
4.2.5 Tracing Activity on Target Devices with OMPT 478
4.3 Finalizing a First-Party Tool 484
44 OMPTDataTypes o o v i i e e e s e e e e 485
4.4.1 Tool Initialization and Finalization 485
442 Callbacks 485
443 Tracing e e e e e e e 487
4431 RecordType e 487
4432 NativeRecordKind oo 487
4433 Native Record Abstract Type 487
4434 RecordType o o i i i e 488
4.44 Miscellaneous Type Definitions 489
4441 ompt_callback t., 489
4442 ompt_set_result_t 490
4443 ompt_id_t 491
4444 ompt_data_t 492
4445 ompt_device_t 492
4446 ompt_device_time t, 492
4447 ompt_buffer t 493
4448 ompt_buffer cursor_t 493
4449 ompt_dependence_t 493
44410 ompt_thread t 494
44411 ompt_scope endpoint_t 494
44412 ompt_dispatch_t. 495
44413 ompt_sync_region_t 495
44414 ompt_target_data_ op t 496

OpenMP API — Version 5.1 November 2020

44415 ompt_work_t 496

44416 ompt_mutex_t 497
444.17 ompt_native mon_flag t 497
44418 ompt_task flag t 498
44419 ompt_task_status_t, 498
44420 ompt_target_t e 499
44421 ompt_parallel flag t. 500
44422 ompt_target_map _flag t 501
44423 ompt_dependence_type_t, 501
44424 ompt_severity t. o o 502
44425 ompt_cancel _flag t, 502
44426 ompt_hwid_t 502
44427 ompt_state_t 503
44428 ompt_frame_t e 505
44429 ompt_frame_flag t 506
44430 ompt_wait_id t 507
4.5 OMPT Tool Callback Signatures and Trace Records 508
4.5.1 Initialization and Finalization Callback Signature 508
4.5.1.1 ompt_initialize_t 508
45.12 ompt_finalize t. 509
4.5.2 Event Callback Signatures and Trace Records 510
4.5.2.1 ompt_callback_thread begin_t 510
452.2 ompt_callback_thread end_t 511
4523 ompt_callback_parallel begin_ t. 511
4524 ompt_callback_parallel end t 513
4.52.5 ompt_callback _ work_t 514
4.52.6 ompt_callback_dispatch t 515
4527 ompt_callback_task_create_t 517
45.2.8 ompt_callback_dependences_t 518
4529 ompt_callback_task_dependence_t 519
4.52.10 ompt_callback_task_schedule t 520
45211 ompt_callback_implicit task t 521
45.2.12 ompt_callback masked t 522

Contents xi

4.5.2.13
4.5.2.14
4.5.2.15
4.5.2.16
4.5.2.17
4.5.2.18
4.5.2.19
4.5.2.20
4.5.2.21
4.5.2.22
4.5.2.23
4.5.2.24
4.5.2.25

4.5.2.26

4.5.2.27

4.5.2.28

4.5.2.29
4.5.2.30

4.6 OMPT Runtime Entry Points for Tools
4.6.1 Entry Points in the OMPT Callback Interface

4.6.1.1
4.6.1.2
4.6.1.3
4.6.14
4.6.1.5
4.6.1.6
4.6.1.7
4.6.1.8
4.6.1.9

ompt_callback_sync_region_t
ompt_callback _mutex _acquire_t
ompt_callback mutex t
ompt_callback _nest_lock_t.
ompt_callback_flush t
ompt_callback _cancel_t
ompt_callback_device_initialize t
ompt_callback_device_finalize t
ompt_callback_device_load t
ompt_callback_device unload t
ompt_callback buffer request t.
ompt_callback buffer complete t

ompt_callback_target_data_op_emi_t and

ompt_callback_target_data op t.

ompt_callback_target_emi_t and

ompt_callback_target_t

ompt_callback_target_map_ emi_t and

ompt_callback_target_ map t

ompt_callback_target_submit_emi_t and

ompt_callback_target_submit_t
ompt_callback_control tool _t

ompt_callback error_ t

ompt_enumerate_states_t
ompt_enumerate_mutex_impls_t
ompt_set_callback t
ompt_get_callback t
ompt_get_thread data t
ompt_get_num procs_t
ompt_get_num places_t
ompt_get_place proc ids_t.
ompt_get_place num t.

xii OpenMP API — Version 5.1 November 2020

4.6.1.10 ompt_get_partition_place nums_t 554

4.6.1.11 ompt_get_proc_id t, 555
4.6.1.12 ompt_get_state_t 555
4.6.1.13 ompt_get_parallel_info t 556
4.6.1.14 ompt_get_task_info_t 558
4.6.1.15 ompt_get_task memory t 560
4.6.1.16 ompt_get_target_info t 561
4.6.1.17 ompt_get_num devices_t 562
4.6.1.18 ompt_get_unique_id_t....................... 562
4.6.1.19 ompt_finalize tool_t 563
4.6.2 Entry Points in the OMPT Device Tracing Interface 563
4.6.2.1 ompt_get_device num procs_t 563
4.6.2.2 ompt_get_device_time_t 564
4.6.23 ompt_translate_time t 565
4624 ompt_set_trace_ ompt_t 566
46.2.5 ompt_set_trace native_t 567
4.6.2.6 ompt_start_trace t, 568
4.6.277 ompt_pause_trace t 568
4.6.2.8 ompt_flush _trace t, 569
46.29 ompt_stop trace_t 570
4.6.2.10 ompt_advance_buffer cursor_t 570
4.6.2.11 ompt_get_record type_ t 571
4.6.2.12 ompt_get_record ompt_t 572
4.6.2.13 ompt_get_record native_t 573
4.6.2.14 ompt_get_record abstract_t 574
4.6.3 Lookup Entry Points: ompt_function_lookup_t 574
5 OMPD Interface 577
5.1 OMPD Interfaces Definitions 578
5.2 Activating a Third-Party Tool 578
5.2.1 Enabling Runtime Supportfor OMPD 578
522 ompd_dll_locations 578
523 ompd_dll_locations_valid. 579

Contents xiii

Xiv

53 OMPDDataTypes it i e 580

531 SizeType o o e e 580
532 WaitIDTypeo 580
533 BasicValue Types 581
534 AddressTypeo 581
5.3.5 Frame Information Type, 582
5.3.6 System Device Identifiers 0. 582
5.3.7 Native Thread Identifiers 583
5.3.8° OMPD Handle Types 583
539 OMPDScope Types o v v i v it e e e e e 584
53.10 ICVIDType o o vt e e e e e e 585
5.3.11 Tool Context Types o . i ittt et 585
5.3.12 ReturnCode Types o o i it it 585
5.3.13 Primitive Type Sizes e 586
5.4 OMPD Third-Party Tool Callback Interface 587
5.4.1 Memory Management of OMPD Library 588
54.1.1 ompd_callback _memory_alloc_fn_ t 588
54.1.2 ompd_callback_memory free_fn_t. 589
5.4.2 Context Management and Navigation 590
54.2.1 ompd _callback_get_thread context_for_ thread_ id
_En b 590
5422 ompd _callback_sizeof fn t. 591
5.4.3 Accessing Memory in the OpenMP Program or Runtime 592
543.1 ompd_callback_symbol _addr_fn_t. 592
5432 ompd_callback_memory read fn_t. 594
5433 ompd_callback_memory write fn t 595
5.4.4 Data Format Conversion: ompd_callback_device_host_fn_t ... 596
545 ompd_callback_print_string fn_t 598
54.6 The Callback Interface 598
5.5 OMPD Tool Interface Routines 600
5.5.1 Per OMPD Library Initialization and Finalization 600
55.1.1 ompd_initialize. 601
5512 ompd get_api_version. 602

OpenMP API — Version 5.1 November 2020

5.5.1.3 ompd_get_version_string 602

5.5.14 ompd_finalize 603
5.5.2 Per OpenMP Process Initialization and Finalization 604
55.2.1 ompd process_initialize 604
5522 ompd_device_initialize 605
5.5.23 ompd_rel_address_space_handle 606
5.5.3 Thread and Signal Safety 607
5.54 Address Space Information 607
5541 ompd_get_omp_version. 607
5.54.2 ompd_get_omp_version_string 608
5.5.5 ThreadHandles 609
5.5.5.1 ompd_get_thread in parallel 609
5552 ompd_get_thread handle 610
5553 ompd_rel thread handle 611
5.5.54 ompd_thread handle compare 611
5555 ompd get _thread id 612
5.5.6 Parallel RegionHandles 613
5.5.6.1 ompd_get_curr parallel_handle 613
5.5.6.2 ompd_get_enclosing parallel_handle 614
5.5.6.3 ompd get_task parallel handle 615
5.5.64 ompd_rel parallel _handle 616
5.5.6.5 ompd_parallel handle_compare 616
5.5.7 TaskHandles 617
55.7.1 ompd_get_curr task handle. 617
5.5.72 ompd_get_generating task handle 618
5.5.73 ompd_get_scheduling task_handle 619
5574 ompd_get_task_in parallel. 620
5575 ompd_rel task handle. 621
5576 ompd_task_handle_compare 622
5.5.77 ompd_get_task_function 622
5578 ompd_get_task frame 623
5579 ompd_enumerate_states 624
55710 ompd get_state 625

Contents XV

xvi

5.5.8 Display Control Variables 626

5.5.8.1 ompd_get_display control_vars 626
5.5.82 ompd_rel display control_vars 627
5.5.9 Accessing Scope-Specific Information L. 628
5.59.1 ompd_enumerate_icvs 628
5592 ompd get_icv_from scope 629
5593 ompd get_icv_string from scope. 630
5594 ompd get_tool _data, 631

5.6 Runtime Entry Points for OMPD 632
5.6.1 Beginning Parallel Regions 633
5.6.2 Ending Parallel Regions 633
5.6.3 Beginning Task Regions 634
5.6.4 Ending Task Regions 634
5.6.5 Beginning OpenMP Threads 635
5.6.6 Ending OpenMP Threads 635
5.6.7 Initializing OpenMP Devices 636
5.6.8 Finalizing OpenMP Devices 636
6 Environment Variables 639
6.1 OMP_SCHEDULE i i ittt s st s 640
6.2 OMP_NUM THREADS i i it ittt it e e e e e e 640
6.3 OMP_DYNAMIC i i vttt et e e e e e e e e 641
6.4 OMP_PROC_BIND ' v ittt ittt e e 642
6.5 OMP_PLACES i ittt e e e e 643
6.6 OMP_STACKSIZE i v it it it e e e e s e s e s e e 645
6.7 OMP_WAIT POLICY i i i it it it e e e e e e e 646
6.8 OMP_MAX ACTIVE_LEVELS i i i ittt 647
6.9 OMP_NESTED (Deprecated) 647
6.10 OMP_THREAD_LIMIT i it it it et e e e e e 648
6.11 OMP_CANCELLATION i v v it et et et e e e e e e 648
6.12 OMP_DISPLAY ENV i ittt it et e e e e e e 648
6.13 OMP_DISPLAY AFFINITY i it ittt 649
6.14 OMP_AFFINITY FORMAT v it it et et e e e e 650
6.15 OMP_DEFAULT DEVICE i i i it it it e e 652

OpenMP API — Version 5.1 November 2020

6.16 OMP_MAX TASK_PRIORITY it 652

6.17 OMP_TARGET_OFFLOADt v it it it e e e e e e 652
6.18 OMP_TOOL ittt et e e e e e e e e e e e e e 653
6.19 OMP_TOOL_LIBRARIES i ittt 653
6.20 OMP_TOOL_VERBOSE_INIT v v ittt it 654
621 OMP_DEBUG o v ittt e e e e e e e e e e e 655
6.22 OMP_ALLOCATORt v vttt e e e e e e e e e s e e e e 655
6.23 OMP_NUM TEAMS i it it et e e e e e e e e e 656
6.24 OMP_TEAMS_THREAD_LIMIT v, 657
A OpenMP Implementation-Defined Behaviors 659
B Features History 667
B.1 Deprecated Features 667
B.2 Version5.0to 5.1 Differences, 668
B.3 Version4.5t0 5.0 Differences 670
B.4 Version4.0to4.5 Differenceso 674
B.5 Version3.1to4.0Differences, 676
B.6 Version3.0to 3.1 Differences, 677
B.7 Version2.5t0 3.0 Differences 677
Index 681

Contents xvii

List of Figures

2.1 Determining the schedule for a Worksharing-Loop

4.1 First-Party Tool Activation Flow Chart

Xviii

List of Tables

2.1
2.2
2.3
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13

3.1
3.2
33

4.1
42
43
4.4

5.1

6.1
6.2

ICVInitial Values e e
Ways to Modify and to Retrieve ICV Values
Scopes of ICVs e
ICV Override Relationships,
schedule Clause kind Values
schedule Clause modifier Values
ompt_callback_task_create Callback Flags Evaluation
Predefined Memory Spaces
Allocator Traits
Predefined Allocators
Implicitly Declared C/C++ reduction-identifiers
Implicitly Declared Fortran reduction-identifiers
Map-Type Decay of Map Type Combinations

Required Values of the omp_interop_property_tenum Type
Required Values for the omp_interop_rc_tenumType
Standard Tool Control Commands

OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures .
Callbacks for which ompt_set_callback Must Return ompt_set_always

Callbacks for which ompt_set_callback May Return Any Non-Error Code . .
OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures . .

