
OpenMP
Application Programming

Interface

Version 5.1 November 2020

Copyright c©1997-2020 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document appear. Notice is
given that copying is by permission of the OpenMP Architecture Review Board.

This page intentionally left blank in published version.

Contents

1 Overview of the OpenMP API 1
1.1 Scope . 1
1.2 Glossary . 2
1.2.1 Threading Concepts . 2
1.2.2 OpenMP Language Terminology . 2
1.2.3 Loop Terminology . 9
1.2.4 Synchronization Terminology . 10
1.2.5 Tasking Terminology . 12
1.2.6 Data Terminology . 14
1.2.7 Implementation Terminology . 18
1.2.8 Tool Terminology . 19

1.3 Execution Model . 22
1.4 Memory Model . 25
1.4.1 Structure of the OpenMP Memory Model 25
1.4.2 Device Data Environments . 26
1.4.3 Memory Management . 27
1.4.4 The Flush Operation . 27
1.4.5 Flush Synchronization and Happens Before 29
1.4.6 OpenMP Memory Consistency . 30

1.5 Tool Interfaces . 31
1.5.1 OMPT . 32
1.5.2 OMPD . 32

1.6 OpenMP Compliance . 33
1.7 Normative References . 33
1.8 Organization of this Document . 35

i

2 Directives 37
2.1 Directive Format . 38
2.1.1 Fixed Source Form Directives . 43
2.1.2 Free Source Form Directives . 44
2.1.3 Stand-Alone Directives . 45
2.1.4 Array Shaping . 45
2.1.5 Array Sections . 46
2.1.6 Iterators . 49

2.2 Conditional Compilation . 52
2.2.1 Fixed Source Form Conditional Compilation Sentinels 52
2.2.2 Free Source Form Conditional Compilation Sentinel 53

2.3 Variant Directives . 53
2.3.1 OpenMP Context . 53
2.3.2 Context Selectors . 55
2.3.3 Matching and Scoring Context Selectors 59
2.3.4 Metadirectives . 60
2.3.5 Declare Variant Directive . 63
2.3.6 dispatch Construct . 69

2.4 Internal Control Variables . 71
2.4.1 ICV Descriptions . 72
2.4.2 ICV Initialization . 74
2.4.3 Modifying and Retrieving ICV Values . 77
2.4.4 How ICVs are Scoped . 79
2.4.4.1 How the Per-Data Environment ICVs Work 81

2.4.5 ICV Override Relationships . 82
2.5 Informational and Utility Directives . 83
2.5.1 requires Directive . 83
2.5.2 Assume Directive . 86
2.5.3 nothing Directive . 89
2.5.4 error Directive . 90

2.6 parallel Construct . 92
2.6.1 Determining the Number of Threads for a parallel Region 96
2.6.2 Controlling OpenMP Thread Affinity . 98

ii OpenMP API – Version 5.1 November 2020

2.7 teams Construct . 100
2.8 masked Construct . 104
2.9 scope Construct . 106
2.10 Worksharing Constructs . 108
2.10.1 sections Construct . 109
2.10.2 single Construct . 112
2.10.3 workshare Construct . 114

2.11 Loop-Related Directives . 117
2.11.1 Canonical Loop Nest Form . 117
2.11.2 Consistent Loop Schedules . 125
2.11.3 order Clause . 125
2.11.4 Worksharing-Loop Construct . 126
2.11.4.1 Determining the Schedule of a Worksharing-Loop 133

2.11.5 SIMD Directives . 134
2.11.5.1 simd Construct . 134
2.11.5.2 Worksharing-Loop SIMD Construct 138
2.11.5.3 declare simd Directive . 140

2.11.6 distribute Loop Constructs . 143
2.11.6.1 distribute Construct . 143
2.11.6.2 distribute simd Construct . 147
2.11.6.3 Distribute Parallel Worksharing-Loop Construct 148
2.11.6.4 Distribute Parallel Worksharing-Loop SIMD Construct 149

2.11.7 loop Construct . 151
2.11.8 scan Directive . 154
2.11.9 Loop Transformation Constructs . 157
2.11.9.1 tile Construct . 158
2.11.9.2 unroll Construct . 160

2.12 Tasking Constructs . 161
2.12.1 task Construct . 161
2.12.2 taskloop Construct . 166
2.12.3 taskloop simd Construct . 171
2.12.4 taskyield Construct . 173
2.12.5 Initial Task . 174

Contents iii

2.12.6 Task Scheduling . 175
2.13 Memory Management Directives . 177
2.13.1 Memory Spaces . 177
2.13.2 Memory Allocators . 178
2.13.3 allocate Directive . 181
2.13.4 allocate Clause . 184

2.14 Device Directives . 186
2.14.1 Device Initialization . 186
2.14.2 target data Construct . 187
2.14.3 target enter data Construct . 191
2.14.4 target exit data Construct . 193
2.14.5 target Construct . 197
2.14.6 target update Construct . 205
2.14.7 Declare Target Directive . 210

2.15 Interoperability . 216
2.15.1 interop Construct . 217
2.15.2 Interoperability Requirement Set . 220

2.16 Combined Constructs . 221
2.16.1 Parallel Worksharing-Loop Construct . 221
2.16.2 parallel loop Construct . 222
2.16.3 parallel sections Construct . 223
2.16.4 parallel workshare Construct . 224
2.16.5 Parallel Worksharing-Loop SIMD Construct 225
2.16.6 parallel masked Construct . 226
2.16.7 masked taskloop Construct . 228
2.16.8 masked taskloop simd Construct . 229
2.16.9 parallel masked taskloop Construct 230
2.16.10 parallel masked taskloop simd Construct 231
2.16.11 teams distribute Construct . 233
2.16.12 teams distribute simd Construct 234
2.16.13 Teams Distribute Parallel Worksharing-Loop Construct 235
2.16.14 Teams Distribute Parallel Worksharing-Loop SIMD Construct 236
2.16.15 teams loop Construct . 237

iv OpenMP API – Version 5.1 November 2020

2.16.16 target parallel Construct . 238
2.16.17 Target Parallel Worksharing-Loop Construct 239
2.16.18 Target Parallel Worksharing-Loop SIMD Construct 241
2.16.19 target parallel loop Construct . 242
2.16.20 target simd Construct . 244
2.16.21 target teams Construct . 245
2.16.22 target teams distribute Construct 246
2.16.23 target teams distribute simd Construct 247
2.16.24 target teams loop Construct . 248
2.16.25 Target Teams Distribute Parallel Worksharing-Loop Construct 249
2.16.26 Target Teams Distribute Parallel Worksharing-Loop SIMD Construct 251

2.17 Clauses on Combined and Composite Constructs 252
2.18 if Clause . 254
2.19 Synchronization Constructs and Clauses . 255
2.19.1 critical Construct . 255
2.19.2 barrier Construct . 258
2.19.3 Implicit Barriers . 260
2.19.4 Implementation-Specific Barriers . 261
2.19.5 taskwait Construct . 261
2.19.6 taskgroup Construct . 264
2.19.7 atomic Construct . 266
2.19.8 flush Construct . 275
2.19.8.1 Implicit Flushes . 279

2.19.9 ordered Construct . 283
2.19.10 Depend Objects . 286
2.19.10.1 depobj Construct . 287

2.19.11 depend Clause . 288
2.19.12 Synchronization Hints . 293

2.20 Cancellation Constructs . 295
2.20.1 cancel Construct . 295
2.20.2 cancellation point Construct . 300

Contents v

2.21 Data Environment . 302
2.21.1 Data-Sharing Attribute Rules . 302
2.21.1.1 Variables Referenced in a Construct 302
2.21.1.2 Variables Referenced in a Region but not in a Construct 306

2.21.2 threadprivate Directive . 307
2.21.3 List Item Privatization . 312
2.21.4 Data-Sharing Attribute Clauses . 315
2.21.4.1 default Clause . 315
2.21.4.2 shared Clause . 316
2.21.4.3 private Clause . 318
2.21.4.4 firstprivate Clause . 318
2.21.4.5 lastprivate Clause . 321
2.21.4.6 linear Clause . 323

2.21.5 Reduction Clauses and Directives . 325
2.21.5.1 Properties Common to All Reduction Clauses 326
2.21.5.2 Reduction Scoping Clauses . 331
2.21.5.3 Reduction Participating Clauses . 332
2.21.5.4 reduction Clause . 332
2.21.5.5 task_reduction Clause . 335
2.21.5.6 in_reduction Clause . 335
2.21.5.7 declare reduction Directive . 336

2.21.6 Data Copying Clauses . 341
2.21.6.1 copyin Clause . 342
2.21.6.2 copyprivate Clause . 343

2.21.7 Data-Mapping Attribute Rules, Clauses, and Directives 345
2.21.7.1 map Clause . 347
2.21.7.2 Pointer Initialization for Device Data Environments 356
2.21.7.3 defaultmap Clause . 357
2.21.7.4 declare mapper Directive . 358

2.22 Nesting of Regions . 362

3 Runtime Library Routines 365
3.1 Runtime Library Definitions . 365

vi OpenMP API – Version 5.1 November 2020

3.2 Thread Team Routines . 368
3.2.1 omp_set_num_threads . 368
3.2.2 omp_get_num_threads . 369
3.2.3 omp_get_max_threads . 370
3.2.4 omp_get_thread_num . 371
3.2.5 omp_in_parallel . 372
3.2.6 omp_set_dynamic . 373
3.2.7 omp_get_dynamic . 373
3.2.8 omp_get_cancellation . 374
3.2.9 omp_set_nested (Deprecated) . 375
3.2.10 omp_get_nested (Deprecated) . 376
3.2.11 omp_set_schedule . 376
3.2.12 omp_get_schedule . 379
3.2.13 omp_get_thread_limit . 380
3.2.14 omp_get_supported_active_levels 380
3.2.15 omp_set_max_active_levels . 381
3.2.16 omp_get_max_active_levels . 382
3.2.17 omp_get_level . 383
3.2.18 omp_get_ancestor_thread_num 384
3.2.19 omp_get_team_size . 385
3.2.20 omp_get_active_level . 385

3.3 Thread Affinity Routines . 386
3.3.1 omp_get_proc_bind . 386
3.3.2 omp_get_num_places . 388
3.3.3 omp_get_place_num_procs . 389
3.3.4 omp_get_place_proc_ids . 389
3.3.5 omp_get_place_num . 390
3.3.6 omp_get_partition_num_places 391
3.3.7 omp_get_partition_place_nums 392
3.3.8 omp_set_affinity_format . 393
3.3.9 omp_get_affinity_format . 394
3.3.10 omp_display_affinity . 395
3.3.11 omp_capture_affinity . 396

Contents vii

3.4 Teams Region Routines . 397
3.4.1 omp_get_num_teams . 397
3.4.2 omp_get_team_num . 398
3.4.3 omp_set_num_teams . 399
3.4.4 omp_get_max_teams . 400
3.4.5 omp_set_teams_thread_limit . 400
3.4.6 omp_get_teams_thread_limit . 401

3.5 Tasking Routines . 402
3.5.1 omp_get_max_task_priority . 402
3.5.2 omp_in_final . 403

3.6 Resource Relinquishing Routines . 404
3.6.1 omp_pause_resource . 404
3.6.2 omp_pause_resource_all . 406

3.7 Device Information Routines . 407
3.7.1 omp_get_num_procs . 407
3.7.2 omp_set_default_device . 408
3.7.3 omp_get_default_device . 408
3.7.4 omp_get_num_devices . 409
3.7.5 omp_get_device_num . 410
3.7.6 omp_is_initial_device . 411
3.7.7 omp_get_initial_device . 411

3.8 Device Memory Routines . 412
3.8.1 omp_target_alloc . 412
3.8.2 omp_target_free . 414
3.8.3 omp_target_is_present . 416
3.8.4 omp_target_is_accessible . 417
3.8.5 omp_target_memcpy . 418
3.8.6 omp_target_memcpy_rect . 419
3.8.7 omp_target_memcpy_async . 422
3.8.8 omp_target_memcpy_rect_async 424
3.8.9 omp_target_associate_ptr . 426
3.8.10 omp_target_disassociate_ptr 429
3.8.11 omp_get_mapped_ptr . 430

viii OpenMP API – Version 5.1 November 2020

3.9 Lock Routines . 432
3.9.1 omp_init_lock and omp_init_nest_lock 434
3.9.2 omp_init_lock_with_hint and

omp_init_nest_lock_with_hint 435
3.9.3 omp_destroy_lock and omp_destroy_nest_lock 436
3.9.4 omp_set_lock and omp_set_nest_lock 437
3.9.5 omp_unset_lock and omp_unset_nest_lock 439
3.9.6 omp_test_lock and omp_test_nest_lock 440

3.10 Timing Routines . 442
3.10.1 omp_get_wtime . 442
3.10.2 omp_get_wtick . 442

3.11 Event Routine . 443
3.11.1 omp_fulfill_event . 443

3.12 Interoperability Routines . 444
3.12.1 omp_get_num_interop_properties 446
3.12.2 omp_get_interop_int . 446
3.12.3 omp_get_interop_ptr . 447
3.12.4 omp_get_interop_str . 448
3.12.5 omp_get_interop_name . 449
3.12.6 omp_get_interop_type_desc . 450
3.12.7 omp_get_interop_rc_desc . 450

3.13 Memory Management Routines . 451
3.13.1 Memory Management Types . 451
3.13.2 omp_init_allocator . 454
3.13.3 omp_destroy_allocator . 455
3.13.4 omp_set_default_allocator . 456
3.13.5 omp_get_default_allocator . 457
3.13.6 omp_alloc and omp_aligned_alloc 458
3.13.7 omp_free . 459
3.13.8 omp_calloc and omp_aligned_calloc 461
3.13.9 omp_realloc . 463

3.14 Tool Control Routine . 465
3.15 Environment Display Routine . 468

Contents ix

4 OMPT Interface 471
4.1 OMPT Interfaces Definitions . 471
4.2 Activating a First-Party Tool . 471
4.2.1 ompt_start_tool . 471
4.2.2 Determining Whether a First-Party Tool Should be Initialized 473
4.2.3 Initializing a First-Party Tool . 474
4.2.3.1 Binding Entry Points in the OMPT Callback Interface 475

4.2.4 Monitoring Activity on the Host with OMPT 476
4.2.5 Tracing Activity on Target Devices with OMPT 478

4.3 Finalizing a First-Party Tool . 484
4.4 OMPT Data Types . 485
4.4.1 Tool Initialization and Finalization . 485
4.4.2 Callbacks . 485
4.4.3 Tracing . 487
4.4.3.1 Record Type . 487
4.4.3.2 Native Record Kind . 487
4.4.3.3 Native Record Abstract Type . 487
4.4.3.4 Record Type . 488

4.4.4 Miscellaneous Type Definitions . 489
4.4.4.1 ompt_callback_t . 489
4.4.4.2 ompt_set_result_t . 490
4.4.4.3 ompt_id_t . 491
4.4.4.4 ompt_data_t . 492
4.4.4.5 ompt_device_t . 492
4.4.4.6 ompt_device_time_t . 492
4.4.4.7 ompt_buffer_t . 493
4.4.4.8 ompt_buffer_cursor_t . 493
4.4.4.9 ompt_dependence_t . 493
4.4.4.10 ompt_thread_t . 494
4.4.4.11 ompt_scope_endpoint_t . 494
4.4.4.12 ompt_dispatch_t . 495
4.4.4.13 ompt_sync_region_t . 495
4.4.4.14 ompt_target_data_op_t . 496

x OpenMP API – Version 5.1 November 2020

4.4.4.15 ompt_work_t . 496
4.4.4.16 ompt_mutex_t . 497
4.4.4.17 ompt_native_mon_flag_t . 497
4.4.4.18 ompt_task_flag_t . 498
4.4.4.19 ompt_task_status_t . 498
4.4.4.20 ompt_target_t . 499
4.4.4.21 ompt_parallel_flag_t . 500
4.4.4.22 ompt_target_map_flag_t . 501
4.4.4.23 ompt_dependence_type_t . 501
4.4.4.24 ompt_severity_t . 502
4.4.4.25 ompt_cancel_flag_t . 502
4.4.4.26 ompt_hwid_t . 502
4.4.4.27 ompt_state_t . 503
4.4.4.28 ompt_frame_t . 505
4.4.4.29 ompt_frame_flag_t . 506
4.4.4.30 ompt_wait_id_t . 507

4.5 OMPT Tool Callback Signatures and Trace Records 508
4.5.1 Initialization and Finalization Callback Signature 508
4.5.1.1 ompt_initialize_t . 508
4.5.1.2 ompt_finalize_t . 509

4.5.2 Event Callback Signatures and Trace Records 510
4.5.2.1 ompt_callback_thread_begin_t 510
4.5.2.2 ompt_callback_thread_end_t 511
4.5.2.3 ompt_callback_parallel_begin_t 511
4.5.2.4 ompt_callback_parallel_end_t 513
4.5.2.5 ompt_callback_work_t . 514
4.5.2.6 ompt_callback_dispatch_t 515
4.5.2.7 ompt_callback_task_create_t 517
4.5.2.8 ompt_callback_dependences_t 518
4.5.2.9 ompt_callback_task_dependence_t 519
4.5.2.10 ompt_callback_task_schedule_t 520
4.5.2.11 ompt_callback_implicit_task_t 521
4.5.2.12 ompt_callback_masked_t . 522

Contents xi

4.5.2.13 ompt_callback_sync_region_t 523
4.5.2.14 ompt_callback_mutex_acquire_t 525
4.5.2.15 ompt_callback_mutex_t . 526
4.5.2.16 ompt_callback_nest_lock_t 527
4.5.2.17 ompt_callback_flush_t . 528
4.5.2.18 ompt_callback_cancel_t . 529
4.5.2.19 ompt_callback_device_initialize_t 530
4.5.2.20 ompt_callback_device_finalize_t 531
4.5.2.21 ompt_callback_device_load_t 532
4.5.2.22 ompt_callback_device_unload_t 533
4.5.2.23 ompt_callback_buffer_request_t 533
4.5.2.24 ompt_callback_buffer_complete_t 534
4.5.2.25 ompt_callback_target_data_op_emi_t and

ompt_callback_target_data_op_t 535
4.5.2.26 ompt_callback_target_emi_t and

ompt_callback_target_t . 538
4.5.2.27 ompt_callback_target_map_emi_t and

ompt_callback_target_map_t 540
4.5.2.28 ompt_callback_target_submit_emi_t and

ompt_callback_target_submit_t 542
4.5.2.29 ompt_callback_control_tool_t 544
4.5.2.30 ompt_callback_error_t . 545

4.6 OMPT Runtime Entry Points for Tools . 546
4.6.1 Entry Points in the OMPT Callback Interface 547
4.6.1.1 ompt_enumerate_states_t . 547
4.6.1.2 ompt_enumerate_mutex_impls_t 548
4.6.1.3 ompt_set_callback_t . 549
4.6.1.4 ompt_get_callback_t . 550
4.6.1.5 ompt_get_thread_data_t . 551
4.6.1.6 ompt_get_num_procs_t . 552
4.6.1.7 ompt_get_num_places_t . 552
4.6.1.8 ompt_get_place_proc_ids_t 553
4.6.1.9 ompt_get_place_num_t . 554

xii OpenMP API – Version 5.1 November 2020

4.6.1.10 ompt_get_partition_place_nums_t 554
4.6.1.11 ompt_get_proc_id_t . 555
4.6.1.12 ompt_get_state_t . 555
4.6.1.13 ompt_get_parallel_info_t 556
4.6.1.14 ompt_get_task_info_t . 558
4.6.1.15 ompt_get_task_memory_t . 560
4.6.1.16 ompt_get_target_info_t . 561
4.6.1.17 ompt_get_num_devices_t . 562
4.6.1.18 ompt_get_unique_id_t . 562
4.6.1.19 ompt_finalize_tool_t . 563

4.6.2 Entry Points in the OMPT Device Tracing Interface 563
4.6.2.1 ompt_get_device_num_procs_t 563
4.6.2.2 ompt_get_device_time_t . 564
4.6.2.3 ompt_translate_time_t . 565
4.6.2.4 ompt_set_trace_ompt_t . 566
4.6.2.5 ompt_set_trace_native_t . 567
4.6.2.6 ompt_start_trace_t . 568
4.6.2.7 ompt_pause_trace_t . 568
4.6.2.8 ompt_flush_trace_t . 569
4.6.2.9 ompt_stop_trace_t . 570
4.6.2.10 ompt_advance_buffer_cursor_t 570
4.6.2.11 ompt_get_record_type_t . 571
4.6.2.12 ompt_get_record_ompt_t . 572
4.6.2.13 ompt_get_record_native_t 573
4.6.2.14 ompt_get_record_abstract_t 574

4.6.3 Lookup Entry Points: ompt_function_lookup_t 574

5 OMPD Interface 577
5.1 OMPD Interfaces Definitions . 578
5.2 Activating a Third-Party Tool . 578
5.2.1 Enabling Runtime Support for OMPD . 578
5.2.2 ompd_dll_locations . 578
5.2.3 ompd_dll_locations_valid . 579

Contents xiii

5.3 OMPD Data Types . 580
5.3.1 Size Type . 580
5.3.2 Wait ID Type . 580
5.3.3 Basic Value Types . 581
5.3.4 Address Type . 581
5.3.5 Frame Information Type . 582
5.3.6 System Device Identifiers . 582
5.3.7 Native Thread Identifiers . 583
5.3.8 OMPD Handle Types . 583
5.3.9 OMPD Scope Types . 584
5.3.10 ICV ID Type . 585
5.3.11 Tool Context Types . 585
5.3.12 Return Code Types . 585
5.3.13 Primitive Type Sizes . 586

5.4 OMPD Third-Party Tool Callback Interface . 587
5.4.1 Memory Management of OMPD Library 588
5.4.1.1 ompd_callback_memory_alloc_fn_t 588
5.4.1.2 ompd_callback_memory_free_fn_t 589

5.4.2 Context Management and Navigation . 590
5.4.2.1 ompd_callback_get_thread_context_for_thread_id

_fn_t . 590
5.4.2.2 ompd_callback_sizeof_fn_t 591

5.4.3 Accessing Memory in the OpenMP Program or Runtime 592
5.4.3.1 ompd_callback_symbol_addr_fn_t 592
5.4.3.2 ompd_callback_memory_read_fn_t 594
5.4.3.3 ompd_callback_memory_write_fn_t 595

5.4.4 Data Format Conversion: ompd_callback_device_host_fn_t . . . 596
5.4.5 ompd_callback_print_string_fn_t 598
5.4.6 The Callback Interface . 598

5.5 OMPD Tool Interface Routines . 600
5.5.1 Per OMPD Library Initialization and Finalization 600
5.5.1.1 ompd_initialize . 601
5.5.1.2 ompd_get_api_version . 602

xiv OpenMP API – Version 5.1 November 2020

5.5.1.3 ompd_get_version_string . 602
5.5.1.4 ompd_finalize . 603

5.5.2 Per OpenMP Process Initialization and Finalization 604
5.5.2.1 ompd_process_initialize . 604
5.5.2.2 ompd_device_initialize . 605
5.5.2.3 ompd_rel_address_space_handle 606

5.5.3 Thread and Signal Safety . 607
5.5.4 Address Space Information . 607
5.5.4.1 ompd_get_omp_version . 607
5.5.4.2 ompd_get_omp_version_string 608

5.5.5 Thread Handles . 609
5.5.5.1 ompd_get_thread_in_parallel 609
5.5.5.2 ompd_get_thread_handle . 610
5.5.5.3 ompd_rel_thread_handle . 611
5.5.5.4 ompd_thread_handle_compare 611
5.5.5.5 ompd_get_thread_id . 612

5.5.6 Parallel Region Handles . 613
5.5.6.1 ompd_get_curr_parallel_handle 613
5.5.6.2 ompd_get_enclosing_parallel_handle 614
5.5.6.3 ompd_get_task_parallel_handle 615
5.5.6.4 ompd_rel_parallel_handle 616
5.5.6.5 ompd_parallel_handle_compare 616

5.5.7 Task Handles . 617
5.5.7.1 ompd_get_curr_task_handle 617
5.5.7.2 ompd_get_generating_task_handle 618
5.5.7.3 ompd_get_scheduling_task_handle 619
5.5.7.4 ompd_get_task_in_parallel 620
5.5.7.5 ompd_rel_task_handle . 621
5.5.7.6 ompd_task_handle_compare 622
5.5.7.7 ompd_get_task_function . 622
5.5.7.8 ompd_get_task_frame . 623
5.5.7.9 ompd_enumerate_states . 624
5.5.7.10 ompd_get_state . 625

Contents xv

5.5.8 Display Control Variables . 626
5.5.8.1 ompd_get_display_control_vars 626
5.5.8.2 ompd_rel_display_control_vars 627

5.5.9 Accessing Scope-Specific Information . 628
5.5.9.1 ompd_enumerate_icvs . 628
5.5.9.2 ompd_get_icv_from_scope . 629
5.5.9.3 ompd_get_icv_string_from_scope 630
5.5.9.4 ompd_get_tool_data . 631

5.6 Runtime Entry Points for OMPD . 632
5.6.1 Beginning Parallel Regions . 633
5.6.2 Ending Parallel Regions . 633
5.6.3 Beginning Task Regions . 634
5.6.4 Ending Task Regions . 634
5.6.5 Beginning OpenMP Threads . 635
5.6.6 Ending OpenMP Threads . 635
5.6.7 Initializing OpenMP Devices . 636
5.6.8 Finalizing OpenMP Devices . 636

6 Environment Variables 639
6.1 OMP_SCHEDULE . 640
6.2 OMP_NUM_THREADS . 640
6.3 OMP_DYNAMIC . 641
6.4 OMP_PROC_BIND . 642
6.5 OMP_PLACES . 643
6.6 OMP_STACKSIZE . 645
6.7 OMP_WAIT_POLICY . 646
6.8 OMP_MAX_ACTIVE_LEVELS . 647
6.9 OMP_NESTED (Deprecated) . 647
6.10 OMP_THREAD_LIMIT . 648
6.11 OMP_CANCELLATION . 648
6.12 OMP_DISPLAY_ENV . 648
6.13 OMP_DISPLAY_AFFINITY . 649
6.14 OMP_AFFINITY_FORMAT . 650
6.15 OMP_DEFAULT_DEVICE . 652

xvi OpenMP API – Version 5.1 November 2020

6.16 OMP_MAX_TASK_PRIORITY . 652
6.17 OMP_TARGET_OFFLOAD . 652
6.18 OMP_TOOL . 653
6.19 OMP_TOOL_LIBRARIES . 653
6.20 OMP_TOOL_VERBOSE_INIT . 654
6.21 OMP_DEBUG . 655
6.22 OMP_ALLOCATOR . 655
6.23 OMP_NUM_TEAMS . 656
6.24 OMP_TEAMS_THREAD_LIMIT . 657

A OpenMP Implementation-Defined Behaviors 659

B Features History 667
B.1 Deprecated Features . 667
B.2 Version 5.0 to 5.1 Differences . 668
B.3 Version 4.5 to 5.0 Differences . 670
B.4 Version 4.0 to 4.5 Differences . 674
B.5 Version 3.1 to 4.0 Differences . 676
B.6 Version 3.0 to 3.1 Differences . 677
B.7 Version 2.5 to 3.0 Differences . 677

Index 681

Contents xvii

List of Figures

2.1 Determining the schedule for a Worksharing-Loop 134

4.1 First-Party Tool Activation Flow Chart . 473

xviii

List of Tables

2.1 ICV Initial Values . 74
2.2 Ways to Modify and to Retrieve ICV Values . 77
2.3 Scopes of ICVs . 79
2.4 ICV Override Relationships . 82
2.5 schedule Clause kind Values . 129
2.6 schedule Clause modifier Values . 131
2.7 ompt_callback_task_create Callback Flags Evaluation 165
2.8 Predefined Memory Spaces . 177
2.9 Allocator Traits . 178
2.10 Predefined Allocators . 180
2.11 Implicitly Declared C/C++ reduction-identifiers 326
2.12 Implicitly Declared Fortran reduction-identifiers 327
2.13 Map-Type Decay of Map Type Combinations . 360

3.1 Required Values of the omp_interop_property_t enum Type 445
3.2 Required Values for the omp_interop_rc_t enum Type 446
3.3 Standard Tool Control Commands . 466

4.1 OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures . 477
4.2 Callbacks for which ompt_set_callbackMust Return ompt_set_always 479
4.3 Callbacks for which ompt_set_callbackMay Return Any Non-Error Code . . 480
4.4 OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures . . 482

5.1 Mapping of Scope Type and OMPD Handles . 584

6.1 Predefined Abstract Names for OMP_PLACES . 644
6.2 Available Field Types for Formatting OpenMP Thread Affinity Information 651

xix

This page intentionally left blank

1 Overview of the OpenMP API1

The collection of compiler directives, library routines, and environment variables that this2
document describes collectively define the specification of the OpenMP Application Program3
Interface (OpenMP API) for parallelism in C, C++ and Fortran programs.4

This specification provides a model for parallel programming that is portable across architectures5
from different vendors. Compilers from numerous vendors support the OpenMP API. More6
information about the OpenMP API can be found at the following web site7

http://www.openmp.org8

The directives, library routines, environment variables, and tool support that this document defines9
allow users to create, to manage, to debug and to analyze parallel programs while permitting10
portability. The directives extend the C, C++ and Fortran base languages with single program11
multiple data (SPMD) constructs, tasking constructs, device constructs, worksharing constructs,12
and synchronization constructs, and they provide support for sharing, mapping and privatizing data.13
The functionality to control the runtime environment is provided by library routines and14
environment variables. Compilers that support the OpenMP API often include command line15
options to enable or to disable interpretation of some or all OpenMP directives.16

1.1 Scope17

The OpenMP API covers only user-directed parallelization, wherein the programmer explicitly18
specifies the actions to be taken by the compiler and runtime system in order to execute the program19
in parallel. OpenMP-compliant implementations are not required to check for data dependences,20
data conflicts, race conditions, or deadlocks. Compliant implementations also are not required to21
check for any code sequences that cause a program to be classified as non-conforming. Application22
developers are responsible for correctly using the OpenMP API to produce a conforming program.23
The OpenMP API does not cover compiler-generated automatic parallelization.24

1

1.2 Glossary1

1.2.1 Threading Concepts2

thread An execution entity with a stack and associated threadprivate memory.3

OpenMP thread A thread that is managed by the OpenMP implementation.4

thread number A number that the OpenMP implementation assigns to an OpenMP thread. For5
threads within the same team, zero identifies the primary thread and consecutive6
numbers identify the other threads of this team.7

idle thread An OpenMP thread that is not currently part of any parallel region.8

thread-safe routine A routine that performs the intended function even when executed concurrently (by9
more than one thread).10

processor Implementation-defined hardware unit on which one or more OpenMP threads can11
execute.12

device An implementation-defined logical execution engine.13

COMMENT: A device could have one or more processors.14

host device The device on which the OpenMP program begins execution.15

target device A device with respect to which the current device performs an operation, as specified16
by a device construct or an OpenMP device memory routine.17

parent device For a given target region, the device on which the corresponding target18
construct was encountered.19

1.2.2 OpenMP Language Terminology20

base language A programming language that serves as the foundation of the OpenMP specification.21

COMMENT: See Section 1.7 for a listing of current base languages for22
the OpenMP API.23

base program A program written in a base language.24

preprocessed code For C/C++, a sequence of preprocessing tokens that result from the first six phases of25
translation, as defined by the base language.26

program order An ordering of operations performed by the same thread as determined by the27
execution sequence of operations specified by the base language.28

2 OpenMP API – Version 5.1 November 2020

COMMENT: For versions of C and C++ that include base language1
support for threading, program order corresponds to the sequenced before2
relation between operations performed by the same thread.3

structured block For C/C++, an executable statement, possibly compound, with a single entry at the4
top and a single exit at the bottom, or an OpenMP construct.5

For Fortran, a strictly structured block, or a loosely structured block.6

structured block
sequence

A structured block, or, for C/C++, a sequence of two or more executable statements7
that together have a single entry at the top and a single exit at the bottom.8

strictly structured
block

A single Fortran BLOCK construct, with a single entry at the top and a single exit at9
the bottom.10

loosely structured
block

A block of executable constructs, where the first executable construct is not a Fortran11
BLOCK construct, with a single entry at the top and a single exit at the bottom, or an12
OpenMP construct.13

COMMENT: In Fortran code, when a strictly structured block appears14
within an OpenMP construct, that OpenMP construct does not usually15
require a paired end directive to define the range of the OpenMP16
construct, while an OpenMP construct that contains a loosely structured17
block relies on the paired end directive to define the range of the18
OpenMP construct.19

compilation unit For C/C++, a translation unit.20

For Fortran, a program unit.21

enclosing context For C/C++, the innermost scope enclosing an OpenMP directive.22

For Fortran, the innermost scoping unit enclosing an OpenMP directive.23

directive A base language mechanism to specify OpenMP program behavior.24

COMMENT: See Section 2.1 for a description of OpenMP directive25
syntax in each base language.26

white space A non-empty sequence of space and/or horizontal tab characters.27

OpenMP program A program that consists of a base program that is annotated with OpenMP directives28
or that calls OpenMP API runtime library routines.29

conforming program An OpenMP program that follows all rules and restrictions of the OpenMP30
specification.31

implementation code Implicit code that is introduced by the OpenMP implementation.32

metadirective A directive that conditionally resolves to another directive.33

CHAPTER 1. OVERVIEW OF THE OPENMP API 3

declarative directive An OpenMP directive that may only be placed in a declarative context and results in1
one or more declarations only; it is not associated with the immediate execution of2
any user code or implementation code. For C++, if a declarative directive applies to a3
function declaration or definition and it is specified with one or more C++ attribute4
specifiers, the specified attributes must be applied to the function as permitted by the5
base language. For Fortran, a declarative directive must appear after any USE,6
IMPORT, and IMPLICIT statements in a declarative context.7

executable directive An OpenMP directive that appears in an executable context and results in8
implementation code and/or prescribes the manner in which associated user code9
must execute.10

informational directive An OpenMP directive that is neither declarative nor executable, but otherwise11
conveys user code properties to the compiler.12

utility directive An OpenMP directive that is neither declarative nor executable, but otherwise13
facilitates interactions with the compiler and/or supports code readability.14

stand-alone directive An OpenMP executable directive that has no associated user code, but may produce15
implementation code resulting from clauses in the directive.16

construct An OpenMP executable directive (and for Fortran, the paired end directive, if any)17
and the associated statement, loop nest or structured block, if any, not including the18
code in any called routines. That is, the lexical extent of an executable directive.19

combined construct A construct that is a shortcut for specifying one construct immediately nested inside20
another construct. A combined construct is semantically identical to that of explicitly21
specifying the first construct containing one instance of the second construct and no22
other statements.23

composite construct A construct that is composed of two constructs but does not have identical semantics24
to specifying one of the constructs immediately nested inside the other. A composite25
construct either adds semantics not included in the constructs from which it is26
composed or provides an effective nesting of the one construct inside the other that27
would otherwise be non-conforming.28

constituent construct For a given combined or composite construct, a construct from which it, or any one29
of its constituent constructs, is composed.30

COMMENT: The constituent constructs of a31
target teams distribute parallel for simd construct are the32
following constructs: target,33
teams distribute parallel for simd, teams,34
distribute parallel for simd, distribute,35
parallel for simd, parallel, for simd, for, and simd.36

4 OpenMP API – Version 5.1 November 2020

leaf construct For a given combined or composite construct, a constituent construct that is not itself1
a combined or composite construct.2

COMMENT: The leaf constructs of a3
target teams distribute parallel for simd construct are the4
following constructs: target, teams, distribute, parallel,5
for, and simd.6

combined target
construct

A combined construct that is composed of a target construct along with another7
construct.8

region All code encountered during a specific instance of the execution of a given construct,9
structured block sequence or OpenMP library routine. A region includes any code in10
called routines as well as any implementation code. The generation of a task at the11
point where a task generating construct is encountered is a part of the region of the12
encountering thread. However, an explicit task region that corresponds to a task13
generating construct is not part of the region of the encountering thread unless it is14
an included task region. The point where a target or teams directive is15
encountered is a part of the region of the encountering thread, but the region that16
corresponds to the target or teams directive is not.17

COMMENTS:18

A region may also be thought of as the dynamic or runtime extent of a19
construct or of an OpenMP library routine.20

During the execution of an OpenMP program, a construct may give rise to21
many regions.22

active parallel region A parallel region that is executed by a team consisting of more than one thread.23

inactive parallel region A parallel region that is executed by a team of only one thread.24

active target region A target region that is executed on a device other than the device that encountered25
the target construct.26

inactive target region A target region that is executed on the same device that encountered the target27
construct.28

sequential part All code encountered during the execution of an initial task region that is not part of29
a parallel region corresponding to a parallel construct or a task region30
corresponding to a task construct.31

COMMENTS:32

A sequential part is enclosed by an implicit parallel region.33

CHAPTER 1. OVERVIEW OF THE OPENMP API 5

Executable statements in called routines may be in both a sequential part1
and any number of explicit parallel regions at different points in the2
program execution.3

primary thread An OpenMP thread that has thread number 0. A primary thread may be an initial4
thread or the thread that encounters a parallel construct, creates a team,5
generates a set of implicit tasks, and then executes one of those tasks as thread6
number 0.7

parent thread The thread that encountered the parallel construct and generated a parallel8
region is the parent thread of each of the threads in the team of that parallel9
region. The primary thread of a parallel region is the same thread as its parent10
thread with respect to any resources associated with an OpenMP thread.11

child thread When a thread encounters a parallel construct, each of the threads in the12
generated parallel region’s team are child threads of the encountering thread.13
The target or teams region’s initial thread is not a child thread of the thread that14
encountered the target or teams construct.15

ancestor thread For a given thread, its parent thread or one of its parent thread’s ancestor threads.16

descendent thread For a given thread, one of its child threads or one of its child threads’ descendent17
threads.18

team A set of one or more threads participating in the execution of a parallel region.19

COMMENTS:20

For an active parallel region, the team comprises the primary thread and21
at least one additional thread.22

For an inactive parallel region, the team comprises only the primary23
thread.24

league The set of teams created by a teams construct.25

contention group An initial thread and its descendent threads.26

implicit parallel region An inactive parallel region that is not generated from a parallel construct.27
Implicit parallel regions surround the whole OpenMP program, all target regions,28
and all teams regions.29

initial thread The thread that executes an implicit parallel region.30

initial team The team that comprises an initial thread executing an implicit parallel region.31

nested construct A construct (lexically) enclosed by another construct.32

closely nested construct A construct nested inside another construct with no other construct nested between33
them.34

6 OpenMP API – Version 5.1 November 2020

explicit region A region that corresponds to either a construct of the same name or a library routine1
call that explicitly appears in the program.2

nested region A region (dynamically) enclosed by another region. That is, a region generated from3
the execution of another region or one of its nested regions.4

COMMENT: Some nestings are conforming and some are not. See5
Section 2.22 for the restrictions on nesting.6

closely nested region A region nested inside another region with no parallel region nested between7
them.8

strictly nested region A region nested inside another region with no other explicit region nested between9
them.10

all threads All OpenMP threads participating in the OpenMP program.11

current team All threads in the team executing the innermost enclosing parallel region.12

encountering thread For a given region, the thread that encounters the corresponding construct.13

all tasks All tasks participating in the OpenMP program.14

current team tasks All tasks encountered by the corresponding team. The implicit tasks constituting the15
parallel region and any descendent tasks encountered during the execution of16
these implicit tasks are included in this set of tasks.17

generating task For a given region, the task for which execution by a thread generated the region.18

binding thread set The set of threads that are affected by, or provide the context for, the execution of a19
region.20

The binding thread set for a given region can be all threads on a specified set of21
devices, all threads in a contention group, all primary threads executing an enclosing22
teams region, the current team, or the encountering thread.23

COMMENT: The binding thread set for a particular region is described in24
its corresponding subsection of this specification.25

binding task set The set of tasks that are affected by, or provide the context for, the execution of a26
region.27

The binding task set for a given region can be all tasks, the current team tasks, all28
tasks of the current team that are generated in the region, the binding implicit task, or29
the generating task.30

COMMENT: The binding task set for a particular region (if applicable) is31
described in its corresponding subsection of this specification.32

CHAPTER 1. OVERVIEW OF THE OPENMP API 7

binding region The enclosing region that determines the execution context and limits the scope of1
the effects of the bound region is called the binding region.2

Binding region is not defined for regions for which the binding thread set is all3
threads or the encountering thread, nor is it defined for regions for which the binding4
task set is all tasks.5

orphaned construct A construct that gives rise to a region for which the binding thread set is the current6
team, but is not nested within another construct that gives rise to the binding region.7

worksharing construct A construct that divides the work within its structured block into partitions, each of8
which is executed exactly once by one of the threads in the team executing the9
construct.10

device construct An OpenMP construct that accepts the device clause.11

device routine A function (for C/C++ and Fortran) or subroutine (for Fortran) that can be executed12
on a target device, as part of a target region.13

foreign runtime
environment

A runtime environment that exists outside the OpenMP runtime with which the14
OpenMP implementation may interoperate.15

foreign execution
context

A context that is instantiated from a foreign runtime environment in order to facilitate16
execution on a given device.17

foreign task A unit of work executed in a foreign execution context.18

indirect device
invocation

An indirect call to the device version of a procedure on a device other than the host19
device, through a function pointer (C/C++), a pointer to a member function (C++) or20
a procedure pointer (Fortran) that refers to the host version of the procedure.21

place An unordered set of processors on a device.22

place list The ordered list that describes all OpenMP places available to the execution23
environment.24

place partition An ordered list that corresponds to a contiguous interval in the OpenMP place list. It25
describes the places currently available to the execution environment for a given26
parallel region.27

place number A number that uniquely identifies a place in the place list, with zero identifying the28
first place in the place list, and each consecutive whole number identifying the next29
place in the place list.30

thread affinity A binding of threads to places within the current place partition.31

SIMD instruction A single machine instruction that can operate on multiple data elements.32

SIMD lane A software or hardware mechanism capable of processing one data element from a33
SIMD instruction.34

8 OpenMP API – Version 5.1 November 2020

SIMD chunk A set of iterations executed concurrently, each by a SIMD lane, by a single thread by1
means of SIMD instructions.2

memory A storage resource to store and to retrieve variables accessible by OpenMP threads.3

memory space A representation of storage resources from which memory can be allocated or4
deallocated. More than one memory space may exist.5

memory allocator An OpenMP object that fulfills requests to allocate and to deallocate memory for6
program variables from the storage resources of its associated memory space.7

handle An opaque reference that uniquely identifies an abstraction.8

1.2.3 Loop Terminology9

canonical loop nest A loop nest that complies with the rules and restrictions defined in Section 2.11.1.10

loop-associated
directive

An OpenMP executable directive for which the associated user code must be a11
canonical loop nest.12

associated loop A loop from a canonical loop nest that is controlled by a given loop-associated13
directive.14

loop nest depth For a canonical loop nest, the maximal number of loops, including the outermost15
loop, that can be associated with a loop-associated directive.16

logical iteration space For a loop-associated directive, the sequence 0,. . . ,N − 1 where N is the number of17
iterations of the loops associated with the directive. The logical numbering denotes18
the sequence in which the iterations would be executed if the set of associated loops19
were executed sequentially.20

logical iteration An iteration from the associated loops of a loop-associated directive, designated by a21
logical number from the logical iteration space of the associated loops.22

logical iteration vector
space

For a loop-associated directive with n associated nested loops, the set of n-tuples23
(i1, . . . , in). For the kth associated loop, from outermost to innermost, ik is its24
logical iteration number as if it was the only associated loop.25

logical iteration vector An iteration from the associated nested loops of a loop-associated directive, where n26
is the number of associated loops, designated by an n-tuple from the logical iteration27
vector space of the associated loops.28

lexicographic order The total order of two logical iteration vectors ωa = (i1, . . . , in) and29
ωb = (j1, . . . , jn), denoted by ωa ≤lex ωb, where either ωa = ωb or30
∃m ∈ {1, . . . , n} such that im < jm and ik = jk for all k ∈ {1, . . . ,m− 1}.31

CHAPTER 1. OVERVIEW OF THE OPENMP API 9

product order The partial order of two logical iteration vectors ωa = (i1, . . . , in) and1
ωb = (j1, . . . , jn), denoted by ωa ≤product ωb, where ik ≤ jk for all k ∈ {1, . . . , n}.2

loop transformation
construct

A construct that is replaced by the loops that result from applying the transformation3
as defined by its directive to its associated loops.4

generated loop A loop that is generated by a loop transformation construct and is one of the5
resulting loops that replace the construct.6

SIMD loop A loop that includes at least one SIMD chunk.7

non-rectangular loop For a loop nest, a loop for which a loop bound references the iteration variable of a8
surrounding loop in the loop nest.9

perfectly nested loop A loop that has no intervening code between it and the body of its surrounding loop.10
The outermost loop of a loop nest is always perfectly nested.11

doacross loop nest A loop nest, consisting of loops that may be associated with the same12
loop-associated directive, that has cross-iteration dependences. An iteration is13
dependent on one or more lexicographically earlier iterations.14

COMMENT: The ordered clause parameter on a worksharing-loop15
directive identifies the loops associated with the doacross loop nest.16

1.2.4 Synchronization Terminology17

barrier A point in the execution of a program encountered by a team of threads, beyond18
which no thread in the team may execute until all threads in the team have reached19
the barrier and all explicit tasks generated by the team have executed to completion.20
If cancellation has been requested, threads may proceed to the end of the canceled21
region even if some threads in the team have not reached the barrier.22

cancellation An action that cancels (that is, aborts) an OpenMP region and causes executing23
implicit or explicit tasks to proceed to the end of the canceled region.24

cancellation point A point at which implicit and explicit tasks check if cancellation has been requested.25
If cancellation has been observed, they perform the cancellation.26

flush An operation that a thread performs to enforce consistency between its view and27
other threads’ view of memory.28

device-set The set of devices for which a flush operation may enforce memory consistency.29

flush property Properties that determine the manner in which a flush operation enforces memory30
consistency. These properties are:31

10 OpenMP API – Version 5.1 November 2020

• strong: flushes a set of variables from the current thread’s temporary view of the1
memory to the memory;2

• release: orders memory operations that precede the flush before memory3
operations performed by a different thread with which it synchronizes;4

• acquire: orders memory operations that follow the flush after memory operations5
performed by a different thread that synchronizes with it.6

COMMENT: Any flush operation has one or more flush properties.7

strong flush A flush operation that has the strong flush property.8

release flush A flush operation that has the release flush property.9

acquire flush A flush operation that has the acquire flush property.10

atomic operation An operation that is specified by an atomic construct or is implicitly performed by11
the OpenMP implementation and that atomically accesses and/or modifies a specific12
storage location.13

atomic read An atomic operation that is specified by an atomic construct on which the read14
clause is present.15

atomic write An atomic operation that is specified by an atomic construct on which the write16
clause is present.17

atomic update An atomic operation that is specified by an atomic construct on which the18
update clause is present.19

atomic captured
update

An atomic update operation that is specified by an atomic construct on which the20
capture clause is present.21

atomic conditional
update

An atomic update operation that is specified by an atomic construct on which the22
compare clause is present.23

read-modify-write An atomic operation that reads and writes to a given storage location.24

COMMENT: Any atomic update is a read-modify-write operation.25

sequentially consistent
atomic construct

An atomic construct for which the seq_cst clause is specified.26

non-sequentially
consistent atomic

construct

An atomic construct for which the seq_cst clause is not specified27

sequentially consistent
atomic operation

An atomic operation that is specified by a sequentially consistent atomic construct.28

CHAPTER 1. OVERVIEW OF THE OPENMP API 11

1.2.5 Tasking Terminology1

task A specific instance of executable code and its data environment that the OpenMP2
implementation can schedule for execution by threads.3

task region A region consisting of all code encountered during the execution of a task.4

COMMENT: A parallel region consists of one or more implicit task5
regions.6

implicit task A task generated by an implicit parallel region or generated when a parallel7
construct is encountered during execution.8

binding implicit task The implicit task of the current thread team assigned to the encountering thread.9

explicit task A task that is not an implicit task.10

initial task An implicit task associated with an implicit parallel region.11

current task For a given thread, the task corresponding to the task region in which it is executing.12

encountering task For a given region, the current task of the encountering thread.13

child task A task is a child task of its generating task region. A child task region is not part of14
its generating task region.15

sibling tasks Tasks that are child tasks of the same task region.16

descendent task A task that is the child task of a task region or of one of its descendent task regions.17

task completion A condition that is satisfied when a thread reaches the end of the executable code that18
is associated with the task and any allow-completion event that is created for the task19
has been fulfilled.20