Mapping of Scope Type and OMPD Handles

Predefined Abstract Names for OMP_PLACES v v v v v v ..
Available Field Types for Formatting OpenMP Thread Affinity Information

4717
479
480
482

584

644
651

Xix

This page intentionally left blank

17

18
19
20
21
22
23
24

1 Overview of the OpenMP API

The collection of compiler directives, library routines, and environment variables that this
document describes collectively define the specification of the OpenMP Application Program
Interface (OpenMP API) for parallelism in C, C++ and Fortran programs.

This specification provides a model for parallel programming that is portable across architectures
from different vendors. Compilers from numerous vendors support the OpenMP API. More
information about the OpenMP API can be found at the following web site

http://www.openmp.org

The directives, library routines, environment variables, and tool support that this document defines
allow users to create, to manage, to debug and to analyze parallel programs while permitting
portability. The directives extend the C, C++ and Fortran base languages with single program
multiple data (SPMD) constructs, tasking constructs, device constructs, worksharing constructs,
and synchronization constructs, and they provide support for sharing, mapping and privatizing data.
The functionality to control the runtime environment is provided by library routines and
environment variables. Compilers that support the OpenMP API often include command line
options to enable or to disable interpretation of some or all OpenMP directives.

1.1 Scope

The OpenMP API covers only user-directed parallelization, wherein the programmer explicitly
specifies the actions to be taken by the compiler and runtime system in order to execute the program
in parallel. OpenMP-compliant implementations are not required to check for data dependences,
data conflicts, race conditions, or deadlocks. Compliant implementations also are not required to
check for any code sequences that cause a program to be classified as non-conforming. Application
developers are responsible for correctly using the OpenMP API to produce a conforming program.
The OpenMP API does not cover compiler-generated automatic parallelization.

20

21

22
23

24

25
26

27
28

2

1.2 Glossary

1.2.1 Threading Concepts

thread
OpenMP thread

thread number

idle thread

thread-safe routine

processor

device

host device

target device

parent device

An execution entity with a stack and associated threadprivate memory.
A thread that is managed by the OpenMP implementation.

A number that the OpenMP implementation assigns to an OpenMP thread. For
threads within the same team, zero identifies the primary thread and consecutive
numbers identify the other threads of this team.

An OpenMP thread that is not currently part of any parallel region.

A routine that performs the intended function even when executed concurrently (by
more than one thread).

Implementation-defined hardware unit on which one or more OpenMP threads can
execute.

An implementation-defined logical execution engine.
COMMENT: A device could have one or more processors.
The device on which the OpenMP program begins execution.

A device with respect to which the current device performs an operation, as specified
by a device construct or an OpenMP device memory routine.

For a given target region, the device on which the corresponding target
construct was encountered.

1.2.2 OpenMP Language Terminology

base language

base program

preprocessed code

program order

A programming language that serves as the foundation of the OpenMP specification.

COMMENT: See Section 1.7 for a listing of current base languages for
the OpenMP APL

A program written in a base language.

For C/C++, a sequence of preprocessing tokens that result from the first six phases of
translation, as defined by the base language.

An ordering of operations performed by the same thread as determined by the
execution sequence of operations specified by the base language.

OpenMP API — Version 5.1 November 2020

oN O OO WD =

11
12
13

14
15
16
17
18
19

20
21
22
23
24

25
26

27

28
29

30
31

32
33

structured block

structured block
sequence

strictly structured
block

loosely structured
block

compilation unit

enclosing context

directive

white space

OpenMP program

conforming program

implementation code

metadirective

COMMENT: For versions of C and C++ that include base language
support for threading, program order corresponds to the sequenced before
relation between operations performed by the same thread.

For C/C++, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or an OpenMP construct.

For Fortran, a strictly structured block, or a loosely structured block.

A structured block, or, for C/C++, a sequence of two or more executable statements
that together have a single entry at the top and a single exit at the bottom.

A single Fortran BLOCK construct, with a single entry at the top and a single exit at
the bottom.

A block of executable constructs, where the first executable construct is not a Fortran
BLOCK construct, with a single entry at the top and a single exit at the bottom, or an
OpenMP construct.

COMMENT: In Fortran code, when a strictly structured block appears
within an OpenMP construct, that OpenMP construct does not usually
require a paired end directive to define the range of the OpenMP
construct, while an OpenMP construct that contains a loosely structured
block relies on the paired end directive to define the range of the
OpenMP construct.

For C/C++, a translation unit.

For Fortran, a program unit.

For C/C++, the innermost scope enclosing an OpenMP directive.

For Fortran, the innermost scoping unit enclosing an OpenMP directive.
A base language mechanism to specify OpenMP program behavior.

COMMENT: See Section 2.1 for a description of OpenMP directive
syntax in each base language.

A non-empty sequence of space and/or horizontal tab characters.

A program that consists of a base program that is annotated with OpenMP directives
or that calls OpenMP API runtime library routines.

An OpenMP program that follows all rules and restrictions of the OpenMP
specification.

Implicit code that is introduced by the OpenMP implementation.

A directive that conditionally resolves to another directive.

CHAPTER 1. OVERVIEW OF THE OPENMP API 3

declarative directive

executable directive

informational directive

utility directive

stand-alone directive

construct

combined construct

composite construct

constituent construct

An OpenMP directive that may only be placed in a declarative context and results in
one or more declarations only; it is not associated with the immediate execution of
any user code or implementation code. For C++, if a declarative directive applies to a
function declaration or definition and it is specified with one or more C++ attribute
specifiers, the specified attributes must be applied to the function as permitted by the
base language. For Fortran, a declarative directive must appear after any USE,
IMPORT, and IMPLICIT statements in a declarative context.

An OpenMP directive that appears in an executable context and results in
implementation code and/or prescribes the manner in which associated user code
must execute.

An OpenMP directive that is neither declarative nor executable, but otherwise
conveys user code properties to the compiler.

An OpenMP directive that is neither declarative nor executable, but otherwise
facilitates interactions with the compiler and/or supports code readability.

An OpenMP executable directive that has no associated user code, but may produce
implementation code resulting from clauses in the directive.

An OpenMP executable directive (and for Fortran, the paired end directive, if any)
and the associated statement, loop nest or structured block, if any, not including the
code in any called routines. That is, the lexical extent of an executable directive.

A construct that is a shortcut for specifying one construct immediately nested inside

another construct. A combined construct is semantically identical to that of explicitly
specifying the first construct containing one instance of the second construct and no

other statements.

A construct that is composed of two constructs but does not have identical semantics
to specifying one of the constructs immediately nested inside the other. A composite
construct either adds semantics not included in the constructs from which it is
composed or provides an effective nesting of the one construct inside the other that
would otherwise be non-conforming.

For a given combined or composite construct, a construct from which it, or any one
of its constituent constructs, is composed.

COMMENT: The constituent constructs of a

target teams distribute parallel for simd construct are the
following constructs: target,

teams distribute parallel for simd, teams,

distribute parallel for simd, distribute,

parallel for simd, parallel, for simd, for, and simd.

4 OpenMP API — Version 5.1 November 2020

o~N OO0k W N =

9
10
11
12
13
14
15
16
17

18

19
20

21
22

23

24

25
26

27
28

29
30
31

32
33

leaf construct

combined target
construct

region

active parallel region

inactive parallel region

active target region

inactive target region

sequential part

For a given combined or composite construct, a constituent construct that is not itself
a combined or composite construct.

COMMENT: The leaf constructs of a

target teams distribute parallel for simd construct are the
following constructs: target, teams, distribute, parallel,
for, and simd.

A combined construct that is composed of a target construct along with another
construct.

All code encountered during a specific instance of the execution of a given construct,
structured block sequence or OpenMP library routine. A region includes any code in
called routines as well as any implementation code. The generation of a task at the
point where a task generating construct is encountered is a part of the region of the
encountering thread. However, an explicit task region that corresponds to a task
generating construct is not part of the region of the encountering thread unless it is
an included task region. The point where a target or teams directive is
encountered is a part of the region of the encountering thread, but the region that
corresponds to the target or teams directive is not.

COMMENTS:

A region may also be thought of as the dynamic or runtime extent of a
construct or of an OpenMP library routine.

During the execution of an OpenMP program, a construct may give rise to
many regions.

A parallel region that is executed by a team consisting of more than one thread.

A parallel region that is executed by a team of only one thread.

A target region that is executed on a device other than the device that encountered
the target construct.

A target region that is executed on the same device that encountered the target
construct.

All code encountered during the execution of an initial task region that is not part of
aparallel region corresponding to a parallel construct or a task region
corresponding to a task construct.

COMMENTS:

A sequential part is enclosed by an implicit parallel region.

CHAPTER 1. OVERVIEW OF THE OPENMP API 5

—_
- O OWow NOoOOo A~ WON =

—_ a4
a b~ wON

-
(o]

17
18

19
20

21
22

23
24

25
26

27
28
29

30
31
32

33
34

primary thread

parent thread

child thread

ancestor thread

descendent thread

team

league
contention group

implicit parallel region

initial thread
initial team
nested construct

closely nested construct

Executable statements in called routines may be in both a sequential part
and any number of explicit parallel regions at different points in the
program execution.

An OpenMP thread that has thread number 0. A primary thread may be an initial
thread or the thread that encounters a parallel construct, creates a team,
generates a set of implicit tasks, and then executes one of those fasks as thread
number 0.

The thread that encountered the parallel construct and generated a parallel
region is the parent thread of each of the threads in the team of that parallel
region. The primary thread of a parallel region is the same thread as its parent
thread with respect to any resources associated with an OpenMP thread.

When a thread encounters a parallel construct, each of the threads in the
generated parallel region’s team are child threads of the encountering thread.
The target or teams region’s initial thread is not a child thread of the thread that
encountered the target or teams construct.

For a given thread, its parent thread or one of its parent thread’s ancestor threads.

For a given thread, one of its child threads or one of its child threads’ descendent
threads.

A set of one or more threads participating in the execution of a parallel region.
COMMENTS:

For an active parallel region, the team comprises the primary thread and
at least one additional thread.

For an inactive parallel region, the team comprises only the primary
thread.

The set of teams created by a teams construct.
An initial thread and its descendent threads.

An inactive parallel region that is not generated from a parallel construct.
Implicit parallel regions surround the whole OpenMP program, all target regions,
and all teams regions.

The thread that executes an implicit parallel region.
The feam that comprises an initial thread executing an implicit parallel region.
A construct (lexically) enclosed by another construct.

A construct nested inside another construct with no other construct nested between
them.

6 OpenMP API — Version 5.1 November 2020

O ©W o ~N OO H @ N =

4 a4 a4 a4
AW N =

-
N O O

—_
(oo}

N —
o ©

D NN N
W N =

N N
o~

NN
N O

W NN
O O

W w
N —

explicit region

nested region

closely nested region

strictly nested region

all threads

current team
encountering thread
all tasks

current team tasks

generating task

binding thread set

binding task set

A region that corresponds to either a construct of the same name or a library routine
call that explicitly appears in the program.

A region (dynamically) enclosed by another region. That is, a region generated from
the execution of another region or one of its nested regions.

COMMENT: Some nestings are conforming and some are not. See
Section 2.22 for the restrictions on nesting.

A region nested inside another region with no parallel region nested between
them.

A region nested inside another region with no other explicit region nested between
them.

All OpenMP threads participating in the OpenMP program.

All threads in the team executing the innermost enclosing parallel region.
For a given region, the thread that encounters the corresponding construct.
All tasks participating in the OpenMP program.

All tasks encountered by the corresponding feam. The implicit tasks constituting the
parallel region and any descendent tasks encountered during the execution of
these implicit tasks are included in this set of tasks.

For a given region, the task for which execution by a thread generated the region.

The set of threads that are affected by, or provide the context for, the execution of a
region.

The binding thread set for a given region can be all threads on a specified set of
devices, all threads in a contention group, all primary threads executing an enclosing
teams region, the current team, or the encountering thread.

COMMENT: The binding thread set for a particular region is described in
its corresponding subsection of this specification.

The set of tasks that are affected by, or provide the context for, the execution of a
region.

The binding task set for a given region can be all tasks, the current team tasks, all
tasks of the current team that are generated in the region, the binding implicit task, or
the generating task.

COMMENT: The binding task set for a particular region (if applicable) is
described in its corresponding subsection of this specification.

CHAPTER 1. OVERVIEW OF THE OPENMP API 7

O W NO aprw0W N-—=

—_ -
—_

—_
w N

—_
o b

—_
N o

-
(o]

NN =
- O ©

I\
\V]

NN
A~ W

NN N
N o O

W NN
o ©

W w
N =

w W
A~

binding region

orphaned construct

worksharing construct

device construct

device routine

foreign runtime
environment

foreign execution
context

foreign task

indirect device
invocation

place

place list

place partition

place number

thread affinity
SIMD instruction
SIMD lane

The enclosing region that determines the execution context and limits the scope of
the effects of the bound region is called the binding region.

Binding region is not defined for regions for which the binding thread set is all
threads or the encountering thread, nor is it defined for regions for which the binding
task set is all tasks.

A construct that gives rise to a region for which the binding thread set is the current
team, but is not nested within another construct that gives rise to the binding region.

A construct that divides the work within its structured block into partitions, each of
which is executed exactly once by one of the threads in the feam executing the
construct.

An OpenMP construct that accepts the device clause.

A function (for C/C++ and Fortran) or subroutine (for Fortran) that can be executed
on a target device, as part of a target region.

A runtime environment that exists outside the OpenMP runtime with which the
OpenMP implementation may interoperate.

A context that is instantiated from a foreign runtime environment in order to facilitate
execution on a given device.

A unit of work executed in a foreign execution context.

An indirect call to the device version of a procedure on a device other than the host
device, through a function pointer (C/C++), a pointer to a member function (C++) or
a procedure pointer (Fortran) that refers to the host version of the procedure.

An unordered set of processors on a device.

The ordered list that describes all OpenMP places available to the execution
environment.

An ordered list that corresponds to a contiguous interval in the OpenMP place list. It
describes the places currently available to the execution environment for a given
parallel region.

A number that uniquely identifies a place in the place list, with zero identifying the
first place in the place list, and each consecutive whole number identifying the next
place in the place list.

A binding of threads to places within the current place partition.
A single machine instruction that can operate on multiple data elements.

A software or hardware mechanism capable of processing one data element from a
SIMD instruction.

8 OpenMP API — Version 5.1 November 2020

0o NOoO o~ W N

10

11
12

13
14

15
16

17
18
19
20

21
22

23
24
25

26
27
28

29
30
31

SIMD chunk

memory

memory space

memory allocator

handle

A set of iterations executed concurrently, each by a SIMD lane, by a single thread by
means of SIMD instructions.

A storage resource to store and to retrieve variables accessible by OpenMP threads.

A representation of storage resources from which memory can be allocated or
deallocated. More than one memory space may exist.

An OpenMP object that fulfills requests to allocate and to deallocate memory for
program variables from the storage resources of its associated memory space.

An opaque reference that uniquely identifies an abstraction.

1.2.3 Loop Terminology

canonical loop nest

loop-associated
directive
associated loop

loop nest depth

logical iteration space

logical iteration

logical iteration vector
space

logical iteration vector

lexicographic order

A loop nest that complies with the rules and restrictions defined in Section 2.11.1.

An OpenMP executable directive for which the associated user code must be a
canonical loop nest.

A loop from a canonical loop nest that is controlled by a given loop-associated
directive.

For a canonical loop nest, the maximal number of loops, including the outermost
loop, that can be associated with a loop-associated directive.

For a loop-associated directive, the sequence 0,...,N — 1 where N is the number of
iterations of the loops associated with the directive. The logical numbering denotes

the sequence in which the iterations would be executed if the set of associated loops
were executed sequentially.

An iteration from the associated loops of a loop-associated directive, designated by a
logical number from the logical iteration space of the associated loops.

For a loop-associated directive with n associated nested loops, the set of n-tuples
(i1, - .. ,1y). For the kM associated loop, from outermost to innermost, iy, is its
logical iteration number as if it was the only associated loop.

An iteration from the associated nested loops of a loop-associated directive, where n
is the number of associated loops, designated by an n-tuple from the logical iteration
vector space of the associated loops.

The total order of two logical iteration vectors w, = (i1, - . ., in) and
wp = (J1,---,jn), denoted by w, <jex wp, where either w, = wy, or
Im € {1,...,n} such that i,,, < j,, and i, = ji forall k € {1,...,m — 1}.

CHAPTER 1. OVERVIEW OF THE OPENMP API 9

- O ©OW oo N OO0 AW N-—=

—_ a4 a4 a4
A~ WN

—_
(23N,

17

18
19
20
21
22

23
24

25
26

27
28

29

30
31

product order
loop transformation
construct

generated loop

SIMD loop

non-rectangular loop

perfectly nested loop

doacross loop nest

The partial order of two logical iteration vectors wg = (i1, .. .,4p) and
wp = (1, .-, Jn), denoted by wy <product wp, Where iy, < jy forallk € {1,...,n}.

A construct that is replaced by the loops that result from applying the transformation
as defined by its directive to its associated loops.

A loop that is generated by a loop transformation construct and is one of the
resulting loops that replace the construct.

A loop that includes at least one SIMD chunk.

For a loop nest, a loop for which a loop bound references the iteration variable of a
surrounding loop in the loop nest.

A loop that has no intervening code between it and the body of its surrounding loop.
The outermost loop of a loop nest is always perfectly nested.

A loop nest, consisting of loops that may be associated with the same
loop-associated directive, that has cross-iteration dependences. An iteration is
dependent on one or more lexicographically earlier iterations.

COMMENT: The ordered clause parameter on a worksharing-loop
directive identifies the loops associated with the doacross loop nest.

1.2.4 Synchronization Terminology

barrier

cancellation

cancellation point

flush

device-set

flush property

10 OpenMP API —

A point in the execution of a program encountered by a feam of threads, beyond
which no thread in the team may execute until all threads in the team have reached
the barrier and all explicit tasks generated by the feam have executed to completion.
If cancellation has been requested, threads may proceed to the end of the canceled
region even if some threads in the team have not reached the barrier.

An action that cancels (that is, aborts) an OpenMP region and causes executing
implicit or explicit tasks to proceed to the end of the canceled region.

A point at which implicit and explicit tasks check if cancellation has been requested.
If cancellation has been observed, they perform the cancellation.

An operation that a thread performs to enforce consistency between its view and
other threads’ view of memory.

The set of devices for which a flush operation may enforce memory consistency.

Properties that determine the manner in which a flush operation enforces memory
consistency. These properties are:

Version 5.1 November 2020

0 N oo A W N =

-
o ©

- a
(ST \ I

—_ -
(621 N

—_
~N O

-
O 0o

NN
— O

NN
wW N

N DN
[o2 I G)RR N

27

28

strong flush
release flush
acquire flush

atomic operation

atomic read

atomic write

atomic update

atomic captured
update

atomic conditional
update

read-modify-write

sequentially consistent
atomic construct

non-sequentially
consistent atomic
construct

sequentially consistent
atomic operation

e strong: flushes a set of variables from the current thread’s temporary view of the
memory to the memory;

e release: orders memory operations that precede the flush before memory
operations performed by a different thread with which it synchronizes;

® acquire: orders memory operations that follow the flush after memory operations
performed by a different thread that synchronizes with it.

COMMENT: Any flush operation has one or more flush properties.
A flush operation that has the strong flush property.
A flush operation that has the release flush property.
A flush operation that has the acquire flush property.

An operation that is specified by an atomic construct or is implicitly performed by
the OpenMP implementation and that atomically accesses and/or modifies a specific
storage location.

An atomic operation that is specified by an atomic construct on which the read
clause is present.

An atomic operation that is specified by an atomic construct on which the write
clause is present.

An atomic operation that is specified by an atomic construct on which the
update clause is present.

An atomic update operation that is specified by an atomic construct on which the
capture clause is present.

An atomic update operation that is specified by an atomic construct on which the
compare clause is present.

An atomic operation that reads and writes to a given storage location.
COMMENT: Any atomic update is a read-modify-write operation.

An atomic construct for which the seq_cst clause is specified.

An atomic construct for which the seq_cst clause is not specified

An atomic operation that is specified by a sequentially consistent atomic construct.

CHAPTER 1. OVERVIEW OF THE OPENMP API 11

O © oOo~N o A~ WD

_ a4 a4
w Nho=

—_
o

_ 4
N O

N = —
o ©

N N
N =

N NN
a B~ W

N
D

N N
o

W N
o ©

1.2.5 Tasking Terminology

task

task region

implicit task

binding implicit task
explicit task

initial task

current task
encountering task

child task

sibling tasks
descendent task

task completion

task scheduling point

task switching

tied task

untied task

12 OpenMP API —

A specific instance of executable code and its data environment that the OpenMP
implementation can schedule for execution by threads.

A region consisting of all code encountered during the execution of a task.

COMMENT: A parallel region consists of one or more implicit task
regions.

A task generated by an implicit parallel region or generated when a parallel
construct is encountered during execution.

The implicit task of the current thread team assigned to the encountering thread.

A task that is not an implicit task.

An implicit task associated with an implicit parallel region.

For a given thread, the task corresponding to the task region in which it is executing.
For a given region, the current task of the encountering thread.

A task is a child task of its generating task region. A child task region is not part of
its generating task region.

Tasks that are child tasks of the same task region.
A task that is the child task of a task region or of one of its descendent task regions.

A condition that is satisfied when a thread reaches the end of the executable code that
is associated with the task and any allow-completion event that is created for the rask
has been fulfilled.

COMMENT: Completion of the initial task that is generated when the
program begins occurs at program exit.

A point during the execution of the current task region at which it can be suspended
to be resumed later; or the point of task completion, after which the executing thread
may switch to a different task region.

The act of a thread switching from the execution of one fask to another fask.

A task that, when its task region is suspended, can be resumed only by the same
thread that was executing it before suspension. That is, the task is tied to that thread.

A task that, when its task region is suspended, can be resumed by any thread in the
team. That is, the task is not tied to any thread.

Version 5.1 November 2020

o N o a s~ O -=

©

- a
N = O

- 4
AW

—_
()]

16
17

18
19

20
21
22

23

undeferred task

included task

merged task

mergeable task
final task

task dependence

dependent task

mutually exclusive
tasks

predecessor task

task synchronization
construct

task generating

construct

target task

taskgroup set

A task for which execution is not deferred with respect to its generating task region.
That is, its generating task region is suspended until execution of the structured block
associated with the undeferred task is completed.

A task for which execution is sequentially included in the generating task region.
That is, an included task is undeferred and executed by the encountering thread.

A task for which the data environment, inclusive of ICVs, is the same as that of its
generating task region.

A task that may be a merged task if it is an undeferred task or an included task.
A task that forces all of its child tasks to become final and included tasks.