COMMENT: Completion of the initial task that is generated when the21
program begins occurs at program exit.22

task scheduling point A point during the execution of the current task region at which it can be suspended23
to be resumed later; or the point of task completion, after which the executing thread24
may switch to a different task region.25

task switching The act of a thread switching from the execution of one task to another task.26

tied task A task that, when its task region is suspended, can be resumed only by the same27
thread that was executing it before suspension. That is, the task is tied to that thread.28

untied task A task that, when its task region is suspended, can be resumed by any thread in the29
team. That is, the task is not tied to any thread.30

12 OpenMP API – Version 5.1 November 2020

undeferred task A task for which execution is not deferred with respect to its generating task region.1
That is, its generating task region is suspended until execution of the structured block2
associated with the undeferred task is completed.3

included task A task for which execution is sequentially included in the generating task region.4
That is, an included task is undeferred and executed by the encountering thread.5

merged task A task for which the data environment, inclusive of ICVs, is the same as that of its6
generating task region.7

mergeable task A task that may be a merged task if it is an undeferred task or an included task.8

final task A task that forces all of its child tasks to become final and included tasks.9

task dependence An ordering relation between two sibling tasks: the dependent task and a previously10
generated predecessor task. The task dependence is fulfilled when the predecessor11
task has completed.12

dependent task A task that because of a task dependence cannot be executed until its predecessor13
tasks have completed.14

mutually exclusive
tasks

Tasks that may be executed in any order, but not at the same time.15

predecessor task A task that must complete before its dependent tasks can be executed.16

task synchronization
construct

A taskwait, taskgroup, or a barrier construct.17

task generating
construct

A construct that generates one or more explicit tasks that are child tasks of the18
encountering task.19

target task A mergeable and untied task that is generated by a device construct or a call to a20
device memory routine and that coordinates activity between the current device and21
the target device.22

taskgroup set A set of tasks that are logically grouped by a taskgroup region.23

CHAPTER 1. OVERVIEW OF THE OPENMP API 13

1.2.6 Data Terminology1

variable A named data storage block, for which the value can be defined and redefined during2
the execution of a program.3

COMMENT: An array element or structure element is a variable that is4
part of another variable.5

scalar variable For C/C++, a scalar variable, as defined by the base language.6

For Fortran, a scalar variable with intrinsic type, as defined by the base language,7
excluding character type.8

aggregate variable A variable, such as an array or structure, composed of other variables.9

array section A designated subset of the elements of an array that is specified using a subscript10
notation that can select more than one element.11

array item An array, an array section, or an array element.12

shape-operator For C/C++, an array shaping operator that reinterprets a pointer expression as an13
array with one or more specified dimensions.14

implicit array For C/C++, the set of array elements of non-array type T that may be accessed by15
applying a sequence of [] operators to a given pointer that is either a pointer to type T16
or a pointer to a multidimensional array of elements of type T.17

For Fortran, the set of array elements for a given array pointer.18

COMMENT: For C/C++, the implicit array for pointer p with type T19
(*)[10] consists of all accessible elements p[i][j], for all i and j=0,1,...,9.20

base pointer For C/C++, an lvalue pointer expression that is used by a given lvalue expression or21
array section to refer indirectly to its storage, where the lvalue expression or array22
section is part of the implicit array for that lvalue pointer expression.23

For Fortran, a data pointer that appears last in the designator for a given variable or24
array section, where the variable or array section is part of the pointer target for that25
data pointer.26

COMMENT: For the array section27
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a28
pointer type declaration and identifiers xi have an array type declaration,29
the base pointer is: (*p0).x0[k1].p1->p2.30

named pointer For C/C++, the base pointer of a given lvalue expression or array section, or the base31
pointer of one of its named pointers.32

For Fortran, the base pointer of a given variable or array section, or the base pointer33
of one of its named pointers.34

14 OpenMP API – Version 5.1 November 2020

COMMENT: For the array section1
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a2
pointer type declaration and identifiers xi have an array type declaration,3
the named pointers are: p0, (*p0).x0[k1].p1, and (*p0).x0[k1].p1->p2.4

containing array For C/C++, a non-subscripted array (a containing array) that appears in a given5
lvalue expression or array section, where the lvalue expression or array section is part6
of that containing array.7

For Fortran, an array (a containing array) without the POINTER attribute and8
without a subscript list that appears in the designator of a given variable or array9
section, where the variable or array section is part of that containing array.10

COMMENT: For the array section11
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a12
pointer type declaration and identifiers xi have an array type declaration,13
the containing arrays are: (*p0).x0[k1].p1->p2[k2].x1 and14
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.15

base array For C/C++, a containing array of a given lvalue expression or array section that does16
not appear in the expression of any of its other containing arrays.17

For Fortran, a containing array of a given variable or array section that does not18
appear in the designator of any of its other containing arrays.19

COMMENT: For the array section20
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a21
pointer type declaration and identifiers xi have an array type declaration,22
the base array is: (*p0).x0[k1].p1->p2[k2].x1[k3].x2.23

named array For C/C++, a containing array of a given lvalue expression or array section, or a24
containing array of one of its named pointers.25

For Fortran, a containing array of a given variable or array section, or a containing26
array of one of its named pointers.27

COMMENT: For the array section28
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a29
pointer type declaration and identifiers xi have an array type declaration,30
the named arrays are: (*p0).x0, (*p0).x0[k1].p1->p2[k2].x1, and31
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.32

base expression The base array of a given array section or array element, if it exists; otherwise, the33
base pointer of the array section or array element.34

COMMENT: For the array section35
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a36
pointer type declaration and identifiers xi have an array type declaration,37
the base expression is: (*p0).x0[k1].p1->p2[k2].x1[k3].x2.38

CHAPTER 1. OVERVIEW OF THE OPENMP API 15

More examples for C/C++:1

• The base expression for x[i] and for x[i:n] is x, if x is an array or pointer.2

• The base expression for x[5][i] and for x[5][i:n] is x, if x is a pointer to3
an array or x is 2-dimensional array.4

• The base expression for y[5][i] and for y[5][i:n] is y[5], if y is an array5
of pointers or y is a pointer to a pointer.6

Examples for Fortran:7

• The base expression for x(i) and for x(i:j) is x.8

attached pointer A pointer variable in a device data environment to which the effect of a map clause9
assigns the address of an object, minus some offset, that is created in the device data10
environment. The pointer is an attached pointer for the remainder of its lifetime in11
the device data environment.12

simply contiguous
array section

An array section that statically can be determined to have contiguous storage or that,13
in Fortran, has the CONTIGUOUS attribute.14

structure A structure is a variable that contains one or more variables.15

For C/C++: Implemented using struct types.16

For C++: Implemented using class types.17

For Fortran: Implemented using derived types.18

string literal For C/C++, a string literal.19

For Fortran, a character literal constant.20

private variable With respect to a given set of task regions or SIMD lanes that bind to the same21
parallel region, a variable for which the name provides access to a different22
block of storage for each task region or SIMD lane.23

A variable that is part of another variable (as an array or structure element) cannot be24
made private independently of other components. If a variable is privatized, its25
components are also private.26

shared variable With respect to a given set of task regions that bind to the same parallel region, a27
variable for which the name provides access to the same block of storage for each28
task region.29

A variable that is part of another variable (as an array or structure element) cannot be30
shared independently of the other components, except for static data members of31
C++ classes.32

16 OpenMP API – Version 5.1 November 2020

threadprivate variable A variable that is replicated, one instance per thread, by the OpenMP1
implementation. Its name then provides access to a different block of storage for each2
thread.3

A variable that is part of another variable (as an array or structure element) cannot be4
made threadprivate independently of the other components, except for static data5
members of C++ classes. If a variable is made threadprivate, its components are also6
threadprivate.7

threadprivate memory The set of threadprivate variables associated with each thread.8

data environment The variables associated with the execution of a given region.9

device data
environment

The initial data environment associated with a device.10

device address An address of an object that may be referenced on a target device.11

device pointer An implementation defined handle that refers to a device address.12

mapped variable An original variable in a data environment with a corresponding variable in a device13
data environment.14

COMMENT: The original and corresponding variables may share storage.15

mapper An operation that defines how variables of given type are to be mapped or updated16
with respect to a device data environment.17

user-defined mapper A mapper that is defined by a declare mapper directive.18

map-type decay The process that determines the final map types of the map operations that result19
from mapping a variable with a user-defined mapper.20

mappable type A type that is valid for a mapped variable. If a type is composed from other types21
(such as the type of an array or structure element) and any of the other types are not22
mappable then the type is not mappable.23

COMMENT: Pointer types are mappable but the memory block to which24
the pointer refers is not mapped.25

For C, the type must be a complete type.26

For C++, the type must be a complete type.27

In addition, for class types:28

• All member functions accessed in any target region must appear in a declare29
target directive.30

For Fortran, no restrictions on the type except that for derived types:31

CHAPTER 1. OVERVIEW OF THE OPENMP API 17

• All type-bound procedures accessed in any target region must appear in a1
declare target directive.2

defined For variables, the property of having a valid value.3

For C, for the contents of variables, the property of having a valid value.4

For C++, for the contents of variables of POD (plain old data) type, the property of5
having a valid value.6

For variables of non-POD class type, the property of having been constructed but not7
subsequently destructed.8

For Fortran, for the contents of variables, the property of having a valid value. For9
the allocation or association status of variables, the property of having a valid status.10

COMMENT: Programs that rely upon variables that are not defined are11
non-conforming programs.12

class type For C++, variables declared with one of the class, struct, or union keywords.13

static storage duration For C/C++, the lifetime of an object with static storage duration, as defined by the14
base language.15

For Fortran, the lifetime of a variable with a SAVE attribute, implicit or explicit, a16
common block object or a variable declared in a module.17

1.2.7 Implementation Terminology18

supported active levels
of parallelism

An implementation-defined maximum number of active parallel regions that may19
enclose any region of code in the program.20

OpenMP API support Support of at least one active level of parallelism.21

nested parallelism
support

Support of more than one active level of parallelism.22

internal control
variable

A conceptual variable that specifies runtime behavior of a set of threads or tasks in23
an OpenMP program.24

COMMENT: The acronym ICV is used interchangeably with the term25
internal control variable in the remainder of this specification.26

OpenMP Additional
Definitions document

A document that exists outside of the OpenMP specification and defines additional27
values that may be used in a conforming program. The OpenMP Additional28
Definitions document is available at http://www.openmp.org/.29

18 OpenMP API – Version 5.1 November 2020

http://www.openmp.org/

compliant
implementation

An implementation of the OpenMP specification that compiles and executes any1
conforming program as defined by the specification.2

COMMENT: A compliant implementation may exhibit unspecified3
behavior when compiling or executing a non-conforming program.4

unspecified behavior A behavior or result that is not specified by the OpenMP specification or not known5
prior to the compilation or execution of an OpenMP program.6

Such unspecified behavior may result from:7

• Issues documented by the OpenMP specification as having unspecified behavior.8

• A non-conforming program.9

• A conforming program exhibiting an implementation-defined behavior.10

implementation defined Behavior that must be documented by the implementation, and is allowed to vary11
among different compliant implementations. An implementation is allowed to define12
this behavior as unspecified.13

COMMENT: All features that have implementation-defined behavior are14
documented in Appendix A.15

deprecated For a construct, clause, or other feature, the property that it is normative in the16
current specification but is considered obsolescent and will be removed in the future.17

1.2.8 Tool Terminology18

tool Code that can observe and/or modify the execution of an application.19

first-party tool A tool that executes in the address space of the program that it is monitoring.20

third-party tool A tool that executes as a separate process from the process that it is monitoring and21
potentially controlling.22

activated tool A first-party tool that successfully completed its initialization.23

event A point of interest in the execution of a thread.24

native thread A thread defined by an underlying thread implementation.25

tool callback A function that a tool provides to an OpenMP implementation to invoke when an26
associated event occurs.27

registering a callback Providing a tool callback to an OpenMP implementation.28

CHAPTER 1. OVERVIEW OF THE OPENMP API 19

dispatching a callback
at an event

Processing a callback when an associated event occurs in a manner consistent with1
the return code provided when a first-party tool registered the callback.2

thread state An enumeration type that describes the current OpenMP activity of a thread. A3
thread can be in only one state at any time.4

wait identifier A unique opaque handle associated with each data object (for example, a lock) that5
the OpenMP runtime uses to enforce mutual exclusion and potentially to cause a6
thread to wait actively or passively.7

frame A storage area on a thread’s stack associated with a procedure invocation. A frame8
includes space for one or more saved registers and often also includes space for saved9
arguments, local variables, and padding for alignment.10

canonical frame
address

An address associated with a procedure frame on a call stack that was the value of the11
stack pointer immediately prior to calling the procedure for which the frame12
represents the invocation.13

runtime entry point A function interface provided by an OpenMP runtime for use by a tool. A runtime14
entry point is typically not associated with a global function symbol.15

trace record A data structure in which to store information associated with an occurrence of an16
event.17

native trace record A trace record for an OpenMP device that is in a device-specific format.18

signal A software interrupt delivered to a thread.19

signal handler A function called asynchronously when a signal is delivered to a thread.20

async signal safe The guarantee that interruption by signal delivery will not interfere with a set of21
operations. An async signal safe runtime entry point is safe to call from a signal22
handler.23

code block A contiguous region of memory that contains code of an OpenMP program to be24
executed on a device.25

OMPT An interface that helps a first-party tool monitor the execution of an OpenMP26
program.27

OMPT interface state A state that indicates the permitted interactions between a first-party tool and the28
OpenMP implementation.29

OMPT active An OMPT interface state in which the OpenMP implementation is prepared to accept30
runtime calls from a first party tool and will dispatch any registered callbacks and in31
which a first-party tool can invoke runtime entry points if not otherwise restricted.32

20 OpenMP API – Version 5.1 November 2020

OMPT pending An OMPT interface state in which the OpenMP implementation can only call1
functions to initialize a first party tool and in which a first-party tool cannot invoke2
runtime entry points.3

OMPT inactive An OMPT interface state in which the OpenMP implementation will not make any4
callbacks and in which a first-party tool cannot invoke runtime entry points.5

OMPD An interface that helps a third-party tool inspect the OpenMP state of a program that6
has begun execution.7

OMPD library A dynamically loadable library that implements the OMPD interface.8

image file An executable or shared library.9

address space A collection of logical, virtual, or physical memory address ranges that contain code,10
stack, and/or data. Address ranges within an address space need not be contiguous.11
An address space consists of one or more segments.12

segment A portion of an address space associated with a set of address ranges.13

OpenMP architecture The architecture on which an OpenMP region executes.14

tool architecture The architecture on which an OMPD tool executes.15

OpenMP process A collection of one or more threads and address spaces. A process may contain16
threads and address spaces for multiple OpenMP architectures. At least one thread17
in an OpenMP process is an OpenMP thread. A process may be live or a core file.18

address space handle A handle that refers to an address space within an OpenMP process.19

thread handle A handle that refers to an OpenMP thread.20

parallel handle A handle that refers to an OpenMP parallel region.21

task handle A handle that refers to an OpenMP task region.22

descendent handle An output handle that is returned from the OMPD library in a function that accepts23
an input handle: the output handle is a descendent of the input handle.24

ancestor handle An input handle that is passed to the OMPD library in a function that returns an25
output handle: the input handle is an ancestor of the output handle. For a given26
handle, the ancestors of the handle are also the ancestors of the handle’s descendent.27

COMMENT: A tool cannot use a handle in an OMPD call if any ancestor28
of the handle has been released, except for OMPD calls that release it.29

CHAPTER 1. OVERVIEW OF THE OPENMP API 21

tool context An opaque reference provided by a tool to an OMPD library. A tool context uniquely1
identifies an abstraction.2

address space context A tool context that refers to an address space within a process.3

thread context A tool context that refers to a native thread.4

native thread identifier An identifier for a native thread defined by a thread implementation.5

1.3 Execution Model6

The OpenMP API uses the fork-join model of parallel execution. Multiple threads of execution7
perform tasks defined implicitly or explicitly by OpenMP directives. The OpenMP API is intended8
to support programs that will execute correctly both as parallel programs (multiple threads of9
execution and a full OpenMP support library) and as sequential programs (directives ignored and a10
simple OpenMP stubs library). However, a conforming OpenMP program may execute correctly as11
a parallel program but not as a sequential program, or may produce different results when executed12
as a parallel program compared to when it is executed as a sequential program. Further, using13
different numbers of threads may result in different numeric results because of changes in the14
association of numeric operations. For example, a serial addition reduction may have a different15
pattern of addition associations than a parallel reduction. These different associations may change16
the results of floating-point addition.17

An OpenMP program begins as a single thread of execution, called an initial thread. An initial18
thread executes sequentially, as if the code encountered is part of an implicit task region, called an19
initial task region, that is generated by the implicit parallel region surrounding the whole program.20

The thread that executes the implicit parallel region that surrounds the whole program executes on21
the host device. An implementation may support other devices besides the host device. If22
supported, these devices are available to the host device for offloading code and data. Each device23
has its own threads that are distinct from threads that execute on another device. Threads cannot24
migrate from one device to another device. Each device is identified by a device number. The25
device number for the host device is the value of the total number of non-host devices, while each26
non-host device has a unique device number that is greater than or equal to zero and less than the27
device number for the host device.28

When a target construct is encountered, a new target task is generated. The target task region29
encloses the target region. The target task is complete after the execution of the target region30
is complete.31

When a target task executes, the enclosed target region is executed by an initial thread. The32
initial thread executes sequentially, as if the target region is part of an initial task region that is33
generated by an implicit parallel region. The initial thread may execute on the requested target34

22 OpenMP API – Version 5.1 November 2020

device, if it is available and supported. If the target device does not exist or the implementation1
does not support it, all target regions associated with that device execute on the host device.2

The implementation must ensure that the target region executes as if it were executed in the data3
environment of the target device unless an if clause is present and the if clause expression4
evaluates to false.5

The teams construct creates a league of teams, where each team is an initial team that comprises6
an initial thread that executes the teams region. Each initial thread executes sequentially, as if the7
code encountered is part of an initial task region that is generated by an implicit parallel region8
associated with each team. Whether the initial threads concurrently execute the teams region is9
unspecified, and a program that relies on their concurrent execution for the purposes of10
synchronization may deadlock.11

If a construct creates a data environment, the data environment is created at the time the construct is12
encountered. The description of a construct defines whether it creates a data environment.13

When any thread encounters a parallel construct, the thread creates a team of itself and zero or14
more additional threads and becomes the primary thread of the new team. A set of implicit tasks,15
one per thread, is generated. The code for each task is defined by the code inside the parallel16
construct. Each task is assigned to a different thread in the team and becomes tied; that is, it is17
always executed by the thread to which it is initially assigned. The task region of the task being18
executed by the encountering thread is suspended, and each member of the new team executes its19
implicit task. An implicit barrier occurs at the end of the parallel region. Only the primary20
thread resumes execution beyond the end of the parallel construct, resuming the task region21
that was suspended upon encountering the parallel construct. Any number of parallel22
constructs can be specified in a single program.23

parallel regions may be arbitrarily nested inside each other. If nested parallelism is disabled, or24
is not supported by the OpenMP implementation, then the new team that is created by a thread that25
encounters a parallel construct inside a parallel region will consist only of the26
encountering thread. However, if nested parallelism is supported and enabled, then the new team27
can consist of more than one thread. A parallel construct may include a proc_bind clause to28
specify the places to use for the threads in the team within the parallel region.29

When any team encounters a worksharing construct, the work inside the construct is divided among30
the members of the team, and executed cooperatively instead of being executed by every thread. An31
implicit barrier occurs at the end of any region that corresponds to a worksharing construct for32
which the nowait clause is not specified. Redundant execution of code by every thread in the33
team resumes after the end of the worksharing construct.34

When any thread encounters a task generating construct, one or more explicit tasks are generated.35
Execution of explicitly generated tasks is assigned to one of the threads in the current team, subject36
to the thread’s availability to execute work. Thus, execution of the new task could be immediate, or37
deferred until later according to task scheduling constraints and thread availability. Threads are38
allowed to suspend the current task region at a task scheduling point in order to execute a different39
task. If the suspended task region is for a tied task, the initially assigned thread later resumes40

CHAPTER 1. OVERVIEW OF THE OPENMP API 23

execution of the suspended task region. If the suspended task region is for an untied task, then any1
thread may resume its execution. Completion of all explicit tasks bound to a given parallel region is2
guaranteed before the primary thread leaves the implicit barrier at the end of the region.3
Completion of a subset of all explicit tasks bound to a given parallel region may be specified4
through the use of task synchronization constructs. Completion of all explicit tasks bound to the5
implicit parallel region is guaranteed by the time the program exits.6

When any thread encounters a simd construct, the iterations of the loop associated with the7
construct may be executed concurrently using the SIMD lanes that are available to the thread.8

When a loop construct is encountered, the iterations of the loop associated with the construct are9
executed in the context of its encountering threads, as determined according to its binding region. If10
the loop region binds to a teams region, the region is encountered by the set of primary threads11
that execute the teams region. If the loop region binds to a parallel region, the region is12
encountered by the team of threads that execute the parallel region. Otherwise, the region is13
encountered by a single thread.14

If the loop region binds to a teams region, the encountering threads may continue execution15
after the loop region without waiting for all iterations to complete; the iterations are guaranteed to16
complete before the end of the teams region. Otherwise, all iterations must complete before the17
encountering threads continue execution after the loop region. All threads that encounter the18
loop construct may participate in the execution of the iterations. Only one of these threads may19
execute any given iteration.20

The cancel construct can alter the previously described flow of execution in an OpenMP region.21
The effect of the cancel construct depends on its construct-type-clause. If a task encounters a22
cancel construct with a taskgroup construct-type-clause, then the task activates cancellation23
and continues execution at the end of its task region, which implies completion of that task. Any24
other task in that taskgroup that has begun executing completes execution unless it encounters a25
cancellation point construct, in which case it continues execution at the end of its task26
region, which implies its completion. Other tasks in that taskgroup region that have not begun27
execution are aborted, which implies their completion.28

For all other construct-type-clause values, if a thread encounters a cancel construct, it activates29
cancellation of the innermost enclosing region of the type specified and the thread continues30
execution at the end of that region. Threads check if cancellation has been activated for their region31
at cancellation points and, if so, also resume execution at the end of the canceled region.32

If cancellation has been activated, regardless of construct-type-clause, threads that are waiting33
inside a barrier other than an implicit barrier at the end of the canceled region exit the barrier and34
resume execution at the end of the canceled region. This action can occur before the other threads35
reach that barrier.36

Synchronization constructs and library routines are available in the OpenMP API to coordinate37
tasks and data access in parallel regions. In addition, library routines and environment38
variables are available to control or to query the runtime environment of OpenMP programs.39

24 OpenMP API – Version 5.1 November 2020

The OpenMP specification makes no guarantee that input or output to the same file is synchronous1
when executed in parallel. In this case, the programmer is responsible for synchronizing input and2
output processing with the assistance of OpenMP synchronization constructs or library routines.3
For the case where each thread accesses a different file, the programmer does not need to4
synchronize access.5

All concurrency semantics defined by the base language with respect to threads of execution apply6
to OpenMP threads, unless specified otherwise.7

1.4 Memory Model8

1.4.1 Structure of the OpenMP Memory Model9

The OpenMP API provides a relaxed-consistency, shared-memory model. All OpenMP threads10
have access to a place to store and to retrieve variables, called the memory. A given storage location11
in the memory may be associated with one or more devices, such that only threads on associated12
devices have access to it. In addition, each thread is allowed to have its own temporary view of the13
memory. The temporary view of memory for each thread is not a required part of the OpenMP14
memory model, but can represent any kind of intervening structure, such as machine registers,15
cache, or other local storage, between the thread and the memory. The temporary view of memory16
allows the thread to cache variables and thereby to avoid going to memory for every reference to a17
variable. Each thread also has access to another type of memory that must not be accessed by other18
threads, called threadprivate memory.19

A directive that accepts data-sharing attribute clauses determines two kinds of access to variables20
used in the directive’s associated structured block: shared and private. Each variable referenced in21
the structured block has an original variable, which is the variable by the same name that exists in22
the program immediately outside the construct. Each reference to a shared variable in the structured23
block becomes a reference to the original variable. For each private variable referenced in the24
structured block, a new version of the original variable (of the same type and size) is created in25
memory for each task or SIMD lane that contains code associated with the directive. Creation of26
the new version does not alter the value of the original variable. However, the impact of attempts to27
access the original variable from within the region corresponding to the directive is unspecified; see28
Section 2.21.4.3 for additional details. References to a private variable in the structured block refer29
to the private version of the original variable for the current task or SIMD lane. The relationship30
between the value of the original variable and the initial or final value of the private version31
depends on the exact clause that specifies it. Details of this issue, as well as other issues with32
privatization, are provided in Section 2.21.33

The minimum size at which a memory update may also read and write back adjacent variables that34
are part of another variable (as array or structure elements) is implementation defined but is no35
larger than the base language requires.36

A single access to a variable may be implemented with multiple load or store instructions and, thus,37
is not guaranteed to be atomic with respect to other accesses to the same variable. Accesses to38

CHAPTER 1. OVERVIEW OF THE OPENMP API 25

variables smaller than the implementation defined minimum size or to C or C++ bit-fields may be1
implemented by reading, modifying, and rewriting a larger unit of memory, and may thus interfere2
with updates of variables or fields in the same unit of memory.3

Two memory operations are considered unordered if the order in which they must complete, as seen4
by their affected threads, is not specified by the memory consistency guarantees listed in5
Section 1.4.6. If multiple threads write to the same memory unit (defined consistently with the6
above access considerations) then a data race occurs if the writes are unordered. Similarly, if at7
least one thread reads from a memory unit and at least one thread writes to that same memory unit8
then a data race occurs if the read and write are unordered. If a data race occurs then the result of9
the program is unspecified.10

A private variable in a task region that subsequently generates an inner nested parallel region is11
permitted to be made shared for implicit tasks in the inner parallel region. A private variable in12
a task region can also be shared by an explicit task region generated during its execution. However,13
the programmer must use synchronization that ensures that the lifetime of the variable does not end14
before completion of the explicit task region sharing it. Any other access by one task to the private15
variables of another task results in unspecified behavior.16

A storage location in memory that is associated with a given device has a device address that may17
be dereferenced by a thread executing on that device, but it may not be generally accessible from18
other devices. A different device may obtain a device pointer that refers to this device address. The19
manner in which a program can obtain the referenced device address from a device pointer, outside20
of mechanisms specified by OpenMP, is implementation defined.21

1.4.2 Device Data Environments22

When an OpenMP program begins, an implicit target data region for each device surrounds23
the whole program. Each device has a device data environment that is defined by its implicit24
target data region. Any declare target directives and directives that accept data-mapping25
attribute clauses determine how an original variable in a data environment is mapped to a26
corresponding variable in a device data environment.27

When an original variable is mapped to a device data environment and a corresponding variable is28
not present in the device data environment, a new corresponding variable (of the same type and size29
as the original variable) is created in the device data environment. Conversely, the original variable30
becomes the new variable’s corresponding variable in the device data environment of the device31
that performs a mapping operation.32

The corresponding variable in the device data environment may share storage with the original33
variable. Writes to the corresponding variable may alter the value of the original variable. The34
impact of this possibility on memory consistency is discussed in Section 1.4.6. When a task35
executes in the context of a device data environment, references to the original variable refer to the36
corresponding variable in the device data environment. If an original variable is not currently37
mapped and a corresponding variable does not exist in the device data environment then accesses to38

26 OpenMP API – Version 5.1 November 2020

the original variable result in unspecified behavior unless the unified_shared_memory1
clause is specified on a requires directive for the compilation unit.2

The relationship between the value of the original variable and the initial or final value of the3
corresponding variable depends on the map-type. Details of this issue, as well as other issues with4
mapping a variable, are provided in Section 2.21.7.1.5

The original variable in a data environment and a corresponding variable in a device data6
environment may share storage. Without intervening synchronization data races can occur.7

If a variable has a corresponding variable with which it does not share storage, a write to a storage8
location designated by the variable causes the value at the corresponding storage location to9
become undefined.10

1.4.3 Memory Management11

The host device, and other devices that an implementation may support, have attached storage12
resources where program variables are stored. These resources can have different traits. A memory13
space in an OpenMP program represents a set of these storage resources. Memory spaces are14
defined according to a set of traits, and a single resource may be exposed as multiple memory15
spaces with different traits or may be part of multiple memory spaces. In any device, at least one16
memory space is guaranteed to exist.17

An OpenMP program can use a memory allocator to allocate memory in which to store variables.18
This memory will be allocated from the storage resources of the memory space associated with the19
memory allocator. Memory allocators are also used to deallocate previously allocated memory.20
When an OpenMP memory allocator is not used to allocate memory, OpenMP does not prescribe21
the storage resource for the allocation; the memory for the variables may be allocated in any storage22
resource.23

1.4.4 The Flush Operation24

The memory model has relaxed-consistency because a thread’s temporary view of memory is not25
required to be consistent with memory at all times. A value written to a variable can remain in the26
thread’s temporary view until it is forced to memory at a later time. Likewise, a read from a27
variable may retrieve the value from the thread’s temporary view, unless it is forced to read from28
memory. OpenMP flush operations are used to enforce consistency between a thread’s temporary29
view of memory and memory, or between multiple threads’ view of memory.30

A flush operation has an associated device-set that constrains the threads with which it enforces31
memory consistency. Consistency is only guaranteed to be enforced between the view of memory32
of its thread and the view of memory of other threads executing on devices in its device-set. Unless33
otherwise stated, the device-set of a flush operation only includes the current device.34

If a flush operation is a strong flush, it enforces consistency between a thread’s temporary view and35
memory. A strong flush operation is applied to a set of variables called the flush-set. A strong flush36

CHAPTER 1. OVERVIEW OF THE OPENMP API 27

restricts reordering of memory operations that an implementation might otherwise do.1
Implementations must not reorder the code for a memory operation for a given variable, or the code2
for a flush operation for the variable, with respect to a strong flush operation that refers to the same3
variable.4

If a thread has performed a write to its temporary view of a shared variable since its last strong flush5
of that variable, then when it executes another strong flush of the variable, the strong flush does not6
complete until the value of the variable has been written to the variable in memory. If a thread7
performs multiple writes to the same variable between two strong flushes of that variable, the strong8
flush ensures that the value of the last write is written to the variable in memory. A strong flush of a9
variable executed by a thread also causes its temporary view of the variable to be discarded, so that10
if its next memory operation for that variable is a read, then the thread will read from memory and11
capture the value in its temporary view. When a thread executes a strong flush, no later memory12
operation by that thread for a variable involved in that strong flush is allowed to start until the strong13
flush completes. The completion of a strong flush executed by a thread is defined as the point at14
which all writes to the flush-set performed by the thread before the strong flush are visible in15
memory to all other threads, and at which that thread’s temporary view of the flush-set is discarded.16

A strong flush operation provides a guarantee of consistency between a thread’s temporary view17
and memory. Therefore, a strong flush can be used to guarantee that a value written to a variable by18
one thread may be read by a second thread. To accomplish this, the programmer must ensure that19
the second thread has not written to the variable since its last strong flush of the variable, and that20
the following sequence of events are completed in this specific order:21

1. The value is written to the variable by the first thread;22

2. The variable is flushed, with a strong flush, by the first thread;23

3. The variable is flushed, with a strong flush, by the second thread; and24

4. The value is read from the variable by the second thread.25

If a flush operation is a release flush or acquire flush, it can enforce consistency between the views26
of memory of two synchronizing threads. A release flush guarantees that any prior operation that27
writes or reads a shared variable will appear to be completed before any operation that writes or28
reads the same shared variable and follows an acquire flush with which the release flush29
synchronizes (see Section 1.4.5 for more details on flush synchronization). A release flush will30
propagate the values of all shared variables in its temporary view to memory prior to the thread31
performing any subsequent atomic operation that may establish a synchronization. An acquire flush32
will discard any value of a shared variable in its temporary view to which the thread has not written33
since last performing a release flush, and it will load any value of a shared variable propagated by a34
release flush that synchronizes with it into its temporary view so that it may be subsequently read.35
Therefore, release and acquire flushes may also be used to guarantee that a value written to a36
variable by one thread may be read by a second thread. To accomplish this, the programmer must37
ensure that the second thread has not written to the variable since its last acquire flush, and that the38
following sequence of events happen in this specific order:39

28 OpenMP API – Version 5.1 November 2020

1. The value is written to the variable by the first thread;1

2. The first thread performs a release flush;2

3. The second thread performs an acquire flush; and3

4. The value is read from the variable by the second thread.4

5

Note – OpenMP synchronization operations, described in Section 2.19 and in Section 3.9, are6
recommended for enforcing this order. Synchronization through variables is possible but is not7
recommended because the proper timing of flushes is difficult.8

9

The flush properties that define whether a flush operation is a strong flush, a release flush, or an10
acquire flush are not mutually disjoint. A flush operation may be a strong flush and a release flush;11
it may be a strong flush and an acquire flush; it may be a release flush and an acquire flush; or it12
may be all three.13

1.4.5 Flush Synchronization and Happens Before14

OpenMP supports thread synchronization with the use of release flushes and acquire flushes. For15
any such synchronization, a release flush is the source of the synchronization and an acquire flush is16
the sink of the synchronization, such that the release flush synchronizes with the acquire flush.17

A release flush has one or more associated release sequences that define the set of modifications18
that may be used to establish a synchronization. A release sequence starts with an atomic operation19
that follows the release flush and modifies a shared variable and additionally includes any20
read-modify-write atomic operations that read a value taken from some modification in the release21
sequence. The following rules determine the atomic operation that starts an associated release22
sequence.23

• If a release flush is performed on entry to an atomic operation, that atomic operation starts its24
release sequence.25

• If a release flush is performed in an implicit flush region, an atomic operation that is provided26
by the implementation and that modifies an internal synchronization variable starts its release27
sequence.28

• If a release flush is performed by an explicit flush region, any atomic operation that modifies a29
shared variable and follows the flush region in its thread’s program order starts an associated30
release sequence.31

An acquire flush is associated with one or more prior atomic operations that read a shared variable32
and that may be used to establish a synchronization. The following rules determine the associated33
atomic operation that may establish a synchronization.34

CHAPTER 1. OVERVIEW OF THE OPENMP API 29

• If an acquire flush is performed on exit from an atomic operation, that atomic operation is its1
associated atomic operation.2

• If an acquire flush is performed in an implicit flush region, an atomic operation that is3
provided by the implementation and that reads an internal synchronization variable is its4
associated atomic operation.5

• If an acquire flush is performed by an explicit flush region, any atomic operation that reads a6
shared variable and precedes the flush region in its thread’s program order is an associated7
atomic operation.8

A release flush synchronizes with an acquire flush if the following conditions are satisfied:9

• An atomic operation associated with the acquire flush reads a value written by a modification10
from a release sequence associated with the release flush; and11

• The device on which each flush is performed is in both of their respective device-sets.12

An operation X simply happens before an operation Y if any of the following conditions are13
satisfied:14

1. X and Y are performed by the same thread, and X precedes Y in the thread’s program order;15

2. X synchronizes with Y according to the flush synchronization conditions explained above or16
according to the base language’s definition of synchronizes with, if such a definition exists; or17

3. Another operation, Z, exists such that X simply happens before Z and Z simply happens before Y.18

An operation X happens before an operation Y if any of the following conditions are satisfied:19

1. X happens before Y according to the base language’s definition of happens before, if such a20
definition exists; or21

2. X simply happens before Y.22

A variable with an initial value is treated as if the value is stored to the variable by an operation that23
happens before all operations that access or modify the variable in the program.24

1.4.6 OpenMP Memory Consistency25

The following rules guarantee an observable completion order for a given pair of memory26
operations in race-free programs, as seen by all affected threads. If both memory operations are27
strong flushes, the affected threads are all threads on devices in both of their respective device-sets.28
If exactly one of the memory operations is a strong flush, the affected threads are all threads on29
devices in its device-set. Otherwise, the affected threads are all threads.30

• If two operations performed by different threads are sequentially consistent atomic operations or31
they are strong flushes that flush the same variable, then they must be completed as if in some32
sequential order, seen by all affected threads.33

30 OpenMP API – Version 5.1 November 2020

• If two operations performed by the same thread are sequentially consistent atomic operations or1
they access, modify, or, with a strong flush, flush the same variable, then they must be completed2
as if in that thread’s program order, as seen by all affected threads.3

• If two operations are performed by different threads and one happens before the other, then they4
must be completed as if in that happens before order, as seen by all affected threads, if:5

– both operations access or modify the same variable;6

– both operations are strong flushes that flush the same variable; or7

– both operations are sequentially consistent atomic operations.8

• Any two atomic memory operations from different atomic regions must be completed as if in9
the same order as the strong flushes implied in their respective regions, as seen by all affected10
threads.11

The flush operation can be specified using the flush directive, and is also implied at various12
locations in an OpenMP program: see Section 2.19.8 for details.13

14

Note – Since flush operations by themselves cannot prevent data races, explicit flush operations are15
only useful in combination with non-sequentially consistent atomic directives.16

17

OpenMP programs that:18

• Do not use non-sequentially consistent atomic directives;19

• Do not rely on the accuracy of a false result from omp_test_lock and20
omp_test_nest_lock; and21

• Correctly avoid data races as required in Section 1.4.1,22

behave as though operations on shared variables were simply interleaved in an order consistent with23
the order in which they are performed by each thread. The relaxed consistency model is invisible24
for such programs, and any explicit flush operations in such programs are redundant.25

1.5 Tool Interfaces26

The OpenMP API includes two tool interfaces, OMPT and OMPD, to enable development of27
high-quality, portable, tools that support monitoring, performance, or correctness analysis and28
debugging of OpenMP programs developed using any implementation of the OpenMP API.29

An implementation of the OpenMP API may differ from the abstract execution model described by30
its specification. The ability of tools that use the OMPT or OMPD interfaces to observe such31
differences does not constrain implementations of the OpenMP API in any way.32

CHAPTER 1. OVERVIEW OF THE OPENMP API 31

1.5.1 OMPT1

The OMPT interface, which is intended for first-party tools, provides the following:2

• A mechanism to initialize a first-party tool;3

• Routines that enable a tool to determine the capabilities of an OpenMP implementation;4

• Routines that enable a tool to examine OpenMP state information associated with a thread;5

• Mechanisms that enable a tool to map implementation-level calling contexts back to their6
source-level representations;7

• A callback interface that enables a tool to receive notification of OpenMP events;8

• A tracing interface that enables a tool to trace activity on OpenMP target devices; and9

• A runtime library routine that an application can use to control a tool.10

OpenMP implementations may differ with respect to the thread states that they support, the mutual11
exclusion implementations that they employ, and the OpenMP events for which tool callbacks are12
invoked. For some OpenMP events, OpenMP implementations must guarantee that a registered13
callback will be invoked for each occurrence of the event. For other OpenMP events, OpenMP14
implementations are permitted to invoke a registered callback for some or no occurrences of the15
event; for such OpenMP events, however, OpenMP implementations are encouraged to invoke tool16
callbacks on as many occurrences of the event as is practical. Section 4.2.4 specifies the subset of17
OMPT callbacks that an OpenMP implementation must support for a minimal implementation of18
the OMPT interface.19

With the exception of the omp_control_tool runtime library routine for tool control, all other20
routines in the OMPT interface are intended for use only by tools and are not visible to21
applications. For that reason, a Fortran binding is provided only for omp_control_tool; all22
other OMPT functionality is described with C syntax only.23

1.5.2 OMPD24

The OMPD interface is intended for third-party tools, which run as separate processes. An25
OpenMP implementation must provide an OMPD library that can be dynamically loaded and used26
by a third-party tool. A third-party tool, such as a debugger, uses the OMPD library to access27
OpenMP state of a program that has begun execution. OMPD defines the following:28

• An interface that an OMPD library exports, which a tool can use to access OpenMP state of a29
program that has begun execution;30

• A callback interface that a tool provides to the OMPD library so that the library can use it to31
access the OpenMP state of a program that has begun execution; and32

32 OpenMP API – Version 5.1 November 2020

• A small number of symbols that must be defined by an OpenMP implementation to help the tool1
find the correct OMPD library to use for that OpenMP implementation and to facilitate2
notification of events.3

Section 5 describes OMPD in detail.4

1.6 OpenMP Compliance5

The OpenMP API defines constructs that operate in the context of the base language that is6
supported by an implementation. If the implementation of the base language does not support a7
language construct that appears in this document, a compliant OpenMP implementation is not8
required to support it, with the exception that for Fortran, the implementation must allow case9
insensitivity for directive and API routines names, and must allow identifiers of more than six10
characters. An implementation of the OpenMP API is compliant if and only if it compiles and11
executes all other conforming programs, and supports the tool interface, according to the syntax and12
semantics laid out in Chapters 1, 2, 3, 4 and 5. Appendices A and B as well as sections designated13
as Notes (see Section 1.8) are for information purposes only and are not part of the specification.14

All library, intrinsic and built-in routines provided by the base language must be thread-safe in a15
compliant implementation. In addition, the implementation of the base language must also be16
thread-safe. For example, ALLOCATE and DEALLOCATE statements must be thread-safe in17
Fortran. Unsynchronized concurrent use of such routines by different threads must produce correct18
results (although not necessarily the same as serial execution results, as in the case of random19
number generation routines).20

Starting with Fortran 90, variables with explicit initialization have the SAVE attribute implicitly.21
This is not the case in Fortran 77. However, a compliant OpenMP Fortran implementation must22
give such a variable the SAVE attribute, regardless of the underlying base language version.23

Appendix A lists certain aspects of the OpenMP API that are implementation defined. A compliant24
implementation must define and document its behavior for each of the items in Appendix A.25

1.7 Normative References26

• ISO/IEC 9899:1990, Information Technology - Programming Languages - C.27

This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.28

• ISO/IEC 9899:1999, Information Technology - Programming Languages - C.29

This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.30

• ISO/IEC 9899:2011, Information Technology - Programming Languages - C.31

This OpenMP API specification refers to ISO/IEC 9899:2011 as C11.32

CHAPTER 1. OVERVIEW OF THE OPENMP API 33

• ISO/IEC 9899:2018, Information Technology - Programming Languages - C.1

This OpenMP API specification refers to ISO/IEC 9899:2018 as C18.2

• ISO/IEC 14882:1998, Information Technology - Programming Languages - C++.3

This OpenMP API specification refers to ISO/IEC 14882:1998 as C++98.4

• ISO/IEC 14882:2011, Information Technology - Programming Languages - C++.5

This OpenMP API specification refers to ISO/IEC 14882:2011 as C++11.6

• ISO/IEC 14882:2014, Information Technology - Programming Languages - C++.7

This OpenMP API specification refers to ISO/IEC 14882:2014 as C++14.8

• ISO/IEC 14882:2017, Information Technology - Programming Languages - C++.9

This OpenMP API specification refers to ISO/IEC 14882:2017 as C++17.10

• ISO/IEC 14882:2020, Information Technology - Programming Languages - C++.11

This OpenMP API specification refers to ISO/IEC 14882:2020 as C++20.12

• ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.13

This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.14

• ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.15

This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.16

• ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran.17

This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.18

• ISO/IEC 1539-1:2004, Information Technology - Programming Languages - Fortran.19

This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003.20

• ISO/IEC 1539-1:2010, Information Technology - Programming Languages - Fortran.21

This OpenMP API specification refers to ISO/IEC 1539-1:2010 as Fortran 2008.22

• ISO/IEC 1539-1:2018, Information Technology - Programming Languages - Fortran.23

This OpenMP API specification refers to ISO/IEC 1539-1:2018 as Fortran 2018. While future24
versions of the OpenMP specification are expected to address the following features, currently25
their use may result in unspecified behavior.26

– Declared type of a polymorphic allocatable component in structure constructor27

– SELECT RANK construct28

– IEEE comparison predicate in intrinsic relational operators29

– Finalization of an allocatable subobject in intrinsic assignment30

34 OpenMP API – Version 5.1 November 2020

– Locality of variables in a DO CONCURRENT construct1

– IMPORT statement extensions2

– Assumed-rank dummy argument3

– Assumed-type dummy argument4

– Interoperable procedure enhancements5

– ASYNCHRONOUS attribute enhancement6

Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to the base7
language supported by the implementation.8

1.8 Organization of this Document9

The remainder of this document is structured as follows:10

• Chapter 2 “Directives”11

• Chapter 3 “Runtime Library Routines”12

• Chapter 4 “OMPT Interface”13

• Chapter 5 “OMPD Interface”14

• Chapter 6 “Environment Variables”15

• Appendix A “OpenMP Implementation-Defined Behaviors”16

• Appendix B “Features History”17

Some sections of this document only apply to programs written in a certain base language. Text that18
applies only to programs for which the base language is C or C++ is shown as follows:19

C / C++
C/C++ specific text...20

C / C++
Text that applies only to programs for which the base language is C only is shown as follows:21

C
C specific text...22

C
Text that applies only to programs for which the base language is C++ only is shown as follows:23

C++
C++ specific text...24

C++

CHAPTER 1. OVERVIEW OF THE OPENMP API 35

Text that applies only to programs for which the base language is Fortran is shown as follows:1

Fortran
Fortran specific text...2

Fortran
Where an entire page consists of base language specific text, a marker is shown at the top of the3
page. For Fortran-specific text, the marker is:4

Fortran (cont.)

For C/C++-specific text, the marker is:5

C/C++ (cont.)