An ordering relation between two sibling tasks: the dependent task and a previously
generated predecessor task. The task dependence is fulfilled when the predecessor
task has completed.

A task that because of a task dependence cannot be executed until its predecessor
tasks have completed.

Tasks that may be executed in any order, but not at the same time.

A task that must complete before its dependent tasks can be executed.

A taskwait, taskgroup, or a barrier construct.

A construct that generates one or more explicit tasks that are child tasks of the
encountering task.

A mergeable and untied task that is generated by a device construct or a call to a
device memory routine and that coordinates activity between the current device and
the target device.

A set of tasks that are logically grouped by a taskgroup region.

CHAPTER 1. OVERVIEW OF THE OPENMP API 13

- O © oOo~N O o~ whN

—_ a4 a4 A
AW N

- a a
N o O

-
o)

N =
o ©

N NN
w N =

NN N
o OB

W NN N
o © o N

W w
N =

w W
A~

1.2.6 Data Terminology

variable

scalar variable

aggregate variable

array section

array item

shape-operator

implicit array

base pointer

named pointer

A named data storage block, for which the value can be defined and redefined during
the execution of a program.

COMMENT: An array element or structure element is a variable that is
part of another variable.

For C/C++, a scalar variable, as defined by the base language.

For Fortran, a scalar variable with intrinsic type, as defined by the base language,
excluding character type.

A variable, such as an array or structure, composed of other variables.

A designated subset of the elements of an array that is specified using a subscript
notation that can select more than one element.

An array, an array section, or an array element.

For C/C++, an array shaping operator that reinterprets a pointer expression as an
array with one or more specified dimensions.

For C/C++, the set of array elements of non-array type T that may be accessed by
applying a sequence of [] operators to a given pointer that is either a pointer to type T
or a pointer to a multidimensional array of elements of type 7.

For Fortran, the set of array elements for a given array pointer.

COMMENT: For C/C++, the implicit array for pointer p with type T
(*)[10] consists of all accessible elements p[i][/], for all i and j=0,1,...,9.

For C/C++, an Ivalue pointer expression that is used by a given Ivalue expression or
array section to refer indirectly to its storage, where the lvalue expression or array
section is part of the implicit array for that lvalue pointer expression.

For Fortran, a data pointer that appears last in the designator for a given variable or
array section, where the variable or array section is part of the pointer target for that
data pointer.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the base pointer is: (*p0).x0[k1].p1->p2.

For C/C++, the base pointer of a given Ivalue expression or array section, or the base
pointer of one of its named pointers.

For Fortran, the base pointer of a given variable or array section, or the base pointer
of one of its named pointers.

14 OpenMP API — Version 5.1 November 2020

0 N o o A ODND =

-
o ©

a4 A A g o
a O =

—_ -
N O

-
o o

NN NN
[*ShN S e]

NN
(61

NN
N O

WwWwwnNn N
N = O ©O© o

w w
A W

W Wwww
0N O

containing array

base array

named array

base expression

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the named pointers are: p0, (*p0).x0[k1].p1, and (*p0).x0[k1].p1->p2.

For C/C++, a non-subscripted array (a containing array) that appears in a given
Ivalue expression or array section, where the lvalue expression or array section is part
of that containing array.

For Fortran, an array (a containing array) without the POINTER attribute and
without a subscript list that appears in the designator of a given variable or array
section, where the variable or array section is part of that containing array.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the containing arrays are: (*p0).x0[k1].p1->p2[k2].x1 and
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.

For C/C++, a containing array of a given lvalue expression or array section that does
not appear in the expression of any of its other containing arrays.

For Fortran, a containing array of a given variable or array section that does not
appear in the designator of any of its other containing arrays.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the base array is: (*p0).x0[k1].p1->p2[k2].x1[k3].x2.

For C/C++, a containing array of a given lvalue expression or array section, or a
containing array of one of its named pointers.

For Fortran, a containing array of a given variable or array section, or a containing
array of one of its named pointers.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the named arrays are: (*p0).x0, (*p0).x0[k1].p1->p2[k2].x1, and
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.

The base array of a given array section or array element, if it exists; otherwise, the
base pointer of the array section or array element.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the base expression is: (*p0).x0[k1].p1->p2[k2].x1[k3].x2.

CHAPTER 1. OVERVIEW OF THE OPENMP API 15

—_

0o N oo AW N

11
12

13
14

15
16
17
18
19
20

21
22
23

24
25
26

27
28
29

30
31
32

16

attached pointer

simply contiguous
array section

structure

string literal

private variable

shared variable

More examples for C/C++:
e The base expression for x[i] and for x[i:n] is X, if X is an array or pointer.

e The base expression for x[5][i] and for x[S][i:n] is x, if X is a pointer to
an array or x is 2-dimensional array.

o The base expression for y[5][i] and for y[5][i:n] is y[5], if y is an array
of pointers or y is a pointer to a pointer.

Examples for Fortran:
o The base expression for x(i) and for x(i:j) is x.

A pointer variable in a device data environment to which the effect of a map clause
assigns the address of an object, minus some offset, that is created in the device data
environment. The pointer is an attached pointer for the remainder of its lifetime in
the device data environment.

An array section that statically can be determined to have contiguous storage or that,
in Fortran, has the CONTIGUOUS attribute.

A structure is a variable that contains one or more variables.
For C/C++: Implemented using struct types.

For C++: Implemented using class types.

For Fortran: Implemented using derived types.

For C/C++, a string literal.

For Fortran, a character literal constant.

With respect to a given set of task regions or SIMD lanes that bind to the same
parallel region, a variable for which the name provides access to a different
block of storage for each task region or SIMD lane.

A variable that is part of another variable (as an array or structure element) cannot be
made private independently of other components. If a variable is privatized, its
components are also private.

With respect to a given set of rask regions that bind to the same parallel region, a
variable for which the name provides access to the same block of storage for each
task region.

A variable that is part of another variable (as an array or structure element) cannot be
shared independently of the other components, except for static data members of
C++ classes.

OpenMP API — Version 5.1 November 2020

11
12

13
14

15

16
17

18

19
20

21
22
23

24
25

26
27
28

29
30

31

threadprivate variable

threadprivate memory
data environment

device data
environment

device address
device pointer

mapped variable

mapper

user-defined mapper

map-type decay

mappable type

A variable that is replicated, one instance per thread, by the OpenMP
implementation. Its name then provides access to a different block of storage for each
thread.

A variable that is part of another variable (as an array or structure element) cannot be
made threadprivate independently of the other components, except for static data
members of C++ classes. If a variable is made threadprivate, its components are also
threadprivate.

The set of threadprivate variables associated with each thread.
The variables associated with the execution of a given region.

The initial data environment associated with a device.

An address of an object that may be referenced on a target device.
An implementation defined handle that refers to a device address.

An original variable in a data environment with a corresponding variable in a device
data environment.

COMMENT: The original and corresponding variables may share storage.

An operation that defines how variables of given type are to be mapped or updated
with respect to a device data environment.

A mapper that is defined by a declare mapper directive.

The process that determines the final map types of the map operations that result
from mapping a variable with a user-defined mapper.

A type that is valid for a mapped variable. If a type is composed from other types
(such as the type of an array or structure element) and any of the other types are not
mappable then the type is not mappable.

COMMENT: Pointer types are mappable but the memory block to which
the pointer refers is not mapped.

For C, the type must be a complete type.
For C++, the type must be a complete type.
In addition, for class types:

e All member functions accessed in any target region must appear in a declare
target directive.

For Fortran, no restrictions on the type except that for derived types:

CHAPTER 1. OVERVIEW OF THE OPENMP API 17

o~N OO0 AW N =

11
12

13

14
15

16
17

18

19
20

21

22

23
24

25
26

27
28
29

defined

class type

static storage duration

o All type-bound procedures accessed in any target region must appear in a
declare target directive.

For variables, the property of having a valid value.
For C, for the contents of variables, the property of having a valid value.

For C++, for the contents of variables of POD (plain old data) type, the property of
having a valid value.

For variables of non-POD class type, the property of having been constructed but not
subsequently destructed.

For Fortran, for the contents of variables, the property of having a valid value. For
the allocation or association status of variables, the property of having a valid status.

COMMENT: Programs that rely upon variables that are not defined are
non-conforming programs.

For C++, variables declared with one of the eclass, struct, or union keywords.

For C/C++, the lifetime of an object with static storage duration, as defined by the
base language.

For Fortran, the lifetime of a variable with a SAVE attribute, implicit or explicit, a
common block object or a variable declared in a module.

1.2.7 Implementation Terminology

supported active levels
of parallelism

OpenMP API support

nested parallelism
support

internal control
variable

OpenMP Additional
Definitions document

18 OpenMP API —

An implementation-defined maximum number of active parallel regions that may
enclose any region of code in the program.

Support of at least one active level of parallelism.

Support of more than one active level of parallelism.

A conceptual variable that specifies runtime behavior of a set of threads or tasks in
an OpenMP program.

COMMENT: The acronym ICV is used interchangeably with the term
internal control variable in the remainder of this specification.

A document that exists outside of the OpenMP specification and defines additional
values that may be used in a conforming program. The OpenMP Additional
Definitions document is available at http://www.openmp.org/.

Version 5.1 November 2020

http://www.openmp.org/

o N oo H W N =

10

11
12
13

14
15

16
17

18

19
20

21
22

23
24
25

26
27

28

compliant
implementation

unspecified behavior

implementation defined

deprecated

An implementation of the OpenMP specification that compiles and executes any
conforming program as defined by the specification.

COMMENT: A compliant implementation may exhibit unspecified
behavior when compiling or executing a non-conforming program.

A behavior or result that is not specified by the OpenMP specification or not known
prior to the compilation or execution of an OpenMP program.

Such unspecified behavior may result from:

o Issues documented by the OpenMP specification as having unspecified behavior.
o A non-conforming program.

o A conforming program exhibiting an implementation-defined behavior.

Behavior that must be documented by the implementation, and is allowed to vary
among different compliant implementations. An implementation is allowed to define
this behavior as unspecified.

COMMENT: All features that have implementation-defined behavior are
documented in Appendix A.

For a construct, clause, or other feature, the property that it is normative in the
current specification but is considered obsolescent and will be removed in the future.

1.2.8 Tool Terminology

tool
first-party tool
third-party tool

activated tool
event
native thread

tool callback

registering a callback

Code that can observe and/or modify the execution of an application.
A tool that executes in the address space of the program that it is monitoring.

A tool that executes as a separate process from the process that it is monitoring and
potentially controlling.

A first-party tool that successfully completed its initialization.
A point of interest in the execution of a thread.
A thread defined by an underlying thread implementation.

A function that a tool provides to an OpenMP implementation to invoke when an
associated event occurs.

Providing a ool callback to an OpenMP implementation.

CHAPTER 1. OVERVIEW OF THE OPENMP API 19

0 NOoO O AW N =

-
o ©

—_ a
w N =

—_
a b

—_
N O

N = =
o © o

N NN
W N =

N N
o

NN
N o

N N
©

W w w
N = O

dispatching a callback
at an event
thread state

wait identifier

frame

canonical frame
address

runtime entry point

trace record

native trace record
signal

signal handler
async signal safe
code block

OMPT

OMPT interface state

OMPT active

20 OpenMP API —

Processing a callback when an associated event occurs in a manner consistent with
the return code provided when a first-party tool registered the callback.

An enumeration type that describes the current OpenMP activity of a thread. A
thread can be in only one state at any time.

A unique opaque handle associated with each data object (for example, a lock) that
the OpenMP runtime uses to enforce mutual exclusion and potentially to cause a
thread to wait actively or passively.

A storage area on a thread’s stack associated with a procedure invocation. A frame
includes space for one or more saved registers and often also includes space for saved
arguments, local variables, and padding for alignment.

An address associated with a procedure frame on a call stack that was the value of the
stack pointer immediately prior to calling the procedure for which the frame
represents the invocation.

A function interface provided by an OpenMP runtime for use by a tool. A runtime
entry point is typically not associated with a global function symbol.

A data structure in which to store information associated with an occurrence of an
event.

A trace record for an OpenMP device that is in a device-specific format.
A software interrupt delivered to a thread.
A function called asynchronously when a signal is delivered to a thread.

The guarantee that interruption by signal delivery will not interfere with a set of
operations. An async signal safe runtime entry point is safe to call from a signal
handler.

A contiguous region of memory that contains code of an OpenMP program to be
executed on a device.

An interface that helps a first-party tool monitor the execution of an OpenMP
program.

A state that indicates the permitted interactions between a first-party tool and the
OpenMP implementation.

An OMPT interface state in which the OpenMP implementation is prepared to accept
runtime calls from a first party tool and will dispatch any registered callbacks and in
which a first-party tool can invoke runtime entry points if not otherwise restricted.

Version 5.1 November 2020

o N o a s~ WO =

©

- a
N = O

a4 a4
o b O

-
0 N O

N DN =
n = O ©

NN
H

D NN
N O O

nN N
© 0o

OMPT pending

OMPT inactive

OMPD

OMPD library
image file

address space

segment
OpenMP architecture
tool architecture

OpenMP process

address space handle
thread handle
parallel handle

task handle

descendent handle

ancestor handle

An OMPT interface state in which the OpenMP implementation can only call
functions to initialize a first party tool and in which a first-party tool cannot invoke
runtime entry points.

An OMPT interface state in which the OpenMP implementation will not make any
callbacks and in which a first-party tool cannot invoke runtime entry points.

An interface that helps a third-party tool inspect the OpenMP state of a program that
has begun execution.

A dynamically loadable library that implements the OMPD interface.
An executable or shared library.

A collection of logical, virtual, or physical memory address ranges that contain code,
stack, and/or data. Address ranges within an address space need not be contiguous.
An address space consists of one or more segments.

A portion of an address space associated with a set of address ranges.
The architecture on which an OpenMP region executes.
The architecture on which an OMPD tool executes.

A collection of one or more threads and address spaces. A process may contain
threads and address spaces for multiple OpenMP architectures. At least one thread
in an OpenMP process is an OpenMP thread. A process may be live or a core file.

A handle that refers to an address space within an OpenMP process.
A handle that refers to an OpenMP thread.

A handle that refers to an OpenMP parallel region.

A handle that refers to an OpenMP task region.

An output handle that is returned from the OMPD library in a function that accepts
an input handle: the output handle is a descendent of the input handle.

An input handle that is passed to the OMPD library in a function that returns an
output handle: the input handle is an ancestor of the output handle. For a given
handle, the ancestors of the handle are also the ancestors of the handle’s descendent.

COMMENT: A tool cannot use a handle in an OMPD call if any ancestor
of the handle has been released, except for OMPD calls that release it.

CHAPTER 1. OVERVIEW OF THE OPENMP API 21

a »~h W0 N =

10
11
12
13
14
15
16
17

18
19
20

21
22
23
24
25
26
27
28

29
30
31

32
33
34

tool context An opaque reference provided by a tool to an OMPD library. A tool context uniquely
identifies an abstraction.

address space context A rool context that refers to an address space within a process.

thread context A tool context that refers to a native thread.

native thread identifier An identifier for a native thread defined by a thread implementation.

22

1.3 Execution Model

The OpenMP API uses the fork-join model of parallel execution. Multiple threads of execution
perform tasks defined implicitly or explicitly by OpenMP directives. The OpenMP API is intended
to support programs that will execute correctly both as parallel programs (multiple threads of
execution and a full OpenMP support library) and as sequential programs (directives ignored and a
simple OpenMP stubs library). However, a conforming OpenMP program may execute correctly as
a parallel program but not as a sequential program, or may produce different results when executed
as a parallel program compared to when it is executed as a sequential program. Further, using
different numbers of threads may result in different numeric results because of changes in the
association of numeric operations. For example, a serial addition reduction may have a different
pattern of addition associations than a parallel reduction. These different associations may change
the results of floating-point addition.

An OpenMP program begins as a single thread of execution, called an initial thread. An initial
thread executes sequentially, as if the code encountered is part of an implicit task region, called an
initial task region, that is generated by the implicit parallel region surrounding the whole program.

The thread that executes the implicit parallel region that surrounds the whole program executes on
the host device. An implementation may support other devices besides the host device. If
supported, these devices are available to the host device for offloading code and data. Each device
has its own threads that are distinct from threads that execute on another device. Threads cannot
migrate from one device to another device. Each device is identified by a device number. The
device number for the host device is the value of the total number of non-host devices, while each
non-host device has a unique device number that is greater than or equal to zero and less than the
device number for the host device.

When a target construct is encountered, a new farget task is generated. The rarget task region
encloses the target region. The rarget task is complete after the execution of the target region
is complete.

When a target task executes, the enclosed target region is executed by an initial thread. The
initial thread executes sequentially, as if the target region is part of an initial task region that is
generated by an implicit parallel region. The initial thread may execute on the requested rarget

OpenMP API — Version 5.1 November 2020

- O ©W O NO» (&) I~ @0) N =

- a a4
w N

- a4 a4 o
© 00N O &

NN NN
[*SEN\S e)

[\S I \C I \C I\ B \O I \V]
© 00N O pH

W W wWwww
A WODN-—=O

AW WWWW
O © 00 NO O

device, if it is available and supported. If the target device does not exist or the implementation
does not support it, all target regions associated with that device execute on the host device.

The implementation must ensure that the target region executes as if it were executed in the data
environment of the target device unless an if clause is present and the i £ clause expression
evaluates to false.

The teams construct creates a league of teams, where each team is an initial team that comprises
an initial thread that executes the teams region. Each initial thread executes sequentially, as if the
code encountered is part of an initial task region that is generated by an implicit parallel region
associated with each team. Whether the initial threads concurrently execute the teams region is
unspecified, and a program that relies on their concurrent execution for the purposes of
synchronization may deadlock.

If a construct creates a data environment, the data environment is created at the time the construct is
encountered. The description of a construct defines whether it creates a data environment.

When any thread encounters a parallel construct, the thread creates a team of itself and zero or
more additional threads and becomes the primary thread of the new team. A set of implicit tasks,
one per thread, is generated. The code for each task is defined by the code inside the parallel
construct. Each task is assigned to a different thread in the team and becomes tied; that is, it is
always executed by the thread to which it is initially assigned. The task region of the task being
executed by the encountering thread is suspended, and each member of the new team executes its
implicit task. An implicit barrier occurs at the end of the parallel region. Only the primary
thread resumes execution beyond the end of the parallel construct, resuming the task region
that was suspended upon encountering the parallel construct. Any number of parallel
constructs can be specified in a single program.

parallel regions may be arbitrarily nested inside each other. If nested parallelism is disabled, or
is not supported by the OpenMP implementation, then the new team that is created by a thread that
encounters a parallel construct inside a parallel region will consist only of the
encountering thread. However, if nested parallelism is supported and enabled, then the new team
can consist of more than one thread. A parallel construct may include a proc_bind clause to
specify the places to use for the threads in the team within the parallel region.

When any team encounters a worksharing construct, the work inside the construct is divided among
the members of the team, and executed cooperatively instead of being executed by every thread. An
implicit barrier occurs at the end of any region that corresponds to a worksharing construct for
which the nowait clause is not specified. Redundant execution of code by every thread in the
team resumes after the end of the worksharing construct.

When any thread encounters a fask generating construct, one or more explicit tasks are generated.
Execution of explicitly generated tasks is assigned to one of the threads in the current team, subject
to the thread’s availability to execute work. Thus, execution of the new task could be immediate, or
deferred until later according to task scheduling constraints and thread availability. Threads are
allowed to suspend the current task region at a task scheduling point in order to execute a different
task. If the suspended task region is for a tied task, the initially assigned thread later resumes

CHAPTER 1. OVERVIEW OF THE OPENMP API 23

o~N OO0~ OWN =

11
12
13
14

15
16
17
18
19
20

21
22
23
24
25
26
27
28

29
30
31
32

33
34
35
36

37
38
39

24

execution of the suspended task region. If the suspended task region is for an untied task, then any
thread may resume its execution. Completion of all explicit tasks bound to a given parallel region is
guaranteed before the primary thread leaves the implicit barrier at the end of the region.
Completion of a subset of all explicit tasks bound to a given parallel region may be specified
through the use of task synchronization constructs. Completion of all explicit tasks bound to the
implicit parallel region is guaranteed by the time the program exits.

When any thread encounters a simd construct, the iterations of the loop associated with the
construct may be executed concurrently using the SIMD lanes that are available to the thread.

When a 1oop construct is encountered, the iterations of the loop associated with the construct are
executed in the context of its encountering threads, as determined according to its binding region. If
the loop region binds to a teams region, the region is encountered by the set of primary threads
that execute the teams region. If the 1oop region binds to a parallel region, the region is
encountered by the team of threads that execute the parallel region. Otherwise, the region is
encountered by a single thread.

If the loop region binds to a teams region, the encountering threads may continue execution
after the 1oop region without waiting for all iterations to complete; the iterations are guaranteed to
complete before the end of the teams region. Otherwise, all iterations must complete before the
encountering threads continue execution after the 1oop region. All threads that encounter the
loop construct may participate in the execution of the iterations. Only one of these threads may
execute any given iteration.

The cancel construct can alter the previously described flow of execution in an OpenMP region.
The effect of the cancel construct depends on its construct-type-clause. If a task encounters a
cancel construct with a taskgroup construct-type-clause, then the task activates cancellation
and continues execution at the end of its task region, which implies completion of that task. Any
other task in that taskgroup that has begun executing completes execution unless it encounters a
cancellation point construct, in which case it continues execution at the end of its task
region, which implies its completion. Other tasks in that taskgroup region that have not begun
execution are aborted, which implies their completion.

For all other construct-type-clause values, if a thread encounters a cancel construct, it activates
cancellation of the innermost enclosing region of the type specified and the thread continues
execution at the end of that region. Threads check if cancellation has been activated for their region
at cancellation points and, if so, also resume execution at the end of the canceled region.

If cancellation has been activated, regardless of construct-type-clause, threads that are waiting
inside a barrier other than an implicit barrier at the end of the canceled region exit the barrier and
resume execution at the end of the canceled region. This action can occur before the other threads
reach that barrier.

Synchronization constructs and library routines are available in the OpenMP API to coordinate
tasks and data access in parallel regions. In addition, library routines and environment
variables are available to control or to query the runtime environment of OpenMP programs.

OpenMP API — Version 5.1 November 2020

NoO gk wND =

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36

37
38

The OpenMP specification makes no guarantee that input or output to the same file is synchronous
when executed in parallel. In this case, the programmer is responsible for synchronizing input and
output processing with the assistance of OpenMP synchronization constructs or library routines.
For the case where each thread accesses a different file, the programmer does not need to
synchronize access.

All concurrency semantics defined by the base language with respect to threads of execution apply
to OpenMP threads, unless specified otherwise.

1.4 Memory Model

1.4.1 Structure of the OpenMP Memory Model

The OpenMP API provides a relaxed-consistency, shared-memory model. All OpenMP threads
have access to a place to store and to retrieve variables, called the memory. A given storage location
in the memory may be associated with one or more devices, such that only threads on associated
devices have access to it. In addition, each thread is allowed to have its own temporary view of the
memory. The temporary view of memory for each thread is not a required part of the OpenMP
memory model, but can represent any kind of intervening structure, such as machine registers,
cache, or other local storage, between the thread and the memory. The temporary view of memory
allows the thread to cache variables and thereby to avoid going to memory for every reference to a
variable. Each thread also has access to another type of memory that must not be accessed by other
threads, called threadprivate memory.

A directive that accepts data-sharing attribute clauses determines two kinds of access to variables
used in the directive’s associated structured block: shared and private. Each variable referenced in
the structured block has an original variable, which is the variable by the same name that exists in
the program immediately outside the construct. Each reference to a shared variable in the structured
block becomes a reference to the original variable. For each private variable referenced in the
structured block, a new version of the original variable (of the same type and size) is created in
memory for each task or SIMD lane that contains code associated with the directive. Creation of
the new version does not alter the value of the original variable. However, the impact of attempts to
access the original variable from within the region corresponding to the directive is unspecified; see
Section 2.21.4.3 for additional details. References to a private variable in the structured block refer
to the private version of the original variable for the current task or SIMD lane. The relationship
between the value of the original variable and the initial or final value of the private version
depends on the exact clause that specifies it. Details of this issue, as well as other issues with
privatization, are provided in Section 2.21.