Some text is for information only, and is not part of the normative specification. Such text is6
designated as a note or comment, like this:7

8

Note – Non-normative text...9
10

COMMENT: Non-normative text...11

36 OpenMP API – Version 5.1 November 2020

2 Directives1

This chapter describes the syntax and behavior of OpenMP directives.2

C
OpenMP directives are specified with the #pragma mechanism provided by the C standard.3

C
C++

OpenMP directives are specified with attribute specifiers or the #pragma mechanism provided by4
the C++ standard.5

C++
Fortran

OpenMP directives are specified with stylized comments that are identified by unique sentinels.6
Also, a stylized comment form is available for conditional compilation.7

If a directive appears in the declarative part of a module then the behavior is as if that directive8
appears after any references to that module.9

Fortran
Compilers can therefore ignore OpenMP directives and conditionally compiled code if support of10
the OpenMP API is not provided or enabled. A compliant implementation must provide an option11
or interface that ensures that underlying support of all OpenMP directives and OpenMP conditional12
compilation mechanisms is enabled. In the remainder of this document, the phrase OpenMP13
compilation is used to mean a compilation with these OpenMP features enabled.14

C / C++
This chapter uses NULL as a generic term for a null pointer constant, true as a generic term for a15
non-zero integer value and false as a generic term for an integer value of zero.16

C / C++
Fortran

This chapter uses NULL as a generic term for the named constant C_NULL_PTR, true as a generic17
term for a logical value of .TRUE. and false as a generic term for a logical value of .FALSE..18

Fortran

CHAPTER 2. DIRECTIVES 37

Restrictions1
The following restrictions apply to OpenMP directives:2

C / C++
C

• A declarative directive may not be used in place of a substatement in a selection statement, in3
place of the loop body in an iteration statement, or in place of the statement that follows a label.4

C
C++

• A declarative directive may not be used in place of a substatement in a selection statement or5
iteration statement, or in place of the statement that follows a label.6

C++
C / C++
Fortran

• OpenMP directives, except simd and declarative directives, may not appear in pure procedures.7

• OpenMP directives may not appear in the WHERE, FORALL or DO CONCURRENT constructs.8

Fortran

2.1 Directive Format9

C / C++
OpenMP directives for C/C++ may be specified with #pragma directives as follows:10

#pragma omp directive-name [[,] clause[[,] clause] ...] new-line11

Where directive-name is the name of the directive and, when specified in the syntax of the directive,12
any directive-level arguments enclosed in parentheses.13

14

Note – In the following example, depobj(o) is the directive-name:15

#pragma omp depobj(o) depend(inout: d)16

17

Each #pragma directive starts with #pragma omp. The remainder of the directive follows the18
conventions of the C and C++ standards for compiler directives. In particular, white space can be19
used before and after the #, and sometimes white space must be used to separate the words in a20
directive. Preprocessing tokens following #pragma omp are subject to macro replacement.21

Some OpenMP directives may be composed of consecutive #pragma directives if specified in22
their syntax.23

C / C++

38 OpenMP API – Version 5.1 November 2020

C++
In C++11 and higher, all OpenMP directives may be specified with C++ attribute specifiers as1
follows:2

[[omp :: directive(directive-name[[,] clause[[,] clause]...])]]3

or4

[[using omp : directive(directive-name[[,] clause[[,] clause]...])]]5

The above two forms are interchangeable for any OpenMP directive. Some OpenMP directives may6
be composed of consecutive attribute specifiers if specified in their syntax. Any two consecutive7
attribute specifiers may be reordered or expressed as a single attribute specifier, as permitted by the8
base language, without changing the behavior of the OpenMP directive.9

Some directives may have additional forms that use the attribute syntax.10

Multiple attributes on the same statement are allowed. A directive that uses the attribute syntax11
cannot be applied to the same statement as a directive that uses the pragma syntax. For any12
directive that has a paired end directive, including those with a begin and end pair, both directives13
must use either the attribute syntax or the pragma syntax. Attribute directives that apply to the same14
statement are unordered. An ordering can be imposed with the sequence attribute, which is15
specified as follows:16

[[omp :: sequence([omp::]directive-attr [, [omp::]directive-attr]...)]]17

where directive-attr is any attribute in the omp namespace, optionally specified with a omp::18
namespace qualifier, which may be another sequence attribute.19

The application of multiple attributes in a sequence attribute is ordered as if each directive had20
been written as a #pragma directive on subsequent lines.21

22

Note – This is an example of the expected transformation:23

[[omp::sequence(directive(parallel), directive(for))]]24
for(...) {}25
// becomes26
#pragma omp parallel27
#pragma omp for28
for(...) {}29

30

C++

CHAPTER 2. DIRECTIVES 39

C / C++
Directives are case-sensitive.1

Each of the expressions used in the OpenMP syntax inside of the clauses must be a valid2
assignment-expression of the base language unless otherwise specified.3

C / C++
C++

Directives may not appear in constexpr functions or in constant expressions.4

C++
Fortran

OpenMP directives for Fortran are specified as follows:5

sentinel directive-name [clause[[,] clause]...]6

All OpenMP compiler directives must begin with a directive sentinel. The format of a sentinel7
differs between fixed form and free form source files, as described in Section 2.1.1 and8
Section 2.1.2.9

Directives are case insensitive. Directives cannot be embedded within continued statements, and10
statements cannot be embedded within directives.11

Each of the expressions used in the OpenMP syntax inside of the clauses must be a valid expression12
of the base language unless otherwise specified.13

In order to simplify the presentation, free form is used for the syntax of OpenMP directives for14
Fortran in the remainder of this document, except as noted.15

Fortran
A directive may be categorized as one of the following: a metadirective, a declarative directive, an16
executable directive, an informational directive, or a utility directive.17

Only one directive-name can be specified per directive (note that this includes combined directives,18
see Section 2.16). The order in which clauses appear on directives is not significant. Clauses on19
directives may be repeated as needed, subject to the restrictions listed in the description of each20
clause or the directives on which they can appear.21

Some clauses accept a list, an extended-list, or a locator-list. A list consists of a comma-separated22
collection of one or more list items. An extended-list consists of a comma-separated collection of23
one or more extended list items. A locator-list consists of a comma-separated collection of one or24
more locator list items.25

C / C++
A list item is a variable or an array section. An extended list item is a list item or a function name. A26
locator list item is any lvalue expression including variables, an array section, or a reserved locator.27

C / C++

40 OpenMP API – Version 5.1 November 2020

Fortran
A list item is a variable that is not coindexed, an array section that is not coindexed, a named1
constant, an associate name that may appear in a variable definition context, or a common block2
name (enclosed in slashes). An extended list item is a list item or a procedure name. A locator list3
item is a list item, or a reserved locator.4

A named constant as a list item can appear only in clauses where it is explicitly allowed.5

When a named common block appears in a list, it has the same meaning and restrictions as if every6
explicit member of the common block appeared in the list. An explicit member of a common block7
is a variable that is named in a COMMON statement that specifies the common block name and is8
declared in the same scoping unit in which the clause appears. Named common blocks do not9
include the blank common block.10

Although variables in common blocks can be accessed by use association or host association,11
common block names cannot. As a result, a common block name specified in a data-sharing12
attribute, a data copying, or a data-mapping attribute clause must be declared to be a common block13
in the same scoping unit in which the clause appears.14

If a list item that appears in a directive or clause is an optional dummy argument that is not present,15
the directive or clause for that list item is ignored.16

If the variable referenced inside a construct is an optional dummy argument that is not present, any17
explicitly determined, implicitly determined, or predetermined data-sharing and data-mapping18
attribute rules for that variable are ignored. Otherwise, if the variable is an optional dummy19
argument that is present, it is present inside the construct.20

Fortran
For all base languages, a list item, an extended list item, or a locator list item is subject to the21
restrictions specified in Section 2.1.5 and in each of the sections that describe clauses and directives22
for which the list, the extended-list, or the locator-list appears.23

Some clauses and directives accept the use of reserved locators as special identifiers that represent24
system storage not necessarily bound to any base language storage item. Reserved locators may25
only appear in clauses and directives where they are explicitly allowed and may not otherwise be26
referenced in the program. The list of reserved locators is:27

omp_all_memory28

The reserved locator omp_all_memory is a reserved identifier that denotes a list item treated as29
having storage that corresponds to the storage of all other objects in memory.30

Some directives have an associated structured block or a structured block sequence.31

CHAPTER 2. DIRECTIVES 41

C / C++
A structured block sequence that consists of more than one statement may appear only for1
executable directives that explicitly allow it. The corresponding compound statement obtained by2
enclosing the sequence in { and } must be a structured block and the structured block sequence3
then should be considered to be a structured block with all of its restrictions.4

C / C++
A structured block:5

• may contain infinite loops where the point of exit is never reached;6

• may halt due to an IEEE exception;7

C / C++
• may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a8
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);9

• may be an expression statement, iteration statement, selection statement, or try block, provided10
that the corresponding compound statement obtained by enclosing it in { and } would be a11
structured block; and12

C / C++
Fortran

• may contain STOP or ERROR STOP statements.13

Fortran

Restrictions14
Restrictions to structured blocks are as follows:15

• Entry to a structured block must not be the result of a branch.16

• The point of exit cannot be a branch out of the structured block.17

C / C++
• The point of entry to a structured block must not be a call to setjmp.18

• longjmp must not violate the entry/exit criteria.19

C / C++
C++

• throw must not violate the entry/exit criteria.20

• co_await, co_yield and co_return must not violate the entry/exit criteria.21

C++

42 OpenMP API – Version 5.1 November 2020

Fortran
• When a BLOCK construct appears in a structured block, that BLOCK construct must not contain1
any ASYNCHRONOUS or VOLATILE statements, nor any specification statements that include2
the ASYNCHRONOUS or VOLATILE attributes.3

Restrictions on explicit OpenMP regions (that arise from executable directives) are as follows:4

• If more than one image is executing the program, any image control statement, ERROR STOP5
statement, FAIL IMAGE statement, collective subroutine call or access to a coindexed object that6
appears in an explicit OpenMP region will result in unspecified behavior.7

2.1.1 Fixed Source Form Directives8

The following sentinels are recognized in fixed form source files:9

!$omp | c$omp | *$omp10

Sentinels must start in column 1 and appear as a single word with no intervening characters.11
Fortran fixed form line length, white space, continuation, and column rules apply to the directive12
line. Initial directive lines must have a space or a zero in column 6, and continuation directive lines13
must have a character other than a space or a zero in column 6.14

Comments may appear on the same line as a directive. The exclamation point initiates a comment15
when it appears after column 6. The comment extends to the end of the source line and is ignored.16
If the first non-blank character after the directive sentinel of an initial or continuation directive line17
is an exclamation point, the line is ignored.18

19

Note – In the following example, the three formats for specifying the directive are equivalent (the20
first line represents the position of the first 9 columns):21

c2345678922
!$omp parallel do shared(a,b,c)23

24
c$omp parallel do25
c$omp+shared(a,b,c)26

27
c$omp paralleldoshared(a,b,c)28

29

CHAPTER 2. DIRECTIVES 43

2.1.2 Free Source Form Directives1

The following sentinel is recognized in free form source files:2

!$omp3

The sentinel can appear in any column as long as it is preceded only by white space. It must appear4
as a single word with no intervening white space. Fortran free form line length, white space, and5
continuation rules apply to the directive line. Initial directive lines must have a space after the6
sentinel. Continued directive lines must have an ampersand (&) as the last non-blank character on7
the line, prior to any comment placed inside the directive. Continuation directive lines can have an8
ampersand after the directive sentinel with optional white space before and after the ampersand.9

Comments may appear on the same line as a directive. The exclamation point (!) initiates a10
comment. The comment extends to the end of the source line and is ignored. If the first non-blank11
character after the directive sentinel is an exclamation point, the line is ignored.12

One or more blanks or horizontal tabs are optional to separate adjacent keywords in13
directive-names unless otherwise specified.14

15

Note – In the following example the three formats for specifying the directive are equivalent (the16
first line represents the position of the first 9 columns):17

!2345678918
!$omp parallel do &19

!$omp shared(a,b,c)20
21

!$omp parallel &22
!$omp&do shared(a,b,c)23

24
!$omp paralleldo shared(a,b,c)25

26
27

Fortran

44 OpenMP API – Version 5.1 November 2020

2.1.3 Stand-Alone Directives1

Summary2
Stand-alone directives are executable directives that have no associated user code.3

Description4
Stand-alone directives do not have any associated executable user code. Instead, they represent5
executable statements that typically do not have succinct equivalent statements in the base language.6
Some restrictions limit the placement of a stand-alone directive within a program. A stand-alone7
directive may be placed only at a point where a base language executable statement is allowed.8

C / C++

Restrictions9
Restrictions to stand-alone directives are as follows:10

C
• A stand-alone directive may not be used in place of a substatement in a selection statement, in11
place of the loop body in an iteration statement, or in place of the statement that follows a label.12

C
C++

• A stand-alone directive may not be used in place of a substatement in a selection statement or13
iteration statement, or in place of the statement that follows a label.14

C++

2.1.4 Array Shaping15

If an expression has a type of pointer to T, then a shape-operator can be used to specify the extent of16
that pointer. In other words, the shape-operator is used to reinterpret, as an n-dimensional array, the17
region of memory to which that expression points.18

Formally, the syntax of the shape-operator is as follows:19

shaped-expression := ([s1][s2]...[sn])cast-expression20

The result of applying the shape-operator to an expression is an lvalue expression with an21
n-dimensional array type with dimensions s1 × s2 . . .× sn and element type T.22

The precedence of the shape-operator is the same as a type cast.23

Each si is an integral type expression that must evaluate to a positive integer.24

CHAPTER 2. DIRECTIVES 45

Restrictions1
Restrictions to the shape-operator are as follows:2

• The type T must be a complete type.3

• The shape-operator can appear only in clauses for which it is explicitly allowed.4

• The result of a shape-operator must be a named array of a list item.5

• The type of the expression upon which a shape-operator is applied must be a pointer type.6

C++
• If the type T is a reference to a type T’, then the type will be considered to be T’ for all purposes7
of the designated array.8

C++
C / C++

2.1.5 Array Sections9

An array section designates a subset of the elements in an array.10

C / C++
To specify an array section in an OpenMP construct, array subscript expressions are extended with11
the following syntax:12

[lower-bound : length : stride] or13

[lower-bound : length :] or14

[lower-bound : length] or15

[lower-bound : : stride] or16

[lower-bound : :] or17

[lower-bound :] or18

[: length : stride] or19

[: length :] or20

[: length] or21

[: : stride]22

[: :]23

[:]24

46 OpenMP API – Version 5.1 November 2020

C/C++ (cont.)

The array section must be a subset of the original array.1

Array sections are allowed on multidimensional arrays. Base language array subscript expressions2
can be used to specify length-one dimensions of multidimensional array sections.3

Each of the lower-bound, length, and stride expressions if specified must be an integral type4
expression of the base language. When evaluated they represent a set of integer values as follows:5

{ lower-bound, lower-bound + stride, lower-bound + 2 * stride,... , lower-bound + ((length - 1) *6
stride) }7

The length must evaluate to a non-negative integer.8

The stride must evaluate to a positive integer.9

When the size of the array dimension is not known, the length must be specified explicitly.10

When the stride is absent it defaults to 1.11

When the length is absent it defaults to dd(size− lower-bound)/strideee, where size is the size of the12
array dimension.13

When the lower-bound is absent it defaults to 0.14

The precedence of a subscript operator that uses the array section syntax is the same as the15
precedence of a subscript operator that does not use the array section syntax.16

17

Note – The following are examples of array sections:18

a[0:6]19

a[0:6:1]20

a[1:10]21

a[1:]22

a[:10:2]23

b[10][:][:]24

b[10][:][:0]25

c[42][0:6][:]26

c[42][0:6:2][:]27

c[1:10][42][0:6]28

S.c[:100]29

p->y[:10]30

this->a[:N]31

(p+10)[:N]32

CHAPTER 2. DIRECTIVES 47

Assume a is declared to be a 1-dimensional array with dimension size 11. The first two examples1
are equivalent, and the third and fourth examples are equivalent. The fifth example specifies a stride2
of 2 and therefore is not contiguous.3

Assume b is declared to be a pointer to a 2-dimensional array with dimension sizes 10 and 10. The4
sixth example refers to all elements of the 2-dimensional array given by b[10]. The seventh5
example is a zero-length array section.6

Assume c is declared to be a 3-dimensional array with dimension sizes 50, 50, and 50. The eighth7
example is contiguous, while the ninth and tenth examples are not contiguous.8

The final four examples show array sections that are formed from more general base expressions.9

The following are examples that are non-conforming array sections:10

s[:10].x11

p[:10]->y12

*(xp[:10])13

For all three examples, a base language operator is applied in an undefined manner to an array14
section. The only operator that may be applied to an array section is a subscript operator for which15
the array section appears as the postfix expression.16

17
18

C / C++
Fortran

Fortran has built-in support for array sections although some restrictions apply to their use in19
OpenMP directives, as enumerated in the following section.20

Fortran

Restrictions21
Restrictions to array sections are as follows:22

• An array section can appear only in clauses for which it is explicitly allowed.23

• A stride expression may not be specified unless otherwise stated.24

C / C++
• An element of an array section with a non-zero size must have a complete type.25

• The base expression of an array section must have an array or pointer type.26

• If a consecutive sequence of array subscript expressions appears in an array section, and the first27
subscript expression in the sequence uses the extended array section syntax defined in this28
section, then only the last subscript expression in the sequence may select array elements that29
have a pointer type.30

C / C++

48 OpenMP API – Version 5.1 November 2020

C++
• If the type of the base expression of an array section is a reference to a type T, then the type will1
be considered to be T for all purposes of the array section.2

• An array section cannot be used in an overloaded [] operator.3

C++
Fortran

• If a stride expression is specified, it must be positive.4

• The upper bound for the last dimension of an assumed-size dummy array must be specified.5

• If a list item is an array section with vector subscripts, the first array element must be the lowest6
in the array element order of the array section.7

• If a list item is an array section, the last part-ref of the list item must have a section subscript list.8

Fortran

2.1.6 Iterators9

Iterators are identifiers that expand to multiple values in the clause on which they appear.10

The syntax of the iterator modifier is as follows:11

iterator(iterators-definition)12

where iterators-definition is one of the following:13

iterator-specifier [, iterators-definition]14

where iterator-specifier is one of the following:15

[iterator-type] identifier = range-specification16

where:17

• identifier is a base language identifier.18

C / C++
• iterator-type is a type name.19

C / C++
Fortran

• iterator-type is a type specifier.20

Fortran
• range-specification is of the form begin:end[:step], where begin and end are expressions for21
which their types can be converted to iterator-type and step is an integral expression.22

CHAPTER 2. DIRECTIVES 49

C / C++
In an iterator-specifier, if the iterator-type is not specified then that iterator is of int type.1

C / C++
Fortran

In an iterator-specifier, if the iterator-type is not specified then that iterator has default integer type.2

Fortran
In a range-specification, if the step is not specified its value is implicitly defined to be 1.3

An iterator only exists in the context of the clause in which it appears. An iterator also hides all4
accessible symbols with the same name in the context of the clause.5

The use of a variable in an expression that appears in the range-specification causes an implicit6
reference to the variable in all enclosing constructs.7

C / C++
The values of the iterator are the set of values i0, . . . , iN−1 where:8

• i0 = (iterator-type) begin,9

• ij = (iterator-type) (ij−1 + step), where j ≥ 1 and10

• if step > 0,11

– i0 < (iterator-type) end,12

– iN−1 < (iterator-type) end, and13

– (iterator-type) (iN−1 + step) ≥ (iterator-type) end;14

• if step < 0,15

– i0 > (iterator-type) end,16

– iN−1 > (iterator-type) end, and17

– (iterator-type) (iN−1 + step) ≤ (iterator-type) end.18

C / C++
Fortran

The values of the iterator are the set of values i1, . . . , iN where:19

• i1 = begin,20

• ij = ij−1 + step, where j ≥ 2 and21

• if step > 0,22

– i1 ≤ end,23

– iN ≤ end, and24

50 OpenMP API – Version 5.1 November 2020

– iN + step > end;1

• if step < 0,2

– i1 ≥ end,3

– iN ≥ end, and4

– iN + step < end.5

Fortran
The set of values will be empty if no possible value complies with the conditions above.6

For those clauses that contain expressions that contain iterator identifiers, the effect is as if the list7
item is instantiated within the clause for each value of the iterator in the set defined above,8
substituting each occurrence of the iterator identifier in the expression with the iterator value. If the9
set of values of the iterator is empty then the effect is as if the clause was not specified.10

The behavior is unspecified if ij + step cannot be represented in iterator-type in any of the11
ij + step computations for any 0 ≤ j < N in C/C++ or 0 < j ≤ N in Fortran.12

Restrictions13
Restrictions to iterators are as follows:14

• An expression that contains an iterator identifier can only appear in clauses that explicitly allow15
expressions that contain iterators.16

• The iterator-type must not declare a new type.17

C / C++
• The iterator-type must be an integral or pointer type.18

• The iterator-type must not be const qualified.19

C / C++
Fortran

• The iterator-type must be an integer type.20

Fortran
• If the step expression of a range-specification equals zero, the behavior is unspecified.21

• Each iterator identifier can only be defined once in an iterators-definition.22

• Iterators cannot appear in the range-specification.23

CHAPTER 2. DIRECTIVES 51

2.2 Conditional Compilation1

In implementations that support a preprocessor, the _OPENMP macro name is defined to have the2
decimal value yyyymm where yyyy and mm are the year and month designations of the version of3
the OpenMP API that the implementation supports.4

If a #define or a #undef preprocessing directive in user code defines or undefines the5
_OPENMP macro name, the behavior is unspecified.6

Fortran
The OpenMP API requires Fortran lines to be compiled conditionally, as described in the following7
sections.8

2.2.1 Fixed Source Form Conditional Compilation Sentinels9

The following conditional compilation sentinels are recognized in fixed form source files:10

!$ | *$ | c$11

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the12
following criteria:13

• The sentinel must start in column 1 and appear as a single word with no intervening white space;14

• After the sentinel is replaced with two spaces, initial lines must have a space or zero in column 615
and only white space and numbers in columns 1 through 5;16

• After the sentinel is replaced with two spaces, continuation lines must have a character other than17
a space or zero in column 6 and only white space in columns 1 through 5.18

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not met, the line19
is left unchanged.20

21

Note – In the following example, the two forms for specifying conditional compilation in fixed22
source form are equivalent (the first line represents the position of the first 9 columns):23

c2345678924
!$ 10 iam = omp_get_thread_num() +25
!$ & index26

27
#ifdef _OPENMP28

10 iam = omp_get_thread_num() +29
& index30

#endif31

32

52 OpenMP API – Version 5.1 November 2020

2.2.2 Free Source Form Conditional Compilation Sentinel1

The following conditional compilation sentinel is recognized in free form source files:2

!$3

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the4
following criteria:5

• The sentinel can appear in any column but must be preceded only by white space;6

• The sentinel must appear as a single word with no intervening white space;7

• Initial lines must have a space after the sentinel;8

• Continued lines must have an ampersand as the last non-blank character on the line, prior to any9
comment appearing on the conditionally compiled line.10

Continuation lines can have an ampersand after the sentinel, with optional white space before and11
after the ampersand. If these criteria are met, the sentinel is replaced by two spaces. If these criteria12
are not met, the line is left unchanged.13

14

Note – In the following example, the two forms for specifying conditional compilation in free15
source form are equivalent (the first line represents the position of the first 9 columns):16

c2345678917
!$ iam = omp_get_thread_num() + &18
!$& index19

20
#ifdef _OPENMP21

iam = omp_get_thread_num() + &22
index23

#endif24

25
26

Fortran

2.3 Variant Directives27

2.3.1 OpenMP Context28

At any point in a program, an OpenMP context exists that defines traits that describe the active29
OpenMP constructs, the execution devices, functionality supported by the implementation and30
available dynamic values. The traits are grouped into trait sets. The following trait sets exist:31
construct, device, target_device, implementation and dynamic. Traits are categorized as name-list32

CHAPTER 2. DIRECTIVES 53

traits, clause-list traits, non-property traits and extension traits. This categorization determines the1
syntax that is used to match the trait, as defined in Section 2.3.2.2

The construct set is composed of the directive names, each being a trait, of all enclosing constructs3
at that point in the program up to a target construct. Combined and composite constructs are4
added to the set as distinct constructs in the same nesting order specified by the original construct.5
Whether the dispatch construct is added to the construct set is implementation defined. If it is6
added, it will only be added for the target-call of the associated code. The set is ordered by nesting7
level in ascending order. Specifically, the ordering of the set of constructs is c1, . . . , cN , where c1 is8
the construct at the outermost nesting level and cN is the construct at the innermost nesting level. In9
addition, if the point in the program is not enclosed by a target construct, the following rules are10
applied in order:11

1. For procedures with a declare simd directive, the simd trait is added to the beginning of the12
set as c1 for any generated SIMD versions so the total size of the set is increased by 1.13

2. For procedures that are determined to be function variants by a declare variant directive, the14
selectors c1, . . . , cM of the construct selector set are added in the same order to the15
beginning of the set as c1, . . . , cM so the total size of the set is increased byM .16

3. For device routines, the target trait is added to the beginning of the set as c1 for any versions of17
the procedure that are generated for target regions so the total size of the set is increased by 1.18

The simd trait is a clause-list trait that is defined with properties that match the clauses accepted by19
the declare simd directive with the same name and semantics. The simd trait defines at least the20
simdlen property and one of the inbranch or notinbranch properties. Traits in the construct set21
other than simd are non-property traits.22

The device set includes traits that define the characteristics of the device being targeted by the23
compiler at that point in the program. For each target device that the implementation supports, a24
target_device set exists that defines the characteristics of that device. At least the following traits25
must be defined for the device and all target_device sets:26

• The kind(kind-name-list) trait specifies the general kind of the device. The following kind-name27
values are defined:28

– host, which specifies that the device is the host device;29

– nohost, which specifies that the devices is not the host device; and30

– the values defined in the OpenMP Additional Definitions document.31

• The isa(isa-name-list) trait specifies the Instruction Set Architectures supported by the device.32
The accepted isa-name values are implementation defined.33

• The arch(arch-name-list) trait specifies the architectures supported by the device. The accepted34
arch-name values are implementation defined.35

The kind, isa and arch traits in the device and target_device sets are name-list traits.36

54 OpenMP API – Version 5.1 November 2020

Additionally, the target_device set defines the following trait:1

• The device_num trait specifies the device number of the device.2

The implementation set includes traits that describe the functionality supported by the OpenMP3
implementation at that point in the program. At least the following traits can be defined:4

• The vendor(vendor-name-list) trait, which specifies the vendor identifiers of the implementation.5
OpenMP defined values for vendor-name are defined in the OpenMP Additional Definitions6
document.7

• The extension(extension-name-list) trait, which specifies vendor specific extensions to the8
OpenMP specification. The accepted extension-name values are implementation defined.9

• A trait with a name that is identical to the name of any clause that was supplied to the requires10
directive prior to the program point. Such traits other than the atomic_default_mem_order trait11
are non-property traits. The presence of these traits has been deprecated.12

• A requires(requires-clause-list) trait, which is a clause-list trait for which the properties are the13
clauses that have been supplied to the requires directive prior to the program point as well as14
implementation defined implicit requirements.15

The vendor and extension traits in the implementation set are name-list traits.16

Implementations can define additional traits in the device, target_device and implementation sets;17
these traits are extension traits.18

The dynamic trait set includes traits that define the dynamic properties of a program at a point in its19
execution. The data state trait in the dynamic trait set refers to the complete data state of the20
program that may be accessed at runtime.21

2.3.2 Context Selectors22

Context selectors are used to define the properties that can match an OpenMP context. OpenMP23
defines different sets of selectors, each containing different selectors.24

The syntax for a context selector is context-selector-specification as described in the following25
grammar:26

context-selector-specification:27
trait-set-selector[,trait-set-selector[,...]]28

29
trait-set-selector:30

trait-set-selector-name={trait-selector[, trait-selector[, ...]]}31
32

trait-selector:33
trait-selector-name[([trait-score:] trait-property[, trait-property[, ...]])]34

35
trait-property:36

CHAPTER 2. DIRECTIVES 55

trait-property-name1
or2
trait-property-clause3
or4
trait-property-expression5
or6
trait-property-extension7

8
trait-property-clause:9

clause10
11

trait-property-name:12
identifier13
or14
string-literal15

16
trait-property-expression17

scalar-expression (for C/C++)18
or19
scalar-logical-expression (for Fortran)20
or21
scalar-integer-expression (for Fortran)22

23
trait-score:24

score(score-expression)25
26

trait-property-extension:27
trait-property-name28
or29
identifier(trait-property-extension[, trait-property-extension[, ...]])30
or31
constant integer expression32

For trait selectors that correspond to name-list traits, each trait-property should be33
trait-property-name and for any value that is a valid identifier both the identifier and the34
corresponding string literal (for C/C++) and the corresponding char-literal-constant (for Fortran)35
representation are considered representations of the same value.36

For trait selectors that correspond to clause-list traits, each trait-property should be37
trait-property-clause. The syntax is the same as for the matching OpenMP clause.38

The construct selector set defines the construct traits that should be active in the OpenMP39
context. The following selectors can be defined in the construct set: target; teams;40
parallel; for (in C/C++); do (in Fortran); simd and dispatch. Each trait-property of the41
simd selector is a trait-property-clause. The syntax is the same as for a valid clause of the42

56 OpenMP API – Version 5.1 November 2020

declare simd directive and the restrictions on the clauses from that directive apply. The1
construct selector is an ordered list c1, . . . , cN .2

The device and implementation selector sets define the traits that should be active in the3
corresponding trait set of the OpenMP context. The target_device selector set defines the4
traits that should be active in the target_device trait set for the device that the specified5
device_num selector identifies. The same traits that are defined in the corresponding traits sets6
can be used as selectors with the same properties. The kind selector of the device and7
target_device selector sets can also specify the value any, which is as if no kind selector8
was specified. If a device_num selector does not appear in the target_device selector set9
then a device_num selector that specifies the value of the default-device-var ICV is implied. For10
the device_num selector of the target_device selector set, a single11
trait-property-expression must be specified. For the atomic_default_mem_order selector of12
the implementation set, a single trait-property must be specified as an identifier equal to one13
of the valid arguments to the atomic_default_mem_order clause on the requires14
directive. For the requires selector of the implementation set, each trait-property is a15
trait-property-clause. The syntax is the same as for a valid clause of the requires directive and16
the restrictions on the clauses from that directive apply.17

The user selector set defines the condition selector that provides additional user-defined18
conditions.19

The condition selector contains a single trait-property-expression that must evaluate to true for20
the selector to be true.21

Any non-constant expression that is evaluated to determine the suitability of a variant is evaluated22
according to the data state trait in the dynamic trait set of the OpenMP context.23

The user selector set is dynamic if the condition selector is present and the expression in the24
condition selector is not a constant expression; otherwise, it is static.25

All parts of a context selector define the static part of the context selector except the following26
parts, which define the dynamic part of a context selector:27

• Its user selector set if it is dynamic; and28

• Its target_device selector set.29

For the match clause of a declare variant directive, any argument of the base function that30
is referenced in an expression that appears in the context selector is treated as a reference to the31
expression that is passed into that argument at the call to the base function. Otherwise, a variable or32
procedure reference in an expression that appears in a context selector is a reference to the variable33
or procedure of that name that is visible at the location of the directive on which the selector34
appears.35

CHAPTER 2. DIRECTIVES 57

C++
Each occurrence of the this pointer in an expression in a context selector that appears in the1
match clause of a declare variant directive is treated as an expression that is the address of2
the object on which the associated base function is invoked.3

C++
Implementations can allow further selectors to be specified. Each specified trait-property for these4
implementation-defined selectors should be trait-property-extension. Implementations can ignore5
specified selectors that are not those described in this section.6

Restrictions7
Restrictions to context selectors are as follows:8

• Each trait-property can only be specified once in a trait-selector other than the construct9
selector set.10

• Each trait-set-selector-name can only be specified once.11

• Each trait-selector-name can only be specified once.12

• A trait-score cannot be specified in traits from the construct, device or13
target_device trait-selector-sets.14

• A score-expression must be a non-negative constant integer expression.15

• The expression of a device_num trait must evaluate to a non-negative integer value that is less16
than or equal to the value of omp_get_num_devices().17

• A variable or procedure that is referenced in an expression that appears in a context selector must18
be visible at the location of the directive on which the selector appears unless the directive is a19
declare variant directive and the variable is an argument of the associated base function.20

• If trait-property any is specified in the kind trait-selector of the device or21
target_device selector set, no other trait-property may be specified in the same selector.22

• For a trait-selector that corresponds to a name-list trait, at least one trait-property must be23
specified.24

• For a trait-selector that corresponds to a non-property trait, no trait-property may be specified.25

• For the requires selector of the implementation selector set, at least one trait-property26
must be specified.27

58 OpenMP API – Version 5.1 November 2020

2.3.3 Matching and Scoring Context Selectors1

A given context selector is compatible with a given OpenMP context if the following conditions are2
satisfied:3

• All selectors in the user set of the context selector are true;4

• All traits and trait properties that are defined by selectors in the target_device set of the5
context selector are active in the target_device trait set for the device that is identified by the6
device_num selector;7

• All traits and trait properties that are defined by selectors in the construct, device and8
implementation sets of the context selector are active in the corresponding trait sets of the9
OpenMP context;10

• For each selector in the context selector, its properties are a subset of the properties of the11
corresponding trait of the OpenMP context;12

• Selectors in the construct set of the context selector appear in the same relative order as their13
corresponding traits in the construct trait set of the OpenMP context; and14

• No specified implementation-defined selector is ignored by the implementation.15

Some properties of the simd selector have special rules to match the properties of the simd trait:16

• The simdlen(N) property of the selector matches the simdlen(M) trait of the OpenMP context17
ifM%N equals zero; and18

• The aligned(list:N) property of the selector matches the aligned(list:M) trait of the OpenMP19
context if N%M equals zero.20

Among compatible context selectors, a score is computed using the following algorithm:21

1. Each trait selector for which the corresponding trait appears in the construct trait set in the22
OpenMP context is given the value 2p−1 where p is the position of the corresponding trait, cp, in23
the context construct trait set; if the traits that correspond to the construct selector set24
appear multiple times in the OpenMP context, the highest valued subset of context traits that25
contains all selectors in the same order are used;26

2. The kind, arch, and isa selectors, if specified, are given the values 2l, 2l+1 and 2l+2,27
respectively, where l is the number of traits in the construct set;28

3. Trait selectors for which a trait-score is specified are given the value specified by the trait-score29
score-expression;30

4. The values given to any additional selectors allowed by the implementation are implementation31
defined;32

5. Other selectors are given a value of zero; and33

6. A context selector that is a strict subset of another context selector has a score of zero. For other34
context selectors, the final score is the sum of the values of all specified selectors plus 1.35

CHAPTER 2. DIRECTIVES 59

2.3.4 Metadirectives1

Summary2
A metadirective is a directive that can specify multiple directive variants of which one may be3
conditionally selected to replace the metadirective based on the enclosing OpenMP context.4

Syntax5
C / C++

The syntax of a metadirective is as follows:6

#pragma omp metadirective [clause[[,] clause] ...] new-line7

or8

#pragma omp begin metadirective [clause[[,] clause] ...] new-line9
stmt(s)10

#pragma omp end metadirective11

where clause is one of the following:12

when(context-selector-specification: [directive-variant])13

default([directive-variant])14

C / C++
Fortran

The syntax of a metadirective is as follows:15

!$omp metadirective [clause[[,] clause] ...]16

or17

!$omp begin metadirective [clause[[,] clause] ...]18
stmt(s)19

!$omp end metadirective20

where clause is one of the following:21

when(context-selector-specification: [directive-variant])22

default([directive-variant])23

Fortran
In the when clause, context-selector-specification specifies a context selector (see Section 2.3.2).24

In the when and default clauses, directive-variant has the following form and specifies a25
directive variant that specifies an OpenMP directive with clauses that apply to it.26

directive-name [clause[[,] clause] ...]27

60 OpenMP API – Version 5.1 November 2020

Description1
A metadirective is replaced by a nothing directive or one of the directive variants specified by2
the when clauses or the default clause.3

If no default clause is specified the effect is as if a default clause without an associated4
directive variant was specified.5

The default clause is treated as a when clause with the specified directive variant, if any, and an6
always compatible static context selector that has a score lower than the scores associated with any7
other clause.8

If a when clause does not explicitly specify a directive variant it implicitly specifies a nothing9
directive as the directive variant.10

The OpenMP context for a given metadirective is defined according to Section 2.3.1.11

The directive variant specified by a when clause is a candidate to replace the metadirective if the12
static part of the corresponding context selector is compatible with the OpenMP context according13
to the matching rules defined in Section 2.3.3.14

Replacement candidates are ordered according to the following rules in decreasing precedence:15

• A candidate is before another one if the score associated with the context selector of the16
corresponding when clause is higher.17

• A candidate that was explicitly specified is before one that was implicitly specified.18

• Candidates are ordered according to the order in which they lexically appear on the metadirective.19

The list of dynamic replacement candidates is the prefix of the sorted list of replacement candidates20
up to and including the first candidate for which the corresponding when clause has a static context21
selector.22

The first dynamic replacement candidate for which the corresponding when clause has a23
compatible context selector, according to the matching rules defined in Section 2.3.3, replaces the24
metadirective.25

Expressions that appear in the context selector of a when clause are evaluated if no prior dynamic26
replacement candidate has a compatible context selector, and the number of times each expression27
is evaluated is implementation defined. All variables referenced by these expressions are28
considered to be referenced by the metadirective.29

A directive variant that is associated with a when clause may only affect the program if the30
directive variant is a dynamic replacement candidate.31

The begin metadirective directive behaves identically to the metadirective directive,32
except that the directive syntax for the specified directive variants other than the nothing33
directive must accept a paired end directive. For any directive variant that is selected to replace the34
begin metadirective directive, the end metadirective directive will be implicitly35
replaced by its paired end directive to demarcate the statements that are affected by or are36

CHAPTER 2. DIRECTIVES 61

associated with the directive variant. If the nothing directive is selected to replace the1
begin metadirective directive, its paired end metadirective directive is ignored.2

Restrictions3
Restrictions to metadirectives are as follows:4

• The directive variant appearing in a when or default clause must not specify a5
metadirective, begin metadirective, or end metadirective directive.6

C / C++
• The directive variant that appears in a when or default clause must not specify a7
begin declare variant or end declare variant.8

C / C++
• The context selector that appears in a when clause must not specify any properties for the simd9
selector.10

• Replacement of the metadirective with the directive variant associated with any of the dynamic11
replacement candidates must result in a conforming OpenMP program.12

• Insertion of user code at the location of a metadirective must be allowed if the first dynamic13
replacement candidate does not have a static context selector.14

• All items must be executable directives if the first dynamic replacement candidate does not have15
a static context selector.16

• Any directive variant that is specified by a when or default clause on a17
begin metadirective directive must be an OpenMP directive that has a paired18
end directive or must be the nothing directive, and the begin metadirective directive19
must have a paired end metadirective directive.20

• The default clause may appear at most once on a metadirective.21

62 OpenMP API – Version 5.1 November 2020

2.3.5 Declare Variant Directive1

Summary2
The declare variant directive declares a specialized variant of a base function and specifies the3
context in which that specialized variant is used. The declare variant directive is a declarative4
directive.5

Syntax6
C / C++

The syntax of the declare variant directive is as follows:7

#pragma omp declare variant(variant-func-id) clause [[[,] clause] ...] new-line8
[#pragma omp declare variant(variant-func-id) clause [[[,] clause] ...] new-line9
[...]]10

function definition or declaration11

or12

#pragma omp begin declare variant clause new-line13
declaration-definition-seq14

#pragma omp end declare variant new-line15

where clause is one of the following:16

match(context-selector-specification)17

adjust_args(adjust-op:argument-list)18

append_args(append-op[[,append-op]...])19

where adjust-op is one of the following:20

nothing21

need_device_ptr22

where append-op is one of the following:23

interop(interop-type[[,interop-type]...])24

and where variant-func-id is the name of a function variant that is either a base language identifier25
or, for C++, a template-id.26

C / C++

CHAPTER 2. DIRECTIVES 63

Fortran
The syntax of the declare variant directive is as follows:1

!$omp declare variant([base-proc-name:]variant-proc-name) clause [[[,] clause] ...2
]3

where clause is one of the following:4

match(context-selector-specification)5

adjust_args(adjust-op:argument-list)6

append_args(append-op[[,append-op]...])7

where adjust-op is one of the following:8

nothing9

need_device_ptr10

where append-op is one of the following:11

interop(interop-type[[,interop-type]...])12

and where variant-proc-name is the name of a function variant that is a base language identifier.13

Fortran

Description14
The declare variant directive declares a base function to have the specified function variant. The15
context selector in the match clause is associated with the variant.16

C / C++
The begin declare variant directive associates the context selector in the match clause17
with each function definition in declaration-definition-seq.18

For the purpose of call resolution, each function definition that appears between a19
begin declare variant directive and its paired end declare variant directive is a20
function variant for an assumed base function, with the same name and a compatible prototype, that21
is declared elsewhere without an associated declare variant directive.22

If a declare variant directive appears between a begin declare variant directive and its23
paired end declare variant directive the effective context selectors of the outer directive are24
appended to the context selector of the inner directive to form the effective context selector of the25
inner directive. If a trait-set-selector is present on both directives, the trait-selector list of the outer26
directive is appended to the trait-selector list of the inner directive after equivalent trait-selectors27
have been removed from the outer list. Restrictions that apply to explicitly specified context28
selectors also apply to effective context selectors constructed through this process.29

The symbol name of a function definition that appears between a begin declare variant30
directive and its paired end declare variant directive shall be determined through the base31

64 OpenMP API – Version 5.1 November 2020

language rules after the name of the function has been augmented with a string that shall be1
determined according to the effective context selector of the begin declare variant2
directive. The symbol names of two definitions of a function shall be equal if and only if their3
effective context selectors are equivalent.4

If the context selector of a begin declare variant directive contains traits in the device or5
implementation set that are known never to be compatible with an OpenMP context during the6
current compilation, the preprocessed code that follows the begin declare variant directive7
up to the matching end declare variant directive shall be elided.8

C / C++
The OpenMP context for a direct call to a given base function is defined according to Section 2.3.1.9
If a declare variant directive for the base function is visible at the call site and the static part of the10
context selector that is associated with the declared function variant is compatible with the11
OpenMP context of the call according to the matching rules defined in Section 2.3.3 then the12
variant is a replacement candidate to be called instead of the base function. Replacement13
candidates are ordered in decreasing order of the score associated with the context selector. If two14
replacement candidates have the same score then their order is implementation defined.15

The list of dynamic replacement candidates is the prefix of the sorted list of replacement candidates16
up to and including the first candidate for which the corresponding context selector is static.17

The first dynamic replacement candidate for which the corresponding context selector is18
compatible, according to the matching rules defined in Section 2.3.3, is called instead of the base19
function. If no compatible candidate exists then the base function is called.20

Expressions that appear in the context selector of a match clause are evaluated if no prior dynamic21
replacement candidate has a compatible context selector, and the number of times each expression22
is evaluated is implementation defined. All variables referenced by these expressions are23
considered to be referenced at the call site.24

C++
For calls to constexpr base functions that are evaluated in constant expressions, whether any25
variant replacement occurs is implementation defined.26

C++
For indirect function calls that can be determined to call a particular base function, whether any27
variant replacement occurs is unspecified.28

For each adjust_args clause that is present on the selected variant the adjustment operation29
specified by adjust-op will be applied to each of the arguments specified in the clause before being30
passed to the selected variant.31

If the adjust-op modifier is need_device_ptr, the arguments are converted to corresponding32
device pointers of the default device. If an argument has the is_device_ptr property in its33
interoperability requirement set then the argument will be passed as is. Otherwise, the argument34
will be converted in the same manner that a use_device_ptr clause on a target data35

CHAPTER 2. DIRECTIVES 65

construct converts its pointer list items into device pointers. If the argument cannot be converted1
into a device pointer then the NULL value will be passed as the argument.2

If the adjust-op modifier is nothing, the argument is passed to the selected variant without being3
modified.4

If an append_args clause is present on the matching directive then additional arguments are5
passed in the call. The arguments are constructed according to any specified append-op modifiers6
and are passed in the same order in which they are specified in the append_args clause.7

C / C++
The interop operation constructs an argument of type omp_interop_t from the8
interoperability requirement set of the encountering task.9

C / C++
Fortran

The interop operation constructs an argument of type omp_interop_kind from the10
interoperability requirement set of the encountering task.11

Fortran
The argument is constructed as if an interop construct with an init clause of interop-types was12
specified. If the interoperability requirement set contains one or more properties that could be used13
as clauses for an interop construct of the interop-type type, the behavior is as if the14
corresponding clauses would also be part of the aforementioned interop construct and those15
properties will be removed from the interoperability requirement set.16

This argument is destroyed after the call to the selected variant returns, as if an interop construct17
with a destroy clause was used with the same clauses that were used to initialize the argument.18

Any differences that the specific OpenMP context requires in the prototype of the variant from the19
base function prototype are implementation defined.20

C
For the declare variant directive, any expressions in the match clause are interpreted as if21
they appeared in the scope of arguments of the base function.22

C
Different declare variant directives may be specified for different declarations of the same base23
function.24

C++
The function variant is determined by base language standard name lookup rules ([basic.lookup])25
of variant-func-id using the argument types at the call site after implementation-defined changes26
have been made according to the OpenMP context.27

For the declare variant directive, the variant-func-id and any expressions in the match28
clause are interpreted as if they appeared at the scope of the trailing return type of the base29
function.30

C++

66 OpenMP API – Version 5.1 November 2020

C / C++
For the begin declare variant directive, any expressions in the match clause are1
interpreted at the location of the directive.2

C / C++
Fortran

The procedure to which base-proc-name refers is resolved at the location of the directive according3
to the establishment rules for procedure names in the base language.4

Fortran

Restrictions5
Restrictions to the declare variant directive are as follows:6

• Calling functions that a declare variant directive determined to be a function variant directly in7
an OpenMP context that is different from the one that the construct selector set of the context8
selector specifies is non-conforming.9

• If a function is determined to be a function variant through more than one declare variant10
directive then the construct selector set of their context selectors must be the same.11

• A function determined to be a function variant may not be specified as a base function in another12
declare variant directive.13

• All variables that are referenced in an expression that appears in the context selector of a match14
clause must be accessible at a call site to the base function according to the base language rules.15

• At most one match clause can appear on a declare variant directive.16

• At most one append_args clause can appear on a declare variant directive.17

• Each argument can only appear in a single adjust_args clause for each declare variant18
directive.19

• An adjust_args clause or append_args clause can only be specified if the dispatch20
selector of the construct selector set appears in the match clause.21

C / C++
• The type of the function variant must be compatible with the type of the base function after the22
implementation-defined transformation for its OpenMP context.23

• Only the match clause can appear on a begin declare variant directive.24

• The match clause of a begin declare variant directive may not contain a simd25
trait-selector-name.26

• Matching pairs of begin declare variant and end declare variant directives shall27
either encompass disjoint source ranges or they shall be perfectly nested.28

C / C++

CHAPTER 2. DIRECTIVES 67

C++
• The declare variant directive cannot be specified for a virtual, defaulted or deleted function.1

• The declare variant directive cannot be specified for a constructor or destructor.2

• The declare variant directive cannot be specified for an immediate function.3

• The function that a declare variant directive determined to be a function variant may not be an4
immediate function.5

• A match clause that appears on a begin declare target directive must not contain a6
dynamic context selector that references the this pointer.7

• If an expression in the context selector that appears in a match clause references the this8
pointer, the base function must be a non-static member function.9

C++
Fortran

• base-proc-name must not be a generic name, an entry name, the name of a procedure pointer, a10
dummy procedure or a statement function.11

• If base-proc-name is omitted then the declare variant directive must appear in an interface12
block or the specification part of a procedure.13

• Any declare variant directive must appear in the specification part of a subroutine14
subprogram, function subprogram, or interface body to which it applies.15

• If the directive is specified for a procedure that is declared via a procedure declaration statement,16
the base-proc-name must be specified.17

• The procedure base-proc-name must have an accessible explicit interface at the location of the18
directive.19

• Each argument that appears in a need_device_ptr adjust-op must be of type C_PTR in the20
dummy argument declaration.21

Fortran

Cross References22
• OpenMP Context Specification, see Section 2.3.1.23

• Context Selectors, see Section 2.3.2.24

68 OpenMP API – Version 5.1 November 2020

2.3.6 dispatch Construct1

Summary2
The dispatch construct controls whether variant substitution occurs for a given call.3

Syntax4
C / C++

The syntax of the dispatch construct is as follows:5

#pragma omp dispatch [clause[[,] clause] ...] new-line6
expression-stmt7

where expression-stmt is an expression statement with one of the following forms:8

expression = target-call ([expression-list]);9

target-call ([expression-list]);10

and where clause is one of the following:11

device(integer-expression)12

depend([depend-modifier,] dependence-type : locator-list)13

nowait14

novariants(scalar-expression)15

nocontext(scalar-expression)16

is_device_ptr(list)17

C / C++
Fortran

The syntax of the dispatch construct is as follows:18

!$omp dispatch [clause[[,] clause] ...]19
stmt20

where stmt is an expression statement with one of the following forms:21

expression = target-call ([arguments])22

CALL target-call [([arguments])]23

CHAPTER 2. DIRECTIVES 69

and where clause is one of the following:1

device(scalar-integer-expression)2

depend([depend-modifier,] dependence-type : locator-list)3

nowait4

novariants(scalar-logical-expression)5

nocontext(scalar-logical-expression)6

is_device_ptr(list)7

Fortran

Binding8
The binding task set for a dispatch region is the generating task. The dispatch region binds9
to the region of the generating task.10

Description11
When a novariants clause is present on the dispatch construct, and the novariants12
clause expression evaluates to true, no function variant will be selected for the target-call even if13
one would be selected normally. The use of a variable in a novariants clause expression of a14
dispatch construct causes an implicit reference to the variable in all enclosing constructs.15

The novariants clause expression is evaluated in the enclosing context.16

When a nocontext clause is present on the dispatch construct, and the nocontext clause17
expression evaluates to true, the dispatch construct is not added to the construct set of the18
OpenMP context. The use of a variable in a nocontext clause expression of a dispatch19
construct causes an implicit reference to the variable in all enclosing constructs.20

The nocontext clause expression is evaluated in the enclosing context.21

The is_device_ptr clause indicates that its list items are device pointers. For each list item22
specified in the clause, an is_device_ptr property for that list item is added to the23
interoperability requirement set. Support for device pointers created outside of OpenMP,24
specifically outside of any OpenMP mechanism that returns a device pointer, is implementation25
defined.26

If one or more depend clauses are present on the dispatch construct, they are added as depend27
properties of the interoperability requirement set. If a nowait clause is present on the dispatch28
construct the nowait property is added to the interoperability requirement set.29

This construct creates an explicit task, as if the task construct was used, that surrounds the30
associated code. Properties added to the interoperability requirement set can be removed by the31
effect of other directives (see Section 2.15.2) before the task is created. If the interoperability32
requirement set contains one or more depend properties, the behavior is as if those properties were33
applied to the task construct as depend clauses. If the interoperability requirement set does not34
contain the nowait property then the task will also be an included task.35

70 OpenMP API – Version 5.1 November 2020

If the device clause is present, the value of the default-device-var ICV of the generated task is set1
to the value of the expression in the clause.2

Restrictions3
Restrictions to the dispatch construct are as follows:4

• At most one novariants clause can appear on a dispatch directive.5

• At most one nocontext clause can appear on a dispatch directive.6

• At most one nowait clause can appear on a dispatch directive.7

• A list item that appears in an is_device_ptr clause must be a valid device pointer for the8
device data environment.9

C++
• The target-call expression can only be a direct call.10

C++
Fortran

• target-call must be a procedure name.11

• target-call must not be a procedure pointer.12

• A list item that appears in an is_device_ptr clause must be of type C_PTR.13

Fortran

Cross References14
• declare variant directive, see Section 2.3.5.15

• Interoperability requirement set, see Section 2.15.2.16

2.4 Internal Control Variables17

An OpenMP implementation must act as if internal control variables (ICVs) control the behavior of18
an OpenMP program. These ICVs store information such as the number of threads to use for future19
parallel regions, the schedule to use for worksharing loops and whether nested parallelism is20
enabled or not. The ICVs are given values at various times (described below) during the execution21
of the program. They are initialized by the implementation itself and may be given values through22
OpenMP environment variables and through calls to OpenMP API routines. The program can23
retrieve the values of these ICVs only through OpenMP API routines.24

For purposes of exposition, this document refers to the ICVs by certain names, but an25
implementation is not required to use these names or to offer any way to access the variables other26
than through the ways shown in Section 2.4.2.27

CHAPTER 2. DIRECTIVES 71

2.4.1 ICV Descriptions1

The following ICVs store values that affect the operation of parallel regions.2

• dyn-var - controls whether dynamic adjustment of the number of threads is enabled for3
encountered parallel regions. One copy of this ICV exists per data environment.4

• nthreads-var - controls the number of threads requested for encountered parallel regions.5
One copy of this ICV exists per data environment.6

• thread-limit-var - controls the maximum number of threads that participate in the contention7
group. One copy of this ICV exists per data environment.8

• max-active-levels-var - controls the maximum number of nested active parallel regions9
when the innermost parallel region is generated by a given task. One copy of this ICV exists10
per data environment.11

• place-partition-var - controls the place partition available to the execution environment for12
encountered parallel regions. One copy of this ICV exists per implicit task.13

• active-levels-var - the number of nested active parallel regions that enclose a given task such14
that all of the parallel regions are enclosed by the outermost initial task region on the device15
on which the task executes. One copy of this ICV exists per data environment.16

• levels-var - the number of nested parallel regions that enclose a given task such that all of17
the parallel regions are enclosed by the outermost initial task region on the device on which18
the task executes. One copy of this ICV exists per data environment.19

• bind-var - controls the binding of OpenMP threads to places. When binding is requested, the20
variable indicates that the execution environment is advised not to move threads between places.21
The variable can also provide default thread affinity policies. One copy of this ICV exists per22
data environment.23

The following ICVs store values that affect the operation of worksharing-loop regions.24

• run-sched-var - controls the schedule that is used for worksharing-loop regions when the25
runtime schedule kind is specified. One copy of this ICV exists per data environment.26

• def-sched-var - controls the implementation defined default scheduling of worksharing-loop27
regions. One copy of this ICV exists per device.28

The following ICVs store values that affect program execution.29

• stacksize-var - controls the stack size for threads that the OpenMP implementation creates. One30
copy of this ICV exists per device.31

• wait-policy-var - controls the desired behavior of waiting threads. One copy of this ICV exists32
per device.33

• display-affinity-var - controls whether to display thread affinity. One copy of this ICV exists for34
the whole program.35

72 OpenMP API – Version 5.1 November 2020

• affinity-format-var - controls the thread affinity format when displaying thread affinity. One copy1
of this ICV exists per device.2

• cancel-var - controls the desired behavior of the cancel construct and cancellation points. One3
copy of this ICV exists for the whole program.4

• default-device-var - controls the default target device. One copy of this ICV exists per data5
environment.6

• target-offload-var - controls the offloading behavior. One copy of this ICV exists for the whole7
program.8

• max-task-priority-var - controls the maximum priority value that can be specified in the9
priority clause of the task construct. One copy of this ICV exists for the whole program.10

The following ICVs store values that affect the operation of the OMPT tool interface.11

• tool-var - controls whether an OpenMP implementation will try to register a tool. One copy of12
this ICV exists for the whole program.13

• tool-libraries-var - specifies a list of absolute paths to tool libraries for OpenMP devices. One14
copy of this ICV exists for the whole program.15

• tool-verbose-init-var - controls whether an OpenMP implementation will verbosely log the16
registration of a tool. One copy of this ICV exists for the whole program.17

The following ICVs store values that affect the operation of the OMPD tool interface.18

• debug-var - controls whether an OpenMP implementation will collect information that an19
OMPD library can access to satisfy requests from a tool. One copy of this ICV exists for the20
whole program.21

The following ICVs store values that may be queried by interface routines.22

• num-procs-var - the number of processors that are available to the device. One copy of this ICV23
exists per device.24

• thread-num-var - the thread number of an implicit task within its binding team. One copy of this25
ICV exists per data environment.26

• final-task-var - whether a given task is a final task. One copy of this ICV exists per data27
environment.28

• implicit-task-var - whether a given task is an implicit task. One copy of this ICV exists per data29
environment.30

• team-size-var - the size of the current team. One copy of this ICV exists per data environment.31

The following ICV stores values that affect default memory allocation.32

CHAPTER 2. DIRECTIVES 73

• def-allocator-var - controls the memory allocator to be used by memory allocation routines,1
directives and clauses when a memory allocator is not specified by the user. One copy of this2
ICV exists per implicit task.3

The following ICVs store values that affect the operation of teams regions.4

• nteams-var - controls the number of teams requested for encountered teams regions. One copy5
of this ICV exists per device.6

• teams-thread-limit-var - controls the maximum number of threads that participate in each7
contention group created by a teams construct. One copy of this ICV exists per device.8

2.4.2 ICV Initialization9

Table 2.1 shows the ICVs, associated environment variables, and initial values.10

TABLE 2.1: ICV Initial Values

ICV Environment Variable Initial value

dyn-var OMP_DYNAMIC See description below

nthreads-var OMP_NUM_THREADS Implementation defined

run-sched-var OMP_SCHEDULE Implementation defined

def-sched-var (none) Implementation defined

bind-var OMP_PROC_BIND Implementation defined

stacksize-var OMP_STACKSIZE Implementation defined

wait-policy-var OMP_WAIT_POLICY Implementation defined

thread-limit-var OMP_THREAD_LIMIT Implementation defined

max-active-levels-var OMP_MAX_ACTIVE_LEVELS,
OMP_NESTED,
OMP_NUM_THREADS,
OMP_PROC_BIND

Implementation defined

active-levels-var (none) zero

levels-var (none) zero

place-partition-var OMP_PLACES Implementation defined

table continued on next page

74 OpenMP API – Version 5.1 November 2020

table continued from previous page

ICV Environment Variable Initial value

cancel-var OMP_CANCELLATION false

display-affinity-var OMP_DISPLAY_AFFINITY false

affinity-format-var OMP_AFFINITY_FORMAT Implementation defined

default-device-var OMP_DEFAULT_DEVICE Implementation defined

target-offload-var OMP_TARGET_OFFLOAD DEFAULT

max-task-priority-var OMP_MAX_TASK_PRIORITY zero

tool-var OMP_TOOL enabled

tool-libraries-var OMP_TOOL_LIBRARIES empty string

tool-verbose-init-var OMP_TOOL_VERBOSE_INIT disabled

debug-var OMP_DEBUG disabled

num-procs-var (none) Implementation defined

thread-num-var (none) zero

final-task-var (none) false

implicit-task-var (none) true

team-size-var (none) one

def-allocator-var OMP_ALLOCATOR Implementation defined

nteams-var OMP_NUM_TEAMS zero

teams-thread-limit-var OMP_TEAMS_THREAD_LIMIT zero

Each ICV that does not have global scope (see Table 2.3) has a set of device-specific environment1
variables that extend the variables defined in Table 2.1 with the following syntax:2

<ENVIRONMENT VARIABLE>_DEV[_<device>]3

where <ENVIRONMENT VARIABLE> is one of the variables from Table 2.1 and <device> is the4
device number as specified in the device clause (see Section 2.14).5

Description6
• Each device has its own ICVs.7

• The initial value of dyn-var is implementation defined if the implementation supports dynamic8
adjustment of the number of threads; otherwise, the initial value is false.9

CHAPTER 2. DIRECTIVES 75

• The value of the nthreads-var ICV is a list.1

• The value of the bind-var ICV is a list.2

The host and non-host device ICVs are initialized before any OpenMP API construct or OpenMP3
API routine executes. After the initial values are assigned, the values of any OpenMP environment4
variables that were set by the user are read and the associated ICVs are modified accordingly. If no5
<device> number is specified on the device-specific environment variable then the value is applied6
to all non-host devices.7

Cross References8
• OMP_SCHEDULE environment variable, see Section 6.1.9

• OMP_NUM_THREADS environment variable, see Section 6.2.10

• OMP_DYNAMIC environment variable, see Section 6.3.11

• OMP_PROC_BIND environment variable, see Section 6.4.12

• OMP_PLACES environment variable, see Section 6.5.13

• OMP_STACKSIZE environment variable, see Section 6.6.14

• OMP_WAIT_POLICY environment variable, see Section 6.7.15

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8.16

• OMP_NESTED environment variable, see Section 6.9.17

• OMP_THREAD_LIMIT environment variable, see Section 6.10.18

• OMP_CANCELLATION environment variable, see Section 6.11.19

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13.20

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14.21

• OMP_DEFAULT_DEVICE environment variable, see Section 6.15.22

• OMP_MAX_TASK_PRIORITY environment variable, see Section 6.16.23

• OMP_TARGET_OFFLOAD environment variable, see Section 6.17.24

• OMP_TOOL environment variable, see Section 6.18.25

• OMP_TOOL_LIBRARIES environment variable, see Section 6.19.26

• OMP_DEBUG environment variable, see Section 6.21.27

• OMP_ALLOCATOR environment variable, see Section 6.22.28

• OMP_NUM_TEAMS environment variable, see Section 6.23.29

• OMP_TEAMS_THREAD_LIMIT environment variable, see Section 6.24.30

76 OpenMP API – Version 5.1 November 2020

2.4.3 Modifying and Retrieving ICV Values1

Table 2.2 shows the method for modifying and retrieving the values of ICVs through OpenMP API2
routines. If an ICV is not listed in this table, no OpenMP API routine modifies or retrieves this ICV.3

TABLE 2.2: Ways to Modify and to Retrieve ICV Values

ICV Ways to Modify Value Ways to Retrieve Value

dyn-var omp_set_dynamic omp_get_dynamic

nthreads-var omp_set_num_threads omp_get_max_threads

run-sched-var omp_set_schedule omp_get_schedule

bind-var (none) omp_get_proc_bind

thread-limit-var target construct, teams construct omp_get_thread_limit

max-active-levels-var omp_set_max_active_levels,
omp_set_nested

omp_get_max_active_levels

active-levels-var (none) omp_get_active_level

levels-var (none) omp_get_level

place-partition-var (none) See description below

cancel-var (none) omp_get_cancellation

affinity-format-var omp_set_affinity_format omp_get_affinity_format

default-device-var omp_set_default_device omp_get_default_device

max-task-priority-var (none) omp_get_max_task_priority

num-procs-var (none) omp_get_num_procs

thread-num-var (none) omp_get_thread_num

final-task-var (none) omp_in_final

team-size-var (none) omp_get_num_threads

def-allocator-var omp_set_default_allocator omp_get_default_allocator

nteams-var omp_set_num_teams omp_get_max_teams

teams-thread-limit-var omp_set_teams_thread_limit omp_get_teams_thread_limit

Description4
• The value of the nthreads-var ICV is a list. The runtime call omp_set_num_threads sets5
the value of the first element of this list, and omp_get_max_threads retrieves the value of6
the first element of this list.7

CHAPTER 2. DIRECTIVES 77

• The value of the bind-var ICV is a list. The runtime call omp_get_proc_bind retrieves the1
value of the first element of this list.2

• Detailed values in the place-partition-var ICV are retrieved using the runtime calls3
omp_get_partition_num_places, omp_get_partition_place_nums,4
omp_get_place_num_procs, and omp_get_place_proc_ids.5

Cross References6
• thread_limit clause of the teams construct, see Section 2.7.7

• thread_limit clause of the target construct, see Section 2.14.5.8

• omp_set_num_threads routine, see Section 3.2.1.9

• omp_get_num_threads routine, see Section 3.2.2.10

• omp_get_max_threads routine, see Section 3.2.3.11

• omp_get_thread_num routine, see Section 3.2.4.12

• omp_set_dynamic routine, see Section 3.2.6.13

• omp_get_dynamic routine, see Section 3.2.7.14

• omp_get_cancellation routine, see Section 3.2.8.15

• omp_set_nested routine, see Section 3.2.9.16

• omp_set_schedule routine, see Section 3.2.11.17

• omp_get_schedule routine, see Section 3.2.12.18

• omp_get_thread_limit routine, see Section 3.2.13.19

• omp_get_supported_active_levels, see Section 3.2.14.20

• omp_set_max_active_levels routine, see Section 3.2.15.21

• omp_get_max_active_levels routine, see Section 3.2.16.22

• omp_get_level routine, see Section 3.2.17.23

• omp_get_active_level routine, see Section 3.2.20.24

• omp_get_proc_bind routine, see Section 3.3.1.25

• omp_get_place_num_procs routine, see Section 3.3.3.26

• omp_get_place_proc_ids routine, see Section 3.3.4.27

• omp_get_partition_num_places routine, see Section 3.3.6.28

• omp_get_partition_place_nums routine, see Section 3.3.7.29

• omp_set_affinity_format routine, see Section 3.3.8.30

78 OpenMP API – Version 5.1 November 2020

• omp_get_affinity_format routine, see Section 3.3.9.1

• omp_set_num_teams routine, see Section 3.4.3.2

• omp_get_max_teams routine, see Section 3.4.4.3

• omp_set_teams_thread_limit routine, see Section 3.4.5.4

• omp_get_teams_thread_limit routine, see Section 3.4.6.5

• omp_get_max_task_priority routine, see Section 3.5.1.6

• omp_in_final routine, see Section 3.5.2.7

• omp_get_num_procs routine, see Section 3.7.1.8

• omp_set_default_device routine, see Section 3.7.2.9

• omp_get_default_device routine, see Section 3.7.3.10

• omp_set_default_allocator routine, see Section 3.13.4.11

• omp_get_default_allocator routine, see Section 3.13.5.12

2.4.4 How ICVs are Scoped13

Table 2.3 shows the ICVs and their scope.14

TABLE 2.3: Scopes of ICVs

ICV Scope

dyn-var data environment

nthreads-var data environment

run-sched-var data environment

def-sched-var device

bind-var data environment

stacksize-var device

wait-policy-var device

thread-limit-var data environment

max-active-levels-var data environment

table continued on next page

CHAPTER 2. DIRECTIVES 79

table continued from previous page

ICV Scope

active-levels-var data environment

levels-var data environment

place-partition-var implicit task

cancel-var global

display-affinity-var global

affinity-format-var device

default-device-var data environment

target-offload-var global

max-task-priority-var global

tool-var global

tool-libraries-var global

tool-verbose-init-var global

debug-var global

num-procs-var device

thread-num-var implicit task

final-task-var data environment

implicit-task-var data environment

team-size-var team

def-allocator-var implicit task

nteams-var device

teams-thread-limit-var device

Description1
• One copy of each ICV with device scope exists per device.2

• Each data environment has its own copies of ICVs with data environment scope.3

• Each implicit task has its own copy of ICVs with implicit task scope.4

Calls to OpenMP API routines retrieve or modify data environment scoped ICVs in the data5
environment of their binding tasks.6

80 OpenMP API – Version 5.1 November 2020

2.4.4.1 How the Per-Data Environment ICVs Work1

When a task construct, a parallel construct or a teams construct is encountered, each2
generated task inherits the values of the data environment scoped ICVs from each generating task’s3
ICV values.4

When a parallel construct is encountered, the value of each ICV with implicit task scope is5
inherited from the implicit binding task of the generating task unless otherwise specified.6

When a task construct is encountered, the generated task inherits the value of nthreads-var from7
the generating task’s nthreads-var value. When a parallel construct is encountered, and the8
generating task’s nthreads-var list contains a single element, the generated implicit tasks inherit9
that list as the value of nthreads-var. When a parallel construct is encountered, and the10
generating task’s nthreads-var list contains multiple elements, the generated implicit tasks inherit11
the value of nthreads-var as the list obtained by deletion of the first element from the generating12
task’s nthreads-var value. The bind-var ICV is handled in the same way as the nthreads-var ICV.13

When a target task executes an active target region, the generated initial task uses the values of14
the data environment scoped ICVs from the device data environment ICV values of the device that15
will execute the region.16

When a target task executes an inactive target region, the generated initial task uses the values17
of the data environment scoped ICVs from the data environment of the task that encountered the18
target construct.19

If a target construct with a thread_limit clause is encountered, the thread-limit-var ICV20
from the data environment of the generated initial task is instead set to an implementation defined21
value between one and the value specified in the clause.22

If a target construct with no thread_limit clause is encountered, the thread-limit-var ICV23
from the data environment of the generated initial task is set to an implementation defined value24
that is greater than zero.25

If a teams construct with a thread_limit clause is encountered, the thread-limit-var ICV26
from the data environment of the initial task for each team is instead set to an implementation27
defined value between one and the value specified in the clause.28

If a teams construct with no thread_limit clause is encountered, the thread-limit-var ICV29
from the data environment of the initial task of each team is set to an implementation defined value30
that is greater than zero and does not exceed teams-thread-limit-var, if teams-thread-limit-var is31
greater than zero.32

When encountering a worksharing-loop region for which the runtime schedule kind is specified,33
all implicit task regions that constitute the binding parallel region must have the same value for34
run-sched-var in their data environments. Otherwise, the behavior is unspecified.35

CHAPTER 2. DIRECTIVES 81

2.4.5 ICV Override Relationships1

Table 2.4 shows the override relationships among construct clauses and ICVs. The table only lists2
ICVs that can be overwritten by a clause.3

TABLE 2.4: ICV Override Relationships

ICV construct clause, if used

nthreads-var num_threads

run-sched-var schedule

def-sched-var schedule

bind-var proc_bind

def-allocator-var allocator

nteams-var num_teams

teams-thread-limit-var thread_limit

Description4
• The num_threads clause overrides the value of the first element of the nthreads-var ICV.5

• If a schedule clause specifies a modifier then that modifier overrides any modifier that is6
specified in the run-sched-var ICV.7

• If bind-var is not set to false then the proc_bind clause overrides the value of the first element8
of the bind-var ICV; otherwise, the proc_bind clause has no effect.9

Cross References10
• parallel construct, see Section 2.6.11

• proc_bind clause, Section 2.6.12

• num_threads clause, see Section 2.6.1.13

• num_teams clause, see Section 2.7.14

• thread_limit clause, see Section 2.7.15

• Worksharing-loop construct, see Section 2.11.4.16

• schedule clause, see Section 2.11.4.1.17

82 OpenMP API – Version 5.1 November 2020

2.5 Informational and Utility Directives1

This section covers all directives that may function as an informational directive or a utility2
directive in an OpenMP program.3

2.5.1 requires Directive4

Summary5
The requires directive specifies the features that an implementation must provide in order for the6
code to compile and to execute correctly. The requires directive is an informational directive.7

Syntax8
C / C++

The syntax of the requires directive is as follows:9

#pragma omp requires clause[[[,] clause] ...] new-line10

where clause is either a clause of the form ext_implementation-defined-requirement for an11
implementation defined requirement clause or one of the requirement clauses listed below:12

reverse_offload13

unified_address14

unified_shared_memory15

atomic_default_mem_order(seq_cst | acq_rel | relaxed)16

dynamic_allocators17

C / C++
Fortran

The syntax of the requires directive is as follows:18

!$omp requires clause[[[,] clause] ...]19

where clause is either a clause of the form ext_implementation-defined-requirement for an20
implementation defined requirement clause or one of the requirement clauses listed below:21

reverse_offload22

unified_address23

unified_shared_memory24

atomic_default_mem_order(seq_cst | acq_rel | relaxed)25

dynamic_allocators26

Fortran

CHAPTER 2. DIRECTIVES 83

Description1
The requires directive specifies features that an implementation must support for correct2
execution. The behavior that a requirement clause specifies may override the normal behavior3
specified elsewhere in this document. Whether an implementation supports the feature that a given4
requirement clause specifies is implementation defined.5

The requires directive specifies requirements for the execution of all code in the current6
compilation unit.7

8

Note – Use of this directive makes your code less portable. Users should be aware that not all9
devices or implementations support all requirements.10

11

When the reverse_offload clause appears on a requires directive, the implementation12
guarantees that a target region, for which the target construct specifies a device clause in13
which the ancestor modifier appears, can execute on the parent device of an enclosing target14
region.15

When the unified_address clause appears on a requires directive, the implementation16
guarantees that all devices accessible through OpenMP API routines and directives use a unified17
address space. In this address space, a pointer will always refer to the same location in memory18
from all devices accessible through OpenMP. Any OpenMP mechanism that returns a device19
pointer is guaranteed to return a device address that supports pointer arithmetic, and the20
is_device_ptr clause is not necessary to obtain device addresses from device pointers for use21
inside target regions. Host pointers may be passed as device pointer arguments to device22
memory routines and device pointers may be passed as host pointer arguments to device memory23
routines. Non-host devices may still have discrete memories and dereferencing a device pointer on24
the host device or a host pointer on a non-host device remains unspecified behavior.25

C / C++
When the unified_address clause appears on a requires directive, the base pointer of a26
zero-length array section that is mapped on a target construct and for which a matching mapped27
list item cannot be found is not initialized to NULL but instead retains its original value.28

C / C++
Memory local to a specific execution context may be exempt from the unified_address29
requirement, following the restrictions of locality to a given execution context, thread or contention30
group.31

The unified_shared_memory clause implies the unified_address requirement,32
inheriting all of its behaviors. Additionally, storage locations in memory are accessible to threads33
on all available devices that are supported by the implementation, except for memory that is local to34
a specific execution context as defined in the description of unified_address above. Every35
device address that refers to storage allocated through OpenMP device memory routines is a valid36
host pointer that may be dereferenced.37

84 OpenMP API – Version 5.1 November 2020

The unified_shared_memory clause makes the map clause optional on target constructs1
and the declare target directive optional for variables with static storage duration that are accessed2
inside functions to which a declare target directive is applied. Scalar variables are still firstprivate3
by default when referenced inside target constructs. Values stored into memory by one device4
may not be visible to another device until those two devices synchronize with each other or both5
devices synchronize with the host.6

The atomic_default_mem_order clause specifies the default memory ordering behavior for7
atomic constructs that must be provided by an implementation. Its parameter appears as a clause8
on any atomic construct that does not already specify a memory order clause.9

The dynamic_allocators clause removes certain restrictions on the use of memory allocators10
in target regions. It makes the uses_allocators clause optional on target constructs for11
the purpose of using allocators in the corresponding target regions. It allows calls to the12
omp_init_allocator and omp_destroy_allocator API routines in target regions.13
Finally, it allows default allocators to be used by allocate directives, allocate clauses, and14
omp_alloc API routines in target regions.15

Implementers are allowed to include additional implementation-defined requirement clauses. All16
implementation defined requirements should begin with ext_. Requirement names that do not17
start with ext_ are reserved.18

The clauses of a requires directive are added to the requires trait in the OpenMP context for all19
program points that follow the directive.20

Restrictions21
The restrictions to the requires directive are as follows:22

• Each of the clauses can appear at most once on the directive.23

• All atomic_default_mem_order clauses that appear on a requires directive in the24
same compilation unit must specify the same parameter.25

• A requires directive with a unified_address, unified_shared_memory, or26
reverse_offload clause must appear lexically before any device constructs or device27
routines.28

• A requires directive may not appear lexically after a context selector in which any clause of29
the requires directive is used.30

• A requires directive with any of the following clauses must appear in all compilation units of31
a program that contain device constructs or device routines or in none of them:32

– reverse_offload33

– unified_address34

– unified_shared_memory35

CHAPTER 2. DIRECTIVES 85

• The requires directive with atomic_default_mem_order clause may not appear1
lexically after any atomic construct on which memory-order-clause is not specified.2

C
• The requires directive may only appear at file scope.3

C
C++

• The requires directive may only appear at file or namespace scope.4

C++
Fortran

• The requires directive must appear in the specification part of a program unit, after any USE5
statement, any IMPORT statement, and any IMPLICIT statement, unless the directive appears6
by referencing a module and each clause already appeared with the same parameters in the7
specification part of the program unit.8

Fortran

2.5.2 Assume Directive9

Summary10
The assume directive provides invariants to the implementation that may be used for optimization11
purposes. If the invariants do not hold at runtime, the behavior is unspecified. The assume directive12
is an informational directive.13

Syntax14
C / C++

The syntax of the assume directive is as follows:15

#pragma omp assumes clause[[[,] clause] ...] new-line16

or17

#pragma omp begin assumes clause[[[,] clause] ...] new-line18
declaration-definition-seq19

#pragma omp end assumes new-line20

or21

#pragma omp assume clause[[[,] clause] ...] new-line22
structured-block23

where clause is either assumption-clause or a clause of the form24
ext_implementation-defined-assumption for an implementation-defined assumption clause, and25
where assumption-clause is one of the following:26

86 OpenMP API – Version 5.1 November 2020

absent(directive-name [[, directive-name]...])1

contains(directive-name [[, directive-name]...])2

holds(scalar-expression)3

no_openmp4

no_openmp_routines5

no_parallelism6

C / C++
Fortran

The syntax of the assume directive is as follows:7

!$omp assumes clause[[[,] clause] ...]8

or9

!$omp assume clause[[[,] clause] ...]10
loosely-structured-block11

!$omp end assume12

or13

!$omp assume clause[[[,] clause] ...]14
strictly-structured-block15

[!$omp end assume]16

where clause is either assumption-clause or a clause of the form17
ext_implementation-defined-assumption for an implementation-defined assumption clause,18

where assumption-clause is one of the following:19

absent(directive-name [[, directive-name]...])20

contains(directive-name [[, directive-name]...])21

holds(scalar-logical-expression)22

no_openmp23

no_openmp_routines24

no_parallelism25

Fortran

CHAPTER 2. DIRECTIVES 87

Description1
The assume directive gives the implementation additional information about the expected2
properties of the program that can optionally be used to optimize the implementation. An3
implementation may ignore this information without altering the behavior of the program.4

The scope of the assumes directive is the code executed and reached from the current compilation5
unit. The scope of the assume directive is the code executed in the corresponding region or in any6
region that is nested in the corresponding region.7

C / C++
The scope of the begin assumes directive is the code that is executed and reached from any of8
the declared functions in declaration-definition-seq.9

C / C++
The absent and contains clauses accept a list of one or more directive names that may match10
a construct that is encountered within the scope of the directive. An encountered construct matches11
the directive name if it has the same name as one of the specified directive names or if it is a12
combined or composite construct for which a constituent construct has the same name as one of the13
specified directive names.14

When the absent clause appears on an assume directive, the application guarantees that no15
constructs that match a listed directive name are encountered in the scope of the assume directive.16

When the contains clause appears on an assume directive, the application provides a hint that17
constructs that match the listed directive names are likely to be encountered in the scope of the18
assume directive.19

When the holds clause appears on an assume directive, the application guarantees that the listed20
expression evaluates to true in the scope of the directive. The effect of the clause does not include21
an evaluation of the expression that is observable.22

The no_openmp clause guarantees that no OpenMP related code is executed in the scope of the23
directive.24

The no_openmp_routines clause guarantees that no explicit OpenMP runtime library calls are25
executed in the scope of the directive.26

The no_parallelism clause guarantees that no OpenMP tasks (explicit or implicit) will be27
generated and that no SIMD constructs will be executed in the scope of the directive.28

Implementers are allowed to include additional implementation-defined assumption clauses. All29
implementation-defined assumptions should begin with ext_. Assumption names that do not start30
with ext_ are reserved.31

88 OpenMP API – Version 5.1 November 2020

Restrictions1
The restrictions to the assume directive are as follows:2

• Each clause except the absent, contains or holds clause can appear at most once on the3
directive.4

• Each directive-name listed in the clauses can appear at most once on the directive.5

• A directive-name that appears in an absent or contains clause may not be a combined or6
composite directive name.7

• A directive-name that appears in an absent or contains clause may not be a directive that is8
not associated with the execution of user or implementation code, i.e., a nothing directive, a9
declarative directive, a metadirective, or a loop transformation directive.10

C
• The assumes directive may only appear at file scope.11

C
C++

• The assumes directive may only appear at file or namespace scope.12

C++
Fortran

• The assumes directive may only appear in the specification part of a module or subprogram,13
after any USE statement, any IMPORT statement, and any IMPLICIT statement.14

Fortran

2.5.3 nothing Directive15

Summary16
The nothing directive has no effect. It can be used in a metadirective and other contexts to17
indicate explicitly that the intent is to have no effect on the execution of the OpenMP program. The18
nothing directive is a utility directive.19

Syntax20
C / C++

The syntax of the nothing directive is as follows:21

#pragma omp nothing new-line22

C / C++
Fortran

The syntax of the nothing directive is as follows:23

!$omp nothing24

Fortran

CHAPTER 2. DIRECTIVES 89

Description1
The nothing directive has no effect on the execution of the OpenMP program.2

Cross References3
• Metadirectives, see Section 2.3.4.4

2.5.4 error Directive5

Summary6
The error directive instructs the compiler or runtime to display a message and to perform an error7
action. The error directive is a utility directive unless the at clause is specified with the8
execution value, in which case the error directive is a stand-alone directive.9

Syntax10
C / C++

The syntax of the error directive is as follows:11

#pragma omp error [clause[[,] clause] ...] new-line12

where clause is one of the following:13

at(compilation | execution)14

severity(fatal | warning)15

message(msg-string)16

where msg-string is a string of const char * type.17

C / C++
Fortran

The syntax of the error directive is as follows:18

!$omp error [clause[[,] clause] ...]19

where clause is one of the following:20

at(compilation | execution)21

severity(fatal | warning)22

message(msg-string)23

where msg-string is a character string of character(len=*) type24

Fortran

90 OpenMP API – Version 5.1 November 2020

Description1
The error directive performs an error action. The error action includes the display of an2
implementation defined message. The severity clause determines whether the error action3
includes anything other than the message display.4

The at clause determines when the implementation performs the error action. When the at clause5
specifies compilation, the error action is performed during compilation if the error directive6
appears in a declarative context or in an executable context that is reachable at runtime. When the7
at clause specifies compilation and the error directive appears in an executable context that8
is not reachable at runtime, the error action may or may not be performed. When the at clause9
specifies execution, the error action is performed during program execution when a thread10
encounters the directive. If the at clause is not specified then the error directive behaves as if the11
at clause specifies compilation.12

The severity clause determines the action that the implementation performs. When the13
severity clause specifies warning, the implementation takes no action besides displaying the14
message. When the severity clause specifies fatal and the at clause specifies compile15
then the message is displayed and compilation of the current compilation unit is aborted. When the16
severity clause specifies fatal and the at clause specifies execution then the message is17
displayed and program execution is aborted. If no severity clause is specified then the error18
directive behaves as if the severity clause specifies fatal.19

If the message clause is specified then msg-string is included in the implementation defined20
message.21

Execution Model Events22
The runtime-error event occurs when a thread encounters an error directive for which the at23
clause specifies execution.24

Tool Callbacks25
A thread dispatches a registered ompt_callback_error callback for each occurrence of a26
runtime-error event in the context of the encountering task. This callback has the type signature27
ompt_callback_error_t.28

Restrictions29
Restrictions to the error directive are as follows:30

• At most one at clause can appear on the directive.31

• At most one severity clause can appear on the directive.32

• At most one message clause can appear on the directive.33

Cross References34
• Stand-alone directives, see Section 2.1.3.35

• ompt_callback_error_t, see Section 4.5.2.30.36

CHAPTER 2. DIRECTIVES 91

2.6 parallel Construct1

Summary2
The parallel construct creates a team of OpenMP threads that execute the region.3

Syntax4
C / C++

The syntax of the parallel construct is as follows:5

#pragma omp parallel [clause[[,] clause] ...] new-line6
structured-block7

where clause is one of the following:8

if([parallel :] scalar-expression)9

num_threads(integer-expression)10

default(data-sharing-attribute)11

private(list)12

firstprivate(list)13

shared(list)14

copyin(list)15

reduction([reduction-modifier ,] reduction-identifier : list)16

proc_bind(affinity-policy)17

allocate([allocator :] list)18

where affinity-policy is one of the following:19

primary20

master [deprecated]21

close22

spread23

C / C++
Fortran

The syntax of the parallel construct is as follows:24

!$omp parallel [clause[[,] clause] ...]25
loosely-structured-block26

!$omp end parallel27

92 OpenMP API – Version 5.1 November 2020

or1

!$omp parallel [clause[[,] clause] ...]2
strictly-structured-block3

[!$omp end parallel]4

where clause is one of the following:5

if([parallel :] scalar-logical-expression)6

num_threads(scalar-integer-expression)7

default(data-sharing-attribute)8

private(list)9

firstprivate(list)10

shared(list)11

copyin(list)12

reduction([reduction-modifier ,] reduction-identifier : list)13

proc_bind(affinity-policy)14

allocate([allocator :] list)15

where affinity-policy is one of the following:16

primary17

master [deprecated]18

close19

spread20

Fortran

Binding21
The binding thread set for a parallel region is the encountering thread. The encountering thread22
becomes the primary thread of the new team.23

Description24
When a thread encounters a parallel construct, a team of threads is created to execute the25
parallel region (see Section 2.6.1 for more information about how the number of threads in the26
team is determined, including the evaluation of the if and num_threads clauses). The thread27
that encountered the parallel construct becomes the primary thread of the new team, with a28
thread number of zero for the duration of the new parallel region. All threads in the new team,29
including the primary thread, execute the region. Once the team is created, the number of threads in30
the team remains constant for the duration of that parallel region.31

CHAPTER 2. DIRECTIVES 93

The optional proc_bind clause, described in Section 2.6.2, specifies the mapping of OpenMP1
threads to places within the current place partition, that is, within the places listed in the2
place-partition-var ICV for the implicit task of the encountering thread.3

Within a parallel region, thread numbers uniquely identify each thread. Thread numbers are4
consecutive whole numbers ranging from zero for the primary thread up to one less than the5
number of threads in the team. A thread may obtain its own thread number by a call to the6
omp_get_thread_num library routine.7

A set of implicit tasks, equal in number to the number of threads in the team, is generated by the8
encountering thread. The structured block of the parallel construct determines the code that9
will be executed in each implicit task. Each task is assigned to a different thread in the team and10
becomes tied. The task region of the task that the encountering thread is executing is suspended and11
each thread in the team executes its implicit task. Each thread can execute a path of statements that12
is different from that of the other threads.13

The implementation may cause any thread to suspend execution of its implicit task at a task14
scheduling point, and to switch to execution of any explicit task generated by any of the threads in15
the team, before eventually resuming execution of the implicit task (for more details see16
Section 2.12).17

An implicit barrier occurs at the end of a parallel region. After the end of a parallel region,18
only the primary thread of the team resumes execution of the enclosing task region.19

If a thread in a team that is executing a parallel region encounters another parallel20
directive, it creates a new team, according to the rules in Section 2.6.1, and it becomes the primary21
thread of that new team.22

If execution of a thread terminates while inside a parallel region, execution of all threads in all23
teams terminates. The order of termination of threads is unspecified. All work done by a team prior24
to any barrier that the team has passed in the program is guaranteed to be complete. The amount of25
work done by each thread after the last barrier that it passed and before it terminates is unspecified.26

Execution Model Events27
The parallel-begin event occurs in a thread that encounters a parallel construct before any28
implicit task is created for the corresponding parallel region.29

Upon creation of each implicit task, an implicit-task-begin event occurs in the thread that executes30
the implicit task after the implicit task is fully initialized but before the thread begins to execute the31
structured block of the parallel construct.32

If the parallel region creates a native thread, a native-thread-begin event occurs as the first33
event in the context of the new thread prior to the implicit-task-begin event.34

Events associated with implicit barriers occur at the end of a parallel region. Section 2.19.335
describes events associated with implicit barriers.36

When a thread finishes an implicit task, an implicit-task-end event occurs in the thread after events37
associated with implicit barrier synchronization in the implicit task.38

94 OpenMP API – Version 5.1 November 2020

The parallel-end event occurs in the thread that encounters the parallel construct after the1
thread executes its implicit-task-end event but before the thread resumes execution of the2
encountering task.3

If a native thread is destroyed at the end of a parallel region, a native-thread-end event occurs4
in the thread as the last event prior to destruction of the thread.5

Tool Callbacks6
A thread dispatches a registered ompt_callback_parallel_begin callback for each7
occurrence of a parallel-begin event in that thread. The callback occurs in the task that encounters8
the parallel construct. This callback has the type signature9
ompt_callback_parallel_begin_t. In the dispatched callback,10
(flags & ompt_parallel_team) evaluates to true.11

A thread dispatches a registered ompt_callback_implicit_task callback with12
ompt_scope_begin as its endpoint argument for each occurrence of an implicit-task-begin13
event in that thread. Similarly, a thread dispatches a registered14
ompt_callback_implicit_task callback with ompt_scope_end as its endpoint15
argument for each occurrence of an implicit-task-end event in that thread. The callbacks occur in16
the context of the implicit task and have type signature ompt_callback_implicit_task_t.17
In the dispatched callback, (flags & ompt_task_implicit) evaluates to true.18

A thread dispatches a registered ompt_callback_parallel_end callback for each19
occurrence of a parallel-end event in that thread. The callback occurs in the task that encounters20
the parallel construct. This callback has the type signature21
ompt_callback_parallel_end_t.22

A thread dispatches a registered ompt_callback_thread_begin callback for the23
native-thread-begin event in that thread. The callback occurs in the context of the thread. The24
callback has type signature ompt_callback_thread_begin_t.25

A thread dispatches a registered ompt_callback_thread_end callback for the26
native-thread-end event in that thread. The callback occurs in the context of the thread. The27
callback has type signature ompt_callback_thread_end_t.28

Restrictions29
Restrictions to the parallel construct are as follows:30

• A program must not depend on any ordering of the evaluations of the clauses of the parallel31
directive, or on any side effects of the evaluations of the clauses.32

• At most one if clause can appear on the directive.33

• At most one proc_bind clause can appear on the directive.34

• At most one num_threads clause can appear on the directive. The num_threads35
expression must evaluate to a positive integer value.36

CHAPTER 2. DIRECTIVES 95

C++
• A throw executed inside a parallel region must cause execution to resume within the same1
parallel region, and the same thread that threw the exception must catch it.2

C++

Cross References3
• OpenMP execution model, see Section 1.3.4

• num_threads clause, see Section 2.6.5

• proc_bind clause, see Section 2.6.2.6

• allocate clause, see Section 2.13.4.7

• if clause, see Section 2.18.8

• default, shared, private, firstprivate, and reduction clauses, see9
Section 2.21.4.10

• copyin clause, see Section 2.21.6.11

• omp_get_thread_num routine, see Section 3.2.4.12

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.13

• ompt_callback_thread_begin_t, see Section 4.5.2.1.14

• ompt_callback_thread_end_t, see Section 4.5.2.2.15

• ompt_callback_parallel_begin_t, see Section 4.5.2.3.16

• ompt_callback_parallel_end_t, see Section 4.5.2.4.17

• ompt_callback_implicit_task_t, see Section 4.5.2.11.18

2.6.1 Determining the Number of Threads for a parallel19

Region20

When execution encounters a parallel directive, the value of the if clause or num_threads21
clause (if any) on the directive, the current parallel context, and the values of the nthreads-var,22
dyn-var, thread-limit-var, and max-active-levels-var ICVs are used to determine the number of23
threads to use in the region.24

Using a variable in an if or num_threads clause expression of a parallel construct causes25
an implicit reference to the variable in all enclosing constructs. The if clause expression and the26
num_threads clause expression are evaluated in the context outside of the parallel construct,27
and no ordering of those evaluations is specified. In what order or how many times any side effects28
of the evaluation of the num_threads or if clause expressions occur is also unspecified.29

96 OpenMP API – Version 5.1 November 2020

When a thread encounters a parallel construct, the number of threads is determined according1
to Algorithm 2.1.2

3
Algorithm 2.14

5

let ThreadsBusy be the number of OpenMP threads currently executing in this contention group;6

if an if clause exists7

then let IfClauseValue be the value of the if clause expression;8

else let IfClauseValue = true;9

if a num_threads clause exists10

then let ThreadsRequested be the value of the num_threads clause expression;11

else let ThreadsRequested = value of the first element of nthreads-var;12

let ThreadsAvailable = (thread-limit-var - ThreadsBusy + 1);13

if (IfClauseValue = false)14

then number of threads = 1;15

else if (active-levels-var ≥ max-active-levels-var)16

then number of threads = 1;17

else if (dyn-var = true) and (ThreadsRequested ≤ ThreadsAvailable)18

then 1 ≤ number of threads ≤ ThreadsRequested;19

else if (dyn-var = true) and (ThreadsRequested > ThreadsAvailable)20

then 1 ≤ number of threads ≤ ThreadsAvailable;21

else if (dyn-var = false) and (ThreadsRequested ≤ ThreadsAvailable)22

then number of threads = ThreadsRequested;23

else if (dyn-var = false) and (ThreadsRequested > ThreadsAvailable)24

then behavior is implementation defined;25

26
27

CHAPTER 2. DIRECTIVES 97

1

Note – Since the initial value of the dyn-var ICV is implementation defined, programs that depend2
on a specific number of threads for correct execution should explicitly disable dynamic adjustment3
of the number of threads.4

5

Cross References6
• nthreads-var, dyn-var, thread-limit-var, and max-active-levels-var ICVs, see Section 2.4.7

• parallel construct, see Section 2.6.8

• num_threads clause, see Section 2.6.9

• if clause, see Section 2.18.10

2.6.2 Controlling OpenMP Thread Affinity11

When a thread encounters a parallel directive without a proc_bind clause, the bind-var ICV12
is used to determine the policy for assigning OpenMP threads to places within the current place13
partition, that is, within the places listed in the place-partition-var ICV for the implicit task of the14
encountering thread. If the parallel directive has a proc_bind clause then the binding policy15
specified by the proc_bind clause overrides the policy specified by the first element of the16
bind-var ICV. Once a thread in the team is assigned to a place, the OpenMP implementation should17
not move it to another place.18

The primary thread affinity policy instructs the execution environment to assign every thread in19
the team to the same place as the primary thread. The place partition is not changed by this policy,20
and each implicit task inherits the place-partition-var ICV of the parent implicit task. The master21
thread-affinity policy, which has been deprecated, has identical semantics to the primary thread22
affinity policy.23

The close thread affinity policy instructs the execution environment to assign the threads in the24
team to places close to the place of the parent thread. The place partition is not changed by this25
policy, and each implicit task inherits the place-partition-var ICV of the parent implicit task. If T26
is the number of threads in the team, and P is the number of places in the parent’s place partition,27
then the assignment of threads in the team to places is as follows:28

• T ≤ P : The primary thread executes on the place of the parent thread. The thread with the next29
smallest thread number executes on the next place in the place partition, and so on, with wrap30
around with respect to the place partition of the primary thread.31

• T > P : Each place p will contain Sp threads with consecutive thread numbers where32
bbT/Pcc ≤ Sp ≤ ddT/Pee. The first S0 threads (including the primary thread) are assigned to the33
place of the parent thread. The next S1 threads are assigned to the next place in the place34
partition, and so on, with wrap around with respect to the place partition of the primary thread.35

98 OpenMP API – Version 5.1 November 2020

When P does not divide T evenly, the exact number of threads in a particular place is1
implementation defined.2

The purpose of the spread thread affinity policy is to create a sparse distribution for a team of T3
threads among the P places of the parent’s place partition. A sparse distribution is achieved by first4
subdividing the parent partition into T subpartitions if T ≤ P , or P subpartitions if T > P . Then5
one thread (T ≤ P) or a set of threads (T > P) is assigned to each subpartition. The6
place-partition-var ICV of each implicit task is set to its subpartition. The subpartitioning is not7
only a mechanism for achieving a sparse distribution, it also defines a subset of places for a thread8
to use when creating a nested parallel region. The assignment of threads to places is as follows:9

• T ≤ P : The parent thread’s place partition is split into T subpartitions, where each subpartition10
contains bbP/Tcc or ddP/Tee consecutive places. A single thread is assigned to each subpartition.11
The primary thread executes on the place of the parent thread and is assigned to the subpartition12
that includes that place. The thread with the next smallest thread number is assigned to the first13
place in the next subpartition, and so on, with wrap around with respect to the original place14
partition of the primary thread.15

• T > P : The parent thread’s place partition is split into P subpartitions, each consisting of a16
single place. Each subpartition is assigned Sp threads with consecutive thread numbers, where17
bbT/Pcc ≤ Sp ≤ ddT/Pee. The first S0 threads (including the primary thread) are assigned to the18
subpartition that contains the place of the parent thread. The next S1 threads are assigned to the19
next subpartition, and so on, with wrap around with respect to the original place partition of the20
primary thread. When P does not divide T evenly, the exact number of threads in a particular21
subpartition is implementation defined.22

The determination of whether the affinity request can be fulfilled is implementation defined. If the23
affinity request cannot be fulfilled, then the affinity of threads in the team is implementation defined.24

25

Note – Wrap around is needed if the end of a place partition is reached before all thread26
assignments are done. For example, wrap around may be needed in the case of close and T ≤ P ,27
if the primary thread is assigned to a place other than the first place in the place partition. In this28
case, thread 1 is assigned to the place after the place of the primary thread, thread 2 is assigned to29
the place after that, and so on. The end of the place partition may be reached before all threads are30
assigned. In this case, assignment of threads is resumed with the first place in the place partition.31

32
33

CHAPTER 2. DIRECTIVES 99

2.7 teams Construct1

Summary2
The teams construct creates a league of initial teams and the initial thread in each team executes3
the region.4

Syntax5
C / C++

The syntax of the teams construct is as follows:6

#pragma omp teams [clause[[,] clause] ...] new-line7
structured-block8

where clause is one of the following:9

num_teams([lower-bound:]upper-bound)10

thread_limit(integer-expression)11

default(data-sharing-attribute)12

private(list)13

firstprivate(list)14

shared(list)15

reduction([default ,] reduction-identifier : list)16

allocate([allocator :] list)17

and where lower-bound and upper-bound are scalar integer expressions.18

C / C++
Fortran

The syntax of the teams construct is as follows:19

!$omp teams [clause[[,] clause] ...]20
loosely-structured-block21

!$omp end teams22

or23

!$omp teams [clause[[,] clause] ...]24
strictly-structured-block25

[!$omp end teams]26

100 OpenMP API – Version 5.1 November 2020

where clause is one of the following:1

num_teams([lower-bound:]upper-bound)2

thread_limit(scalar-integer-expression)3

default(data-sharing-attribute)4

private(list)5

firstprivate(list)6

shared(list)7

reduction([default ,] reduction-identifier : list)8

allocate([allocator :] list)9

and where lower-bound and upper-bound are scalar integer expressions.10

Fortran

Binding11
The binding thread set for a teams region is the encountering thread.12

Description13
When a thread encounters a teams construct, a league of teams is created. Each team is an initial14
team, and the initial thread in each team executes the teams region.15

If the num_teams clause is present, lower-bound is the specified lower bound and upper-bound is16
the specified upper bound on the number of teams requested. If a lower bound is not specified, the17
lower bound is set to the specified upper bound. The number of teams created is implementation18
defined, but it will be greater than or equal to the lower bound and less than or equal to the upper19
bound.20

If the num_teams clause is not specified and the value of the nteams-var ICV is greater than zero,21
the number of teams created is less or equal to the value of the nteams-var ICV. Otherwise, the22
number of teams created is implementation defined, but it will be greater than or equal to 1.23

A thread may obtain the number of teams created by the construct with a call to the24
omp_get_num_teams routine.25

If a thread_limit clause is not present on the teams construct, but the construct is closely26
nested inside a target construct on which the thread_limit clause is specified, the behavior27
is as if that thread_limit clause is also specified for the teams construct.28

As described in Section 2.4.4.1, the teams construct limits the number of threads that may29
participate in a contention group initiated by each team by setting the value of the thread-limit-var30
ICV for the initial task to an implementation defined value greater than zero. If the31
thread_limit clause is specified, the number of threads will be less than or equal to the value32
specified in the clause. Otherwise, if the teams-thread-limit-var ICV is greater than zero, the33
number of threads will be less than or equal to that value.34

CHAPTER 2. DIRECTIVES 101

On a combined or composite construct that includes target and teams constructs, the1
expressions in num_teams and thread_limit clauses are evaluated on the host device on2
entry to the target construct.3

Once the teams are created, the number of initial teams remains constant for the duration of the4
teams region.5

Within a teams region, initial team numbers uniquely identify each initial team. Initial team6
numbers are consecutive whole numbers ranging from zero to one less than the number of initial7
teams. A thread may obtain its own initial team number by a call to the omp_get_team_num8
library routine.9