The minimum size at which a memory update may also read and write back adjacent variables that
are part of another variable (as array or structure elements) is implementation defined but is no
larger than the base language requires.

A single access to a variable may be implemented with multiple load or store instructions and, thus,
is not guaranteed to be atomic with respect to other accesses to the same variable. Accesses to

CHAPTER 1. OVERVIEW OF THE OPENMP API 25

oNOO O WN =

-
o ©

—_ 1
oo WD =

DN = = =
- O © o N

22

23
24
25
26
27

28
29
30
31
32

33
34
35
36
37
38

26

variables smaller than the implementation defined minimum size or to C or C++ bit-fields may be
implemented by reading, modifying, and rewriting a larger unit of memory, and may thus interfere
with updates of variables or fields in the same unit of memory.

Two memory operations are considered unordered if the order in which they must complete, as seen
by their affected threads, is not specified by the memory consistency guarantees listed in

Section 1.4.6. If multiple threads write to the same memory unit (defined consistently with the
above access considerations) then a data race occurs if the writes are unordered. Similarly, if at
least one thread reads from a memory unit and at least one thread writes to that same memory unit
then a data race occurs if the read and write are unordered. If a data race occurs then the result of
the program is unspecified.

A private variable in a task region that subsequently generates an inner nested parallel region is
permitted to be made shared for implicit tasks in the inner parallel region. A private variable in
a task region can also be shared by an explicit task region generated during its execution. However,
the programmer must use synchronization that ensures that the lifetime of the variable does not end
before completion of the explicit task region sharing it. Any other access by one task to the private

variables of another task results in unspecified behavior.

A storage location in memory that is associated with a given device has a device address that may
be dereferenced by a thread executing on that device, but it may not be generally accessible from
other devices. A different device may obtain a device pointer that refers to this device address. The
manner in which a program can obtain the referenced device address from a device pointer, outside
of mechanisms specified by OpenMP, is implementation defined.

1.4.2 Device Data Environments

When an OpenMP program begins, an implicit target data region for each device surrounds
the whole program. Each device has a device data environment that is defined by its implicit
target data region. Any declare target directives and directives that accept data-mapping
attribute clauses determine how an original variable in a data environment is mapped to a
corresponding variable in a device data environment.

When an original variable is mapped to a device data environment and a corresponding variable is
not present in the device data environment, a new corresponding variable (of the same type and size
as the original variable) is created in the device data environment. Conversely, the original variable
becomes the new variable’s corresponding variable in the device data environment of the device
that performs a mapping operation.

The corresponding variable in the device data environment may share storage with the original
variable. Writes to the corresponding variable may alter the value of the original variable. The
impact of this possibility on memory consistency is discussed in Section 1.4.6. When a task
executes in the context of a device data environment, references to the original variable refer to the
corresponding variable in the device data environment. If an original variable is not currently
mapped and a corresponding variable does not exist in the device data environment then accesses to

OpenMP API — Version 5.1 November 2020

o O NOoO ok~ W N =

—_

11

12
13
14
15
16
17

18
19
20
21
22
23

24

25
26
27
28
29
30

31
32
33
34

35
36

the original variable result in unspecified behavior unless the unified_shared_memory
clause is specified on a requires directive for the compilation unit.

The relationship between the value of the original variable and the initial or final value of the
corresponding variable depends on the map-type. Details of this issue, as well as other issues with
mapping a variable, are provided in Section 2.21.7.1.

The original variable in a data environment and a corresponding variable in a device data
environment may share storage. Without intervening synchronization data races can occur.

If a variable has a corresponding variable with which it does not share storage, a write to a storage
location designated by the variable causes the value at the corresponding storage location to
become undefined.

1.4.3 Memory Management

The host device, and other devices that an implementation may support, have attached storage
resources where program variables are stored. These resources can have different traits. A memory
space in an OpenMP program represents a set of these storage resources. Memory spaces are
defined according to a set of traits, and a single resource may be exposed as multiple memory
spaces with different traits or may be part of multiple memory spaces. In any device, at least one
memory space is guaranteed to exist.

An OpenMP program can use a memory allocator to allocate memory in which to store variables.
This memory will be allocated from the storage resources of the memory space associated with the
memory allocator. Memory allocators are also used to deallocate previously allocated memory.
When an OpenMP memory allocator is not used to allocate memory, OpenMP does not prescribe
the storage resource for the allocation; the memory for the variables may be allocated in any storage
resource.

1.4.4 The Flush Operation

The memory model has relaxed-consistency because a thread’s temporary view of memory is not
required to be consistent with memory at all times. A value written to a variable can remain in the
thread’s temporary view until it is forced to memory at a later time. Likewise, a read from a
variable may retrieve the value from the thread’s temporary view, unless it is forced to read from
memory. OpenMP flush operations are used to enforce consistency between a thread’s temporary
view of memory and memory, or between multiple threads’ view of memory.

A flush operation has an associated device-set that constrains the threads with which it enforces
memory consistency. Consistency is only guaranteed to be enforced between the view of memory
of its thread and the view of memory of other threads executing on devices in its device-set. Unless
otherwise stated, the device-set of a flush operation only includes the current device.

If a flush operation is a strong flush, it enforces consistency between a thread’s temporary view and
memory. A strong flush operation is applied to a set of variables called the flush-set. A strong flush

CHAPTER 1. OVERVIEW OF THE OPENMP API 27

oNoO Ol WO =

28

restricts reordering of memory operations that an implementation might otherwise do.
Implementations must not reorder the code for a memory operation for a given variable, or the code
for a flush operation for the variable, with respect to a strong flush operation that refers to the same
variable.

If a thread has performed a write to its temporary view of a shared variable since its last strong flush
of that variable, then when it executes another strong flush of the variable, the strong flush does not
complete until the value of the variable has been written to the variable in memory. If a thread
performs multiple writes to the same variable between two strong flushes of that variable, the strong
flush ensures that the value of the last write is written to the variable in memory. A strong flush of a
variable executed by a thread also causes its temporary view of the variable to be discarded, so that
if its next memory operation for that variable is a read, then the thread will read from memory and
capture the value in its temporary view. When a thread executes a strong flush, no later memory
operation by that thread for a variable involved in that strong flush is allowed to start until the strong
flush completes. The completion of a strong flush executed by a thread is defined as the point at
which all writes to the flush-set performed by the thread before the strong flush are visible in
memory to all other threads, and at which that thread’s temporary view of the flush-set is discarded.

A strong flush operation provides a guarantee of consistency between a thread’s temporary view
and memory. Therefore, a strong flush can be used to guarantee that a value written to a variable by
one thread may be read by a second thread. To accomplish this, the programmer must ensure that
the second thread has not written to the variable since its last strong flush of the variable, and that
the following sequence of events are completed in this specific order:

1. The value is written to the variable by the first thread;

2. The variable is flushed, with a strong flush, by the first thread;

3. The variable is flushed, with a strong flush, by the second thread; and
4. The value is read from the variable by the second thread.

If a flush operation is a release flush or acquire flush, it can enforce consistency between the views
of memory of two synchronizing threads. A release flush guarantees that any prior operation that
writes or reads a shared variable will appear to be completed before any operation that writes or
reads the same shared variable and follows an acquire flush with which the release flush
synchronizes (see Section 1.4.5 for more details on flush synchronization). A release flush will
propagate the values of all shared variables in its temporary view to memory prior to the thread
performing any subsequent atomic operation that may establish a synchronization. An acquire flush
will discard any value of a shared variable in its temporary view to which the thread has not written
since last performing a release flush, and it will load any value of a shared variable propagated by a
release flush that synchronizes with it into its temporary view so that it may be subsequently read.
Therefore, release and acquire flushes may also be used to guarantee that a value written to a
variable by one thread may be read by a second thread. To accomplish this, the programmer must
ensure that the second thread has not written to the variable since its last acquire flush, and that the
following sequence of events happen in this specific order:

OpenMP API — Version 5.1 November 2020

14

15
16
17

18
19
20
21
22
23

24
25

26
27
28

29
30
31

32
33
34

1. The value is written to the variable by the first thread;
2. The first thread performs a release flush;

3. The second thread performs an acquire flush; and

4

. The value is read from the variable by the second thread.

v v
Note — OpenMP synchronization operations, described in Section 2.19 and in Section 3.9, are
recommended for enforcing this order. Synchronization through variables is possible but is not

recommended because the proper timing of flushes is difficult.
A A

The flush properties that define whether a flush operation is a strong flush, a release flush, or an
acquire flush are not mutually disjoint. A flush operation may be a strong flush and a release flush;
it may be a strong flush and an acquire flush; it may be a release flush and an acquire flush; or it
may be all three.

1.4.5 Flush Synchronization and Happens Before

OpenMP supports thread synchronization with the use of release flushes and acquire flushes. For
any such synchronization, a release flush is the source of the synchronization and an acquire flush is
the sink of the synchronization, such that the release flush synchronizes with the acquire flush.

A release flush has one or more associated release sequences that define the set of modifications
that may be used to establish a synchronization. A release sequence starts with an atomic operation
that follows the release flush and modifies a shared variable and additionally includes any
read-modify-write atomic operations that read a value taken from some modification in the release
sequence. The following rules determine the atomic operation that starts an associated release
sequence.

o If arelease flush is performed on entry to an atomic operation, that atomic operation starts its
release sequence.

o If a release flush is performed in an implicit £1ush region, an atomic operation that is provided
by the implementation and that modifies an internal synchronization variable starts its release
sequence.

o If a release flush is performed by an explicit £1ush region, any atomic operation that modifies a
shared variable and follows the £1ush region in its thread’s program order starts an associated
release sequence.

An acquire flush is associated with one or more prior atomic operations that read a shared variable
and that may be used to establish a synchronization. The following rules determine the associated
atomic operation that may establish a synchronization.

CHAPTER 1. OVERVIEW OF THE OPENMP API 29

- O © oOoNOO OO0 N-=

—_ a4 a4 a4
AW D

_ a4
NOo O

-
© ©o©

NN
—- O

\Y
N

N N
E Y]

25

26
27
28
29
30

31
32
33

30

e If an acquire flush is performed on exit from an atomic operation, that atomic operation is its
associated atomic operation.

o If an acquire flush is performed in an implicit £1ush region, an atomic operation that is
provided by the implementation and that reads an internal synchronization variable is its
associated atomic operation.

e If an acquire flush is performed by an explicit £1ush region, any atomic operation that reads a
shared variable and precedes the £1ush region in its thread’s program order is an associated
atomic operation.

A release flush synchronizes with an acquire flush if the following conditions are satisfied:

e An atomic operation associated with the acquire flush reads a value written by a modification
from a release sequence associated with the release flush; and

e The device on which each flush is performed is in both of their respective device-sets.

An operation X simply happens before an operation Y if any of the following conditions are
satisfied:

1. X and Y are performed by the same thread, and X precedes Y in the thread’s program order;

2. X synchronizes with Y according to the flush synchronization conditions explained above or
according to the base language’s definition of synchronizes with, if such a definition exists; or

3. Another operation, Z, exists such that X simply happens before Z and Z simply happens before Y.
An operation X happens before an operation Y if any of the following conditions are satisfied:

1. X happens before Y according to the base language’s definition of happens before, if such a
definition exists; or

2. X simply happens before Y.

A variable with an initial value is treated as if the value is stored to the variable by an operation that
happens before all operations that access or modify the variable in the program.

1.4.6 OpenMP Memory Consistency

The following rules guarantee an observable completion order for a given pair of memory
operations in race-free programs, as seen by all affected threads. If both memory operations are
strong flushes, the affected threads are all threads on devices in both of their respective device-sets.
If exactly one of the memory operations is a strong flush, the affected threads are all threads on
devices in its device-set. Otherwise, the affected threads are all threads.

e If two operations performed by different threads are sequentially consistent atomic operations or
they are strong flushes that flush the same variable, then they must be completed as if in some
sequential order, seen by all affected threads.