The place list, given by the place-partition-var ICV of the encountering thread, is split into10
subpartitions in an implementation-defined manner, and each team is assigned to a subpartition by11
setting the place-partition-var of its initial thread to the subpartition.12

The teams construct sets the default-device-var ICV for each initial thread to an13
implementation-defined value.14

After the teams have completed execution of the teams region, the encountering task resumes15
execution of the enclosing task region.16

Execution Model Events17
The teams-begin event occurs in a thread that encounters a teams construct before any initial task18
is created for the corresponding teams region.19

Upon creation of each initial task, an initial-task-begin event occurs in the thread that executes the20
initial task after the initial task is fully initialized but before the thread begins to execute the21
structured block of the teams construct.22

If the teams region creates a native thread, a native-thread-begin event occurs as the first event in23
the context of the new thread prior to the initial-task-begin event.24

When a thread finishes an initial task, an initial-task-end event occurs in the thread.25

The teams-end event occurs in the thread that encounters the teams construct after the thread26
executes its initial-task-end event but before it resumes execution of the encountering task.27

If a native thread is destroyed at the end of a teams region, a native-thread-end event occurs in the28
thread as the last event prior to destruction of the thread.29

Tool Callbacks30
A thread dispatches a registered ompt_callback_parallel_begin callback for each31
occurrence of a teams-begin event in that thread. The callback occurs in the task that encounters the32
teams construct. This callback has the type signature33
ompt_callback_parallel_begin_t. In the dispatched callback,34
(flags & ompt_parallel_league) evaluates to true.35

102 OpenMP API – Version 5.1 November 2020

A thread dispatches a registered ompt_callback_implicit_task callback with1
ompt_scope_begin as its endpoint argument for each occurrence of an initial-task-begin in2
that thread. Similarly, a thread dispatches a registered ompt_callback_implicit_task3
callback with ompt_scope_end as its endpoint argument for each occurrence of an4
initial-task-end event in that thread. The callbacks occur in the context of the initial task and have5
type signature ompt_callback_implicit_task_t. In the dispatched callback,6
(flags & ompt_task_initial) evaluates to true.7

A thread dispatches a registered ompt_callback_parallel_end callback for each8
occurrence of a teams-end event in that thread. The callback occurs in the task that encounters the9
teams construct. This callback has the type signature ompt_callback_parallel_end_t.10

A thread dispatches a registered ompt_callback_thread_begin callback for the11
native-thread-begin event in that thread. The callback occurs in the context of the thread. The12
callback has type signature ompt_callback_thread_begin_t.13

A thread dispatches a registered ompt_callback_thread_end callback for the14
native-thread-end event in that thread. The callback occurs in the context of the thread. The15
callback has type signature ompt_callback_thread_end_t.16

Restrictions17
Restrictions to the teams construct are as follows:18

• A program that branches into or out of a teams region is non-conforming.19

• A program must not depend on any ordering of the evaluations of the clauses of the teams20
directive, or on any side effects of the evaluation of the clauses.21

• At most one thread_limit clause can appear on the directive. The thread_limit22
expression must evaluate to a positive integer value.23

• At most one num_teams clause can appear on the directive. The lower-bound and upper-bound24
specified in the num_teams clause must evaluate to positive integer values.25

• A teams region must be strictly nested within the implicit parallel region that surrounds the26
whole OpenMP program or a target region. If a teams region is nested inside a target27
region, the corresponding target construct must not contain any statements, declarations or28
directives outside of the corresponding teams construct.29

• distribute, distribute simd, distribute parallel worksharing-loop, distribute parallel30
worksharing-loop SIMD, parallel regions, including any parallel regions arising from31
combined constructs, omp_get_num_teams() regions, and omp_get_team_num()32
regions are the only OpenMP regions that may be strictly nested inside the teams region.33

CHAPTER 2. DIRECTIVES 103

Cross References1
• parallel construct, see Section 2.6.2

• distribute construct, see Section 2.11.6.1.3

• distribute simd construct, see Section 2.11.6.2.4

• allocate clause, see Section 2.13.4.5

• target construct, see Section 2.14.5.6

• Data-sharing attribute clauses, see Section 2.21.4.7

• omp_get_num_teams routine, see Section 3.4.1.8

• omp_get_team_num routine, see Section 3.4.2.9

• ompt_callback_thread_begin_t, see Section 4.5.2.1.10

• ompt_callback_thread_end_t, see Section 4.5.2.2.11

• ompt_callback_parallel_begin_t, see Section 4.5.2.3.12

• ompt_callback_parallel_end_t, see Section 4.5.2.4.13

• ompt_callback_implicit_task_t, see Section 4.5.2.11.14

2.8 masked Construct15

Summary16
The masked construct specifies a structured block that is executed by a subset of the threads of the17
current team.18

Syntax19
C / C++

The syntax of the masked construct is as follows:20

#pragma omp masked [filter(integer-expression)] new-line21
structured-block22

C / C++
Fortran

The syntax of the masked construct is as follows:23

!$omp masked [filter(scalar-integer-expression)]24
loosely-structured-block25

!$omp end masked26

104 OpenMP API – Version 5.1 November 2020

or1

!$omp masked [filter(scalar-integer-expression)]2
strictly-structured-block3

[!$omp end masked]4

Fortran
The master construct, which has been deprecated, has the same syntax as the masked construct5
other than the use of master as the directive name and that the filter clause may not be6
specified for the master construct.7

Binding8
The binding thread set for a masked region is the current team. A masked region binds to the9
innermost enclosing parallel region.10

Description11
Only the threads of the team that executes the binding parallel region that the filter clause12
selects participate in the execution of the structured block of a masked region. Other threads in the13
team do not execute the associated structured block. No implied barrier occurs either on entry to, or14
exit from, the masked construct.15

If a filter clause is present on the construct and the parameter specifies the thread number of the16
current thread in the current team then the current thread executes the associated structured block.17
If the filter clause is not present, the construct behaves as if the parameter is a constant integer18
expression that evaluates to zero, so that only the primary thread executes the associated structured19
block. The use of a variable in a filter clause expression causes an implicit reference to the20
variable in all enclosing constructs. The result of evaluating the parameter of the filter clause21
may vary across threads.22

If more than one thread in the team executes the structured block of a masked region, the23
structured block must include any synchronization required to ensure that data races do not occur.24

The master construct, which has been deprecated, has identical semantics to the masked25
construct with no filter clause present.26

Execution Model Events27
The masked-begin event occurs in any thread of a team that executes the masked region on entry28
to the region.29

The masked-end event occurs in any thread of a team that executes the masked region on exit from30
the region.31

CHAPTER 2. DIRECTIVES 105

Tool Callbacks1
A thread dispatches a registered ompt_callback_masked callback with2
ompt_scope_begin as its endpoint argument for each occurrence of a masked-begin event in3
that thread. Similarly, a thread dispatches a registered ompt_callback_masked callback with4
ompt_scope_end as its endpoint argument for each occurrence of a masked-end event in that5
thread. These callbacks occur in the context of the task executed by the current thread and have the6
type signature ompt_callback_masked_t.7

Restrictions8
Restrictions to the masked construct are as follows:9

C++
• A throw executed inside a masked region must cause execution to resume within the same10
masked region, and the same thread that threw the exception must catch it.11

C++

Cross References12
• parallel construct, see Section 2.6.13

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.14

• ompt_callback_masked_t, see Section 4.5.2.12.15

2.9 scope Construct16

Summary17
The scope construct defines a structured block that is executed by all threads in a team but where18
additional OpenMP operations can be specified.19

Syntax20
C / C++

The syntax of the scope construct is as follows:21

#pragma omp scope [clause[[,] clause] ...] new-line22
structured-block23

where clause is one of the following:24

private(list)25

reduction([reduction-modifier ,] reduction-identifier : list)26

nowait27

C / C++

106 OpenMP API – Version 5.1 November 2020

Fortran
The syntax of the scope construct is as follows:1

!$omp scope [clause[[,] clause] ...]2
loosely-structured-block3

!$omp end scope [nowait]4

or5

!$omp scope [clause[[,] clause] ...]6
strictly-structured-block7

[!$omp end scope [nowait]]8

where clause is one of the following:9

private(list)10

reduction([reduction-modifier ,] reduction-identifier : list)11

Fortran

Binding12
The binding thread set for a scope region is the current team. A scope region binds to the13
innermost enclosing parallel region. Only the threads of the team that executes the binding parallel14
region participate in the execution of the structured block and the implied barrier of the scope15
region if the barrier is not eliminated by a nowait clause.16

Description17
All encountering threads will execute the structured block associated with the scope construct.18
An implicit barrier occurs at the end of a scope region if the nowait clause is not specified.19

Execution Model Events20
The scope-begin event occurs after an implicit task encounters a scope construct but before the21
task starts to execute the structured block of the scope region.22

The scope-end event occurs after an implicit task finishes execution of a scope region but before it23
resumes execution of the enclosing region.24

Tool Callbacks25
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin26
as its endpoint argument and ompt_work_scope as its wstype argument for each occurrence of a27
scope-begin event in that thread. Similarly, a thread dispatches a registered28
ompt_callback_work callback with ompt_scope_end as its endpoint argument and29
ompt_work_scope as its wstype argument for each occurrence of a scope-end event in that30
thread. The callbacks occur in the context of the implicit task. The callbacks have type signature31
ompt_callback_work_t.32

CHAPTER 2. DIRECTIVES 107

Restrictions1
Restrictions to the scope construct are as follows:2

• Each scope region must be encountered by all threads in a team or by none at all, unless3
cancellation has been requested for the innermost enclosing parallel region.4

• The sequence of worksharing regions, scope regions and barrier regions encountered must5
be the same for every thread in a team.6

• At most one nowait clause can appear on a scope construct.7

C++
• A throw executed inside a scope region must cause execution to resume within the same8
scope region, and the same thread that threw the exception must catch it.9

C++

Cross References10
• reduction clause, see Section 2.21.4.11

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.12

• ompt_work_scope, see Section 4.4.4.15.13

• ompt_callback_work_t, see Section 4.5.2.5.14

2.10 Worksharing Constructs15

A worksharing construct distributes the execution of the corresponding region among the members16
of the team that encounters it. Threads execute portions of the region in the context of the implicit17
tasks that each one is executing. If the team consists of only one thread then the worksharing region18
is not executed in parallel.19

A worksharing region has no barrier on entry; however, an implied barrier exists at the end of the20
worksharing region, unless a nowait clause is specified. If a nowait clause is present, an21
implementation may omit the barrier at the end of the worksharing region. In this case, threads that22
finish early may proceed straight to the instructions that follow the worksharing region without23
waiting for the other members of the team to finish the worksharing region, and without performing24
a flush operation.25

The OpenMP API defines the worksharing constructs that are described in this section as well as26
the worksharing-loop construct, which is described in Section 2.11.4.27

108 OpenMP API – Version 5.1 November 2020

Restrictions1
The following restrictions apply to worksharing constructs:2

• Each worksharing region must be encountered by all threads in a team or by none at all, unless3
cancellation has been requested for the innermost enclosing parallel region.4

• The sequence of worksharing regions, scope regions and barrier regions encountered must5
be the same for every thread in a team.6

2.10.1 sections Construct7

Summary8
The sections construct is a non-iterative worksharing construct that contains a set of structured9
blocks that are to be distributed among and executed by the threads in a team. Each structured10
block is executed once by one of the threads in the team in the context of its implicit task.11

Syntax12
C / C++

The syntax of the sections construct is as follows:13

#pragma omp sections [clause[[,] clause] ...] new-line14
{15
[#pragma omp section new-line]16

structured-block-sequence17
[#pragma omp section new-line18

structured-block-sequence]19
...20
}21

where clause is one of the following:22

private(list)23

firstprivate(list)24

lastprivate([lastprivate-modifier:] list)25

reduction([reduction-modifier ,] reduction-identifier : list)26

allocate([allocator :] list)27

nowait28

C / C++

CHAPTER 2. DIRECTIVES 109

Fortran
The syntax of the sections construct is as follows:1

!$omp sections [clause[[,] clause] ...]2
[!$omp section]3

structured-block-sequence4
[!$omp section5

structured-block-sequence]6
...7

!$omp end sections [nowait]8

where clause is one of the following:9

private(list)10

firstprivate(list)11

lastprivate([lastprivate-modifier:] list)12

reduction([reduction-modifier ,] reduction-identifier : list)13

allocate([allocator :] list)14

Fortran

Binding15
The binding thread set for a sections region is the current team. A sections region binds to16
the innermost enclosing parallel region. Only the threads of the team that executes the binding17
parallel region participate in the execution of the structured block sequences and the implied18
barrier of the sections region if the barrier is not eliminated by a nowait clause.19

Description20
Each structured block sequence in the sections construct is preceded by a section directive21
except possibly the first sequence, for which a preceding section directive is optional.22

The method of scheduling the structured block sequences among the threads in the team is23
implementation defined.24

An implicit barrier occurs at the end of a sections region if the nowait clause is not specified.25

Execution Model Events26
The section-begin event occurs after an implicit task encounters a sections construct but before27
the task executes any structured block sequences of the sections region.28

The sections-end event occurs after an implicit task finishes execution of a sections region but29
before it resumes execution of the enclosing context.30

The section-begin event occurs before an implicit task starts to execute a structured block sequence31
in the sections construct for each of those structured block sequences that the task executes.32

110 OpenMP API – Version 5.1 November 2020

Tool Callbacks1
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin2
as its endpoint argument and ompt_work_sections as its wstype argument for each3
occurrence of a section-begin event in that thread. Similarly, a thread dispatches a registered4
ompt_callback_work callback with ompt_scope_end as its endpoint argument and5
ompt_work_sections as its wstype argument for each occurrence of a sections-end event in6
that thread. The callbacks occur in the context of the implicit task. The callbacks have type7
signature ompt_callback_work_t.8

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a9
section-begin event in that thread. The callback occurs in the context of the implicit task. The10
callback has type signature ompt_callback_dispatch_t.11

Restrictions12
Restrictions to the sections construct are as follows:13

• Orphaned section directives are prohibited. That is, the section directives must appear14
within the sections construct and must not be encountered elsewhere in the sections15
region.16

• The code enclosed in a sections construct must be a structured block sequence.17

• Only a single nowait clause can appear on a sections directive.18

C++
• A throw executed inside a sections region must cause execution to resume within the same19
section of the sections region, and the same thread that threw the exception must catch it.20

C++

Cross References21
• allocate clause, see Section 2.13.4.22

• private, firstprivate, lastprivate, and reduction clauses, see Section 2.21.4.23

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.24

• ompt_work_sections, see Section 4.4.4.15.25

• ompt_callback_work_t, see Section 4.5.2.5.26

• ompt_callback_dispatch_t, see Section 4.5.2.6.27

CHAPTER 2. DIRECTIVES 111

2.10.2 single Construct1

Summary2
The single construct specifies that the associated structured block is executed by only one of the3
threads in the team (not necessarily the primary thread), in the context of its implicit task. The4
other threads in the team, which do not execute the block, wait at an implicit barrier at the end of a5
single region unless a nowait clause is specified.6

Syntax7
C / C++

The syntax of the single construct is as follows:8

#pragma omp single [clause[[,] clause] ...] new-line9
structured-block10

where clause is one of the following:11

private(list)12

firstprivate(list)13

copyprivate(list)14

allocate([allocator :] list)15

nowait16

C / C++
Fortran

The syntax of the single construct is as follows:17

!$omp single [clause[[,] clause] ...]18
loosely-structured-block19

!$omp end single [end_clause[[,] end_clause] ...]20

or21

!$omp single [clause[[,] clause] ...]22
strictly-structured-block23

[!$omp end single [end_clause[[,] end_clause] ...]]24

where clause is one of the following:25

private(list)26

firstprivate(list)27

allocate([allocator :] list)28

112 OpenMP API – Version 5.1 November 2020

and end_clause is one of the following:1

copyprivate(list)2

nowait3

Fortran

Binding4
The binding thread set for a single region is the current team. A single region binds to the5
innermost enclosing parallel region. Only the threads of the team that executes the binding6
parallel region participate in the execution of the structured block and the implied barrier of the7
single region if the barrier is not eliminated by a nowait clause.8

Description9
Only one of the encountering threads will execute the structured block associated with the single10
construct. The method of choosing a thread to execute the structured block each time the team11
encounters the construct is implementation defined. An implicit barrier occurs at the end of a12
single region if the nowait clause is not specified.13

Execution Model Events14
The single-begin event occurs after an implicit task encounters a single construct but before the15
task starts to execute the structured block of the single region.16

The single-end event occurs after an implicit task finishes execution of a single region but before17
it resumes execution of the enclosing region.18

Tool Callbacks19
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin20
as its endpoint argument for each occurrence of a single-begin event in that thread. Similarly, a21
thread dispatches a registered ompt_callback_work callback with ompt_scope_end as its22
endpoint argument for each occurrence of a single-end event in that thread. For each of these23
callbacks, the wstype argument is ompt_work_single_executor if the thread executes the24
structured block associated with the single region; otherwise, the wstype argument is25
ompt_work_single_other. The callback has type signature ompt_callback_work_t.26

Restrictions27
Restrictions to the single construct are as follows:28

• The copyprivate clause must not be used with the nowait clause.29

• At most one nowait clause can appear on a single construct.30

C++
• A throw executed inside a single region must cause execution to resume within the same31
single region, and the same thread that threw the exception must catch it.32

C++

CHAPTER 2. DIRECTIVES 113

Cross References1
• allocate clause, see Section 2.13.4.2

• private and firstprivate clauses, see Section 2.21.4.3

• copyprivate clause, see Section 2.21.6.2.4

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.5

• ompt_work_single_executor and ompt_work_single_other, see6
Section 4.4.4.15.7

• ompt_callback_work_t, Section 4.5.2.5.8

Fortran

2.10.3 workshare Construct9

Summary10
The workshare construct divides the execution of the enclosed structured block into separate11
units of work, and causes the threads of the team to share the work such that each unit is executed12
only once by one thread, in the context of its implicit task.13

Syntax14
The syntax of the workshare construct is as follows:15

!$omp workshare16
loosely-structured-block17

!$omp end workshare [nowait]18

or19

!$omp workshare20
strictly-structured-block21

[!$omp end workshare [nowait]]22

Binding23
The binding thread set for a workshare region is the current team. A workshare region binds24
to the innermost enclosing parallel region. Only the threads of the team that executes the25
binding parallel region participate in the execution of the units of work and the implied barrier26
of the workshare region if the barrier is not eliminated by a nowait clause.27

114 OpenMP API – Version 5.1 November 2020

Fortran (cont.)

Description1
An implicit barrier occurs at the end of a workshare region if a nowait clause is not specified.2

An implementation of the workshare construct must insert any synchronization that is required3
to maintain standard Fortran semantics. For example, the effects of one statement within the4
structured block must appear to occur before the execution of succeeding statements, and the5
evaluation of the right hand side of an assignment must appear to complete prior to the effects of6
assigning to the left hand side.7

The statements in the workshare construct are divided into units of work as follows:8

• For array expressions within each statement, including transformational array intrinsic functions9
that compute scalar values from arrays:10

– Evaluation of each element of the array expression, including any references to elemental11
functions, is a unit of work.12

– Evaluation of transformational array intrinsic functions may be freely subdivided into any13
number of units of work.14

• For an array assignment statement, the assignment of each element is a unit of work.15

• For a scalar assignment statement, the assignment operation is a unit of work.16

• For a WHERE statement or construct, the evaluation of the mask expression and the masked17
assignments are each a unit of work.18

• For a FORALL statement or construct, the evaluation of the mask expression, expressions19
occurring in the specification of the iteration space, and the masked assignments are each a unit20
of work.21

• For an atomic construct, the atomic operation on the storage location designated as x is a unit22
of work.23

• For a critical construct, the construct is a single unit of work.24

• For a parallel construct, the construct is a unit of work with respect to the workshare25
construct. The statements contained in the parallel construct are executed by a new thread26
team.27

• If none of the rules above apply to a portion of a statement in the structured block, then that28
portion is a unit of work.29

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM, PRODUCT,30
MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, RESHAPE, TRANSPOSE,31
EOSHIFT, CSHIFT, MINLOC, and MAXLOC.32

It is unspecified how the units of work are assigned to the threads that execute a workshare33
region.34

CHAPTER 2. DIRECTIVES 115

Fortran (cont.)

If an array expression in the block references the value, association status, or allocation status of1
private variables, the value of the expression is undefined, unless the same value would be2
computed by every thread.3

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL assignment4
assigns to a private variable in the block, the result is unspecified.5

The workshare directive causes the sharing of work to occur only in the workshare construct,6
and not in the remainder of the workshare region.7

Execution Model Events8
The workshare-begin event occurs after an implicit task encounters a workshare construct but9
before the task starts to execute the structured block of the workshare region.10

The workshare-end event occurs after an implicit task finishes execution of a workshare region11
but before it resumes execution of the enclosing context.12

Tool Callbacks13
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin14
as its endpoint argument and ompt_work_workshare as its wstype argument for each15
occurrence of a workshare-begin event in that thread. Similarly, a thread dispatches a registered16
ompt_callback_work callback with ompt_scope_end as its endpoint argument and17
ompt_work_workshare as its wstype argument for each occurrence of a workshare-end event18
in that thread. The callbacks occur in the context of the implicit task. The callbacks have type19
signature ompt_callback_work_t.20

Restrictions21
Restrictions to the workshare construct are as follows:22

• The only OpenMP constructs that may be closely nested inside a workshare construct are the23
atomic, critical, and parallel constructs.24

• Base language statements that are encountered inside a workshare construct but that are not25
enclosed within a parallel construct that is nested inside the workshare construct must26
consist of only the following:27

– array assignments28

– scalar assignments29

– FORALL statements30

– FORALL constructs31

– WHERE statements32

– WHERE constructs33

116 OpenMP API – Version 5.1 November 2020

• All array assignments, scalar assignments, and masked array assignments that are encountered1
inside a workshare construct but are not nested inside a parallel construct that is nested2
inside the workshare construct must be intrinsic assignments.3

• The construct must not contain any user-defined function calls unless the function is4
ELEMENTAL or the function call is contained inside a parallel construct that is nested inside5
the workshare construct.6

Cross References7
• parallel construct, see Section 2.6.8

• critical construct, see Section 2.19.1.9

• atomic construct, see Section 2.19.7.10

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.11

• ompt_work_workshare, see Section 4.4.4.15.12

• ompt_callback_work_t, see Section 4.5.2.5.13

Fortran

2.11 Loop-Related Directives14

2.11.1 Canonical Loop Nest Form15

A loop nest has canonical loop nest form if it conforms to loop-nest in the following grammar:16

Symbol Meaning17

loop-nest One of the following:18

C / C++
for (init-expr; test-expr; incr-expr)19

loop-body20

C / C++
or21

C++
for (range-decl: range-expr)22

loop-body23

A range-based for loop is equivalent to a regular for loop using iterators, as24
defined in the base language. A range-based for loop has no iteration variable.25

C++

CHAPTER 2. DIRECTIVES 117

Symbol Meaning

or1

Fortran
DO [label] var = lb , ub [, incr]2

[intervening-code]3
loop-body4
[intervening-code]5

[label] END DO6

If the loop-nest is a nonblock-do-construct, it is treated as a block-do-construct for7
each DO construct.8

The value of incr is the increment of the loop. If not specified, its value is assumed to9
be 1.10

Fortran
or11

loop-transformation-construct12

or13

generated-canonical-loop14

loop-body One of the following:15

loop-nest16

or17

C / C++
{18

[intervening-code]19
loop-body20
[intervening-code]21

}22

C / C++

118 OpenMP API – Version 5.1 November 2020

Symbol Meaning

or1

Fortran
BLOCK2

[intervening-code]3
loop-body4
[intervening-code]5

END BLOCK6

Fortran
or if none of the previous productions match7

final-loop-body8

loop-transformation-
construct

A loop transformation construct.9

generated-canonical-
loop

A generated loop from a loop transformation construct that has canonical loop nest10
form and for which the loop body matches loop-body.11

intervening-code A structured block sequence that does not contain OpenMP directives or calls to the12
OpenMP runtime API in its corresponding region, referred to as intervening code. If13
intervening code is present, then a loop at the same depth within the loop nest is not a14
perfectly nested loop.15

C / C++
It must not contain iteration statements, continue statements or break statements16
that apply to the enclosing loop.17

C / C++
Fortran

It must not contain loops, array expressions, CYCLE statements or EXIT statements.18

Fortran

final-loop-body A structured block that terminates the scope of loops in the loop nest. If the loop nest19
is associated with a loop-associated directive, loops in this structured block cannot be20
associated with that directive.21

CHAPTER 2. DIRECTIVES 119

Symbol Meaning

C / C++
init-expr One of the following:1

var = lb2
integer-type var = lb3

C
pointer-type var = lb4

C
C++

random-access-iterator-type var = lb5

C++

test-expr One of the following:6
var relational-op ub7
ub relational-op var8

relational-op One of the following:9
<10
<=11
>12
>=13
!=14

incr-expr One of the following:15
++var16
var++17
- - var18
var - -19
var += incr20
var - = incr21
var = var + incr22
var = incr + var23
var = var - incr24

The value of incr, respectively 1 and -1 for the increment and decrement operators, is25
the increment of the loop.26

C / C++

120 OpenMP API – Version 5.1 November 2020

Symbol Meaning

var One of the following:1

C / C++
A variable of a signed or unsigned integer type.2

C / C++3

C
A variable of a pointer type.4

C5

C++
A variable of a random access iterator type.6

C++7

Fortran
A variable of integer type.8

Fortran
var is the iteration variable of the loop. It must not be modified during the execution9
of intervening-code or loop-body in the loop.10

lb, ub One of the following:11

Expressions of a type compatible with the type of var that are loop invariant with12
respect to the outermost loop.13

or14

One of the following:15
var-outer16
var-outer + a217
a2 + var-outer18
var-outer - a219

where var-outer is of a type compatible with the type of var.20

or21

If var is of an integer type, one of the following:22
a2 - var-outer23
a1 * var-outer24
a1 * var-outer + a225
a2 + a1 * var-outer26

CHAPTER 2. DIRECTIVES 121

Symbol Meaning

a1 * var-outer - a21
a2 - a1 * var-outer2
var-outer * a13
var-outer * a1 + a24
a2 + var-outer * a15
var-outer * a1 - a26
a2 - var-outer * a17

where var-outer is of an integer type.8

lb and ub are loop bounds. A loop for which lb or ub refers to var-outer is a9
non-rectangular loop. If var is of an integer type, var-outer must be of an integer10
type with the same signedness and bit precision as the type of var.11

The coefficient in a loop bound is 0 if the bound does not refer to var-outer. If a loop12
bound matches a form in which a1 appears, the coefficient is -a1 if the product of13
var-outer and a1 is subtracted from a2, and otherwise the coefficient is a1. For other14
matched forms where a1 does not appear, the coefficient is −1 if var-outer is15
subtracted from a2, and otherwise the coefficient is 1.16

a1, a2, incr Integer expressions that are loop invariant with respect to the outermost loop of the17
loop nest.18

If the loop is associated with a loop-associated directive, the expressions are19
evaluated before the construct formed from that directive.20

var-outer The loop iteration variable of a surrounding loop in the loop nest.21

C++
range-decl A declaration of a variable as defined by the base language for range-based for22

loops.23

range-expr An expression that is valid as defined by the base language for range-based for24
loops. It must be invariant with respect to the outermost loop of the loop nest and the25
iterator derived from it must be a random access iterator.26

C++

122 OpenMP API – Version 5.1 November 2020

A loop transformation construct that appears inside a loop nest is replaced according to its1
semantics before any loop can be associated with a loop-associated directive that is applied to the2
loop nest. The depth of the loop nest is determined according to the loops in the loop nest, after any3
such replacements have taken place. A loop counts towards the depth of the loop nest if it is a base4
language loop statement or generated loop and it matches loop-nest while applying the production5
rules for canonical loop nest form to the loop nest.6

A loop-associated directive controls some number of the outermost loops of an associated loop7
nest, called the associated loops, in accordance with its specified clauses. The canonical loop nest8
form allows the iteration count of all associated loops to be computed before executing the9
outermost loop.10

For any associated loop, the iteration count is computed as follows:11

C / C++
• If var has a signed integer type and the var operand of test-expr after usual arithmetic12
conversions has an unsigned integer type then the loop iteration count is computed from lb,13
test-expr and incr using an unsigned integer type corresponding to the type of var.14

• Otherwise, if var has an integer type then the loop iteration count is computed from lb, test-expr15
and incr using the type of var.16

C / C++
C

• If var has a pointer type then the loop iteration count is computed from lb, test-expr and incr17
using the type ptrdiff_t.18

C
C++

• If var has a random access iterator type then the loop iteration count is computed from lb,19
test-expr and incr using the type20
std::iterator_traits<random-access-iterator-type>::difference_type.21

• For range-based for loops, the loop iteration count is computed from range-expr using the type22
std::iterator_traits<random-access-iterator-type>::difference_type where23
random-access-iterator-type is the iterator type derived from range-expr.24

C++
Fortran

• The loop iteration count is computed from lb, ub and incr using the type of var.25

Fortran

CHAPTER 2. DIRECTIVES 123

The behavior is unspecified if any intermediate result required to compute the iteration count1
cannot be represented in the type determined above.2

No synchronization is implied during the evaluation of the lb, ub, incr or range-expr expressions.3
Whether, in what order, or how many times any side effects within the lb, ub, incr, or range-expr4
expressions occur is unspecified.5

The iterations of some number of associated loops can be collapsed into one larger iteration space6
that is called the logical iteration space. The particular integer type used to compute the iteration7
count for the collapsed loop is implementation defined.8

For directives that result in the execution of a collapsed logical iteration space, the number of times9
that any intervening code between any two loops of the same logical iteration space will be10
executed is unspecified but will be the same for all intervening code at the same depth, at least once11
per iteration of the loop enclosing the intervening code and at most once per logical iteration. If the12
iteration count of any loop is zero and that loop does not enclose the intervening code, the behavior13
is unspecified.14

Restrictions15
Restrictions to canonical loop nests are as follows:16

C / C++
• If test-expr is of the form var relational-op b and relational-op is < or <= then incr-expr must17
cause var to increase on each iteration of the loop. If test-expr is of the form var relational-op b18
and relational-op is > or >= then incr-expr must cause var to decrease on each iteration of the19
loop. Increase and decrease are using the order induced by relational-op.20

• If test-expr is of the form ub relational-op var and relational-op is < or <= then incr-expr must21
cause var to decrease on each iteration of the loop. If test-expr is of the form ub relational-op22
var and relational-op is > or >= then incr-expr must cause var to increase on each iteration of the23
loop. Increase and decrease are using the order induced by relational-op.24

• If relational-op is != then incr-expr must cause var to always increase by 1 or always decrease25
by 1 and the increment must be a constant expression.26

• final-loop-body must not contain any break statement that would cause the termination of the27
innermost loop.28

C / C++
Fortran

• final-loop-body must not contain any EXIT statement that would cause the termination of the29
innermost loop.30

Fortran

124 OpenMP API – Version 5.1 November 2020

• A loop-nest must also be a structured block.1

• For a non-rectangular loop, if var-outer is referenced in lb and ub then they must both refer to the2
same iteration variable.3

• For a non-rectangular loop, let a1lb and a1ub be the respective coefficients in lb and ub, incrinner4
the increment of the non-rectangular loop and incrouter the increment of the loop referenced by5
var-outer. incrinner(a1ub − a1lb) must be a multiple of incrouter.6

• The loop iteration variable may not appear in a threadprivate directive.7

Cross References8
• Loop transformation constructs, see Section 2.11.9.9

• threadprivate directive, see Section 2.21.2.10

2.11.2 Consistent Loop Schedules11

For constructs formed from loop-associated directives that have consistent schedules, the12
implementation will guarantee that memory effects of a logical iteration in the first loop nest13
happen before the execution of the same logical iteration in the second loop nest.14

Two constructs formed from loop-associated directives have consistent schedules if all of the15
following conditions hold:16

• The constructs are formed from directives with the same directive name;17

• The regions that correspond to the two constructs have the same binding region;18

• The constructs have the same reproducible schedule;19

• The associated loop nests have identical logical iteration vector spaces; and20

• The associated loop nests are either both rectangular or both non-rectangular.21

2.11.3 order Clause22

Summary23
The order clause specifies an expected order of execution for the iterations of the associated loops24
of a loop-associated directive.25

Syntax26
The syntax of the order clause is as follows:27

order([order-modifier :]concurrent)28

CHAPTER 2. DIRECTIVES 125

where order-modifier is one of the following:1

reproducible2

unconstrained3

Description4
The order clause specifies an expected order of execution for the iterations of the associated loops5
of a loop-associated directive. The specified order must be concurrent.6

The order clause is part of the schedule specification for the purpose of determining its7
consistency with other schedules (see Section 2.11.2).8

If the order clause specifies concurrent, the logical iterations of the associated loops may9
execute in any order, including concurrently.10

If order-modifier is not unconstrained, the behavior is as if the reproducible modifier is11
present.12

The specified schedule is reproducible if the reproducible modifier is present.13

Restrictions14
Restrictions to the order clause are as follows:15

• The only constructs that may be encountered inside a region that corresponds to a construct with16
an order clause that specifies concurrent are the loop construct, the parallel17
construct, the simd construct, and combined constructs for which the first construct is a18
parallel construct.19

• A region that corresponds to a construct with an order clause that specifies concurrent may20
not contain calls to procedures that contain OpenMP directives.21

• A region that corresponds to a construct with an order clause that specifies concurrent may22
not contain calls to the OpenMP Runtime API.23

• If a threadprivate variable is referenced inside a region that corresponds to a construct with an24
order clause that specifies concurrent, the behavior is unspecified.25

• At most one order clause may appear on a construct.26

2.11.4 Worksharing-Loop Construct27

Summary28
The worksharing-loop construct specifies that the iterations of one or more associated loops will be29
executed in parallel by threads in the team in the context of their implicit tasks. The iterations are30
distributed across threads that already exist in the team that is executing the parallel region to31
which the worksharing-loop region binds.32

126 OpenMP API – Version 5.1 November 2020

Syntax1
C / C++

The syntax of the worksharing-loop construct is as follows:2

#pragma omp for [clause[[,] clause] ...] new-line3
loop-nest4

where loop-nest is a canonical loop nest and clause is one of the following:5

private(list)6

firstprivate(list)7

lastprivate([lastprivate-modifier:]list)8

linear(list[:linear-step])9

reduction([reduction-modifier,]reduction-identifier:list)10

schedule([modifier [, modifier]:]kind[, chunk_size])11

collapse(n)12

ordered[(n)]13

nowait14

allocate([allocator:]list)15

order([order-modifier:]concurrent)16

C / C++
Fortran

The syntax of the worksharing-loop construct is as follows:17

!$omp do [clause[[,] clause] ...]18
loop-nest19

[!$omp end do [nowait]]20

where loop-nest is a canonical loop nest and clause is one of the following:21

private(list)22

firstprivate(list)23

lastprivate([lastprivate-modifier:]list)24

linear(list[:linear-step])25

reduction([reduction-modifier,]reduction-identifier:list)26

schedule([modifier [, modifier]:]kind[, chunk_size])27

collapse(n)28

CHAPTER 2. DIRECTIVES 127

ordered[(n)]1

allocate([allocator:]list)2

order([order-modifier:]concurrent)3

If an end do directive is not specified, an end do directive is assumed at the end of the do-loops.4

Fortran

Binding5
The binding thread set for a worksharing-loop region is the current team. A worksharing-loop6
region binds to the innermost enclosing parallel region. Only the threads of the team executing7
the binding parallel region participate in the execution of the loop iterations and the implied8
barrier of the worksharing-loop region when that barrier is not eliminated by a nowait clause.9

Description10
An implicit barrier occurs at the end of a worksharing-loop region if a nowait clause is not11
specified.12

The collapse and ordered clauses may be used to specify the number of loops from the loop13
nest that are associated with the worksharing-loop construct. If specified, their parameters must be14
constant positive integer expressions.15

The collapse clause specifies the number of loops that are collapsed into a logical iteration16
space that is then divided according to the schedule clause. If the collapse clause is omitted,17
the behavior is as if a collapse clause with a parameter value of one was specified.18

If the ordered clause is specified with parameter n then the n outer loops from the associated19
loop nest form a doacross loop nest. The parameter of the ordered clause does not affect how the20
logical iteration space is divided.21

At the beginning of each logical iteration, the loop iteration variable or the variable declared by22
range-decl of each associated loop has the value that it would have if the set of the associated loops23
was executed sequentially. The schedule clause specifies how iterations of these associated24
loops are divided into contiguous non-empty subsets, called chunks, and how these chunks are25
distributed among threads of the team. Each thread executes its assigned chunks in the context of26
its implicit task. The iterations of a given chunk are executed in sequential order by the assigned27
thread. The chunk_size expression is evaluated using the original list items of any variables that are28
made private in the worksharing-loop construct. Whether, in what order, or how many times, any29
side effects of the evaluation of this expression occur is unspecified. The use of a variable in a30
schedule clause expression of a worksharing-loop construct causes an implicit reference to the31
variable in all enclosing constructs.32

See Section 2.11.4.1 for details of how the schedule for a worksharing-loop region is determined.33

The schedule kind can be one of those specified in Table 2.5.34

128 OpenMP API – Version 5.1 November 2020

The schedule modifier can be one of those specified in Table 2.6. If the static schedule kind is1
specified or if the ordered clause is specified, and if the nonmonotonic modifier is not2
specified, the effect is as if the monotonic modifier is specified. Otherwise, unless the3
monotonic modifier is specified, the effect is as if the nonmonotonic modifier is specified. If4
a schedule clause specifies a modifier then that modifier overrides any modifier that is specified5
in the run-sched-var ICV.6

If an order clause is present then the semantics are as described in Section 2.11.3.7

The schedule is reproducible if one of the following conditions is true:8

• The order clause is present and uses the reproducible modifier; or9

• The schedule clause is specified with static as the kind parameter and the simd modifier10
is not present.11

Programs can only depend on which thread executes a particular iteration if the schedule is12
reproducible. Schedule reproducibility is also used for determining its consistency with other13
schedules (see Section 2.11.2).14

TABLE 2.5: schedule Clause kind Values

static When kind is static, iterations are divided into chunks of size chunk_size,
and the chunks are assigned to the threads in the team in a round-robin
fashion in the order of the thread number. Each chunk contains chunk_size
iterations, except for the chunk that contains the sequentially last iteration,
which may have fewer iterations.

When no chunk_size is specified, the iteration space is divided into chunks
that are approximately equal in size, and at most one chunk is distributed to
each thread. The size of the chunks is unspecified in this case.

dynamic When kind is dynamic, the iterations are distributed to threads in the team
in chunks. Each thread executes a chunk of iterations, then requests another
chunk, until no chunks remain to be distributed.

Each chunk contains chunk_size iterations, except for the chunk that contains
the sequentially last iteration, which may have fewer iterations.

When no chunk_size is specified, it defaults to 1.

guided When kind is guided, the iterations are assigned to threads in the team in
chunks. Each thread executes a chunk of iterations, then requests another
chunk, until no chunks remain to be assigned.

table continued on next page

CHAPTER 2. DIRECTIVES 129

table continued from previous page

For a chunk_size of 1, the size of each chunk is proportional to the number
of unassigned iterations divided by the number of threads in the team,
decreasing to 1. For a chunk_size with value k (greater than 1), the size
of each chunk is determined in the same way, with the restriction that
the chunks do not contain fewer than k iterations (except for the chunk
that contains the sequentially last iteration, which may have fewer than k
iterations).

When no chunk_size is specified, it defaults to 1.

auto When kind is auto, the decision regarding scheduling is delegated to the
compiler and/or runtime system. The programmer gives the implementation
the freedom to choose any possible mapping of iterations to threads in the
team.

runtime When kind is runtime, the decision regarding scheduling is deferred until
run time, and the schedule and chunk size are taken from the run-sched-var
ICV. If the ICV is set to auto, the schedule is implementation defined.

1

Note – For a team of p threads and a loop of n iterations, let ddn/pee be the integer q that satisfies2
n = p ∗ q − r, with 0 <= r < p. One compliant implementation of the static schedule (with no3
specified chunk_size) would behave as though chunk_size had been specified with value q. Another4
compliant implementation would assign q iterations to the first p− r threads, and q− 1 iterations to5
the remaining r threads. This illustrates why a conforming program must not rely on the details of a6
particular implementation.7

A compliant implementation of the guided schedule with a chunk_size value of k would assign8
q = ddn/pee iterations to the first available thread and set n to the larger of n− q and p ∗ k. It would9
then repeat this process until q is greater than or equal to the number of remaining iterations, at10
which time the remaining iterations form the final chunk. Another compliant implementation could11
use the same method, except with q = ddn/(2p)ee, and set n to the larger of n− q and 2 ∗ p ∗ k.12

13

130 OpenMP API – Version 5.1 November 2020

TABLE 2.6: schedule Clause modifier Values

monotonic When the monotonic modifier is specified then each thread executes
the chunks that it is assigned in increasing logical iteration order.

nonmonotonic When the nonmonotonic modifier is specified then chunks are
assigned to threads in any order and the behavior of an application that
depends on any execution order of the chunks is unspecified.

simd When the simd modifier is specified and the loop is associated with
a SIMD construct, the chunk_size for all chunks except the first and
last chunks is new_chunk_size = ddchunk_size/simd_widthee ∗
simd_width where simd_width is an implementation-defined value.
The first chunk will have at least new_chunk_size iterations except if
it is also the last chunk. The last chunk may have fewer iterations than
new_chunk_size. If the simd modifier is specified and the loop is not
associated with a SIMD construct, the modifier is ignored.

Execution Model Events1
The ws-loop-begin event occurs after an implicit task encounters a worksharing-loop construct but2
before the task starts execution of the structured block of the worksharing-loop region.3

The ws-loop-end event occurs after a worksharing-loop region finishes execution but before4
resuming execution of the encountering task.5

The ws-loop-iteration-begin event occurs once for each iteration of a worksharing-loop before the6
iteration is executed by an implicit task.7

Tool Callbacks8
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin9
as its endpoint argument and work_loop as its wstype argument for each occurrence of a10
ws-loop-begin event in that thread. Similarly, a thread dispatches a registered11
ompt_callback_work callback with ompt_scope_end as its endpoint argument and12
work_loop as its wstype argument for each occurrence of a ws-loop-end event in that thread. The13
callbacks occur in the context of the implicit task. The callbacks have type signature14
ompt_callback_work_t.15

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a16
ws-loop-iteration-begin event in that thread. The callback occurs in the context of the implicit task.17
The callback has type signature ompt_callback_dispatch_t.18

CHAPTER 2. DIRECTIVES 131

Restrictions1
Restrictions to the worksharing-loop construct are as follows:2

• If the ordered clause with a parameter is present, all associated loops must be perfectly nested.3

• If a reduction clause with the inscan modifier is specified, neither the ordered nor4
schedule clause may appear on the worksharing-loop directive.5

• The values of the loop control expressions of the loops associated with the worksharing-loop6
construct must be the same for all threads in the team.7

• At most one schedule clause can appear on a worksharing-loop directive.8

• If the schedule or ordered clause is present then none of the associated loops may be9
non-rectangular loops.10

• The ordered clause must not appear on the worksharing-loop directive if the associated loops11
include the generated loops of a tile directive.12

• At most one collapse clause can appear on a worksharing-loop directive.13

• chunk_size must be a loop invariant integer expression with a positive value.14

• The value of the chunk_size expression must be the same for all threads in the team.15

• The value of the run-sched-var ICV must be the same for all threads in the team.16

• When schedule(runtime) or schedule(auto) is specified, chunk_size must not be17
specified.18

• A modifier may not be specified on a linear clause.19

• At most one ordered clause can appear on a worksharing-loop directive.20

• The ordered clause must be present on the worksharing-loop construct if any ordered21
region ever binds to a worksharing-loop region arising from the worksharing-loop construct.22

• The nonmonotonic modifier cannot be specified if an ordered clause is specified.23

• Each schedule clause modifier may be specified at most once on the same schedule clause.24

• Either the monotonic modifier or the nonmonotonic modifier can be specified but not both.25

• If both the collapse and ordered clause with a parameter are specified, the parameter of the26
ordered clause must be greater than or equal to the parameter of the collapse clause.27

• The values of the parameters specified by the collapse and ordered clauses must not28
exceed the depth of the associated loop nest.29

• A linear clause or an ordered clause with a parameter can be specified on a30
worksharing-loop directive but not both.31

132 OpenMP API – Version 5.1 November 2020

C / C++
• At most one nowait clause can appear on a for directive.1

C / C++
C++

• If an ordered clause with a parameter is specified, none of the associated loops may be a2
range-based for loop.3

C++

Cross References4
• Canonical loop nest form, see Section 2.11.1.5

• order clause, see Section 2.11.3.6

• tile construct, see Section 2.11.9.1.7

• ordered construct, see Section 2.19.9.8

• depend clause, see Section 2.19.11.9

• Data-sharing attribute clauses, see Section 2.21.4.10

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.11

• ompt_work_loop, see Section 4.4.4.15.12

• ompt_callback_work_t, see Section 4.5.2.5.13

• OMP_SCHEDULE environment variable, see Section 6.1.14

2.11.4.1 Determining the Schedule of a Worksharing-Loop15

When execution encounters a worksharing-loop directive, the schedule clause (if any) on the16
directive, and the run-sched-var and def-sched-var ICVs are used to determine how loop iterations17
are assigned to threads. See Section 2.4 for details of how the values of the ICVs are determined. If18
the worksharing-loop directive does not have a schedule clause then the current value of the19
def-sched-var ICV determines the schedule. If the worksharing-loop directive has a schedule20
clause that specifies the runtime schedule kind then the current value of the run-sched-var ICV21
determines the schedule. Otherwise, the value of the schedule clause determines the schedule.22
Figure 2.1 describes how the schedule for a worksharing-loop is determined.23

Cross References24
• ICVs, see Section 2.4.25

CHAPTER 2. DIRECTIVES 133

START

schedule
clause present?

schedule
kind value is
runtime?