OpenMP API — Version 5.1 November 2020

- OO 0 N o O H wWw N =

—_

- 4
A WON

- —a
N O O

-
o o

NN
— O

\%
N

NN ND N
[6) B SU(¢V)

26

27
28
29

30
31
32

o If two operations performed by the same thread are sequentially consistent atomic operations or
they access, modify, or, with a strong flush, flush the same variable, then they must be completed
as if in that thread’s program order, as seen by all affected threads.

o If two operations are performed by different threads and one happens before the other, then they
must be completed as if in that happens before order, as seen by all affected threads, if:

— both operations access or modify the same variable;
— both operations are strong flushes that flush the same variable; or
— both operations are sequentially consistent atomic operations.

e Any two atomic memory operations from different atomic regions must be completed as if in
the same order as the strong flushes implied in their respective regions, as seen by all affected
threads.

The flush operation can be specified using the £1ush directive, and is also implied at various
locations in an OpenMP program: see Section 2.19.8 for details.

v v
Note — Since flush operations by themselves cannot prevent data races, explicit flush operations are

only useful in combination with non-sequentially consistent atomic directives.
A A

OpenMP programs that:
e Do not use non-sequentially consistent atomic directives;

e Do not rely on the accuracy of a false result from omp_test_lock and
omp_test_nest_lock; and

e Correctly avoid data races as required in Section 1.4.1,

behave as though operations on shared variables were simply interleaved in an order consistent with
the order in which they are performed by each thread. The relaxed consistency model is invisible
for such programs, and any explicit flush operations in such programs are redundant.

1.5 Tool Interfaces

The OpenMP API includes two tool interfaces, OMPT and OMPD, to enable development of
high-quality, portable, tools that support monitoring, performance, or correctness analysis and
debugging of OpenMP programs developed using any implementation of the OpenMP APL

An implementation of the OpenMP API may differ from the abstract execution model described by
its specification. The ability of tools that use the OMPT or OMPD interfaces to observe such
differences does not constrain implementations of the OpenMP API in any way.

CHAPTER 1. OVERVIEW OF THE OPENMP API 31

—_

0o NOoO O B~ W DN

11
12
13
14
15
16
17
18
19

20
21
22
23

24

25
26
27
28

29
30

31
32

32

1.5.1 OMPT

The OMPT interface, which is intended for first-party tools, provides the following:

e A mechanism to initialize a first-party tool;

e Routines that enable a tool to determine the capabilities of an OpenMP implementation;

e Routines that enable a tool to examine OpenMP state information associated with a thread;

e Mechanisms that enable a tool to map implementation-level calling contexts back to their
source-level representations;

e A callback interface that enables a tool to receive notification of OpenMP events;
e A tracing interface that enables a tool to trace activity on OpenMP target devices; and
e A runtime library routine that an application can use to control a tool.

OpenMP implementations may differ with respect to the thread states that they support, the mutual
exclusion implementations that they employ, and the OpenMP events for which tool callbacks are
invoked. For some OpenMP events, OpenMP implementations must guarantee that a registered
callback will be invoked for each occurrence of the event. For other OpenMP events, OpenMP
implementations are permitted to invoke a registered callback for some or no occurrences of the
event; for such OpenMP events, however, OpenMP implementations are encouraged to invoke tool
callbacks on as many occurrences of the event as is practical. Section 4.2.4 specifies the subset of
OMPT callbacks that an OpenMP implementation must support for a minimal implementation of
the OMPT interface.

With the exception of the omp_control_tool runtime library routine for tool control, all other
routines in the OMPT interface are intended for use only by tools and are not visible to
applications. For that reason, a Fortran binding is provided only for omp_control_tool; all
other OMPT functionality is described with C syntax only.

1.5.2 OMPD

The OMPD interface is intended for third-party tools, which run as separate processes. An
OpenMP implementation must provide an OMPD library that can be dynamically loaded and used
by a third-party tool. A third-party tool, such as a debugger, uses the OMPD library to access
OpenMP state of a program that has begun execution. OMPD defines the following:

e An interface that an OMPD library exports, which a tool can use to access OpenMP state of a
program that has begun execution;

e A callback interface that a tool provides to the OMPD library so that the library can use it to
access the OpenMP state of a program that has begun execution; and

OpenMP API — Version 5.1 November 2020

A O =

o

0 N O

11
12
13
14

15
16
17
18
19
20

21
22
23

24
25

26

27
28
29
30
31
32

o A small number of symbols that must be defined by an OpenMP implementation to help the tool
find the correct OMPD library to use for that OpenMP implementation and to facilitate
notification of events.

Section 5 describes OMPD in detail.

1.6 OpenMP Compliance

The OpenMP API defines constructs that operate in the context of the base language that is
supported by an implementation. If the implementation of the base language does not support a
language construct that appears in this document, a compliant OpenMP implementation is not
required to support it, with the exception that for Fortran, the implementation must allow case
insensitivity for directive and API routines names, and must allow identifiers of more than six
characters. An implementation of the OpenMP API is compliant if and only if it compiles and
executes all other conforming programs, and supports the tool interface, according to the syntax and
semantics laid out in Chapters 1, 2, 3, 4 and 5. Appendices A and B as well as sections designated
as Notes (see Section 1.8) are for information purposes only and are not part of the specification.

All library, intrinsic and built-in routines provided by the base language must be thread-safe in a
compliant implementation. In addition, the implementation of the base language must also be
thread-safe. For example, ALLOCATE and DEALLOCATE statements must be thread-safe in
Fortran. Unsynchronized concurrent use of such routines by different threads must produce correct
results (although not necessarily the same as serial execution results, as in the case of random
number generation routines).

Starting with Fortran 90, variables with explicit initialization have the SAVE attribute implicitly.
This is not the case in Fortran 77. However, a compliant OpenMP Fortran implementation must
give such a variable the SAVE attribute, regardless of the underlying base language version.

Appendix A lists certain aspects of the OpenMP API that are implementation defined. A compliant
implementation must define and document its behavior for each of the items in Appendix A.

1.7 Normative References

o ISO/IEC 9899:1990, Information Technology - Programming Languages - C.
This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.

e ISO/IEC 9899:1999, Information Technology - Programming Languages - C.
This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.

o ISO/IEC 9899:2011, Information Technology - Programming Languages - C.
This OpenMP API specification refers to ISO/IEC 9899:2011 as C11.

CHAPTER 1. OVERVIEW OF THE OPENMP API 33

o © 0o N o g H~ N =

D NN NN N 4 4 a4 a a
W N - O © 00 N O o b~ W0 N =

N NN
o OB~

W NN
o © o« N

34

ISO/IEC 9899:2018, Information Technology - Programming Languages - C.

This OpenMP API specification refers to ISO/IEC 9899:2018 as C18.

ISO/TEC 14882:1998, Information Technology - Programming Languages - C++.
This OpenMP API specification refers to ISO/IEC 14882:1998 as C++98.

ISO/IEC 14882:2011, Information Technology - Programming Languages - C++.
This OpenMP API specification refers to ISO/IEC 14882:2011 as C++11.

ISO/IEC 14882:2014, Information Technology - Programming Languages - C++.
This OpenMP API specification refers to ISO/IEC 14882:2014 as C++14.

ISO/IEC 14882:2017, Information Technology - Programming Languages - C++.
This OpenMP API specification refers to ISO/IEC 14882:2017 as C++17.

ISO/IEC 14882:2020, Information Technology - Programming Languages - C++.
This OpenMP API specification refers to ISO/IEC 14882:2020 as C++20.

ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.
ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.
ISO/TEC 1539-1:1997, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.
ISO/IEC 1539-1:2004, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003.
ISO/TEC 1539-1:2010, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539-1:2010 as Fortran 2008.
ISO/IEC 1539-1:2018, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539-1:2018 as Fortran 2018. While future
versions of the OpenMP specification are expected to address the following features, currently
their use may result in unspecified behavior.

Declared type of a polymorphic allocatable component in structure constructor

SELECT RANK construct

IEEE comparison predicate in intrinsic relational operators

Finalization of an allocatable subobject in intrinsic assignment

OpenMP API — Version 5.1 November 2020

o~N O OB~ W DN

10
11
12
13
14
15
16
17
18

19

20

21

22

23

24

Locality of variables in a DO CONCURRENT construct

— IMPORT statement extensions

Assumed-rank dummy argument

Assumed-type dummy argument

Interoperable procedure enhancements
— ASYNCHRONOUS attribute enhancement

Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to the base
language supported by the implementation.

1.8 Organization of this Document

The remainder of this document is structured as follows:

e Chapter 2 “Directives”

e Chapter 3 “Runtime Library Routines”

e Chapter 4 “OMPT Interface”

e Chapter 5 “OMPD Interface”

e Chapter 6 “Environment Variables”

e Appendix A “OpenMP Implementation-Defined Behaviors”
e Appendix B “Features History”

Some sections of this document only apply to programs written in a certain base language. Text that

applies only to programs for which the base language is C or C++ is shown as follows:

C/C++
C/C++ specific text...
C/C++
Text that applies only to programs for which the base language is C only is shown as follows:
C
C specific text...
C
Text that applies only to programs for which the base language is C++ only is shown as follows:
C++
C++ specific text...
C++

CHAPTER 1. OVERVIEW OF THE OPENMP API

35

w

36

Text that applies only to programs for which the base language is Fortran is shown as follows:

Fortran
Fortran specific text...

Fortran

Where an entire page consists of base language specific text, a marker is shown at the top of the
page. For Fortran-specific text, the marker is:

Fortran (cont.)
For C/C++-specific text, the marker is:
C/C++ (cont.)

Some text is for information only, and is not part of the normative specification. Such text is
designated as a note or comment, like this:

v

Note — Non-normative text...
A

COMMENT: Non-normative text...

OpenMP API — Version 5.1 November 2020

O 0o N O

11
12
13
14

15
16

17
18

2 Directives

This chapter describes the syntax and behavior of OpenMP directives.

C

OpenMP directives are specified with the #pragma mechanism provided by the C standard.

C
C++

OpenMP directives are specified with attribute specifiers or the #pragma mechanism provided by
the C++ standard.

C++

Fortran

OpenMP directives are specified with stylized comments that are identified by unique sentinels.
Also, a stylized comment form is available for conditional compilation.

If a directive appears in the declarative part of a module then the behavior is as if that directive
appears after any references to that module.

Fortran
Compilers can therefore ignore OpenMP directives and conditionally compiled code if support of
the OpenMP API is not provided or enabled. A compliant implementation must provide an option
or interface that ensures that underlying support of all OpenMP directives and OpenMP conditional

compilation mechanisms is enabled. In the remainder of this document, the phrase OpenMP
compilation is used to mean a compilation with these OpenMP features enabled.

C/C++

This chapter uses NULL as a generic term for a null pointer constant, true as a generic term for a
non-zero integer value and false as a generic term for an integer value of zero.

C/C++
Fortran

This chapter uses NULL as a generic term for the named constant C_NULL_PTR, true as a generic
term for a logical value of . TRUE. and false as a generic term for a logical value of .FALSE..

Fortran

CHAPTER 2. DIRECTIVES 37

—_

10
11

12
13
14
15
16

17

18
19
20
21

22
23

38

Restrictions
The following restrictions apply to OpenMP directives:

C/C++
C

e A declarative directive may not be used in place of a substatement in a selection statement, in
place of the loop body in an iteration statement, or in place of the statement that follows a label.

C
C++

e A declarative directive may not be used in place of a substatement in a selection statement or
iteration statement, or in place of the statement that follows a label.

C++
C/C++

Fortran
OpenMP directives, except simd and declarative directives, may not appear in pure procedures.

OpenMP directives may not appear in the WHERE, FORALL or DO CONCURRENT constructs.
Fortran

2.1 Directive Format
C/C++

OpenMP directives for C/C++ may be specified with #pragma directives as follows:

I #pragma omp directive-name [[, | clause[[, | clause] ... | new-line

Where directive-name is the name of the directive and, when specified in the syntax of the directive,
any directive-level arguments enclosed in parentheses.

v v
Note — In the following example, depobj (o) is the directive-name:

I#pragma omp depobj (o) depend(inout: d)

A A

Each #pragma directive starts with #pragma omp. The remainder of the directive follows the
conventions of the C and C++ standards for compiler directives. In particular, white space can be
used before and after the #, and sometimes white space must be used to separate the words in a
directive. Preprocessing tokens following #pragma omp are subject to macro replacement.