Use def-sched-var schedule kind

Use schedule kind specified in
schedule clause

Use run-sched-var schedule kind

No

Yes

No

Yes

FIGURE 2.1: Determining the schedule for a Worksharing-Loop

2.11.5 SIMD Directives1

2.11.5.1 simd Construct2

Summary3
The simd construct can be applied to a loop to indicate that the loop can be transformed into a4
SIMD loop (that is, multiple iterations of the loop can be executed concurrently by using SIMD5
instructions).6

Syntax7
C / C++

The syntax of the simd construct is as follows:8

#pragma omp simd [clause[[,] clause] ...] new-line9
loop-nest10

134 OpenMP API – Version 5.1 November 2020

where loop-nest is a canonical loop nest and clause is one of the following:1

if([simd :] scalar-expression)2

safelen(length)3

simdlen(length)4

linear(list[: linear-step])5

aligned(list[: alignment])6

nontemporal(list)7

private(list)8

lastprivate([lastprivate-modifier:] list)9

reduction([reduction-modifier,]reduction-identifier : list)10

collapse(n)11

order([order-modifier :]concurrent)12

C / C++
Fortran

The syntax of the simd construct is as follows:13

!$omp simd [clause[[,] clause] ...]14
loop-nest15

[!$omp end simd]16

where loop-nest is a canonical loop nest and clause is one of the following:17

if([simd :] scalar-logical-expression)18

safelen(length)19

simdlen(length)20

linear(list[: linear-step])21

aligned(list[: alignment])22

nontemporal(list)23

private(list)24

lastprivate([lastprivate-modifier:] list)25

reduction([reduction-modifier,]reduction-identifier : list)26

collapse(n)27

order([order-modifier :]concurrent)28

If an end simd directive is not specified, an end simd directive is assumed at the end of the29
do-loops.30

Fortran

CHAPTER 2. DIRECTIVES 135

Binding1
A simd region binds to the current task region. The binding thread set of the simd region is the2
current team.3

Description4
The simd construct enables the execution of multiple iterations of the associated loops5
concurrently by using SIMD instructions.6

The collapse clause may be used to specify how many loops are associated with the simd7
construct. The collapse clause specifies the number of loops that are collapsed into a logical8
iteration space that is then executed with SIMD instructions. The parameter of the collapse9
clause must be a constant positive integer expression. If the collapse clause is omitted, the10
behavior is as if a collapse clause with a parameter value of one was specified.11

At the beginning of each logical iteration, the loop iteration variable or the variable declared by12
range-decl of each associated loop has the value that it would have if the set of the associated loops13
was executed sequentially. The number of iterations that are executed concurrently at any given14
time is implementation defined. Each concurrent iteration will be executed by a different SIMD15
lane. Each set of concurrent iterations is a SIMD chunk. Lexical forward dependences in the16
iterations of the original loop must be preserved within each SIMD chunk, unless an order clause17
that specifies concurrent is present.18

The safelen clause specifies that no two concurrent iterations within a SIMD chunk can have a19
distance in the logical iteration space that is greater than or equal to the value given in the clause.20
The parameter of the safelen clause must be a constant positive integer expression. The21
simdlen clause specifies the preferred number of iterations to be executed concurrently, unless an22
if clause is present and evaluates to false, in which case the preferred number of iterations to be23
executed concurrently is one. The parameter of the simdlen clause must be a constant positive24
integer expression.25

If an order clause is present then the semantics are as described in Section 2.11.3.26

C / C++
The aligned clause declares that the object to which each list item points is aligned to the27
number of bytes expressed in the optional parameter of the aligned clause.28

C / C++
Fortran

The aligned clause declares that the location of each list item is aligned to the number of bytes29
expressed in the optional parameter of the aligned clause.30

Fortran
The optional parameter of the aligned clause, alignment, must be a constant positive integer31
expression. If no optional parameter is specified, implementation-defined default alignments for32
SIMD instructions on the target platforms are assumed.33

The nontemporal clause specifies that accesses to the storage locations to which the list items34
refer have low temporal locality across the iterations in which those storage locations are accessed.35

136 OpenMP API – Version 5.1 November 2020

Restrictions1
Restrictions to the simd construct are as follows:2

• At most one collapse clause can appear on a simd directive.3

• A list-item cannot appear in more than one aligned clause.4

• A list-item cannot appear in more than one nontemporal clause.5

• At most one safelen clause can appear on a simd directive.6

• At most one simdlen clause can appear on a simd directive.7

• At most one if clause can appear on a simd directive.8

• If both simdlen and safelen clauses are specified, the value of the simdlen parameter9
must be less than or equal to the value of the safelen parameter.10

• A modifier may not be specified on a linear clause.11

• The only OpenMP constructs that can be encountered during execution of a simd region are the12
atomic construct, the loop construct, the simd construct, and the ordered construct with13
the simd clause.14

• If an order clause that specifies concurrent appears on a simd directive, the safelen15
clause may not also appear.16

C / C++
• The simd region cannot contain calls to the longjmp or setjmp functions.17

C / C++
C

• The type of list items appearing in the aligned clause must be array or pointer.18

C
C++

• The type of list items appearing in the aligned clause must be array, pointer, reference to19
array, or reference to pointer.20

• No exception can be raised in the simd region.21

• The only random access iterator types that are allowed for the associated loops are pointer types.22

C++

CHAPTER 2. DIRECTIVES 137

Fortran
• If a list item on the aligned clause has the ALLOCATABLE attribute, the allocation status must1
be allocated.2

• If a list item on the aligned clause has the POINTER attribute, the association status must be3
associated.4

• If the type of a list item on the aligned clause is either C_PTR or Cray pointer, the list item5
must be defined. Cray pointer support has been deprecated.6

Fortran

Cross References7
• Canonical loop nest form, see Section 2.11.1.8

• order clause, see Section 2.11.3.9

• if clause, see Section 2.18.10

• Data-sharing attribute clauses, see Section 2.21.4.11

2.11.5.2 Worksharing-Loop SIMD Construct12

Summary13
The worksharing-loop SIMD construct specifies that the iterations of one or more associated loops14
will be distributed across threads that already exist in the team and that the iterations executed by15
each thread can also be executed concurrently using SIMD instructions. The worksharing-loop16
SIMD construct is a composite construct.17

Syntax18
C / C++

The syntax of the worksharing-loop SIMD construct is as follows:19

#pragma omp for simd [clause[[,] clause] ...] new-line20
loop-nest21

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the for22
or simd directives with identical meanings and restrictions.23

C / C++

138 OpenMP API – Version 5.1 November 2020

Fortran
The syntax of the worksharing-loop SIMD construct is as follows:1

!$omp do simd [clause[[,] clause] ...]2
loop-nest3

[!$omp end do simd [nowait]]4

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the simd5
or do directives, with identical meanings and restrictions.6

If an end do simd directive is not specified, an end do simd directive is assumed at the end of7
the do-loops.8

Fortran

Description9
The worksharing-loop SIMD construct will first distribute the logical iterations of the associated10
loops across the implicit tasks of the parallel region in a manner consistent with any clauses that11
apply to the worksharing-loop construct. Each resulting chunk of iterations will then be converted12
to a SIMD loop in a manner consistent with any clauses that apply to the simd construct.13

Execution Model Events14
This composite construct generates the same events as the worksharing-loop construct.15

Tool Callbacks16
This composite construct dispatches the same callbacks as the worksharing-loop construct.17

Restrictions18
All restrictions to the worksharing-loop construct and the simd construct apply to the19
worksharing-loop SIMD construct. In addition, the following restrictions apply:20

• No ordered clause with a parameter can be specified.21

• A list item may appear in a linear or firstprivate clause, but not in both.22

Cross References23
• Canonical loop nest form, see Section 2.11.1.24

• Worksharing-loop construct, see Section 2.11.4.25

• simd construct, see Section 2.11.5.1.26

• Data-sharing attribute clauses, see Section 2.21.4.27

CHAPTER 2. DIRECTIVES 139

2.11.5.3 declare simd Directive1

Summary2
The declare simd directive can be applied to a function (C, C++, and Fortran) or a subroutine3
(Fortran) to enable the creation of one or more versions that can process multiple arguments using4
SIMD instructions from a single invocation in a SIMD loop. The declare simd directive is a5
declarative directive. Multiple declare simd directives may be specified for a function (C, C++,6
and Fortran) or subroutine (Fortran).7

Syntax8
C / C++

The syntax of the declare simd directive is as follows:9

#pragma omp declare simd [clause[[,] clause] ...] new-line10
[#pragma omp declare simd [clause[[,] clause] ...] new-line]11
[...]12

function definition or declaration13

where clause is one of the following:14

simdlen(length)15

linear(linear-list[: linear-step])16

aligned(argument-list[: alignment])17

uniform(argument-list)18

inbranch19

notinbranch20

C / C++
Fortran

The syntax of the declare simd directive is as follows:21

!$omp declare simd [(proc-name)] [clause[[,] clause] ...]22

where clause is one of the following:23

simdlen(length)24

linear(linear-list[: linear-step])25

aligned(argument-list[: alignment])26

uniform(argument-list)27

inbranch28

notinbranch29

Fortran

140 OpenMP API – Version 5.1 November 2020

Description1
C / C++

The use of one or more declare simd directives on a function declaration or definition enables2
the creation of corresponding SIMD versions of the associated function that can be used to process3
multiple arguments from a single invocation in a SIMD loop concurrently.4

The expressions appearing in the clauses of each directive are evaluated in the scope of the5
arguments of the function declaration or definition.6

C / C++
Fortran

The use of one or more declare simd directives in a subroutine or function enables the creation7
of corresponding SIMD versions of the subroutine or function that can be used to process multiple8
arguments from a single invocation in a SIMD loop concurrently.9

Fortran
If a SIMD version is created, the number of concurrent arguments for the function is determined by10
the simdlen clause. If the simdlen clause is used, its value corresponds to the number of11
concurrent arguments of the function. The parameter of the simdlen clause must be a constant12
positive integer expression. Otherwise, the number of concurrent arguments for the function is13
implementation defined.14

C++
The special this pointer can be used as if it was one of the arguments to the function in any of the15
linear, aligned, or uniform clauses.16

C++
The uniform clause declares one or more arguments to have an invariant value for all concurrent17
invocations of the function in the execution of a single SIMD loop.18

C / C++
The aligned clause declares that the object to which each list item points is aligned to the19
number of bytes expressed in the optional parameter of the aligned clause.20

C / C++
Fortran

The aligned clause declares that the target of each list item is aligned to the number of bytes21
expressed in the optional parameter of the aligned clause.22

Fortran

CHAPTER 2. DIRECTIVES 141

The optional parameter of the aligned clause, alignment, must be a constant positive integer1
expression. If no optional parameter is specified, implementation-defined default alignments for2
SIMD instructions on the target platforms are assumed.3

The inbranch clause specifies that the SIMD version of the function will always be called from4
inside a conditional statement of a SIMD loop. The notinbranch clause specifies that the SIMD5
version of the function will never be called from inside a conditional statement of a SIMD loop. If6
neither clause is specified, then the SIMD version of the function may or may not be called from7
inside a conditional statement of a SIMD loop.8

Restrictions9
Restrictions to the declare simd directive are as follows:10

• Each argument can appear in at most one uniform or linear clause.11

• At most one simdlen clause can appear in a declare simd directive.12

• Either inbranch or notinbranch may be specified, but not both.13

• When a linear-step expression is specified in a linear clause it must be either a constant integer14
expression or an integer-typed parameter that is specified in a uniform clause on the directive.15

• The function or subroutine body must be a structured block.16

• The execution of the function or subroutine, when called from a SIMD loop, cannot result in the17
execution of an OpenMP construct except for an ordered construct with the simd clause or an18
atomic construct.19

• The execution of the function or subroutine cannot have any side effects that would alter its20
execution for concurrent iterations of a SIMD chunk.21

• A program that branches into or out of the function is non-conforming.22

C / C++
• If the function has any declarations, then the declare simd directive for any declaration that23
has one must be equivalent to the one specified for the definition. Otherwise, the result is24
unspecified.25

• The function cannot contain calls to the longjmp or setjmp functions.26

C / C++
C

• The type of list items appearing in the aligned clause must be array or pointer.27

C

142 OpenMP API – Version 5.1 November 2020

C++
• The function cannot contain any calls to throw.1

• The type of list items appearing in the aligned clause must be array, pointer, reference to2
array, or reference to pointer.3

C++
Fortran

• proc-name must not be a generic name, procedure pointer, or entry name.4

• If proc-name is omitted, the declare simd directive must appear in the specification part of a5
subroutine subprogram or a function subprogram for which creation of the SIMD versions is6
enabled.7

• Any declare simd directive must appear in the specification part of a subroutine subprogram,8
function subprogram, or interface body to which it applies.9

• If a declare simd directive is specified in an interface block for a procedure, it must match a10
declare simd directive in the definition of the procedure.11

• If a procedure is declared via a procedure declaration statement, the procedure proc-name should12
appear in the same specification.13

• If a declare simd directive is specified for a procedure name with explicit interface and a14
declare simd directive is also specified for the definition of the procedure then the two15
declare simd directives must match. Otherwise the result is unspecified.16

• Procedure pointers may not be used to access versions created by the declare simd directive.17

• The type of list items appearing in the aligned clause must be C_PTR or Cray pointer, or the18
list item must have the POINTER or ALLOCATABLE attribute. Cray pointer support has been19
deprecated.20

Fortran

Cross References21
• linear clause, see Section 2.21.4.6.22

• reduction clause, see Section 2.21.5.4.23

2.11.6 distribute Loop Constructs24

2.11.6.1 distribute Construct25

Summary26
The distribute construct specifies that the iterations of one or more loops will be executed by27
the initial teams in the context of their implicit tasks. The iterations are distributed across the initial28
threads of all initial teams that execute the teams region to which the distribute region binds.29

CHAPTER 2. DIRECTIVES 143

Syntax1
C / C++

The syntax of the distribute construct is as follows:2

#pragma omp distribute [clause[[,] clause] ...] new-line3
loop-nest4

where loop-nest is a canonical loop nest and clause is one of the following:5

private(list)6

firstprivate(list)7

lastprivate(list)8

collapse(n)9

dist_schedule(kind[, chunk_size])10

allocate([allocator :]list)11

order([order-modifier :]concurrent)12

C / C++
Fortran

The syntax of the distribute construct is as follows:13

!$omp distribute [clause[[,] clause] ...]14
loop-nest15

[!$omp end distribute]16

where loop-nest is a canonical loop nest and clause is one of the following:17

private(list)18

firstprivate(list)19

lastprivate(list)20

collapse(n)21

dist_schedule(kind[, chunk_size])22

allocate([allocator :]list)23

order([order-modifier :]concurrent)24

If an end distribute directive is not specified, an end distribute directive is assumed at25
the end of the do-loops.26

Fortran

144 OpenMP API – Version 5.1 November 2020

Binding1
The binding thread set for a distribute region is the set of initial threads executing an2
enclosing teams region. A distribute region binds to this teams region.3

Description4
The distribute construct is associated with a loop nest consisting of one or more loops that5
follow the directive.6

The collapse clause may be used to specify how many loops are associated with the7
distribute construct. The parameter of the collapse clause must be a constant positive8
integer expression. If the collapse clause is omitted, the behavior is as if a collapse clause9
with a parameter value of one was specified.10

No implicit barrier occurs at the end of a distribute region. To avoid data races the original list11
items that are modified due to lastprivate or linear clauses should not be accessed between12
the end of the distribute construct and the end of the teams region to which the13
distribute binds.14

At the beginning of each logical iteration, the loop iteration variable or the variable declared by15
range-decl of each associated loop has the value that it would have if the set of the associated loops16
was executed sequentially.17

If the dist_schedule clause is specified, kind must be static. If specified, iterations are18
divided into chunks of size chunk_size. These chunks are assigned to the initial teams of the league19
in a round-robin fashion in the order of the initial team number. When chunk_size is not specified,20
the iteration space is divided into chunks that are approximately equal in size, and at most one21
chunk is distributed to each initial team of the league.22

When dist_schedule clause is not specified, the schedule is implementation defined.23

If an order clause is present then the semantics are as described in Section 2.11.3.24

The schedule is reproducible if one of the following conditions is true:25

• The order clause is present and uses the reproducible modifier; or26

• The dist_schedule clause is specified with static as the kind parameter.27

Programs can only depend on which team executes a particular iteration if the schedule is28
reproducible. Schedule reproducibility is also used for determining its consistency with other29
schedules (see Section 2.11.2).30

Execution Model Events31
The distribute-begin event occurs after an implicit task encounters a distribute construct but32
before the task starts to execute the structured block of the distribute region.33

The distribute-end event occurs after an implicit task finishes execution of a distribute region34
but before it resumes execution of the enclosing context.35

CHAPTER 2. DIRECTIVES 145

Tool Callbacks1
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin2
as its endpoint argument and ompt_work_distribute as its wstype argument for each3
occurrence of a distribute-begin event in that thread. Similarly, a thread dispatches a registered4
ompt_callback_work callback with ompt_scope_end as its endpoint argument and5
ompt_work_distribute as its wstype argument for each occurrence of a distribute-end event6
in that thread. The callbacks occur in the context of the implicit task. The callbacks have type7
signature ompt_callback_work_t.8

Restrictions9
Restrictions to the distribute construct are as follows:10

• The distribute construct inherits the restrictions of the worksharing-loop construct.11

• Each distribute region must be encountered by the initial threads of all initial teams in a12
league or by none at all.13

• The sequence of the distribute regions encountered must be the same for every initial thread14
of every initial team in a league.15

• The region that corresponds to the distribute construct must be strictly nested inside a16
teams region.17

• A list item may appear in a firstprivate or lastprivate clause, but not in both.18

• At most one dist_schedule clause can appear on the directive.19

• If the dist_schedule is present then none of the associated loops may be non-rectangular20
loops.21

Cross References22
• teams construct, see Section 2.723

• Canonical loop nest form, see Section 2.11.1.24

• order clause, see Section 2.11.3.25

• Worksharing-loop construct, see Section 2.11.4.26

• tile construct, see Section 2.11.9.1.27

• ompt_work_distribute, see Section 4.4.4.15.28

• ompt_callback_work_t, see Section 4.5.2.5.29

146 OpenMP API – Version 5.1 November 2020

2.11.6.2 distribute simd Construct1

Summary2
The distribute simd construct specifies a loop that will be distributed across the primary3
threads of the teams region and executed concurrently using SIMD instructions. The4
distribute simd construct is a composite construct.5

Syntax6
C / C++

The syntax of the distribute simd construct is as follows:7

#pragma omp distribute simd [clause[[,] clause] ...] new-line8
loop-nest9

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the10
distribute or simd directives with identical meanings and restrictions.11

C / C++
Fortran

The syntax of the distribute simd construct is as follows:12

!$omp distribute simd [clause[[,] clause] ...]13
loop-nest14

[!$omp end distribute simd]15

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the16
distribute or simd directives with identical meanings and restrictions.17

If an end distribute simd directive is not specified, an end distribute simd directive is18
assumed at the end of the do-loops.19

Fortran

Description20
The distribute simd construct will first distribute the logical iterations of the associated loops21
across the initial tasks of the teams region in a manner consistent with any clauses that apply to22
the distribute construct. Each resulting chunk of iterations will then be converted to a SIMD23
loop in a manner consistent with any clauses that apply to the simd construct.24

Execution Model Events25
This composite construct generates the same events as the distribute construct.26

Tool Callbacks27
This composite construct dispatches the same callbacks as the distribute construct.28

CHAPTER 2. DIRECTIVES 147

Restrictions1
All restrictions to the distribute and simd constructs apply to the distribute simd2
construct. In addition, the following restrictions apply:3

• A list item may not appear in a linear clause unless it is the loop iteration variable of a loop4
that is associated with the construct.5

• The conditional modifier may not appear in a lastprivate clause.6

Cross References7
• Canonical loop nest form, see Section 2.11.1.8

• simd construct, see Section 2.11.5.1.9

• distribute construct, see Section 2.11.6.1.10

• Data-sharing attribute clauses, see Section 2.21.4.11

2.11.6.3 Distribute Parallel Worksharing-Loop Construct12

Summary13
The distribute parallel worksharing-loop construct specifies a loop that can be executed in parallel14
by multiple threads that are members of multiple teams. The distribute parallel worksharing-loop15
construct is a composite construct.16

Syntax17
C / C++

The syntax of the distribute parallel worksharing-loop construct is as follows:18

#pragma omp distribute parallel for [clause[[,] clause] ...] new-line19
loop-nest20

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the21
distribute or parallel worksharing-loop directives with identical meanings and restrictions.22

C / C++
Fortran

The syntax of the distribute parallel worksharing-loop construct is as follows:23

!$omp distribute parallel do [clause[[,] clause] ...]24
loop-nest25

[!$omp end distribute parallel do]26

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the27
distribute or parallel worksharing-loop directives with identical meanings and restrictions.28

If an end distribute parallel do directive is not specified, an end distribute29
parallel do directive is assumed at the end of the do-loops.30

Fortran

148 OpenMP API – Version 5.1 November 2020

Description1
The distribute parallel worksharing-loop construct will first distribute the logical iterations of the2
associated loops across the initial tasks of the teams region in a manner consistent with any3
clauses that apply to the distribute construct. Each resulting chunk of iterations will then4
execute as if part of a parallel worksharing-loop region in a manner consistent with any clauses that5
apply to the parallel worksharing-loop construct.6

Execution Model Events7
This composite construct generates the same events as the distribute and parallel8
worksharing-loop constructs.9

Tool Callbacks10
This composite construct dispatches the same callbacks as the distribute and parallel11
worksharing-loop constructs.12

Restrictions13
All restrictions to the distribute and parallel worksharing-loop constructs apply to the14
distribute parallel worksharing-loop construct. In addition, the following restrictions apply:15

• No ordered clause can be specified.16

• No linear clause can be specified.17

• The conditional modifier must not appear in a lastprivate clause.18

Cross References19
• Canonical loop nest form, see Section 2.11.1.20

• distribute construct, see Section 2.11.6.1.21

• Parallel worksharing-loop construct, see Section 2.16.1.22

• Data-sharing attribute clauses, see Section 2.21.4.23

2.11.6.4 Distribute Parallel Worksharing-Loop SIMD Construct24

Summary25
The distribute parallel worksharing-loop SIMD construct specifies a loop that can be executed26
concurrently using SIMD instructions in parallel by multiple threads that are members of multiple27
teams. The distribute parallel worksharing-loop SIMD construct is a composite construct.28

CHAPTER 2. DIRECTIVES 149

Syntax1
C / C++

The syntax of the distribute parallel worksharing-loop SIMD construct is as follows:2

#pragma omp distribute parallel for simd \3
[clause[[,] clause] ...] new-line4

loop-nest5

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the6
distribute or parallel worksharing-loop SIMD directives with identical meanings and7
restrictions.8

C / C++
Fortran

The syntax of the distribute parallel worksharing-loop SIMD construct is as follows:9

!$omp distribute parallel do simd [clause[[,] clause] ...]10
loop-nest11

[!$omp end distribute parallel do simd]12

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the13
distribute or parallel worksharing-loop SIMD directives with identical meanings and14
restrictions.15

If an end distribute parallel do simd directive is not specified, an end distribute16
parallel do simd directive is assumed at the end of the do-loops.17

Fortran

Description18
The distribute parallel worksharing-loop SIMD construct will first distribute the logical iterations19
of the associated loops across the initial tasks of the teams region in a manner consistent with any20
clauses that apply to the distribute construct. Each resulting chunk of iterations will then21
execute as if part of a parallel worksharing-loop SIMD region in a manner consistent with any22
clauses that apply to the parallel worksharing-loop SIMD construct.23

Execution Model Events24
This composite construct generates the same events as the distribute and parallel25
worksharing-loop SIMD constructs.26

Tool Callbacks27
This composite construct dispatches the same callbacks as the distribute and parallel28
worksharing-loop SIMD constructs.29

150 OpenMP API – Version 5.1 November 2020

Restrictions1
All restrictions to the distribute and parallel worksharing-loop SIMD constructs apply to the2
distribute parallel worksharing-loop SIMD construct. In addition, the following restrictions apply:3

• No ordered clause can be specified.4

• A list item may not appear in a linear clause unless it is the loop iteration variable of a loop5
that is associated with the construct.6

• The conditional modifier may not appear in a lastprivate clause.7

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the8
directive must include a directive-name-modifier.9

• At most one if clause without a directive-name-modifier can appear on the directive.10

• At most one if clause with the parallel directive-name-modifier can appear on the directive.11

• At most one if clause with the simd directive-name-modifier can appear on the directive.12

Cross References13
• Canonical loop nest form, see Section 2.11.1.14

• distribute construct, see Section 2.11.6.1.15

• Parallel worksharing-loop SIMD construct, see Section 2.16.5.16

• Data-sharing attribute clauses, see Section 2.21.4.17

2.11.7 loop Construct18

Summary19
A loop construct specifies that the logical iterations of the associated loops may execute20
concurrently and permits the encountering threads to execute the loop accordingly.21

Syntax22
C / C++

The syntax of the loop construct is as follows:23

#pragma omp loop [clause[[,] clause] ...] new-line24
loop-nest25

where loop-nest is a canonical loop nest and clause is one of the following:26

bind(binding)27

collapse(n)28

order([order-modifier :]concurrent)29

private(list)30

CHAPTER 2. DIRECTIVES 151

lastprivate(list)1

reduction([default ,]reduction-identifier : list)2

where binding is one of the following:3

teams4

parallel5

thread6

C / C++
Fortran

The syntax of the loop construct is as follows:7

!$omp loop [clause[[,] clause] ...]8
loop-nest9

[!$omp end loop]10

where loop-nest is a canonical loop nest and clause is one of the following:11

bind(binding)12

collapse(n)13

order([order-modifier :]concurrent)14

private(list)15

lastprivate(list)16

reduction([default ,]reduction-identifier : list)17

where binding is one of the following:18

teams19

parallel20

thread21

If an end loop directive is not specified, an end loop directive is assumed at the end of the22
do-loops.23

Fortran

152 OpenMP API – Version 5.1 November 2020

Binding1
If the bind clause is present on the construct, the binding region is determined by binding.2
Specifically, if binding is teams and an innermost enclosing teams region exists then the binding3
region is that teams region; if binding is parallel then the binding region is the innermost4
enclosing parallel region, which may be an implicit parallel region; and if binding is thread then5
the binding region is not defined. If the bind clause is not present on the construct and the loop6
construct is closely nested inside a teams or parallel construct, the binding region is the7
corresponding teams or parallel region. If none of those conditions hold, the binding region8
is not defined.9

If the binding region is a teams region, then the binding thread set is the set of initial threads that10
are executing that region. If the binding region is a parallel region, then the binding thread set is the11
team of threads that are executing that region. If the binding region is not defined, then the binding12
thread set is the encountering thread.13

Description14
The loop construct is associated with a loop nest that consists of one or more loops that follow the15
directive. The directive asserts that the iterations may execute in any order, including concurrently.16

The collapse clause may be used to specify how many loops are associated with the loop17
construct. The parameter of the collapse clause must be a constant positive integer expression.18
If the collapse clause is omitted, the behavior is as if a collapse clause with a parameter19
value of one was specified. The collapse clause specifies the number of loops that are collapsed20
into a logical iteration space.21

At the beginning of each logical iteration, the loop iteration variable or the variable declared by22
range-decl of each associated loop has the value that it would have if the set of the associated loops23
was executed sequentially.24

Each logical iteration is executed once per instance of the loop region that is encountered by the25
binding thread set.26

If an order clause is present then the semantics are as described in Section 2.11.3. If the order27
clause is not present, the behavior is as if an order clause that specifies concurrent appeared28
on the construct.29

The set of threads that may execute the iterations of the loop region is the binding thread set. Each30
iteration is executed by one thread from this set.31

If the loop region binds to a teams region, the threads in the binding thread set may continue32
execution after the loop region without waiting for all logical iterations of the associated loops to33
complete. The iterations are guaranteed to complete before the end of the teams region.34

If the loop region does not bind to a teams region, all logical iterations of the associated loops35
must complete before the encountering threads continue execution after the loop region.36

For the purpose of determining its consistency with other schedules (see Section 2.11.2), the37
schedule is defined by the implicit order clause.38

CHAPTER 2. DIRECTIVES 153

The schedule is reproducible if the schedule specified through the implicit order clause is1
reproducible.2

Restrictions3
Restrictions to the loop construct are as follows:4

• At most one collapse clause can appear on a loop directive.5

• A list item may not appear in a lastprivate clause unless it is the loop iteration variable of a6
loop that is associated with the construct.7

• If a loop construct is not nested inside another OpenMP construct and it appears in a procedure,8
the bind clause must be present.9

• If a loop region binds to a teams or parallel region, it must be encountered by all threads in10
the binding thread set or by none of them.11

• At most one bind clause can appear on a loop directive.12

• If the bind clause is present on the loop construct and binding is teams then the13
corresponding loop region must be strictly nested inside a teams region.14

• If the bind clause, with teams specified as binding, is present on the loop construct and the15
corresponding loop region executes on a non-host device then the behavior of a reduction16
clause that appears on the construct is unspecified if the construct is not nested inside a teams17
construct.18

• If the bind clause is present on the loop construct and binding is parallel then the19
behavior is unspecified if the corresponding loop region is closely nested inside a simd region.20

Cross References21
• The single construct, see Section 2.10.2.22

• Canonical loop nest form, see Section 2.11.1.23

• order clause, see Section 2.11.3.24

• The Worksharing-Loop construct, see Section 2.11.4.25

• SIMD directives, see Section 2.11.5.26

• distribute construct, see Section 2.11.6.1.27

2.11.8 scan Directive28

Summary29
The scan directive specifies that scan computations update the list items on each iteration of an30
enclosing loop nest that is associated with a worksharing-loop, worksharing-loop SIMD, or simd31
directive.32

154 OpenMP API – Version 5.1 November 2020

Syntax1
C / C++

The syntax of the scan directive and the loop body that contains it is as follows:2

{3
structured-block-sequence4
#pragma omp scan clause new-line5
structured-block-sequence6

}7

where clause is one of the following:8

inclusive(list)9

exclusive(list)10

and where the containing loop body belongs to the innermost loop that is associated with the11
directive of an enclosing for, for simd, or simd construct.12

C / C++
Fortran

The syntax of the scan directive and the loop body that contains it is as follows:13

structured-block-sequence14
!$omp scan clause15
structured-block-sequence16

where clause is one of the following:17

inclusive(list)18

exclusive(list)19

and where the containing loop body belongs to the innermost loop that is associated with the20
directive of an enclosing do, do simd, or simd construct.21

Fortran

CHAPTER 2. DIRECTIVES 155

Description1
A scan directive is associated with the same worksharing-loop, worksharing-loop SIMD, or simd2
directive as the associated loop to which its containing loop body belongs. The directive specifies3
that a scan computation updates each list item on each logical iteration of the associated loops4
controlled by its associated directive. The directive specifies that either an inclusive scan5
computation is to be performed for each list item that appears in an inclusive clause on the6
directive, or an exclusive scan computation is to be performed for each list item that appears in an7
exclusive clause on the directive. For each list item for which a scan computation is specified,8
statements that lexically precede or follow the directive constitute one of two phases for a given9
logical iteration of the loop — an input phase or a scan phase.10

If the list item appears in an inclusive clause, all statements in the structured block sequence11
that lexically precede the directive constitute the input phase and all statements in the structured12
block sequence that lexically follow the directive constitute the scan phase. If the list item appears13
in an exclusive clause, all statements in the structured block sequence that lexically precede the14
directive constitute the scan phase and all statements in the structured block sequence that lexically15
follow the directive constitute the input phase. The input phase contains all computations that16
update the list item in the iteration, and the scan phase ensures that any statement that reads the list17
item uses the result of the scan computation for that iteration.18

The list items that appear in an inclusive or exclusive clause may include array sections.19

The result of a scan computation for a given iteration is calculated according to the last generalized20
prefix sum (PRESUMlast) applied over the sequence of values given by the original value of the list21
item prior to the loop and all preceding updates to the list item in the logical iteration space of the22
loop. The operation PRESUMlast(op, a1, . . . , aN) is defined for a given binary operator op and a23
sequence of N values a1, . . . , aN as follows:24

• if N = 1, a125

• if N > 1, op(PRESUMlast(op, a1, . . . , aK), PRESUMlast(op, aL, . . . , aN)), where26
1 ≤ K + 1 = L ≤ N.27

At the beginning of the input phase of each iteration, the list item is initialized with the initializer28
value of the reduction-identifier specified by the reduction clause on the innermost enclosing29
construct. The update value of a list item is, for a given iteration, the value of the list item on30
completion of its input phase.31

Let orig-val be the value of the original list item on entry to the enclosing worksharing-loop,32
worksharing-loop SIMD, or simd construct. Let combiner be the combiner for the33
reduction-identifier specified by the reduction clause on the construct. And let uI be the update34
value of a list item for iteration I. For list items that appear in an inclusive clause on the scan35
directive, at the beginning of the scan phase for iteration I the list item is assigned the result of the36
operation PRESUMlast(combiner, orig-val, u0, . . . , uI). For list items that appear in an37
exclusive clause on the scan directive, at the beginning of the scan phase for iteration I = 038
the list item is assigned the value orig-val, and at the beginning of the scan phase for iteration I > 039
the list item is assigned the result of the operation PRESUMlast(combiner, orig-val, u0, . . . , uI-1).40

156 OpenMP API – Version 5.1 November 2020

For list items that appear in an inclusive clause, at the end of the enclosing worksharing-loop,1
worksharing-loop SIMD, or simd construct, the original list item is assigned the private copy from2
the last logical iteration of the loops associated with the enclosing construct. For list items that3
appear in an exclusive clause, let L be the last logical iteration of the loops associated with the4
enclosing construct. At the end of the enclosing construct, the original list item is assigned the5
result of the operation PRESUMlast(combiner, orig-val, u0, . . . , uL).6

Restrictions7
Restrictions to the scan directive are as follows:8

• Exactly one scan directive must be associated with a given worksharing-loop, worksharing-loop9
SIMD, or simd directive on which a reduction clause with the inscan modifier is present.10

• The loops that are associated with the directive to which the scan directive is associated must11
all be perfectly nested.12

• A list item that appears in the inclusive or exclusive clause must appear in a13
reduction clause with the inscan modifier on the associated worksharing-loop,14
worksharing-loop SIMD, or simd construct.15

• Cross-iteration dependences across different logical iterations must not exist, except for16
dependences for the list items specified in an inclusive or exclusive clause.17

• Intra-iteration dependences from a statement in the structured block sequence that precede a18
scan directive to a statement in the structured block sequence that follows a scan directive19
must not exist, except for dependences for the list items specified in an inclusive or20
exclusive clause.21

• The private copy of list items that appear in the inclusive or exclusive clause may not be22
modified in the scan phase.23

Cross References24
• Worksharing-loop construct, see Section 2.11.4.25

• simd construct, see Section 2.11.5.1.26

• Worksharing-loop SIMD construct, see Section 2.11.5.2.27

• reduction clause, see Section 2.21.5.4.28

2.11.9 Loop Transformation Constructs29

A loop transformation construct replaces itself, including its associated loop nest, with a structured30
block that may be another loop nest. If the loop transformation construct is nested inside another31
loop nest, its replacement becomes part of that loop nest and therefore its generated loops may32
become associated with another loop-associated directive that forms an enclosing construct. A loop33

CHAPTER 2. DIRECTIVES 157

transformation construct that is closely nested within another loop transformation construct applies1
before the enclosing loop transformation construct.2

The associated loop nest of a loop transformation construct must have canonical loop nest form (see3
Section 2.11.1). All generated loops have canonical loop nest form, unless otherwise specified.4
Loop iteration variables of generated loops are always private in the enclosing teams,5
parallel, simd, or task generating construct.6

Cross References7
• Canonical loop nest form, see Section 2.11.1.8

2.11.9.1 tile Construct9

Summary10
The tile construct tiles one or more loops.11

Syntax12
C / C++

The syntax of the tile construct is as follows:13

#pragma omp tile sizes(size-list) new-line14
loop-nest15

where loop-nest is a canonical loop nest and size-list is a list s1, . . . , sn of positive integer16
expressions.17

C / C++
Fortran

The syntax of the tile construct is as follows:18

!$omp tile sizes(size-list)19
loop-nest20

[!$omp end tile]21

where loop-nest is a canonical loop nest and size-list is a list s1, . . . , sn of positive integer22
expressions.23

If an end tile directive is not specified, an end tile directive is assumed at the end of the24
do-loops.25

Fortran

158 OpenMP API – Version 5.1 November 2020

Description1
The tile construct controls the outer n loops of the associated loop nest, where n is the number2
of items in size-list. Let `1, . . . `n be the associated loops, from outermost to innermost, which the3
construct replaces with a loop nest that consists of 2n perfectly nested loops. Let4
f1, . . . , fn, t1, . . . , tn be the generated loops, from outermost to innermost. The loops f1, . . . , fn5
are the floor loops and the loops t1, . . . , tn are the tile loops. The tile loops do not have canonical6
loop nest form.7

Let Ω be the logical iteration vector space of the associated loops. For any (α1, . . . , αn) ∈ Nn,8
define a tile Tα1,...,αn as the set of iterations9
{(i1, . . . , in) ∈ Ω | ∀k ∈ {1, . . . , n} : skαk ≤ ik < skαk + sk} and10
F = {Tα1,...,αn

| Tα1,...,αn
6= ∅} as the set of tiles with at least one iteration. Tiles that contain11 ∏n

k=1 sk iterations are complete tiles. Otherwise, they are partial tiles.12

The floor loops iterate over all tiles {Tα1,...,αn
∈ F} in lexicographic order with respect to their13

indices (α1, . . . , αn) and the tile loops iterate over the iterations in Tα1,...,αn
in the lexicographic14

order of the corresponding iteration vectors. An implementation may reorder the sequential15
execution of two iterations if at least one is from a partial tile and if their respective logical iteration16
vectors in loop-nest do not have a product order relation.17

Restrictions18
Restrictions to the tile construct are as follows:19

• The depth of the associated loop nest must be greater than or equal to n.20

• All loops that are associated with the construct must be perfectly nested.21

• No loop that is associated with the construct may be a non-rectangular loop.22

Cross References23
• Canonical loop nest form, see Section 2.11.1.24

• Worksharing-loop construct, see Section 2.11.4.25

• distribute construct, see Section 2.11.6.1.26

• taskloop construct, see Section 2.12.2.27

CHAPTER 2. DIRECTIVES 159

2.11.9.2 unroll Construct1

Summary2
The unroll construct fully or partially unrolls a loop.3

Syntax4
C / C++

The syntax of the unroll construct is as follows:5

#pragma omp unroll [clause] new-line6
loop-nest7

where loop-nest is a canonical loop nest and clause is one of the following:8

full9

partial[(unroll-factor)]10

where unroll-factor is a positive integer expression that is a compile-time constant.11

C / C++
Fortran

The syntax of the unroll construct is as follows:12

!$omp unroll [clause]13
loop-nest14

[!$omp end unroll]15

where loop-nest is a canonical loop nest and clause is one of the following:16

full17

partial[(unroll-factor)]18

where unroll-factor is a positive integer expression that is a compile-time constant.19

If an end unroll directive is not specified, an end unroll directive is assumed at the end of20
the do-loop.21

Fortran

Description22
The unroll construct controls the outermost loop of the loop nest.23

When the full clause is specified, the associated loop is fully unrolled – it is replaced with n24
instances of its loop body, one for each logical iteration of the associated loop and in the order of its25
logical iterations. The construct is replaced by a structured block that only contains the n loop body26
instances.27

160 OpenMP API – Version 5.1 November 2020

When the partial clause is specified, the associated loop is first tiled with a tile size of1
unroll-factor. Then, the generated tile loop is fully unrolled. If the partial clause is used without2
an unroll-factor argument then the unroll factor is a positive integer that is implementation defined.3

When neither the full nor the partial clauses are specified, if and how the loop is unrolled is4
implementation defined.5

The unroll construct results in a generated loop that has canonical loop nest form if and only if6
the partial clause is specified.7

Restrictions8
Restrictions to the unroll construct are as follows:9

• If the full clause is specified, the iteration count of the loop must be a compile-time constant.10

Cross References11
• Canonical loop nest form, see Section 2.11.4.12

• tile construct, see Section 2.11.9.1.13

2.12 Tasking Constructs14

2.12.1 task Construct15

Summary16
The task construct defines an explicit task.17

Syntax18
C / C++

The syntax of the task construct is as follows:19

#pragma omp task [clause[[,] clause] ...] new-line20
structured-block21

where clause is one of the following:22

if([task :] scalar-expression)23

final(scalar-expression)24

untied25

default(data-sharing-attribute)26

mergeable27

private(list)28

firstprivate(list)29

CHAPTER 2. DIRECTIVES 161

shared(list)1

in_reduction(reduction-identifier : list)2

depend([depend-modifier,] dependence-type : locator-list)3

priority(priority-value)4

allocate([allocator :] list)5

affinity([aff-modifier :] locator-list)6

detach(event-handle)7

where event-handle is a variable of omp_event_handle_t type and aff-modifier is one of the8
following:9

iterator(iterators-definition)10

C / C++
Fortran

The syntax of the task construct is as follows:11

!$omp task [clause[[,] clause] ...]12
loosely-structured-block13

!$omp end task14

or15

!$omp task [clause[[,] clause] ...]16
strictly-structured-block17

[!$omp end task]18

where clause is one of the following:19

if([task :] scalar-logical-expression)20

final(scalar-logical-expression)21

untied22

default(data-sharing-attribute)23

mergeable24

private(list)25

firstprivate(list)26

shared(list)27

in_reduction(reduction-identifier : list)28

depend([depend-modifier,] dependence-type : locator-list)29

priority(priority-value)30

162 OpenMP API – Version 5.1 November 2020

allocate([allocator :] list)1

affinity([aff-modifier :] locator-list)2

detach(event-handle)3

where event-handle is an integer variable of omp_event_handle_kind kind and aff-modifier4
is one of the following:5

iterator(iterators-definition)6

Fortran

Binding7
The binding thread set of the task region is the current team. A task region binds to the8
innermost enclosing parallel region.9

Description10
The task construct is a task generating construct. When a thread encounters a task construct, an11
explicit task is generated from the code for the associated structured block. The data environment12
of the task is created according to the data-sharing attribute clauses on the task construct, per-data13
environment ICVs, and any defaults that apply. The data environment of the task is destroyed when14
the execution code of the associated structured block is completed.15

The encountering thread may immediately execute the task, or defer its execution. In the latter case,16
any thread in the team may be assigned the task. Completion of the task can be guaranteed using17
task synchronization constructs and clauses. If a task construct is encountered during execution18
of an outer task, the generated task region that corresponds to this construct is not a part of the19
outer task region unless the generated task is an included task.20

If a detach clause is present on a task construct a new allow-completion event is created and21
connected to the completion of the associated task region. The original event-handle is updated22
to represent that allow-completion event before the task data environment is created. The23
event-handle is considered as if it was specified on a firstprivate clause. The use of a24
variable in a detach clause expression of a task construct causes an implicit reference to the25
variable in all enclosing constructs.26

If no detach clause is present on a task construct the generated task is completed when the27
execution of its associated structured block is completed. If a detach clause is present on a task28
construct, the task is completed when the execution of its associated structured block is completed29
and the allow-completion event is fulfilled.30

When an if clause is present on a task construct and the if clause expression evaluates to false,31
an undeferred task is generated, and the encountering thread must suspend the current task region,32
for which execution cannot be resumed until execution of the structured block that is associated33
with the generated task is completed. The use of a variable in an if clause expression of a task34
construct causes an implicit reference to the variable in all enclosing constructs.35

CHAPTER 2. DIRECTIVES 163

When a final clause is present on a task construct and the final clause expression evaluates1
to true, the generated task is a final task. All task constructs that are encountered during2
execution of a final task generate final and included tasks. The use of a variable in a final clause3
expression of a task construct causes an implicit reference to the variable in all enclosing4
constructs. Encountering a task construct with the detach clause during the execution of a final5
task results in unspecified behavior.6

The if clause expression and the final clause expression are evaluated in the context outside of7
the task construct, and no ordering of those evaluations is specified.8

A thread that encounters a task scheduling point within the task region may temporarily suspend9
the task region. By default, a task is tied and its suspended task region can only be resumed by10
the thread that started its execution. If the untied clause is present on a task construct, any11
thread in the team can resume the task region after a suspension. The untied clause is ignored12
if the task is a final or an included task.13

The task construct includes a task scheduling point in the task region of its generating task,14
immediately following the generation of the explicit task. Each explicit task region includes a15
task scheduling point at the end of its associated structured block.16

When the mergeable clause is present on a task construct, the generated task is a mergeable17
task.18

The priority clause is a hint for the priority of the generated task. The priority-value is a19
non-negative integer expression that provides a hint for task execution order. Among all tasks ready20
to be executed, higher priority tasks (those with a higher numerical value in the priority clause21
expression) are recommended to execute before lower priority ones. The default priority-value22
when no priority clause is specified is zero (the lowest priority). If a value is specified in the23
priority clause that is higher than the max-task-priority-var ICV then the implementation will24
use the value of that ICV. A program that relies on the task execution order being determined by the25
priority-value may have unspecified behavior.26

The affinity clause is a hint to indicate data affinity of the generated task. The task is27
recommended to execute close to the location of the list items. A program that relies on the task28
execution location being determined by this list may have unspecified behavior.29

The list items that appear in the affinity clause may reference iterators defined by an30
iterators-definition that appears in the same clause. The list items that appear in the affinity31
clause may include array sections.32

C / C++
The list items that appear in the affinity clause may use shape-operators.33

C / C++
If a list item appears in an affinity clause then data affinity refers to the original list item.34

164 OpenMP API – Version 5.1 November 2020

1

Note – When storage is shared by an explicit task region, the programmer must ensure, by2
adding proper synchronization, that the storage does not reach the end of its lifetime before the3
explicit task region completes its execution.4

5

Execution Model Events6
The task-create event occurs when a thread encounters a construct that causes a new task to be7
created. The event occurs after the task is initialized but before it begins execution or is deferred.8

Tool Callbacks9
A thread dispatches a registered ompt_callback_task_create callback for each occurrence10
of a task-create event in the context of the encountering task. This callback has the type signature11
ompt_callback_task_create_t and the flags argument indicates the task types shown in12
Table 2.7.13

TABLE 2.7: ompt_callback_task_create Callback Flags Evaluation

Operation Evaluates to true

(flags & ompt_task_explicit) Always in the dispatched callback

(flags & ompt_task_undeferred) If the task is an undeferred task

(flags & ompt_task_final) If the task is a final task

(flags & ompt_task_untied) If the task is an untied task

(flags & ompt_task_mergeable) If the task is a mergeable task

(flags & ompt_task_merged) If the task is a merged task

Restrictions14
Restrictions to the task construct are as follows:15

• A program must not depend on any ordering of the evaluations of the clauses of the task16
directive, or on any side effects of the evaluations of the clauses.17

• At most one if clause can appear on the directive.18

• At most one final clause can appear on the directive.19

• At most one priority clause can appear on the directive.20

• At most one detach clause can appear on the directive.21

• If a detach clause appears on the directive, then a mergeable clause cannot appear on the22
same directive.23

CHAPTER 2. DIRECTIVES 165

C / C++
• A throw executed inside a task region must cause execution to resume within the same task1
region, and the same thread that threw the exception must catch it.2

C / C++

Cross References3
• Task scheduling constraints, see Section 2.12.6.4

• allocate clause, see Section 2.13.4.5

• if clause, see Section 2.18.6

• depend clause, see Section 2.19.11.7

• Data-sharing attribute clauses, Section 2.21.4.8

• in_reduction clause, see Section 2.21.5.6.9

• omp_fulfill_event, see Section 3.11.1.10

• ompt_callback_task_create_t, see Section 4.5.2.7.11

2.12.2 taskloop Construct12

Summary13
The taskloop construct specifies that the iterations of one or more associated loops will be14
executed in parallel using explicit tasks. The iterations are distributed across tasks generated by the15
construct and scheduled to be executed.16

Syntax17
C / C++

The syntax of the taskloop construct is as follows:18

#pragma omp taskloop [clause[[,] clause] ...] new-line19
loop-nest20

where loop-nest is a canonical loop nest and clause is one of the following:21

if([taskloop :] scalar-expression)22

shared(list)23

private(list)24

firstprivate(list)25

lastprivate(list)26

reduction([default ,]reduction-identifier : list)27

in_reduction(reduction-identifier : list)28

166 OpenMP API – Version 5.1 November 2020

default(data-sharing-attribute)1

grainsize([strict:]grain-size)2

num_tasks([strict:]num-tasks)3

collapse(n)4

final(scalar-expr)5

priority(priority-value)6

untied7

mergeable8

nogroup9

allocate([allocator :] list)10

C / C++
Fortran

The syntax of the taskloop construct is as follows:11

!$omp taskloop [clause[[,] clause] ...]12
loop-nest13

[!$omp end taskloop]14

where loop-nest is a canonical loop nest and clause is one of the following:15

if([taskloop :] scalar-logical-expression)16

shared(list)17

private(list)18

firstprivate(list)19

lastprivate(list)20

reduction([default ,]reduction-identifier : list)21

in_reduction(reduction-identifier : list)22

default(data-sharing-attribute)23

grainsize([strict:]grain-size)24

num_tasks([strict:]num-tasks)25

collapse(n)26

final(scalar-logical-expr)27

priority(priority-value)28

untied29

mergeable30

CHAPTER 2. DIRECTIVES 167

nogroup1

allocate([allocator :] list)2

If an end taskloop directive is not specified, an end taskloop directive is assumed at the end3
of the do-loops.4

Fortran

Binding5
The binding thread set of the taskloop region is the current team. A taskloop region binds to6
the innermost enclosing parallel region.7

Description8
The taskloop construct is a task generating construct. When a thread encounters a taskloop9
construct, the construct partitions the iterations of the associated loops into explicit tasks for10
parallel execution. The data environment of each generated task is created according to the11
data-sharing attribute clauses on the taskloop construct, per-data environment ICVs, and any12
defaults that apply. The order of the creation of the loop tasks is unspecified. Programs that rely on13
any execution order of the logical iterations are non-conforming.14

By default, the taskloop construct executes as if it was enclosed in a taskgroup construct15
with no statements or directives outside of the taskloop construct. Thus, the taskloop16
construct creates an implicit taskgroup region. If the nogroup clause is present, no implicit17
taskgroup region is created.18

If a reduction clause is present, the behavior is as if a task_reduction clause with the19
same reduction operator and list items was applied to the implicit taskgroup construct that20
encloses the taskloop construct. The taskloop construct executes as if each generated task21
was defined by a task construct on which an in_reduction clause with the same reduction22
operator and list items is present. Thus, the generated tasks are participants of the reduction defined23
by the task_reduction clause that was applied to the implicit taskgroup construct.24

If an in_reduction clause is present, the behavior is as if each generated task was defined by a25
task construct on which an in_reduction clause with the same reduction operator and list26
items is present. Thus, the generated tasks are participants of a reduction previously defined by a27
reduction scoping clause.28

If a grainsize clause is present, the number of logical iterations assigned to each generated task29
is greater than or equal to the minimum of the value of the grain-size expression and the number of30
logical iterations, but less than two times the value of the grain-size expression. If the grainsize31
clause has the strict modifier, the number of logical iterations assigned to each generated task is32
equal to the value of the grain-size expression, except for the generated task that contains the33
sequentially last iteration, which may have fewer iterations. The parameter of the grainsize34
clause must be a positive integer expression.35

If num_tasks is specified, the taskloop construct creates as many tasks as the minimum of the36
num-tasks expression and the number of logical iterations. Each task must have at least one logical37

168 OpenMP API – Version 5.1 November 2020

iteration. The parameter of the num_tasks clause must be a positive integer expression. If the1
num_tasks clause has the strict modifier for a task loop with N logical iterations, the logical2
iterations are partitioned in a balanced manner and each partition is assigned, in order, to a3
generated task. The partition size is ddN/num-tasksee until the number of remaining iterations4
divides the number of remaining tasks evenly, at which point the partition size becomes5
bbN/num-taskscc.6

If neither a grainsize nor num_tasks clause is present, the number of loop tasks generated7
and the number of logical iterations assigned to these tasks is implementation defined.8

The collapse clause may be used to specify how many loops are associated with the taskloop9
construct. The parameter of the collapse clause must be a constant positive integer expression.10
If the collapse clause is omitted, the behavior is as if a collapse clause with a parameter11
value of one was specified. The collapse clause specifies the number of loops that are collapsed12
into a logical iteration space that is then divided according to the grainsize and num_tasks13
clauses.14

At the beginning of each logical iteration, the loop iteration variable or the variable declared by15
range-decl of each associated loop has the value that it would have if the set of the associated loops16
was executed sequentially.17

The iteration count for each associated loop is computed before entry to the outermost loop. If18
execution of any associated loop changes any of the values used to compute any of the iteration19
counts, then the behavior is unspecified.20

When an if clause is present and the if clause expression evaluates to false, undeferred tasks are21
generated. The use of a variable in an if clause expression causes an implicit reference to the22
variable in all enclosing constructs.23

When a final clause is present and the final clause expression evaluates to true, the generated24
tasks are final tasks. The use of a variable in a final clause expression of a taskloop construct25
causes an implicit reference to the variable in all enclosing constructs.26

When a priority clause is present, the generated tasks use the priority-value as if it was27
specified for each individual task. If the priority clause is not specified, tasks generated by the28
taskloop construct have the default task priority (zero).29

When the untied clause is present, each generated task is an untied task.30

When the mergeable clause is present, each generated task is a mergeable task.31

C++
For firstprivate variables of class type, the number of invocations of copy constructors that32
perform the initialization is implementation defined.33

C++

CHAPTER 2. DIRECTIVES 169

1

Note – When storage is shared by a taskloop region, the programmer must ensure, by adding2
proper synchronization, that the storage does not reach the end of its lifetime before the taskloop3
region and its descendant tasks complete their execution.4

5

Execution Model Events6
The taskloop-begin event occurs after a task encounters a taskloop construct but before any7
other events that may trigger as a consequence of executing the taskloop region. Specifically, a8
taskloop-begin event for a taskloop region will precede the taskgroup-begin that occurs unless a9
nogroup clause is present. Regardless of whether an implicit taskgroup is present, a10
taskloop-begin will always precede any task-create events for generated tasks.11

The taskloop-end event occurs after a taskloop region finishes execution but before resuming12
execution of the encountering task.13

The taskloop-iteration-begin event occurs before an explicit task executes each iteration of a14
taskloop region.15

Tool Callbacks16
A thread dispatches a registered ompt_callback_work callback for each occurrence of a17
taskloop-begin and taskloop-end event in that thread. The callback occurs in the context of the18
encountering task. The callback has type signature ompt_callback_work_t. The callback19
receives ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate,20
and ompt_work_taskloop as its wstype argument.21

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a22
taskloop-iteration-begin event in that thread. The callback occurs in the context of the encountering23
task. The callback has type signature ompt_callback_dispatch_t.24

Restrictions25
Restrictions to the taskloop construct are as follows:26

• If a reduction clause is present, the nogroup clause must not be specified.27

• The same list item cannot appear in both a reduction and an in_reduction clause.28

• At most one grainsize clause can appear on the directive.29

• At most one num_tasks clause can appear on the directive.30

• Neither the grainsize clause nor the num_tasks clause may appear on the directive if any31
of the associated loops is a non-rectangular loop.32

• The grainsize clause and num_tasks clause are mutually exclusive and may not appear on33
the same taskloop directive.34

• At most one collapse clause can appear on the directive.35

170 OpenMP API – Version 5.1 November 2020

• At most one if clause can appear on the directive.1

• At most one final clause can appear on the directive.2

• At most one priority clause can appear on the directive.3

Cross References4
• Canonical loop nest form, see Section 2.11.1.5

• tile construct, see Section 2.11.9.1.6

• task construct, Section 2.12.1.7

• if clause, see Section 2.18.8

• taskgroup construct, Section 2.19.6.9

• Data-sharing attribute clauses, Section 2.21.4.10

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.11

• ompt_work_taskloop, see Section 4.4.4.15.12

• ompt_callback_work_t, see Section 4.5.2.5.13

• ompt_callback_dispatch_t, see Section 4.5.2.6.14

2.12.3 taskloop simd Construct15

Summary16
The taskloop simd construct specifies a loop that can be executed concurrently using SIMD17
instructions and that those iterations will also be executed in parallel using explicit tasks. The18
taskloop simd construct is a composite construct.19

Syntax20
C / C++

The syntax of the taskloop simd construct is as follows:21

#pragma omp taskloop simd [clause[[,] clause] ...] new-line22
loop-nest23

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the24
taskloop or simd directives with identical meanings and restrictions.25

C / C++

CHAPTER 2. DIRECTIVES 171

Fortran
The syntax of the taskloop simd construct is as follows:1

!$omp taskloop simd [clause[[,] clause] ...]2
loop-nest3

[!$omp end taskloop simd]4

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the5
taskloop or simd directives with identical meanings and restrictions.6

If an end taskloop simd directive is not specified, an end taskloop simd directive is7
assumed at the end of the do-loops.8

Fortran

Binding9
The binding thread set of the taskloop simd region is the current team. A taskloop simd10
region binds to the innermost enclosing parallel region.11

Description12
The taskloop simd construct first distributes the iterations of the associated loops across tasks13
in a manner consistent with any clauses that apply to the taskloop construct. The resulting tasks14
are then converted to a SIMD loop in a manner consistent with any clauses that apply to the simd15
construct, except for the collapse clause. For the purposes of each task’s conversion to a SIMD16
loop, the collapse clause is ignored and the effect of any in_reduction clause is as if a17
reduction clause with the same reduction operator and list items is present on the simd18
construct.19

Execution Model Events20
This composite construct generates the same events as the taskloop construct.21

Tool Callbacks22
This composite construct dispatches the same callbacks as the taskloop construct.23

Restrictions24
Restrictions to the taskloop simd construct are as follows:25

• The restrictions for the taskloop and simd constructs apply.26

• The conditional modifier may not appear in a lastprivate clause.27

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the28
directive must include a directive-name-modifier.29

• At most one if clause without a directive-name-modifier can appear on the directive.30

• At most one if clause with the taskloop directive-name-modifier can appear on the directive.31

• At most one if clause with the simd directive-name-modifier can appear on the directive.32

172 OpenMP API – Version 5.1 November 2020

Cross References1
• Canonical loop nest form, see Section 2.11.1.2

• simd construct, see Section 2.11.5.1.3

• taskloop construct, see Section 2.12.2.4

• Data-sharing attribute clauses, see Section 2.21.4.5

2.12.4 taskyield Construct6

Summary7
The taskyield construct specifies that the current task can be suspended in favor of execution of8
a different task. The taskyield construct is a stand-alone directive.9

Syntax10
C / C++

The syntax of the taskyield construct is as follows:11

#pragma omp taskyield new-line12

C / C++
Fortran

The syntax of the taskyield construct is as follows:13

!$omp taskyield14

Fortran

Binding15
A taskyield region binds to the current task region. The binding thread set of the taskyield16
region is the current team.17

Description18
The taskyield region includes an explicit task scheduling point in the current task region.19

Cross References20
• Task scheduling, see Section 2.12.6.21

CHAPTER 2. DIRECTIVES 173

2.12.5 Initial Task1

Execution Model Events2
No events are associated with the implicit parallel region in each initial thread.3

The initial-thread-begin event occurs in an initial thread after the OpenMP runtime invokes the tool4
initializer but before the initial thread begins to execute the first OpenMP region in the initial task.5

The initial-task-begin event occurs after an initial-thread-begin event but before the first OpenMP6
region in the initial task begins to execute.7

The initial-task-end event occurs before an initial-thread-end event but after the last OpenMP8
region in the initial task finishes execution.9

The initial-thread-end event occurs as the final event in an initial thread at the end of an initial task10
immediately prior to invocation of the tool finalizer.11

Tool Callbacks12
A thread dispatches a registered ompt_callback_thread_begin callback for the13
initial-thread-begin event in an initial thread. The callback occurs in the context of the initial14
thread. The callback has type signature ompt_callback_thread_begin_t. The callback15
receives ompt_thread_initial as its thread_type argument.16

A thread dispatches a registered ompt_callback_implicit_task callback with17
ompt_scope_begin as its endpoint argument for each occurrence of an initial-task-begin event18
in that thread. Similarly, a thread dispatches a registered ompt_callback_implicit_task19
callback with ompt_scope_end as its endpoint argument for each occurrence of an20
initial-task-end event in that thread. The callbacks occur in the context of the initial task and have21
type signature ompt_callback_implicit_task_t. In the dispatched callback,22
(flag & ompt_task_initial) always evaluates to true.23

A thread dispatches a registered ompt_callback_thread_end callback for the24
initial-thread-end event in that thread. The callback occurs in the context of the thread. The25
callback has type signature ompt_callback_thread_end_t. The implicit parallel region26
does not dispatch a ompt_callback_parallel_end callback; however, the implicit parallel27
region can be finalized within this ompt_callback_thread_end callback.28

Cross References29
• ompt_thread_initial, see Section 4.4.4.10.30

• ompt_task_initial, see Section 4.4.4.18.31

• ompt_callback_thread_begin_t, see Section 4.5.2.1.32

• ompt_callback_thread_end_t, see Section 4.5.2.2.33

• ompt_callback_parallel_begin_t, see Section 4.5.2.3.34

• ompt_callback_parallel_end_t, see Section 4.5.2.4.35

• ompt_callback_implicit_task_t, see Section 4.5.2.11.36

174 OpenMP API – Version 5.1 November 2020

2.12.6 Task Scheduling1

Whenever a thread reaches a task scheduling point, the implementation may cause it to perform a2
task switch, beginning or resuming execution of a different task bound to the current team. Task3
scheduling points are implied at the following locations:4

• during the generation of an explicit task;5

• the point immediately following the generation of an explicit task;6

• after the point of completion of the structured block associated with a task;7

• in a taskyield region;8

• in a taskwait region;9

• at the end of a taskgroup region;10

• in an implicit barrier region;11

• in an explicit barrier region;12

• during the generation of a target region;13

• the point immediately following the generation of a target region;14

• at the beginning and end of a target data region;15

• in a target update region;16

• in a target enter data region;17

• in a target exit data region;18

• in the omp_target_memcpy routine;19

• in the omp_target_memcpy_async routine;20

• in the omp_target_memcpy_rect routine; and21

• in the omp_target_memcpy_rect_async routine.22

When a thread encounters a task scheduling point it may do one of the following, subject to the23
Task Scheduling Constraints (below):24

• begin execution of a tied task bound to the current team;25

• resume any suspended task region, bound to the current team, to which it is tied;26

• begin execution of an untied task bound to the current team; or27

• resume any suspended untied task region bound to the current team.28

If more than one of the above choices is available, which one is chosen is unspecified.29

CHAPTER 2. DIRECTIVES 175

Task Scheduling Constraints are as follows:1

1. Scheduling of new tied tasks is constrained by the set of task regions that are currently tied to the2
thread and that are not suspended in a barrier region. If this set is empty, any new tied task may3
be scheduled. Otherwise, a new tied task may be scheduled only if it is a descendant task of4
every task in the set.5

2. A dependent task shall not start its execution until its task dependences are fulfilled.6

3. A task shall not be scheduled while any task with which it is mutually exclusive has been7
scheduled but has not yet completed.8

4. When an explicit task is generated by a construct that contains an if clause for which the9
expression evaluated to false, and the previous constraints are already met, the task is executed10
immediately after generation of the task.11

A program that relies on any other assumption about task scheduling is non-conforming.12

13

Note – Task scheduling points dynamically divide task regions into parts. Each part is executed14
uninterrupted from start to end. Different parts of the same task region are executed in the order in15
which they are encountered. In the absence of task synchronization constructs, the order in which a16
thread executes parts of different schedulable tasks is unspecified.17

A program must behave correctly and consistently with all conceivable scheduling sequences that18
are compatible with the rules above.19

For example, if threadprivate storage is accessed (explicitly in the source code or implicitly20
in calls to library routines) in one part of a task region, its value cannot be assumed to be preserved21
into the next part of the same task region if another schedulable task exists that modifies it.22

As another example, if a lock acquire and release happen in different parts of a task region, no23
attempt should be made to acquire the same lock in any part of another task that the executing24
thread may schedule. Otherwise, a deadlock is possible. A similar situation can occur when a25
critical region spans multiple parts of a task and another schedulable task contains a26
critical region with the same name.27

The use of threadprivate variables and the use of locks or critical sections in an explicit task with an28
if clause must take into account that when the if clause evaluates to false, the task is executed29
immediately, without regard to Task Scheduling Constraint 2.30

31

Execution Model Events32
The task-schedule event occurs in a thread when the thread switches tasks at a task scheduling33
point; no event occurs when switching to or from a merged task.34

176 OpenMP API – Version 5.1 November 2020

Tool Callbacks1
A thread dispatches a registered ompt_callback_task_schedule callback for each2
occurrence of a task-schedule event in the context of the task that begins or resumes. This callback3
has the type signature ompt_callback_task_schedule_t. The argument prior_task_status4
is used to indicate the cause for suspending the prior task. This cause may be the completion of the5
prior task region, the encountering of a taskyield construct, or the encountering of an active6
cancellation point.7

Cross References8
• ompt_callback_task_schedule_t, see Section 4.5.2.10.9

2.13 Memory Management Directives10

2.13.1 Memory Spaces11

OpenMP memory spaces represent storage resources where variables can be stored and retrieved.12
Table 2.8 shows the list of predefined memory spaces. The selection of a given memory space13
expresses an intent to use storage with certain traits for the allocations. The actual storage resources14
that each memory space represents are implementation defined.15

TABLE 2.8: Predefined Memory Spaces

Memory space name Storage selection intent

omp_default_mem_space Represents the system default storage

omp_large_cap_mem_space Represents storage with large capacity

omp_const_mem_space Represents storage optimized for variables with
constant values

omp_high_bw_mem_space Represents storage with high bandwidth

omp_low_lat_mem_space Represents storage with low latency

Variables allocated in the omp_const_mem_space memory space may be initialized through16
the firstprivate clause or with compile time constants for static and constant variables.17
Implementation-defined mechanisms to provide the constant value of these variables may also be18
supported.19

Restrictions20
Restrictions to OpenMP memory spaces are as follows:21

• Variables in the omp_const_mem_space memory space may not be written.22

CHAPTER 2. DIRECTIVES 177

Cross References1
• omp_init_allocator routine, see Section 3.13.2.2

2.13.2 Memory Allocators3

OpenMP memory allocators can be used by a program to make allocation requests. When a4
memory allocator receives a request to allocate storage of a certain size, an allocation of logically5
consecutive memory in the resources of its associated memory space of at least the size that was6
requested will be returned if possible. This allocation will not overlap with any other existing7
allocation from an OpenMP memory allocator.8

The behavior of the allocation process can be affected by the allocator traits that the user specifies.9
Table 2.9 shows the allowed allocator traits, their possible values and the default value of each trait.10

TABLE 2.9: Allocator Traits

Allocator trait Allowed values Default value

sync_hint contended, uncontended,
serialized, private

contended

alignment A positive integer value that is a power of
2

1 byte

access all, cgroup, pteam, thread all

pool_size Positive integer value Implementation
defined

fallback default_mem_fb, null_fb,
abort_fb, allocator_fb

default_mem_fb

fb_data an allocator handle (none)

pinned true, false false

partition environment, nearest, blocked,
interleaved

environment

The sync_hint trait describes the expected manner in which multiple threads may use the11
allocator. The values and their descriptions are:12

• contended: high contention is expected on the allocator; that is, many threads are expected to13
request allocations simultaneously.14

• uncontended: low contention is expected on the allocator; that is, few threads are expected to15
request allocations simultaneously.16

178 OpenMP API – Version 5.1 November 2020

• serialized: only one thread at a time will request allocations with the allocator. Requesting1
two allocations simultaneously when specifying serialized results in unspecified behavior.2

• private: the same thread will request allocations with the allocator every time. Requesting an3
allocation from different threads, simultaneously or not, when specifying private results in4
unspecified behavior.5

Allocated memory will be byte aligned to at least the value specified for the alignment trait of6
the allocator. Some directives and API routines can specify additional requirements on alignment7
beyond those described in this section.8

Memory allocated by allocators with the access trait defined to be all must be accessible by all9
threads in the device where the allocation was requested. Memory allocated by allocators with the10
access trait defined to be cgroup will be memory accessible by all threads in the same11
contention group as the thread that requested the allocation. Attempts to access the memory12
returned by an allocator with the access trait defined to be cgroup from a thread that is not part13
of the same contention group as the thread that allocated the memory result in unspecified behavior.14
Memory allocated by allocators with the access trait defined to be pteam will be memory15
accessible by all threads that bind to the same parallel region of the thread that requested the16
allocation. Attempts to access the memory returned by an allocator with the access trait defined17
to be pteam from a thread that does not bind to the same parallel region as the thread that18
allocated the memory result in unspecified behavior. Memory allocated by allocators with the19
access trait defined to be thread will be memory accessible by the thread that requested the20
allocation. Attempts to access the memory returned by an allocator with the access trait defined21
to be thread from a thread other than the one that allocated the memory result in unspecified22
behavior.23

The total amount of storage in bytes that an allocator can use is limited by the pool_size trait.24
For allocators with the access trait defined to be all, this limit refers to allocations from all25
threads that access the allocator. For allocators with the access trait defined to be cgroup, this26
limit refers to allocations from threads that access the allocator from the same contention group. For27
allocators with the access trait defined to be pteam, this limit refers to allocations from threads28
that access the allocator from the same parallel team. For allocators with the access trait defined29
to be thread, this limit refers to allocations from each thread that accesses the allocator. Requests30
that would result in using more storage than pool_size will not be fulfilled by the allocator.31

The fallback trait specifies how the allocator behaves when it cannot fulfill an allocation32
request. If the fallback trait is set to null_fb, the allocator returns the value zero if it fails to33
allocate the memory. If the fallback trait is set to abort_fb, program execution will be34
terminated if the allocation fails. If the fallback trait is set to allocator_fb then when an35
allocation fails the request will be delegated to the allocator specified in the fb_data trait. If the36
fallback trait is set to default_mem_fb then when an allocation fails another allocation will37
be tried in omp_default_mem_space, which assumes all allocator traits to be set to their38
default values except for fallback trait, which will be set to null_fb.39

CHAPTER 2. DIRECTIVES 179

Allocators with the pinned trait defined to be true ensure that their allocations remain in the1
same storage resource at the same location for their entire lifetime.2

The partition trait describes the partitioning of allocated memory over the storage resources3
represented by the memory space associated with the allocator. The partitioning will be done in4
parts with a minimum size that is implementation defined. The values are:5

• environment: the placement of allocated memory is determined by the execution6
environment;7

• nearest: allocated memory is placed in the storage resource that is nearest to the thread that8
requests the allocation;9

• blocked: allocated memory is partitioned into parts of approximately the same size with at10
most one part per storage resource; and11

• interleaved: allocated memory parts are distributed in a round-robin fashion across the12
storage resources.13

Table 2.10 shows the list of predefined memory allocators and their associated memory spaces. The14
predefined memory allocators have default values for their allocator traits unless otherwise15
specified.16

TABLE 2.10: Predefined Allocators

Allocator name Associated memory space Non-default trait
values

omp_default_mem_alloc omp_default_mem_space fallback:null_fb

omp_large_cap_mem_alloc omp_large_cap_mem_space (none)

omp_const_mem_alloc omp_const_mem_space (none)

omp_high_bw_mem_alloc omp_high_bw_mem_space (none)

omp_low_lat_mem_alloc omp_low_lat_mem_space (none)

omp_cgroup_mem_alloc Implementation defined access:cgroup

omp_pteam_mem_alloc Implementation defined access:pteam

omp_thread_mem_alloc Implementation defined access:thread

Fortran
If any operation of the base language causes a reallocation of a variable that is allocated with a17
memory allocator then that memory allocator will be used to deallocate the current memory and to18
allocate the new memory. For allocated allocatable components of such variables, the allocator that19
will be used for the deallocation and allocation is unspecified.20

Fortran

180 OpenMP API – Version 5.1 November 2020

Cross References1
• omp_init_allocator routine, see Section 3.13.2.2

• omp_destroy_allocator routine, see Section 3.13.3.3

• omp_set_default_allocator routine, see Section 3.13.4.4

• omp_get_default_allocator routine, see Section 3.13.5.5

• OMP_ALLOCATOR environment variable, see Section 6.22.6

2.13.3 allocate Directive7

Summary8
The allocate directive specifies how to allocate the specified variables. The allocate9
directive is a declarative directive if it is not associated with an allocation statement.10

Syntax11
C / C++

The syntax of the allocate directive is as follows:12

#pragma omp allocate(list) [clause[[,] clause] ...] new-line13

where clause is one of the following:14

allocator(allocator)15

align(alignment)16

where allocator is an expression of omp_allocator_handle_t type and alignment is a17
constant positive integer expression with a value that is a power of two.18

C / C++

Fortran
The syntax of the allocate directive is as follows:19

!$omp allocate(list) [clause[[,] clause] ...]20

or21

!$omp allocate[(list)] [clause[[,] clause] ...]22
[!$omp allocate[(list)] [clause[[,] clause] ...]23
[...]]24

allocate-stmt25

where allocate-stmt is a Fortran ALLOCATE statement and clause is one of the following:26

allocator(allocator)27

align(alignment)28

CHAPTER 2. DIRECTIVES 181

where allocator is an integer expression of omp_allocator_handle_kind kind and1
alignment is a constant scalar positive integer expression with a value that is a power of two.2

Fortran

Description3
The storage for each list item that appears in the allocate directive is provided by an allocation4
through a memory allocator. If no allocator clause is specified then the memory allocator5
specified by the def-allocator-var ICV is used. If the allocator clause is specified, the memory6
allocator specified in the clause is used. If the align clause is specified then the allocation of each7
list item is byte aligned to at least the maximum of the alignment required by the base language for8
the type of that list item, the alignment trait of the allocator and the alignment value of the9
align clause. If the align clause is not specified then the allocation of each list item is byte10
aligned to at least the maximum of the alignment required by the base language for the type of that11
list item and the alignment trait of the allocator.12

The scope of this allocation is that of the list item in the base language. At the end of the scope for a13
given list item the memory allocator used to allocate that list item deallocates the storage.14

Fortran
If the directive is associated with an allocate-stmt, the allocate-stmt allocates all list items that15
appear in the directive list using the specified memory allocator. If no list items are specified then16
all variables that are listed by the allocate-stmt and are not listed in an allocate directive17
associated with the statement are allocated with the specified memory allocator.18

Fortran
For allocations that arise from this directive the null_fb value of the fallback allocator trait19
behaves as if the abort_fb had been specified.20

Restrictions21
Restrictions to the allocate directive are as follows:22

• At most one allocator clause may appear on the directive.23

• At most one align clause may appear on the directive.24

• A variable that is part of another variable (as an array or structure element) cannot appear in a25
declarative allocate directive.26

• A declarative allocate directive must appear in the same scope as the declarations of each of27
its list items and must follow all such declarations.28

• A declared variable may appear as a list item in at most one declarative allocate directive in a29
given compilation unit.30

• At most one allocator clause can appear on the allocate directive.31

182 OpenMP API – Version 5.1 November 2020

• allocate directives that appear in a target region must specify an allocator clause1
unless a requires directive with the dynamic_allocators clause is present in the same2
compilation unit.3

C / C++
• If a list item has static storage duration, the allocator clause must be specified and the4
allocator expression in the clause must be a constant expression that evaluates to one of the5
predefined memory allocator values.6

• A variable that is declared in a namespace or global scope may only appear as a list item in an7
allocate directive if an allocate directive that lists the variable follows a declaration that8
defines the variable and if all allocate directives that list the variable specify the same9
allocator.10

C / C++
C

• After a list item has been allocated, the scope that contains the allocate directive must not11
end abnormally, such as through a call to the longjmp function.12

C
C++

• After a list item has been allocated, the scope that contains the allocate directive must not end13
abnormally, such as through a call to the longjmp function, other than through C++ exceptions.14

• A variable that has a reference type may not appear as a list item in an allocate directive.15

C++
Fortran

• An allocate directive that is associated with an allocate-stmt and specifies a list must be16
preceded by an executable statement or OpenMP construct.17

• A list item that is specified in a declarative allocate directive must not have the18
ALLOCATABLE or POINTER attribute.19

• If a list item is specified in an allocate directive that is associated with an allocate-stmt, it20
must appear as one of the data objects in the allocation list of that statement.21

• A list item may not be specified more than once in an allocate directive that is associated22
with an allocate-stmt.23

• If multiple directives are associated with an allocate-stmt then at most one directive may specify24
no list items.25

• If a list item has the SAVE attribute, either explicitly or implicitly, or is a common block name26
then the allocator clause must be specified and only predefined memory allocator27
parameters can be used in the clause.28

• A variable that is part of a common block may not be specified as a list item in an allocate29
directive, except implicitly via the named common block.30

CHAPTER 2. DIRECTIVES 183

• A named common block may appear as a list item in at most one allocate directive in a given1
compilation unit.2

• If a named common block appears as a list item in an allocate directive, it must appear as a3
list item in an allocate directive that specifies the same allocator in every compilation unit in4
which the common block is used.5

• An associate name may not appear as a list item in an allocate directive.6

• A type parameter inquiry cannot appear in an allocate directive.7

Fortran

Cross References8
• def-allocator-var ICV, see Section 2.4.1.9

• Memory allocators, see Section 2.13.2.10

• omp_allocator_handle_t and omp_allocator_handle_kind, see Section 3.13.1.11

2.13.4 allocate Clause12

Summary13
The allocate clause specifies the memory allocator to be used to obtain storage for private14
variables of a directive.15

Syntax16
The syntax of the allocate clause is one of the following:17

allocate([allocator:] list)18
allocate(allocate-modifier [, allocate-modifier]: list)19

where allocate-modifier is one of the following:20

allocator(allocator)21
align(alignment)22

where alignment is a constant positive integer expression with a value that is a power of two; and23

C / C++
where allocator is an expression of the omp_allocator_handle_t type.24

C / C++
Fortran

where allocator is an integer expression of the omp_allocator_handle_kind kind.25

Fortran

184 OpenMP API – Version 5.1 November 2020

Description1
The storage for new list items that arise from list items that appear in the directive is provided2
through a memory allocator. If an allocator is specified in the clause, that allocator is used for3
allocations. If no allocator is specified in the clause and the directive is not a target directive4
then the memory allocator that is specified by the def-allocator-var ICV is used for the list items5
that are specified in the allocate clause. If no allocator is specified in the clause and the6
directive is a target directive the behavior is unspecified. If the align allocate-modifier is7
specified then the allocation of each list item is byte aligned to at least the maximum of the8
alignment required by the base language for the type of that list item, the alignment trait of the9
allocator and the alignment value of the align allocate-modifier.If the align allocate-modifier10
is not specified then the allocation of each list item is byte aligned to at least the maximum of the11
alignment required by the base language for the type of that list item and the alignment trait of12
the allocator.13

For allocations that arise from this clause the null_fb value of the fallback allocator trait behaves14
as if the abort_fb had been specified.15

Restrictions16
Restrictions to the allocate clause are as follows:17

• At most one allocator allocate-modifier may be specified on the clause.18

• At most one align allocate-modifier may be specified on the clause.19

• For any list item that is specified in the allocate clause on a directive, a data-sharing attribute20
clause that may create a private copy of that list item must be specified on the same directive.21

• For task, taskloop or target directives, allocation requests to memory allocators with the22
trait access set to thread result in unspecified behavior.23

• allocate clauses that appear on a target construct or on constructs in a target region24
must specify an allocator expression unless a requires directive with the25
dynamic_allocators clause is present in the same compilation unit.26

Cross References27
• def-allocator-var ICV, see Section 2.4.1.28

• Memory allocators, see Section 2.13.2.29

• List Item Privatization, see Section 2.21.3.30

• omp_allocator_handle_t and omp_allocator_handle_kind, see Section 3.13.1.31

CHAPTER 2. DIRECTIVES 185

2.14 Device Directives1

2.14.1 Device Initialization2

Execution Model Events3
The device-initialize event occurs in a thread that encounters the first target, target data, or4
target enter data construct or a device memory routine that is associated with a particular5
target device after the thread initiates initialization of OpenMP on the device and the device’s6
OpenMP initialization, which may include device-side tool initialization, completes.7

The device-load event for a code block for a target device occurs in some thread before any thread8
executes code from that code block on that target device.9

The device-unload event for a target device occurs in some thread whenever a code block is10
unloaded from the device.11

The device-finalize event for a target device that has been initialized occurs in some thread before12
an OpenMP implementation shuts down.13

Tool Callbacks14
A thread dispatches a registered ompt_callback_device_initialize callback for each15
occurrence of a device-initialize event in that thread. This callback has type signature16
ompt_callback_device_initialize_t.17

A thread dispatches a registered ompt_callback_device_load callback for each occurrence18
of a device-load event in that thread. This callback has type signature19
ompt_callback_device_load_t.20

A thread dispatches a registered ompt_callback_device_unload callback for each21
occurrence of a device-unload event in that thread. This callback has type signature22
ompt_callback_device_unload_t.23

A thread dispatches a registered ompt_callback_device_finalize callback for each24
occurrence of a device-finalize event in that thread. This callback has type signature25
ompt_callback_device_finalize_t.26

Restrictions27
Restrictions to OpenMP device initialization are as follows:28

• No thread may offload execution of an OpenMP construct to a device until a dispatched29
ompt_callback_device_initialize callback completes.30

• No thread may offload execution of an OpenMP construct to a device after a dispatched31
ompt_callback_device_finalize callback occurs.32

186 OpenMP API – Version 5.1 November 2020

Cross References1
• ompt_callback_device_initialize_t, see Section 4.5.2.19.2

• ompt_callback_device_finalize_t, see Section 4.5.2.20.3

• ompt_callback_device_load_t, see Section 4.5.2.21.4

• ompt_callback_device_unload_t, see Section 4.5.2.22.5

2.14.2 target data Construct6

Summary7
The target data construct maps variables to a device data environment for the extent of the8
region.9

Syntax10
C / C++

The syntax of the target data construct is as follows:11

#pragma omp target data clause[[[,] clause] ...] new-line12
structured-block13

where clause is one of the following:14

if([target data :] scalar-expression)15

device(integer-expression)16

map([[map-type-modifier[,] [map-type-modifier[,] ...]] map-type:] locator-list)17

use_device_ptr(list)18

use_device_addr(list)19

C / C++

Fortran
The syntax of the target data construct is as follows:20

!$omp target data clause[[[,] clause] ...]21
loosely-structured-block22

!$omp end target data23

or24

!$omp target data clause[[[,] clause] ...]25
strictly-structured-block26

[!$omp end target data]27

CHAPTER 2. DIRECTIVES 187

where clause is one of the following:1

if([target data :] scalar-logical-expression)2

device(scalar-integer-expression)3

map([[map-type-modifier[,] [map-type-modifier[,] ...]] map-type:] locator-list)4

use_device_ptr(list)5

use_device_addr(list)6

Fortran

Binding7
The binding task set for a target data region is the generating task. The target data region8
binds to the region of the generating task.9

Description10
When a target data construct is encountered, the encountering task executes the region. If no11
device clause is present, the behavior is as if the device clause appeared with an expression12
equal to the value of the default-device-var ICV. When an if clause is present and the if clause13
expression evaluates to false, the target device is the host. Variables are mapped for the extent of the14
region, according to any data-mapping attribute clauses, from the data environment of the15
encountering task to the device data environment.16

If a list item that appears in a use_device_addr clause has corresponding storage in the device17
data environment, references to the list item in the associated structured block are converted into18
references to the corresponding list item. If the list item is not a mapped list item, it is assumed to19
be accessible on the target device. Inside the structured block, the list item has a device address and20
its storage may not be accessible from the host device. The list items that appear in a21
use_device_addr clause may include array sections.22

C / C++
If a list item in a use_device_addr clause is an array section that has a base pointer, the effect23
of the clause is to convert the base pointer to a pointer that is local to the structured block and that24
contains the device address. This conversion may be elided if the list item was not already mapped.25

If a list item that appears in a use_device_ptr clause is a pointer to an object that is mapped to26
the device data environment, references to the list item in the associated structured block are27
converted into references to a device pointer that is local to the structured block and that refers to28
the device address of the corresponding object. If the list item does not point to a mapped object, it29
must contain a valid device address for the target device, and the list item references are instead30
converted to references to a local device pointer that refers to this device address.31

C / C++

188 OpenMP API – Version 5.1 November 2020

Fortran
If a list item that appears in a use_device_ptr clause is of type C_PTR and points to a data1
entity that is mapped to the device data environment, references to the list item in the associated2
structured block are converted into references to a device pointer that is local to the structured block3
and that refers to the device address of the corresponding entity. If a list item of type C_PTR does4
not point to a mapped object, it must contain a valid device address for the target device, and the list5
item references are instead converted to references to a local device pointer that refers to this device6
address.7

If a list item in a use_device_ptr clause is not of type C_PTR, the behavior is as if the list item8
appeared in a use_device_addr clause. Support for such list items in a use_device_ptr9
clause is deprecated.10

Fortran
If one or more map clauses are present, the list item conversions that are performed for any11
use_device_ptr or use_device_addr clause occur after all variables are mapped on entry12
to the region according to those map clauses.13

Execution Model Events14
The events associated with entering a target data region are the same events as associated with15
a target enter data construct, as described in Section 2.14.3.16

The events associated with exiting a target data region are the same events as associated with a17
target exit data construct, as described in Section 2.14.4.18

Tool Callbacks19
The tool callbacks dispatched when entering a target data region are the same as the tool20
callbacks dispatched when encountering a target enter data construct, as described in21
Section 2.14.3.22

The tool callbacks dispatched when exiting a target data region are the same as the tool23
callbacks dispatched when encountering a target exit data construct, as described in24
Section 2.14.4.25

Restrictions26
Restrictions to the target data construct are as follows:27

• A program must not depend on any ordering of the evaluations of the clauses of the28
target data directive, except as explicitly stated for map clauses and for map clauses relative29
to use_device_ptr and use_device_addr clauses, or on any side effects of the30
evaluations of the clauses.31

• At most one device clause can appear on the directive. The device clause expression must32
evaluate to a non-negative integer value that is less than or equal to the value of33
omp_get_num_devices().34

CHAPTER 2. DIRECTIVES 189

• At most one if clause can appear on the directive.1

• A map-type in a map clause must be to, from, tofrom or alloc.2

• At least one map, use_device_addr or use_device_ptr clause must appear on the3
directive.4

• A list item may not be specified more than once in use_device_ptr clauses that appear on5
the directive.6

• A list item may not be specified more than once in use_device_addr clauses that appear on7
the directive.8

• A list item may not be specified in both a use_device_addr clause and a9
use_device_ptr clause on the directive.10

• A list item in a use_device_addr clause must have a corresponding list item in the device11
data environment or be accessible on the target device.12

• A list item that appears in a use_device_ptr or use_device_addr clause must not be a13
structure element.14

C / C++
• A list item in a use_device_ptr clause must be a pointer for which the value is the address15
of an object that has corresponding storage in the device data environment or is accessible on the16
target device.17

• If a list item in a use_device_addr clause is an array section, the base expression must be a18
base language identifier.19

C / C++
Fortran

• The value of a list item in a use_device_ptr clause that is of type C_PTR must be the20
address of a data entity that has corresponding storage in the device data environment or is21
accessible on the target device.22

• If a list item in a use_device_addr clause is an array section, the designator of the base23
expression must be a name without any selectors.24

Fortran

Cross References25
• default-device-var, see Section 2.4.26

• if clause, see Section 2.18.27

• map clause, see Section 2.21.7.1.28

• omp_get_num_devices routine, see Section 3.7.4.29

190 OpenMP API – Version 5.1 November 2020

2.14.3 target enter data Construct1

Summary2
The target enter data directive specifies that variables are mapped to a device data3
environment. The target enter data directive is a stand-alone directive.4

Syntax5
C / C++

The syntax of the target enter data construct is as follows:6

#pragma omp target enter data [clause[[,] clause] ...] new-line7

where clause is one of the following:8

if([target enter data :] scalar-expression)9

device(integer-expression)10

map([map-type-modifier[,] [map-type-modifier[,] ...]] map-type: locator-list)11

depend([depend-modifier,] dependence-type : locator-list)12

nowait13

C / C++
Fortran

The syntax of the target enter data is as follows:14

!$omp target enter data [clause[[,] clause] ...]15

where clause is one of the following:16

if([target enter data :] scalar-logical-expression)17

device(scalar-integer-expression)18

map([map-type-modifier[,] [map-type-modifier[,] ...]] map-type: locator-list)19

depend([depend-modifier,] dependence-type : locator-list)20

nowait21

Fortran

Binding22
The binding task set for a target enter data region is the generating task, which is the target23
task generated by the target enter data construct. The target enter data region binds24
to the corresponding target task region.25

CHAPTER 2. DIRECTIVES 191

Description1
When a target enter data construct is encountered, the list items are mapped to the device2
data environment according to the map clause semantics.3

The target enter data construct is a task generating construct. The generated task is a target4
task. The generated task region encloses the target enter data region.5

All clauses are evaluated when the target enter data construct is encountered. The data6
environment of the target task is created according to the data-mapping attribute clauses on the7
target enter data construct, per-data environment ICVs, and any default data-sharing8
attribute rules that apply to the target enter data construct. If a variable or part of a variable9
is mapped by the target enter data construct, the variable has a default data-sharing attribute10
of shared in the data environment of the target task.11

Assignment operations associated with mapping a variable (see Section 2.21.7.1) occur when the12
target task executes.13

If the nowait clause is present, execution of the target task may be deferred. If the nowait14
clause is not present, the target task is an included task.15

If a depend clause is present, it is associated with the target task.16

If no device clause is present, the behavior is as if the device clause appears with an expression17
equal to the value of the default-device-var ICV.18

When an if clause is present and the if clause expression evaluates to false, the target device is19
the host.20

Execution Model Events21
Events associated with a target task are the same as for the task construct defined in22
Section 2.12.1.23

The target-enter-data-begin event occurs when a thread enters a target enter data region.24

The target-enter-data-end event occurs when a thread exits a target enter data region.25

Tool Callbacks26
Callbacks associated with events for target tasks are the same as for the task construct defined in27
Section 2.12.1; (flags & ompt_task_target) always evaluates to true in the dispatched28
callback.29

A thread dispatches a registered ompt_callback_target or30
ompt_callback_target_emi callback with ompt_scope_begin as its endpoint31
argument and ompt_target_enter_data or ompt_target_enter_data_nowait if32
the nowait clause is present as its kind argument for each occurrence of a target-enter-data-begin33
event in that thread in the context of the target task on the host. Similarly, a thread dispatches a34
registered ompt_callback_target or ompt_callback_target_emi callback with35
ompt_scope_end as its endpoint argument and ompt_target_enter_data or36

192 OpenMP API – Version 5.1 November 2020

ompt_target_enter_data_nowait if the nowait clause is present as its kind argument1
for each occurrence of a target-enter-data-end event in that thread in the context of the target task2
on the host. These callbacks have type signature ompt_callback_target_t or3
ompt_callback_target_emi_t, respectively.4

Restrictions5
Restrictions to the target enter data construct are as follows:6

• A program must not depend on any ordering of the evaluations of the clauses of the7
target enter data directive, or on any side effects of the evaluations of the clauses.8

• At least one map clause must appear on the directive.9

• At most one device clause can appear on the directive. The device clause expression must10
evaluate to a non-negative integer value that is less than or equal to the value of11
omp_get_num_devices().12

• At most one if clause can appear on the directive.13

• A map-type must be specified in all map clauses and must be either to or alloc.14

• At most one nowait clause can appear on the directive.15

Cross References16
• default-device-var, see Section 2.4.1.17

• task, see Section 2.12.1.18

• task scheduling constraints, see Section 2.12.6.19

• target data, see Section 2.14.2.20

• target exit data, see Section 2.14.4.21

• if clause, see Section 2.18.22

• map clause, see Section 2.21.7.1.23

• omp_get_num_devices routine, see Section 3.7.4.24

• ompt_callback_target_t and ompt_callback_target_emi_t callback type, see25
Section 4.5.2.26.26

2.14.4 target exit data Construct27

Summary28
The target exit data directive specifies that list items are unmapped from a device data29
environment. The target exit data directive is a stand-alone directive.30

CHAPTER 2. DIRECTIVES 193

Syntax1
C / C++

The syntax of the target exit data construct is as follows:2

#pragma omp target exit data [clause[[,] clause] ...] new-line3

where clause is one of the following:4

if([target exit data :] scalar-expression)5

device(integer-expression)6

map([map-type-modifier[,] [map-type-modifier[,] ...]] map-type: locator-list)7

depend([depend-modifier,] dependence-type : locator-list)8

nowait9

C / C++
Fortran

The syntax of the target exit data is as follows:10

!$omp target exit data [clause[[,] clause] ...]11

where clause is one of the following:12

if([target exit data :] scalar-logical-expression)13

device(scalar-integer-expression)14

map([map-type-modifier[,] [map-type-modifier[,] ...]] map-type: locator-list)15

depend([depend-modifier,] dependence-type : locator-list)16

nowait17

Fortran

Binding18
The binding task set for a target exit data region is the generating task, which is the target19
task generated by the target exit data construct. The target exit data region binds to20
the corresponding target task region.21

Description22
When a target exit data construct is encountered, the list items in the map clauses are23
unmapped from the device data environment according to the map clause semantics.24

The target exit data construct is a task generating construct. The generated task is a target25
task. The generated task region encloses the target exit data region.26

194 OpenMP API – Version 5.1 November 2020

All clauses are evaluated when the target exit data construct is encountered. The data1
environment of the target task is created according to the data-mapping attribute clauses on the2
target exit data construct, per-data environment ICVs, and any default data-sharing attribute3
rules that apply to the target exit data construct. If a variable or part of a variable is mapped4
by the target exit data construct, the variable has a default data-sharing attribute of shared in5
the data environment of the target task.6

Assignment operations associated with mapping a variable (see Section 2.21.7.1) occur when the7
target task executes.8

If the nowait clause is present, execution of the target task may be deferred. If the nowait9
clause is not present, the target task is an included task.10

If a depend clause is present, it is associated with the target task.11

If no device clause is present, the behavior is as if the device clause appears with an expression12
equal to the value of the default-device-var ICV.13

When an if clause is present and the if clause expression evaluates to false, the target device is14
the host.15

Execution Model Events16
Events associated with a target task are the same as for the task construct defined in17
Section 2.12.1.18

The target-exit-data-begin event occurs when a thread enters a target exit data region.19

The target-exit-data-end event occurs when a thread exits a target exit data region.20

Tool Callbacks21
Callbacks associated with events for target tasks are the same as for the task construct defined in22
Section 2.12.1; (flags & ompt_task_target) always evaluates to true in the dispatched23
callback.24

A thread dispatches a registered ompt_callback_target or25
ompt_callback_target_emi callback with ompt_scope_begin as its endpoint26
argument and ompt_target_exit_data or ompt_target_exit_data_nowait if the27
nowait clause is present as its kind argument for each occurrence of a target-exit-data-begin28
event in that thread in the context of the target task on the host. Similarly, a thread dispatches a29
registered ompt_callback_target or ompt_callback_target_emi callback with30
ompt_scope_end as its endpoint argument and ompt_target_exit_data or31
ompt_target_exit_data_nowait if the nowait clause is present as its kind argument for32
each occurrence of a target-exit-data-end event in that thread in the context of the target task on the33
host. These callbacks have type signature ompt_callback_target_t or34
ompt_callback_target_emi_t, respectively.35

CHAPTER 2. DIRECTIVES 195

Restrictions1
Restrictions to the target exit data construct are as follows:2

• A program must not depend on any ordering of the evaluations of the clauses of the3
target exit data directive, or on any side effects of the evaluations of the clauses.4

• At least one map clause must appear on the directive.5

• At most one device clause can appear on the directive. The device clause expression must6
evaluate to a non-negative integer value that is less than or equal to the value of7
omp_get_num_devices().8

• At most one if clause can appear on the directive.9

• A map-type must be specified in all map clauses and must be either from, release, or10
delete.11

• At most one nowait clause can appear on the directive.12

Cross References13
• default-device-var, see Section 2.4.1.14

• task, see Section 2.12.1.15

• task scheduling constraints, see Section 2.12.6.16

• target data, see Section 2.14.2.17

• target enter data, see Section 2.14.3.18

• if clause, see Section 2.18.19

• map clause, see Section 2.21.7.1.20

• omp_get_num_devices routine, see Section 3.7.4.21

• ompt_callback_target_t and ompt_callback_target_emi_t callback type, see22
Section 4.5.2.26.23

196 OpenMP API – Version 5.1 November 2020

2.14.5 target Construct1

Summary2
The target construct maps variables to a device data environment and executes the construct on3
that device.4

Syntax5
C / C++

The syntax of the target construct is as follows:6

#pragma omp target [clause[[,] clause] ...] new-line7
structured-block8

where clause is one of the following:9

if([target :] scalar-expression)10

device([device-modifier :] integer-expression)11

thread_limit(integer-expression)12

private(list)13

firstprivate(list)14

in_reduction(reduction-identifier : list)15

map([[map-type-modifier[,] [map-type-modifier[,] ...]] map-type:] locator-list)16

is_device_ptr(list)17

has_device_addr(list)18

defaultmap(implicit-behavior[:variable-category])19

nowait20

depend([depend-modifier,] dependence-type : locator-list)21

allocate([allocator :] list)22

uses_allocators(allocator[(allocator-traits-array)]23

[,allocator[(allocator-traits-array)] ...])24

and where device-modifier is one of the following:25

ancestor26

device_num27

and where allocator is an identifier of omp_allocator_handle_t type and28
allocator-traits-array is an identifier of const omp_alloctrait_t * type.29

C / C++

CHAPTER 2. DIRECTIVES 197

Fortran
The syntax of the target construct is as follows:1

!$omp target [clause[[,] clause] ...]2
loosely-structured-block3

!$omp end target4

or5

!$omp target [clause[[,] clause] ...]6
strictly-structured-block7

[!$omp end target]8

where clause is one of the following:9

if([target :] scalar-logical-expression)10

device([device-modifier :] scalar-integer-expression)11

thread_limit(scalar-integer-expression)12

private(list)13

firstprivate(list)14

in_reduction(reduction-identifier : list)15

map([[map-type-modifier[,] [map-type-modifier[,] ...]] map-type:] locator-list)16

is_device_ptr(list)17

has_device_addr(list)18

defaultmap(implicit-behavior[:variable-category])19

nowait20

depend([depend-modifier,] dependence-type : locator-list)21

allocate([allocator:] list)22

uses_allocators(allocator[(allocator-traits-array)]23

[,allocator[(allocator-traits-array)] ...])24

and where device-modifier is one of the following:25

ancestor26

device_num27

and where allocator is an integer expression of omp_allocator_handle_kind kind and28
allocator-traits-array is an array of type(omp_alloctrait) type.29

Fortran

198 OpenMP API – Version 5.1 November 2020

Binding1
The binding task set for a target region is the generating task, which is the target task generated2
by the target construct. The target region binds to the corresponding target task region.3

Description4
The target construct provides a superset of the functionality provided by the target data5
directive, except for the use_device_ptr and use_device_addr clauses.6

The functionality added to the target directive is the inclusion of an executable region to be7
executed on a device. That is, the target directive is an executable directive.8

The target construct is a task generating construct. The generated task is a target task. The9
generated task region encloses the target region. The device clause determines the device on10
which the target region executes.11