Some OpenMP directives may be composed of consecutive #pragma directives if specified in
their syntax.

C/C++

OpenMP API — Version 5.1 November 2020

w

(62 BN

0 N

11
12
13
14
15
16

17

18
19

20
21

22

23

24
25
26
27
28
29

30

C++

In C++11 and higher, all OpenMP directives may be specified with C++ attribute specifiers as
follows:

I [[omp :: directive (directive-name([, | clause[[,] clause]...]) 11

or

I [[using omp : directive(directive-namel[,] clause[[,] clause]...]) 11

The above two forms are interchangeable for any OpenMP directive. Some OpenMP directives may
be composed of consecutive attribute specifiers if specified in their syntax. Any two consecutive
attribute specifiers may be reordered or expressed as a single attribute specifier, as permitted by the
base language, without changing the behavior of the OpenMP directive.

Some directives may have additional forms that use the attribute syntax.

Multiple attributes on the same statement are allowed. A directive that uses the attribute syntax
cannot be applied to the same statement as a directive that uses the pragma syntax. For any
directive that has a paired end directive, including those with a begin and end pair, both directives
must use either the attribute syntax or the pragma syntax. Attribute directives that apply to the same
statement are unordered. An ordering can be imposed with the sequence attribute, which is
specified as follows:

I [[omp :: sequence([omp: : [directive-attr [, [omp: :[directive-attr]...) 11

where directive-attr is any attribute in the omp namespace, optionally specified with a omp: :
namespace qualifier, which may be another sequence attribute.

The application of multiple attributes in a sequence attribute is ordered as if each directive had
been written as a #pragma directive on subsequent lines.

v v
Note — This is an example of the expected transformation:

[[omp::sequence (directive (parallel), directive(for)) 11
for(...) {}

// becomes

#pragma omp parallel

#fpragma omp for

for(...) {}

A A

C++

CHAPTER 2. DIRECTIVES 39

(o]

- O © o

—_

13

14
15

16
17

18
19
20
21

22
23
24
25

26
27

40

C/C++

Directives are case-sensitive.

Each of the expressions used in the OpenMP syntax inside of the clauses must be a valid
assignment-expression of the base language unless otherwise specified.

C/C++
C++

Directives may not appear in constexpr functions or in constant expressions.
C++
Fortran
OpenMP directives for Fortran are specified as follows:

I sentinel directive-name [clause[[, | clause]...]

All OpenMP compiler directives must begin with a directive sentinel. The format of a sentinel
differs between fixed form and free form source files, as described in Section 2.1.1 and
Section 2.1.2.

Directives are case insensitive. Directives cannot be embedded within continued statements, and
statements cannot be embedded within directives.

Each of the expressions used in the OpenMP syntax inside of the clauses must be a valid expression
of the base language unless otherwise specified.

In order to simplify the presentation, free form is used for the syntax of OpenMP directives for
Fortran in the remainder of this document, except as noted.

Fortran

A directive may be categorized as one of the following: a metadirective, a declarative directive, an
executable directive, an informational directive, or a utility directive.

Only one directive-name can be specified per directive (note that this includes combined directives,
see Section 2.16). The order in which clauses appear on directives is not significant. Clauses on
directives may be repeated as needed, subject to the restrictions listed in the description of each
clause or the directives on which they can appear.

Some clauses accept a list, an extended-list, or a locator-list. A list consists of a comma-separated
collection of one or more list items. An extended-list consists of a comma-separated collection of
one or more extended list items. A locator-list consists of a comma-separated collection of one or
more locator list items.

C/C++

A list item is a variable or an array section. An extended list item is a list item or a function name. A
locator list item is any lvalue expression including variables, an array section, or a reserved locator.

C/C++

OpenMP API — Version 5.1 November 2020

O NOO OO0 hAWOWN=

-
o ©

a a4 o
A OND =

-
o O

N = =
o © 00 N

21
22
23

24
25
26
27

28

29
30

31

Fortran
A list item is a variable that is not coindexed, an array section that is not coindexed, a named
constant, an associate name that may appear in a variable definition context, or a common block
name (enclosed in slashes). An extended list item is a list item or a procedure name. A locator list
item is a list item, or a reserved locator.

A named constant as a list item can appear only in clauses where it is explicitly allowed.

When a named common block appears in a list, it has the same meaning and restrictions as if every
explicit member of the common block appeared in the list. An explicit member of a common block
is a variable that is named in a COMMON statement that specifies the common block name and is
declared in the same scoping unit in which the clause appears. Named common blocks do not
include the blank common block.

Although variables in common blocks can be accessed by use association or host association,
common block names cannot. As a result, a common block name specified in a data-sharing
attribute, a data copying, or a data-mapping attribute clause must be declared to be a common block
in the same scoping unit in which the clause appears.

If a list item that appears in a directive or clause is an optional dummy argument that is not present,
the directive or clause for that list item is ignored.

If the variable referenced inside a construct is an optional dummy argument that is not present, any
explicitly determined, implicitly determined, or predetermined data-sharing and data-mapping
attribute rules for that variable are ignored. Otherwise, if the variable is an optional dummy
argument that is present, it is present inside the construct.

Fortran

For all base languages, a list item, an extended list item, or a locator list item is subject to the
restrictions specified in Section 2.1.5 and in each of the sections that describe clauses and directives
for which the list, the extended-list, or the locator-list appears.

Some clauses and directives accept the use of reserved locators as special identifiers that represent
system storage not necessarily bound to any base language storage item. Reserved locators may
only appear in clauses and directives where they are explicitly allowed and may not otherwise be
referenced in the program. The list of reserved locators is:

I omp_all_ memory

The reserved locator omp_all_memory is a reserved identifier that denotes a list item treated as
having storage that corresponds to the storage of all other objects in memory.

Some directives have an associated structured block or a structured block sequence.

CHAPTER 2. DIRECTIVES 41

A OWDND =

(3}

10
11
12

13

14
15

16
17

18

19

20
21

C/C++

A structured block sequence that consists of more than one statement may appear only for
executable directives that explicitly allow it. The corresponding compound statement obtained by
enclosing the sequence in { and } must be a structured block and the structured block sequence
then should be considered to be a structured block with all of its restrictions.

C/C++

A structured block:

may contain infinite loops where the point of exit is never reached;

may halt due to an IEEE exception;

C/C++
may contain calls to exit (), _Exit (), quick_exit (), abort () or functions with a
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);

may be an expression statement, iteration statement, selection statement, or try block, provided
that the corresponding compound statement obtained by enclosing it in { and } would be a
structured block; and

C/C++

Fortran
may contain STOP or ERROR STOP statements.

Fortran

Restrictions
Restrictions to structured blocks are as follows:

Entry to a structured block must not be the result of a branch.

The point of exit cannot be a branch out of the structured block.

C/C++

The point of entry to a structured block must not be a call to set jmp.

longjmp must not violate the entry/exit criteria.

C/C++
C++

throw must not violate the entry/exit criteria.

co_await, co_yield and co_return must not violate the entry/exit criteria.

C++

42 OpenMP API — Version 5.1 November 2020

NOoO o~ W=

11
12
13
14

15
16
17
18

19

20
21

22
23
24
25
26
27
28

29

Fortran
e When a BLOCK construct appears in a structured block, that BLOCK construct must not contain
any ASYNCHRONOUS or VOLATILE statements, nor any specification statements that include
the ASYNCHRONOUS or VOLATILE attributes.

Restrictions on explicit OpenMP regions (that arise from executable directives) are as follows:

o If more than one image is executing the program, any image control statement, ERROR STOP
statement, FAIL IMAGE statement, collective subroutine call or access to a coindexed object that
appears in an explicit OpenMP region will result in unspecified behavior.

2.1.1 Fixed Source Form Directives

The following sentinels are recognized in fixed form source files:

|!$omp | cSomp | *$Somp

Sentinels must start in column 1 and appear as a single word with no intervening characters.
Fortran fixed form line length, white space, continuation, and column rules apply to the directive
line. Initial directive lines must have a space or a zero in column 6, and continuation directive lines
must have a character other than a space or a zero in column 6.

Comments may appear on the same line as a directive. The exclamation point initiates a comment

when it appears after column 6. The comment extends to the end of the source line and is ignored.
If the first non-blank character after the directive sentinel of an initial or continuation directive line
is an exclamation point, the line is ignored.

v v
Note — In the following example, the three formats for specifying the directive are equivalent (the
first line represents the position of the first 9 columns):

c23456789
!Somp parallel do shared(a,b,c)

cSomp parallel do
c$omp+shared (a,b, c)

c$omp paralleldoshared(a, b, c)

A A

CHAPTER 2. DIRECTIVES 43

44

2.1.2 Free Source Form Directives

The following sentinel is recognized in free form source files:

I ! Somp

The sentinel can appear in any column as long as it is preceded only by white space. It must appear
as a single word with no intervening white space. Fortran free form line length, white space, and
continuation rules apply to the directive line. Initial directive lines must have a space after the
sentinel. Continued directive lines must have an ampersand (&) as the last non-blank character on
the line, prior to any comment placed inside the directive. Continuation directive lines can have an
ampersand after the directive sentinel with optional white space before and after the ampersand.

Comments may appear on the same line as a directive. The exclamation point (!) initiates a
comment. The comment extends to the end of the source line and is ignored. If the first non-blank
character after the directive sentinel is an exclamation point, the line is ignored.

One or more blanks or horizontal tabs are optional to separate adjacent keywords in
directive-names unless otherwise specified.

v v
Note — In the following example the three formats for specifying the directive are equivalent (the
first line represents the position of the first 9 columns):

123456789
!Somp parallel do &
!Somp shared(a,b,c)

!Somp parallel &
!$omp&do shared(a,b, c)

!Somp paralleldo shared(a,b,c)

A A

Fortran

OpenMP API — Version 5.1 November 2020

w

o ~NoO oA

11
12

13
14

15

16
17
18

19
20

21
22

23
24

2.1.3 Stand-Alone Directives

Summary
Stand-alone directives are executable directives that have no associated user code.

Description

Stand-alone directives do not have any associated executable user code. Instead, they represent
executable statements that typically do not have succinct equivalent statements in the base language.
Some restrictions limit the placement of a stand-alone directive within a program. A stand-alone
directive may be placed only at a point where a base language executable statement is allowed.

C/C++

Restrictions
Restrictions to stand-alone directives are as follows:

C

e A stand-alone directive may not be used in place of a substatement in a selection statement, in
place of the loop body in an iteration statement, or in place of the statement that follows a label.

C
C++

e A stand-alone directive may not be used in place of a substatement in a selection statement or
iteration statement, or in place of the statement that follows a label.

C++

2.1.4 Array Shaping

If an expression has a type of pointer to 7, then a shape-operator can be used to specify the extent of
that pointer. In other words, the shape-operator is used to reinterpret, as an n-dimensional array, the
region of memory to which that expression points.

Formally, the syntax of the shape-operator is as follows:
I shaped-expression := ([s7]11[s2]...[s.]) cast-expression

The result of applying the shape-operator to an expression is an Ivalue expression with an
n-dimensional array type with dimensions s; X s ... X s, and element type T.

The precedence of the shape-operator is the same as a type cast.

Each s; is an integral type expression that must evaluate to a positive integer.

CHAPTER 2. DIRECTIVES 45

o g~ W N =

N

11
12
13
14
15
16
17
18
19
20
21
22
23
24

46

Restrictions
Restrictions to the shape-operator are as follows:

e The type T must be a complete type.

The shape-operator can appear only in clauses for which it is explicitly allowed.

The result of a shape-operator must be a named array of a list item.

The type of the expression upon which a shape-operator is applied must be a pointer type.

C++

If the type T is a reference to a type T~, then the type will be considered to be T~ for all purposes
of the designated array.

C++
C/C++

2.1.5 Array Sections

An array section designates a subset of the elements in an array.

C/C++

To specify an array section in an OpenM