All clauses are evaluated when the target construct is encountered. The data environment of the12
target task is created according to the data-sharing and data-mapping attribute clauses on the13
target construct, per-data environment ICVs, and any default data-sharing attribute rules that14
apply to the target construct. If a variable or part of a variable is mapped by the target15
construct and does not appear as a list item in an in_reduction clause on the construct, the16
variable has a default data-sharing attribute of shared in the data environment of the target task.17

Assignment operations associated with mapping a variable (see Section 2.21.7.1) occur when the18
target task executes.19

As described in Section 2.4.4.1, the target construct limits the number of threads that may20
participate in a contention group initiated by the initial thread by setting the value of the21
thread-limit-var ICV for the initial task to an implementation defined value greater than zero. If the22
thread_limit clause is specified, the number of threads will be less than or equal to the value23
specified in the clause.24

If a device clause in which the device_num device-modifier appears is present on the25
construct, the device clause expression specifies the device number of the target device. If26
device-modifier does not appear in the clause, the behavior of the clause is as if device-modifier is27
device_num.28

If a device clause in which the ancestor device-modifier appears is present on the target29
construct and the device clause expression evaluates to 1, execution of the target region occurs30
on the parent device of the enclosing target region. If the target construct is not encountered31
in a target region, the current device is treated as the parent device. The encountering thread32
waits for completion of the target region on the parent device before resuming. For any list item33
that appears in a map clause on the same construct, if the corresponding list item exists in the device34
data environment of the parent device, it is treated as if it has a reference count of positive infinity.35

If no device clause is present, the behavior is as if the device clause appears without a36
device-modifier and with an expression equal to the value of the default-device-var ICV.37

CHAPTER 2. DIRECTIVES 199

If the nowait clause is present, execution of the target task may be deferred. If the nowait1
clause is not present, the target task is an included task.2

If a depend clause is present, it is associated with the target task.3

When an if clause is present and the if clause expression evaluates to false, the target region4
is executed by the host device.5

The has_device_addr clause indicates that its list items already have device addresses and6
therefore they may be directly accessed from a target device. If the device address of a list item is7
not for the device on which the target region executes, accessing the list item inside the region8
results in unspecified behavior. The list items may include array sections.9

C / C++
The is_device_ptr clause indicates that its list items are device pointers. Inside the target10
construct, each list item is privatized and the new list item is initialized to the device address to11
which the original list item refers. Support for device pointers created outside of OpenMP,12
specifically outside of any OpenMP mechanism that returns a device pointer, is implementation13
defined.14

C / C++
Fortran

The is_device_ptr clause indicates that its list items are device pointers if they are of type15
C_PTR. Inside the target construct, each list item of type C_PTR is privatized and the new list16
item is initialized to the device address to which the original list item refers. Support for device17
pointers created outside of OpenMP, specifically outside of any OpenMP mechanism that returns a18
device pointer, is implementation defined. For any list item in an is_device_ptr clause that is19
not of type C_PTR, the behavior is as if the list item appeared in a has_device_addr clause.20
Support for such list items in an is_device_ptr clause is deprecated.21

Fortran
If a function (C, C++, Fortran) or subroutine (Fortran) is referenced in a target construct that22
does not specify a device clause in which the ancestor device-modifier appears then that23
function or subroutine is treated as if its name had appeared in a to clause on a declare target24
directive.25

If a variable with static storage duration is declared in a target construct that does not specify a26
device clause in which the ancestor device-modifier appears then the named variable is27
treated as if it had appeared in a to clause on a declare target directive.28

Each memory allocator specified in the uses_allocators clause will be made available in the29
target region. For each non-predefined allocator that is specified, a new allocator handle will be30
associated with an allocator that is created with the specified traits as if by a call to31
omp_init_allocator at the beginning of the target region. Each non-predefined allocator32
will be destroyed as if by a call to omp_destroy_allocator at the end of the target region.33

200 OpenMP API – Version 5.1 November 2020

C / C++
If a list item in a map clause has a base pointer and it is a scalar variable with a predetermined1
data-sharing attribute of firstprivate (see Section 2.21.1.1), then on entry to the target region:2

• If the list item is not a zero-length array section, the corresponding private variable is initialized3
such that the corresponding list item in the device data environment can be accessed through the4
pointer in the target region.5

• If the list item is a zero-length array section , the corresponding private variable is initialized6
according to Section 2.21.7.2.7

C / C++
Fortran

When an internal procedure is called in a target region, any references to variables that are host8
associated in the procedure have unspecified behavior.9

Fortran

Execution Model Events10
Events associated with a target task are the same as for the task construct defined in11
Section 2.12.1.12

Events associated with the initial task that executes the target region are defined in13
Section 2.12.5.14

The target-begin event occurs when a thread enters a target region.15

The target-end event occurs when a thread exits a target region.16

The target-submit-begin event occurs prior to initiating creation of an initial task on a target device17
for a target region.18

The target-submit-end event occurs after initiating creation of an initial task on a target device for a19
target region.20

Tool Callbacks21
Callbacks associated with events for target tasks are the same as for the task construct defined in22
Section 2.12.1; (flags & ompt_task_target) always evaluates to true in the dispatched23
callback.24

A thread dispatches a registered ompt_callback_target or25
ompt_callback_target_emi callback with ompt_scope_begin as its endpoint26
argument and ompt_target or ompt_target_nowait if the nowait clause is present as its27
kind argument for each occurrence of a target-begin event in that thread in the context of the target28
task on the host. Similarly, a thread dispatches a registered ompt_callback_target or29
ompt_callback_target_emi callback with ompt_scope_end as its endpoint argument30
and ompt_target or ompt_target_nowait if the nowait clause is present as its kind31

CHAPTER 2. DIRECTIVES 201

argument for each occurrence of a target-end event in that thread in the context of the target task on1
the host. These callbacks have type signature ompt_callback_target_t or2
ompt_callback_target_emi_t, respectively.3

A thread dispatches a registered ompt_callback_target_submit_emi callback with4
ompt_scope_begin as its endpoint argument for each occurrence of a target-submit-begin5
event in that thread. Similarly, a thread dispatches a registered6
ompt_callback_target_submit_emi callback with ompt_scope_end as its endpoint7
argument for each occurrence of a target-submit-end event in that thread. These callbacks have type8
signature ompt_callback_target_submit_emi_t.9

A thread dispatches a registered ompt_callback_target_submit callback for each10
occurrence of a target-submit-begin event in that thread. The callback occurs in the context of the11
target task and has type signature ompt_callback_target_submit_t.12

Restrictions13
Restrictions to the target construct are as follows:14

• If a target update, target data, target enter data, or target exit data15
construct is encountered during execution of a target region, the behavior is unspecified.16

• The result of an omp_set_default_device, omp_get_default_device, or17
omp_get_num_devices routine called within a target region is unspecified.18

• The effect of an access to a threadprivate variable in a target region is unspecified.19

• If a list item in a map clause is a structure element, any other element of that structure that is20
referenced in the target construct must also appear as a list item in a map clause.21

• A list item cannot appear in both a map clause and a data-sharing attribute clause on the same22
target construct.23

• A variable referenced in a target region but not the target construct that is not declared in24
the target region must appear in a declare target directive.25

• At most one defaultmap clause for each category can appear on the directive.26

• At most one nowait clause can appear on the directive.27

• At most one if clause can appear on the directive.28

• A map-type in a map clause must be to, from, tofrom or alloc.29

• A list item that appears in an is_device_ptr clause must be a valid device pointer for the30
device data environment.31

• A list item that appears in a has_device_addr clause must have a valid device address for32
the device data environment.33

• A list item may not be specified in both an is_device_ptr clause and a34
has_device_addr clause on the directive.35

202 OpenMP API – Version 5.1 November 2020

• A list item that appears in an is_device_ptr or a has_device_addr clause must not be1
specified in any data-sharing attribute clause on the same target construct.2

• At most one device clause can appear on the directive. The device clause expression must3
evaluate to a non-negative integer value that is less than or equal to the value of4
omp_get_num_devices().5

• If a device clause in which the ancestor device-modifier appears is present on the6
construct, then the following restrictions apply:7

– A requires directive with the reverse_offload clause must be specified;8

– The device clause expression must evaluate to 1;9

– Only the device, firstprivate, private, defaultmap, and map clauses may10
appear on the construct;11

– No OpenMP constructs or calls to OpenMP API runtime routines are allowed inside the12
corresponding target region.13

• Memory allocators that do not appear in a uses_allocators clause cannot appear as an14
allocator in an allocate clause or be used in the target region unless a requires15
directive with the dynamic_allocators clause is present in the same compilation unit.16

• Memory allocators that appear in a uses_allocators clause cannot appear in other17
data-sharing attribute clauses or data-mapping attribute clauses in the same construct.18

• Predefined allocators appearing in a uses_allocators clause cannot have traits specified.19

• Non-predefined allocators appearing in a uses_allocators clause must have traits specified.20

• Arrays that contain allocator traits that appear in a uses_allocators clause must be21
constant arrays, have constant values and be defined in the same scope as the construct in which22
the clause appears.23

• Any IEEE floating-point exception status flag, halting mode, or rounding mode set prior to a24
target region is unspecified in the region.25

• Any IEEE floating-point exception status flag, halting mode, or rounding mode set in a target26
region is unspecified upon exiting the region.27

C / C++
• An attached pointer must not be modified in a target region.28

C / C++
C

• A list item that appears in an is_device_ptr clause must have a type of pointer or array.29

C

CHAPTER 2. DIRECTIVES 203

C++
• A list item that appears in an is_device_ptr clause must have a type of pointer, array,1
reference to pointer or reference to array.2

• A throw executed inside a target region must cause execution to resume within the same3
target region, and the same thread that threw the exception must catch it.4

• The run-time type information (RTTI) of an object can only be accessed from the device on5
which it was constructed.6

C++
Fortran

• An attached pointer that is associated with a given pointer target must not become associated7
with a different pointer target in a target region.8

• If a list item in a map clause is an array section, and the array section is derived from a variable9
with a POINTER or ALLOCATABLE attribute then the behavior is unspecified if the10
corresponding list item’s variable is modified in the region.11

• A reference to a coarray that is encountered on a non-host device must not be coindexed or appear12
as an actual argument to a procedure where the corresponding dummy argument is a coarray.13

• If the allocation status of a mapped variable that has the ALLOCATABLE attribute is unallocated14
on entry to a target region, the allocation status of the corresponding variable in the device15
data environment must be unallocated upon exiting the region.16

• If the allocation status of a mapped variable that has the ALLOCATABLE attribute is allocated on17
entry to a target region, the allocation status and shape of the corresponding variable in the18
device data environment may not be changed, either explicitly or implicitly, in the region after19
entry to it.20

• If the association status of a list item with the POINTER attribute that appears in a map clause21
on the construct is associated upon entry to the target region, the list item must be associated22
with the same pointer target upon exit from the region.23

• If the association status of a list item with the POINTER attribute that appears in a map clause24
on the construct is disassociated upon entry to the target region, the list item must be25
disassociated upon exit from the region.26

• If the association status of a list item with the POINTER attribute that appears in a map clause27
on the construct is disassociated or undefined on entry to the target region and if the list item28
is associated with a pointer target inside the target region, the pointer association status must29
become disassociated before the end the region.30

Fortran

204 OpenMP API – Version 5.1 November 2020

Cross References1
• default-device-var, see Section 2.4.2

• task construct, see Section 2.12.1.3

• task scheduling constraints, see Section 2.12.64

• Memory allocators, see Section 2.13.2.5

• target data construct, see Section 2.14.2.6

• if clause, see Section 2.18.7

• private and firstprivate clauses, see Section 2.21.4.8

• Data-Mapping Attribute Rules and Clauses, see Section 2.21.7.9

• omp_get_num_devices routine, see Section 3.7.4.10

• omp_alloctrait_t and omp_alloctrait types, see Section 3.13.1.11

• omp_set_default_allocator routine, see Section 3.13.4.12

• omp_get_default_allocator routine, see Section 3.13.5.13

• ompt_callback_target_t or ompt_callback_target_emi_t callback type, see14
Section 4.5.2.26.15

• ompt_callback_target_submit_t or ompt_callback_target_submit_emi_t16
callback type, Section 4.5.2.28.17

2.14.6 target update Construct18

Summary19
The target update directive makes the corresponding list items in the device data environment20
consistent with their original list items, according to the specified motion clauses. The21
target update construct is a stand-alone directive.22

Syntax23
C / C++

The syntax of the target update construct is as follows:24

#pragma omp target update clause[[[,] clause] ...] new-line25

where clause is either motion-clause or one of the following:26

if([target update :] scalar-expression)27

device(integer-expression)28

nowait29

depend([depend-modifier,] dependence-type : locator-list)30

CHAPTER 2. DIRECTIVES 205

and motion-clause is one of the following:1

to([motion-modifier[,] [motion-modifier[,] ...]:] locator-list)2

from([motion-modifier[,] [motion-modifier[,] ...]:] locator-list)3

where motion-modifier is one of the following:4

present5

mapper(mapper-identifier)6

iterator(iterators-definition)7

C / C++
Fortran

The syntax of the target update construct is as follows:8

!$omp target update clause[[[,] clause] ...]9

where clause is either motion-clause or one of the following:10

if([target update :] scalar-logical-expression)11

device(scalar-integer-expression)12

nowait13

depend([depend-modifier,] dependence-type : locator-list)14

and motion-clause is one of the following:15

to([motion-modifier[,] [motion-modifier[,] ...]:] locator-list)16

from([motion-modifier[,] [motion-modifier[,] ...]:] locator-list)17

where motion-modifier is one of the following:18

present19

mapper(mapper-identifier)20

iterator(iterators-definition)21

Fortran

Binding22
The binding task set for a target update region is the generating task, which is the target task23
generated by the target update construct. The target update region binds to the24
corresponding target task region.25

206 OpenMP API – Version 5.1 November 2020

Description1
A corresponding list item and an original list item exist for each list item in a to or from clause. If2
the corresponding list item is not present in the device data environment and the present3
modifier is not specified in the clause then no assignment occurs to or from the original list item.4
Otherwise, each corresponding list item in the device data environment has an original list item in5
the current task’s data environment.6

If the mapper motion-modifier is not present, the behavior is as if the mapper(default)7
modifier was specified. The effect of a motion clause on a list item is modified by a visible8
user-defined mapper (see Section 2.21.7.4) if the mapper has the same mapper-identifier as the9
mapper motion-modifier and is specified for a type that matches the type of the list item. For a to10
clause, each list item is replaced with the list items that the given mapper specifies are to be mapped11
with a to or tofrom map type. For a from clause, each list item is replaced with the list items12
that the given mapper specifies are to be mapped with a from or tofrom map type.13

If a list item is an array or array section of a type for which a user-defined mapper exists, each array14
element is updated according to the mapper as if it appeared as a list item in the clause.15

If a present modifier appears in the clause and the corresponding list item is not present in the16
device data environment then an error occurs and the program terminates. For a list item that is17
replaced with a set of list items as a result of a user-defined mapper, the present modifier only18
applies to those mapper list items that share storage with the original list item.19

The list items that appear in a to or from may reference iterators defined by an iterators-definition20
appearing on an iterator modifier.21

Fortran
If a list item or a subobject of a list item in a motion clause has the ALLOCATABLE attribute, its22
update is performed only if its allocation status is allocated and only with respect to the allocated23
storage.24

If a list item in a motion clause has the POINTER attribute and its association status is associated,25
the effect is as if the update is performed with respect to the pointer target.26

Fortran
For each list item in a from or a to clause:27

• For each part of the list item that is an attached pointer:28

C / C++
– On exit from the region that part of the original list item will have the value it had on entry to29
the region;30

– On exit from the region that part of the corresponding list item will have the value it had on31
entry to the region;32

C / C++

CHAPTER 2. DIRECTIVES 207

Fortran
– On exit from the region that part of the original list item, if associated, will be associated with1
the same pointer target with which it was associated on entry to the region;2

– On exit from the region that part of the corresponding list item, if associated, will be3
associated with the same pointer target with which it was associated on entry to the region.4

Fortran
• For each part of the list item that is not an attached pointer:5

– If the clause is from, the value of that part of the corresponding list item is assigned to that6
part of the original list item;7

– If the clause is to, the value of that part of the original list item is assigned to that part of the8
corresponding list item.9

• To avoid data races:10

– Concurrent reads or updates of any part of the original list item must be synchronized with the11
update of the original list item that occurs as a result of the from clause;12

– Concurrent reads or updates of any part of the corresponding list item must be synchronized13
with the update of the corresponding list item that occurs as a result of the to clause.14

C / C++
The list items that appear in the to or from clauses may use shape-operators.15

C / C++
The list items that appear in the to or from clauses may include array sections with stride16
expressions.17

The target update construct is a task generating construct. The generated task is a target task.18
The generated task region encloses the target update region.19

All clauses are evaluated when the target update construct is encountered. The data20
environment of the target task is created according to the motion clauses on the target update21
construct, per-data environment ICVs, and any default data-sharing attribute rules that apply to the22
target update construct. If a variable or part of a variable is a list item in a motion clause on23
the target update construct, the variable has a default data-sharing attribute of shared in the24
data environment of the target task.25

Assignment operations associated with mapping a variable (see Section 2.21.7.1) occur when the26
target task executes.27

If the nowait clause is present, execution of the target task may be deferred. If the nowait28
clause is not present, the target task is an included task.29

If a depend clause is present, it is associated with the target task.30

208 OpenMP API – Version 5.1 November 2020

The device is specified in the device clause. If no device clause is present, the device is1
determined by the default-device-var ICV. When an if clause is present and the if clause2
expression evaluates to false, no assignments occur.3

Execution Model Events4
Events associated with a target task are the same as for the task construct defined in5
Section 2.12.1.6

The target-update-begin event occurs when a thread enters a target update region.7

The target-update-end event occurs when a thread exits a target update region.8

Tool Callbacks9
Callbacks associated with events for target tasks are the same as for the task construct defined in10
Section 2.12.1; (flags & ompt_task_target) always evaluates to true in the dispatched11
callback.12

A thread dispatches a registered ompt_callback_target or13
ompt_callback_target_emi callback with ompt_scope_begin as its endpoint14
argument and ompt_target_update or ompt_target_update_nowait if the nowait15
clause is present as its kind argument for each occurrence of a target-update-begin event in that16
thread in the context of the target task on the host. Similarly, a thread dispatches a registered17
ompt_callback_target or ompt_callback_target_emi callback with18
ompt_scope_end as its endpoint argument and ompt_target_update or19
ompt_target_update_nowait if the nowait clause is present as its kind argument for each20
occurrence of a target-update-end event in that thread in the context of the target task on the host.21
These callbacks have type signature ompt_callback_target_t or22
ompt_callback_target_emi_t, respectively.23

Restrictions24
Restrictions to the target update construct are as follows:25

• A program must not depend on any ordering of the evaluations of the clauses of the26
target update directive, or on any side effects of the evaluations of the clauses.27

• Each of the motion-modifier modifiers can appear at most once on a motion clause.28

• At least one motion-clause must be specified.29

• A list item can only appear in a to or from clause, but not in both.30

• A list item in a to or from clause must have a mappable type.31

• At most one device clause can appear on the directive. The device clause expression must32
evaluate to a non-negative integer value that is less than or equal to the value of33
omp_get_num_devices().34

• At most one if clause can appear on the directive.35

• At most one nowait clause can appear on the directive.36

CHAPTER 2. DIRECTIVES 209

Cross References1
• Array shaping, see Section 2.1.4.2

• Array sections, see Section 2.1.5.3

• Iterators, see Section 2.1.6.4

• default-device-var, see Section 2.4.5

• task construct, see Section 2.12.1.6

• task scheduling constraints, see Section 2.12.6.7

• target data construct, see Section 2.14.2.8

• if clause, see Section 2.18.9

• declare mapper directive, see Section 2.21.7.4.10

• omp_get_num_devices routine, see Section 3.7.4.11

• ompt_callback_task_create_t, see Section 4.5.2.7.12

• ompt_callback_target_t or ompt_callback_target_emi_t callback type, see13
Section 4.5.2.26.14

2.14.7 Declare Target Directive15

Summary16
The declare target directive specifies that variables, functions (C, C++ and Fortran), and17
subroutines (Fortran) are mapped to a device. The declare target directive is a declarative directive.18

Syntax19
C / C++

The syntax of the declare target directive is as follows:20

#pragma omp declare target new-line21
declaration-definition-seq22

#pragma omp end declare target new-line23

or24

#pragma omp declare target (extended-list) new-line25

or26

#pragma omp declare target clause[[[,] clause] ...] new-line27

210 OpenMP API – Version 5.1 November 2020

or1

#pragma omp begin declare target [clause[[,] clause] ...] new-line2
declaration-definition-seq3

#pragma omp end declare target new-line4

where clause is one of the following:5

to(extended-list)6

link(list)7

device_type(host | nohost | any)8

indirect[(invoked-by-fptr)]9

where invoked-by-fptr is a constant boolean expression that evaluates to true or false at compile10
time.11

C / C++
Fortran

The syntax of the declare target directive is as follows:12

!$omp declare target (extended-list)13

or14

!$omp declare target [clause[[,] clause] ...]15

where clause is one of the following:16

to(extended-list)17

link(list)18

device_type(host | nohost | any)19

indirect[(invoked-by-fptr)]20

where invoked-by-fptr is a constant logical expression that is evaluated at compile time.21

Fortran

CHAPTER 2. DIRECTIVES 211

Description1
The declare target directive ensures that procedures and global variables can be executed or2
accessed on a device. Variables are mapped for all device executions, or for specific device3
executions through a link clause.4

If an extended-list is present with no clause then the to clause is assumed.5

The device_type clause specifies if a version of the procedure or variable should be made6
available on the host, device or both. If host is specified only a host version of the procedure or7
variable is made available. If any is specified then both device and host versions of the procedure8
or variable are made available. If nohost is specified for a procedure then only a device version of9
the procedure is made available. If nohost is specified for a variable then that variable is not10
available on the host. If no device_type clause is present then the behavior is as if the11
device_type clause appears with any specified.12

If a variable with static storage duration is declared in a device routine then the named variable is13
treated as if it had appeared in a to clause on a declare target directive.14

C / C++
If a function appears in a to clause in the same compilation unit in which the definition of the15
function occurs then a device-specific version of the function is created.16

If a variable appears in a to clause in the same compilation unit in which the definition of the17
variable occurs then the original list item is allocated a corresponding list item in the device data18
environment of all devices.19

C / C++
Fortran

If a procedure appears in a to clause in the same compilation unit in which the definition of the20
procedure occurs then a device-specific version of the procedure is created.21

If a variable that is host associated appears in a to clause then the original list item is allocated a22
corresponding list item in the device data environment of all devices.23

Fortran
If a variable appears in a to clause then the corresponding list item in the device data environment24
of each device is initialized once, in the manner specified by the program, but at an unspecified25
point in the program prior to the first reference to that list item. The list item is never removed from26
those device data environments as if its reference count was initialized to positive infinity.27

Including list items in a link clause supports compilation of functions called in a target region28
that refer to the list items. The list items are not mapped by the declare target directive. Instead,29
they are mapped according to the data mapping rules described in Section 2.21.7.30

212 OpenMP API – Version 5.1 November 2020

C / C++
If a function is referenced in a function that appears as a list item in a to clause on a declare target1
directive that does not specify a device_type clause with host and the function reference is2
not enclosed in a target construct that specifies a device clause in which the ancestor3
device-modifier appears then the name of the referenced function is treated as if it had appeared in a4
to clause on a declare target directive.5

If a variable with static storage duration or a function (except lambda for C++) is referenced in the6
initializer expression list of a variable with static storage duration that appears as a list item in a to7
clause on a declare target directive then the name of the referenced variable or function is treated as8
if it had appeared in a to clause on a declare target directive.9

The form, preceded by either the declare target directive that has no clauses and no10
extended-list or the begin declare target directive and followed by a matching11
end declare target directive, defines an implicit extended-list. The implicit extended-list12
consists of the variable names of any variable declarations at file or namespace scope that appear13
between the two directives and of the function names of any function declarations at file,14
namespace or class scope that appear between the two directives. The implicit extended-list is15
converted to an implicit to clause.16

The declaration-definition-seq preceded by either begin declare target directive or a17
declare target directive without any clauses or an extended-list and followed by an18
end declare target directive may contain declare target directives. If a device_type19
clause is present on the contained declare target directive, then its argument determines which20
versions are made available. If a list item appears both in an implicit and explicit list, the explicit21
list determines which versions are made available.22

C / C++
Fortran

If a procedure is referenced in a procedure that appears as a list item in a to clause on a23
declare target directive that does not specify a device_type clause with host and the24
procedure reference is not enclosed in a target construct that specifies a device clause in25
which the ancestor device-modifier appears then the name of the referenced procedure is treated26
as if it had appeared in a to clause on a declare target directive.27

If a declare target does not have any clauses and does not have an extended-list then an28
implicit to clause with one item is formed from the name of the enclosing subroutine subprogram,29
function subprogram or interface body to which it applies.30

If a declare target directive has a device_type clause then any enclosed internal31
procedures cannot contain any declare target directives. The enclosing device_type32
clause implicitly applies to internal procedures.33

Fortran

CHAPTER 2. DIRECTIVES 213

If the indirect clause is present and invoked-by-fptr is not specified, the effect of the clause is as1
if invoked-by-fptr evaluates to true.2

If the indirect clause is present and invoked-by-fptr evaluates to true, any procedures that appear3
in a to clause on the directive may be called with an indirect device invocation. If the indirect4
clause is present and invoked-by-fptr does not evaluate to true, any procedures that appear in a to5
clause on the directive may not be called with an indirect device invocation. Unless otherwise6
specified by an indirect clause, procedures may not be called with an indirect device invocation.7

C / C++
If a function appears in the to clause of a begin declare target directive and in the to8
clause of a declare target directive that is contained in the declaration-definition-seq associated with9
the begin declare target directive, and if an indirect clause appears on both directives,10
then the indirect clause on the begin declare target directive has no effect for that11
function.12

C / C++

Execution Model Events13
The target-global-data-op event occurs when an original variable is associated with a14
corresponding variable on a device as a result of a declare target directive; the event occurs before15
the first access to the corresponding variable.16

Tool Callbacks17
A thread dispatches a registered ompt_callback_target_data_op callback, or a registered18
ompt_callback_target_data_op_emi callback with ompt_scope_beginend as its19
endpoint argument for each occurrence of a target-global-data-op event in that thread. These20
callbacks have type signature ompt_callback_target_data_op_t or21
ompt_callback_target_data_op_emi_t, respectively.22

Restrictions23
Restrictions to the declare target directive are as follows:24

• A threadprivate variable cannot appear in the directive.25

• A variable declared in the directive must have a mappable type.26

• The same list item must not appear multiple times in clauses on the same directive.27

• The same list item must not explicitly appear in both a to clause on one declare target directive28
and a link clause on another declare target directive.29

• If the directive has a clause, it must contain at least one to clause or at least one link clause.30

• A variable for which nohost is specified may not appear in a link clause.31

• At most one indirect clause can be specified on the directive.32

• At most one device_type clause can be specified on the directive.33

214 OpenMP API – Version 5.1 November 2020

• If an indirect clause is present and invoked-by-fptr evaluates to true then the only permitted1
device_type clause is device_type(any).2

C++
• A to clause or a link clause cannot appear in a begin declare target directive.3

• The function names of overloaded functions or template functions may only be specified within4
an implicit extended-list.5

• If a lambda declaration and definition appears between a declare target directive and the paired6
end declare target directive, all variables that are captured by the lambda expression must7
also appear in a to clause.8

• A module export or import statement cannot appear between a declare target directive and the9
paired end declare target directive.10

C++
Fortran

• If a list item is a procedure name, it must not be a generic name, procedure pointer, entry name,11
or statement function name.12

• If the directive does not have any clause or has a device_type clause it must appear in a13
specification part of a subroutine subprogram, function subprogram or interface body.14

• If a list item is a procedure name, the directive must be in the specification part of that subroutine15
or function subprogram or in the specification part of that subroutine or function in an interface16
body.17

• If the directive has a variable name in extended-list, it must appear in the specification part of a18
subroutine subprogram, function subprogram, program or module.19

• If the directive is specified in an interface block for a procedure, it must match a20
declare target directive in the definition of the procedure, including the device_type21
clause if present.22

• If an external procedure is a type-bound procedure of a derived type and the directive is specified23
in the definition of the external procedure, it must appear in the interface block that is accessible24
to the derived-type definition.25

• If any procedure is declared via a procedure declaration statement that is not in the type-bound26
procedure part of a derived-type definition, any declare target with the procedure name27
must appear in the same specification part.28

• A variable that is part of another variable (as an array, structure element or type parameter29
inquiry) cannot appear in the directive.30

• The directive must appear in the declaration section of a scoping unit in which the common block31
or variable is declared.32

CHAPTER 2. DIRECTIVES 215

• If a declare target directive that specifies a common block name appears in one program1
unit, then such a directive must also appear in every other program unit that contains a COMMON2
statement that specifies the same name, after the last such COMMON statement in the program unit.3

• If a list item is declared with the BIND attribute, the corresponding C entities must also be4
specified in a declare target directive in the C program.5

• A variable can only appear in a declare target directive in the scope in which it is declared.6
It must not be an element of a common block or appear in an EQUIVALENCE statement.7

• A variable that appears in a declare target directive must be declared in the Fortran scope8
of a module or have the SAVE attribute, either explicitly or implicitly.9

Fortran

Cross References10
• target data construct, see Section 2.14.2.11

• target construct, see Section 2.14.5.12

• ompt_callback_target_data_op_t or13
ompt_callback_target_data_op_emi_t callback type, see Section 4.5.2.25.14

2.15 Interoperability15

An OpenMP implementation may interoperate with one or more foreign runtime environments16
through the use of the interop construct that is described in this section, the interop operation17
for a declared variant function and the interoperability routines that are available through the18
OpenMP Runtime API.19

C / C++
The implementation must provide foreign-runtime-id values that are enumerators of type20
omp_interop_fr_t and that correspond to the supported foreign runtime environments.21

C / C++
Fortran

The implementation must provide foreign-runtime-id values that are named integer constants with22
kind omp_interop_fr_kind and that correspond to the supported foreign runtime23
environments.24

Fortran
Each foreign-runtime-id value provided by an implementation will be available as25
omp_ifr_name, where name is the name of the foreign runtime environment. Available names26
include those that are listed in the OpenMP Additional Definitions document;27
implementation-defined names may also be supported. The value of omp_ifr_last is defined as28
one greater than the value of the highest supported foreign-runtime-id value that is listed in the29
aforementioned document.30

216 OpenMP API – Version 5.1 November 2020

Cross References1
• declare variant directive, see Section 2.3.5.2

• Interoperability routines, see Section 3.12.3

2.15.1 interop Construct4

Summary5
The interop construct retrieves interoperability properties from the OpenMP implementation to6
enable interoperability with foreign execution contexts. The interop construct is a stand-alone7
directive.8

Syntax9
In the following syntax, interop-type is the type of interoperability information being requested or10
used by the interop construct, and action-clause is a clause that indicates the action to take with11
respect to that interop object.12

C / C++
The syntax of the interop construct is as follows:13

#pragma omp interop clause[[[,] clause] ...] new-line14

where clause is action-clause or one of the following:15

device(integer-expression)16

depend([depend-modifier,] dependence-type : locator-list)17

where action-clause is one of the following:18

init([interop-modifier,]interop-type[[, interop-type] ...]:interop-var)19

destroy(interop-var)20

use(interop-var)21

nowait22

where interop-var is a variable of type omp_interop_t, and interop-type is one of the following:23

target24

targetsync25

and interop-modifier is one of the following:26

prefer_type(preference-list)27

CHAPTER 2. DIRECTIVES 217

where preference-list is a comma separated list for which each item is a foreign-runtime-id, which1
is a base language string literal or a compile-time constant integral expression. Allowed values for2
foreign-runtime-id include the names (as string literals) and integer values specified in the OpenMP3
Additional Definitions document and the corresponding omp_ifr_name constants of4
omp_interop_fr_t type; implementation-defined values may also be supported.5

C / C++

Fortran
The syntax of the interop construct is as follows:6

!$omp interop clause[[[,] clause] ...]7

where clause is action-clause or one of the following:8

device(integer-expression)9

depend([depend-modifier,] dependence-type : locator-list)10

where action-clause is one of the following:11

init([interop-modifier,]interop-type[[, interop-type] ...]:interop-var)12

destroy(interop-var)13

use(interop-var)14

nowait15

where interop-var is a scalar integer variable of kind omp_interop_kind, and interop-type is16
one of the following:17

target18

targetsync19

and interop-modifier is one of the following:20

prefer_type(preference-list)21

where preference-list is a comma separated list for which each item is a foreign-runtime-id, which22
is a base language string literal or a compile-time constant integral expression. Allowed values for23
foreign-runtime-id include the names (as string literals) and integer values specified in the OpenMP24
Additional Definitions document and the corresponding omp_ifr_name integer constants of kind25
omp_interop_fr_kind; implementation-defined values may also be supported.26

Fortran

Binding27
The binding task set for an interop region is the generating task. The interop region binds to28
the region of the generating task.29

218 OpenMP API – Version 5.1 November 2020

Description1
When an interop construct is encountered, the encountering task executes the region. If no2
device clause is present, the behavior is as if the device clause appears with an expression3
equal to the value of the default-device-var ICV.4

If the init action-clause is specified, the interop-var is initialized to refer to the list of properties5
associated with the given interop-type. For any interop-type, the properties type, type_name,6
vendor, vendor_name and device_num will be available. If the implementation is unable to7
initialize the interop-var, it will be initialized to the value of omp_interop_none, which is8
defined to be zero.9

The targetsync interop-type will additionally provide the targetsync property, which is the10
handle to a foreign synchronization object for enabling synchronization between OpenMP tasks and11
foreign tasks that execute in the foreign execution context.12

The target interop-type will additionally provide the following properties:13

• device, which will be a foreign device handle;14

• device_context, which will be a foreign device context handle; and15

• platform, which will be a handle to a foreign platform of the device.16

If the destroy action-clause is specified, the interop-var is set to the value of17
omp_interop_none after resources associated with interop-var are released. The object18
referred to by the interop-var will be unusable after destruction and the effect of using values19
associated with it is unspecified until interop-var is initialized again by another interop20
construct.21

If the use action-clause is specified, the interop-var is used for other effects of this directive but is22
not initialized, destroyed or otherwise modified.23

For the destroy or use action-clause, the interop-type is inferred based on the interop-type used24
to initialize the interop-var.25

If the interop-type specified is targetsync, or the interop-var was initialized with26
targetsync, an empty mergeable task is generated. If the nowait clause is not present on the27
construct then the task is also an included task. Any depend clauses that are present on the28
construct apply to the generated task. The interop construct ensures an ordered execution of the29
generated task relative to foreign tasks executed in the foreign execution context through the foreign30
synchronization object accessible through the targetsync property of interop-var. When the31
creation of the foreign task precedes the encountering of an interop construct in happens before32
order (see Section 1.4.5), the foreign task must complete execution before the generated task begins33
execution. Similarly, when the creation of a foreign task follows the encountering of an interop34
construct in happens before order, the foreign task must not begin execution until the generated task35
completes execution. No ordering is imposed between the encountering thread and either foreign36
tasks or OpenMP tasks by the interop construct.37

CHAPTER 2. DIRECTIVES 219

If the prefer_type interop-modifier clause is specified, the first supported foreign-runtime-id in1
preference-list in left-to-right order is used. The foreign-runtime-id that is used if the2
implementation does not support any of the items in preference-list is implementation defined.3

Restrictions4
Restrictions to the interop construct are as follows:5

• At least one action-clause must appear on the directive.6

• Each interop-type may be specified on an action-clause at most once.7

• The interop-var passed to init or destroy must be non-const.8

• A depend clause can only appear on the directive if a targetsync interop-type is present or9
the interop-var was initialized with the targetsync interop-type.10

• Each interop-var may be specified for at most one action-clause of each interop construct.11

• At most one device clause can appear on the directive. The device clause expression must12
evaluate to a non-negative integer value less than or equal to the value returned by13
omp_get_num_devices().14

• At most one nowait clause can appear on the directive.15

Cross References16
• depend clause, see Section 2.19.11.17

• Interoperability routines, see Section 3.12.18

2.15.2 Interoperability Requirement Set19

The interoperability requirement set of each task is a logical set of properties that can be added or20
removed by different directives. These properties can be queried by other constructs that have21
interoperability semantics.22

A construct can add the following properties to the set:23

• depend, which specifies that the construct requires enforcement of the synchronization24
relationship expressed by the depend clause;25

• nowait, which specifies that the construct is asynchronous; and26

• is_device_ptr(list-item), which specifies that the list-item is a device pointer in the construct.27

The following directives may add properties to the set:28

• dispatch.29

The following directives may remove properties from the set:30

• declare variant.31

220 OpenMP API – Version 5.1 November 2020

Cross References1
• declare variant directive, see Section 2.3.5.2

• dispatch construct, see Section 2.3.6.3

2.16 Combined Constructs4

Combined constructs are shortcuts for specifying one construct immediately nested inside another5
construct. The semantics of the combined constructs are identical to that of explicitly specifying6
the first construct containing one instance of the second construct and no other statements.7

For combined constructs, tool callbacks are invoked as if the constructs were explicitly nested.8

2.16.1 Parallel Worksharing-Loop Construct9

Summary10
The parallel worksharing-loop construct is a shortcut for specifying a parallel construct11
containing a worksharing-loop construct with a canonical loop nest and no other statements.12

Syntax13
C / C++

The syntax of the parallel worksharing-loop construct is as follows:14

#pragma omp parallel for [clause[[,] clause] ...] new-line15
loop-nest16

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the17
parallel or for directives, except the nowait clause, with identical meanings and restrictions.18

19

C / C++
Fortran

The syntax of the parallel worksharing-loop construct is as follows:20

!$omp parallel do [clause[[,] clause] ...]21
loop-nest22

[!$omp end parallel do]23

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the24
parallel or do directives, with identical meanings and restrictions.25

If an end parallel do directive is not specified, an end parallel do directive is assumed at26
the end of the loop-nest.27

Fortran

CHAPTER 2. DIRECTIVES 221

Description1
The semantics are identical to explicitly specifying a parallel directive immediately followed2
by a worksharing-loop directive.3

Restrictions4
The restrictions for the parallel construct and the worksharing-loop construct apply.5

Cross References6
• parallel construct, see Section 2.6.7

• Canonical loop nest form, see Section 2.11.1.8

• Worksharing-loop construct, see Section 2.11.4.9

• Data attribute clauses, see Section 2.21.4.10

2.16.2 parallel loop Construct11

Summary12
The parallel loop construct is a shortcut for specifying a parallel construct containing a13
loop construct with a canonical loop nest and no other statements.14

Syntax15
C / C++

The syntax of the parallel loop construct is as follows:16

#pragma omp parallel loop [clause[[,] clause] ...] new-line17
loop-nest18

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the19
parallel or loop directives, with identical meanings and restrictions.20

C / C++
Fortran

The syntax of the parallel loop construct is as follows:21

!$omp parallel loop [clause[[,] clause] ...]22
loop-nest23

[!$omp end parallel loop]24

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the25
parallel or loop directives, with identical meanings and restrictions.26

If an end parallel loop directive is not specified, an end parallel loop directive is27
assumed at the end of the loop-nest.28

Fortran

222 OpenMP API – Version 5.1 November 2020

Description1
The semantics are identical to explicitly specifying a parallel directive immediately followed2
by a loop directive.3

Restrictions4
The restrictions for the parallel construct and the loop construct apply.5

Cross References6
• parallel construct, see Section 2.6.7

• Canonical loop nest form, see Section 2.11.1.8

• loop construct, see Section 2.11.7.9

• Data attribute clauses, see Section 2.21.4.10

2.16.3 parallel sections Construct11

Summary12
The parallel sections construct is a shortcut for specifying a parallel construct13
containing a sections construct and no other statements.14

Syntax15
C / C++

The syntax of the parallel sections construct is as follows:16

#pragma omp parallel sections [clause[[,] clause] ...] new-line17
{18
[#pragma omp section new-line]19

structured-block-sequence20
[#pragma omp section new-line21

structured-block-sequence]22
...23
}24

where clause can be any of the clauses accepted by the parallel or sections directives,25
except the nowait clause, with identical meanings and restrictions.26

C / C++

CHAPTER 2. DIRECTIVES 223

Fortran
The syntax of the parallel sections construct is as follows:1

!$omp parallel sections [clause[[,] clause] ...]2
[!$omp section]3

structured-block-sequence4
[!$omp section5

structured-block-sequence]6
...7

!$omp end parallel sections8

where clause can be any of the clauses accepted by the parallel or sections directives, with9
identical meanings and restrictions.10

Fortran

Description11
C / C++

The semantics are identical to explicitly specifying a parallel directive immediately followed12
by a sections directive.13

C / C++
Fortran

The semantics are identical to explicitly specifying a parallel directive immediately followed14
by a sections directive, and an end sections directive immediately followed by an15
end parallel directive.16

Fortran

Restrictions17
The restrictions for the parallel construct and the sections construct apply.18

Cross References19
• parallel construct, see Section 2.6.20

• sections construct, see Section 2.10.1.21

• Data attribute clauses, see Section 2.21.4.22

Fortran

2.16.4 parallel workshare Construct23

Summary24
The parallel workshare construct is a shortcut for specifying a parallel construct25
containing a workshare construct and no other statements.26

224 OpenMP API – Version 5.1 November 2020

Syntax1
The syntax of the parallel workshare construct is as follows:2

!$omp parallel workshare [clause[[,] clause] ...]3
loosely-structured-block4

!$omp end parallel workshare5

or6

!$omp parallel workshare [clause[[,] clause] ...]7
strictly-structured-block8

[!$omp end parallel workshare]9

where clause can be any of the clauses accepted by the parallel directive, with identical10
meanings and restrictions.11

Description12
The semantics are identical to explicitly specifying a parallel directive immediately followed13
by a workshare directive, and an end workshare directive immediately followed by an14
end parallel directive.15

Restrictions16
The restrictions for the parallel construct and the workshare construct apply.17

Cross References18
• parallel construct, see Section 2.6.19

• workshare construct, see Section 2.10.3.20

• Data attribute clauses, see Section 2.21.4.21

Fortran

2.16.5 Parallel Worksharing-Loop SIMD Construct22

Summary23
The parallel worksharing-loop SIMD construct is a shortcut for specifying a parallel construct24
containing a worksharing-loop SIMD construct and no other statements.25

Syntax26
C / C++

The syntax of the parallel worksharing-loop SIMD construct is as follows:27

#pragma omp parallel for simd [clause[[,] clause] ...] new-line28
loop-nest29

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the30
parallel or for simd directives, except the nowait clause, with identical meanings and31
restrictions.32

C / C++

CHAPTER 2. DIRECTIVES 225

Fortran
The syntax of the parallel worksharing-loop SIMD construct is as follows:1

!$omp parallel do simd [clause[[,] clause] ...]2
loop-nest3

[!$omp end parallel do simd]4

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the5
parallel or do simd directives, with identical meanings and restrictions.6

If an end parallel do simd directive is not specified, an end parallel do simd directive7
is assumed at the end of the loop-nest.8

Fortran

Description9
The semantics of the parallel worksharing-loop SIMD construct are identical to explicitly10
specifying a parallel directive immediately followed by a worksharing-loop SIMD directive.11

Restrictions12
The restrictions for the parallel construct and the worksharing-loop SIMD construct apply13
except for the following explicit modifications:14

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the15
directive must include a directive-name-modifier.16

• At most one if clause without a directive-name-modifier can appear on the directive.17

• At most one if clause with the parallel directive-name-modifier can appear on the directive.18

• At most one if clause with the simd directive-name-modifier can appear on the directive.19

Cross References20
• parallel construct, see Section 2.6.21

• Canonical loop nest form, see Section 2.11.1.22

• Worksharing-loop SIMD construct, see Section 2.11.5.2.23

• if clause, see Section 2.18.24

• Data attribute clauses, see Section 2.21.4.25

2.16.6 parallel masked Construct26

Summary27
The parallel masked construct is a shortcut for specifying a parallel construct containing28
a masked construct, and no other statements.29

226 OpenMP API – Version 5.1 November 2020

Syntax1
C / C++

The syntax of the parallel masked construct is as follows:2

#pragma omp parallel masked [clause[[,] clause] ...] new-line3
structured-block4

where clause can be any of the clauses accepted by the parallel or masked directives, with5
identical meanings and restrictions.6

C / C++
Fortran

The syntax of the parallel masked construct is as follows:7

!$omp parallel masked [clause[[,] clause] ...]8
loosely-structured-block9

!$omp end parallel masked10

or11

!$omp parallel masked [clause[[,] clause] ...]12
strictly-structured-block13

[!$omp end parallel masked]14

where clause can be any of the clauses accepted by the parallel or masked directives, with15
identical meanings and restrictions.16

Fortran
The parallel master construct, which has been deprecated, has identical syntax to the17
parallel masked construct other than the use of parallel master as the directive name.18

Description19
The semantics are identical to explicitly specifying a parallel directive immediately followed20
by a masked directive.21

Restrictions22
The restrictions for the parallel construct and the masked construct apply.23

Cross References24
• parallel construct, see Section 2.6.25

• masked construct, see Section 2.8.26

• Data attribute clauses, see Section 2.21.4.27

CHAPTER 2. DIRECTIVES 227

2.16.7 masked taskloop Construct1

Summary2
The masked taskloop construct is a shortcut for specifying a masked construct containing a3
taskloop construct and no other statements.4

Syntax5
C / C++

The syntax of the masked taskloop construct is as follows:6

#pragma omp masked taskloop [clause[[,] clause] ...] new-line7
loop-nest8

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the9
masked or taskloop directives with identical meanings and restrictions.10

C / C++
Fortran

The syntax of the masked taskloop construct is as follows:11

!$omp masked taskloop [clause[[,] clause] ...]12
loop-nest13

[!$omp end masked taskloop]14

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the15
masked or taskloop directives with identical meanings and restrictions.16

If an end masked taskloop directive is not specified, an end masked taskloop directive is17
assumed at the end of the loop-nest.18

Fortran
The master taskloop construct, which has been deprecated, has identical syntax to the19
masked taskloop construct other than the use of master taskloop as the directive name.20

Description21
The semantics are identical to explicitly specifying a masked directive immediately followed by a22
taskloop directive.23

Restrictions24
The restrictions for the masked and taskloop constructs apply.25

Cross References26
• masked construct, see Section 2.8.27

• Canonical loop nest form, see Section 2.11.1.28

• taskloop construct, see Section 2.12.2.29

• Data attribute clauses, see Section 2.21.4.30

228 OpenMP API – Version 5.1 November 2020

2.16.8 masked taskloop simd Construct1

Summary2
The masked taskloop simd construct is a shortcut for specifying a masked construct3
containing a taskloop simd construct and no other statements.4

Syntax5
C / C++

The syntax of the masked taskloop simd construct is as follows:6

#pragma omp masked taskloop simd [clause[[,] clause] ...] new-line7
loop-nest8

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the9
masked or taskloop simd directives with identical meanings and restrictions.10

C / C++
Fortran

The syntax of the masked taskloop simd construct is as follows:11

!$omp masked taskloop simd [clause[[,] clause] ...]12
loop-nest13

[!$omp end masked taskloop simd]14

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the15
masked or taskloop simd directives with identical meanings and restrictions.16

If an end masked taskloop simd directive is not specified, an end masked17
taskloop simd directive is assumed at the end of the loop-nest.18

Fortran
The master taskloop simd construct, which has been deprecated, has identical syntax to the19
masked taskloop simd construct other than the use of master taskloop simd as the20
directive name.21

Description22
The semantics are identical to explicitly specifying a masked directive immediately followed by a23
taskloop simd directive.24

Restrictions25
The restrictions for the masked and taskloop simd constructs apply.26

Cross References27
• masked construct, see Section 2.8.28

• Canonical loop nest form, see Section 2.11.1.29

• taskloop simd construct, see Section 2.12.3.30

• Data attribute clauses, see Section 2.21.4.31

CHAPTER 2. DIRECTIVES 229

2.16.9 parallel masked taskloop Construct1

Summary2
The parallel masked taskloop construct is a shortcut for specifying a parallel3
construct containing a masked taskloop construct and no other statements.4

C / C++
The syntax of the parallel masked taskloop construct is as follows:5

#pragma omp parallel masked taskloop [clause[[,] clause] ...] new-line6
loop-nest7

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the8
parallel or masked taskloop directives, except the in_reduction clause, with identical9
meanings and restrictions.10

C / C++
Fortran

The syntax of the parallel masked taskloop construct is as follows:11

!$omp parallel masked taskloop [clause[[,] clause] ...]12
loop-nest13

[!$omp end parallel masked taskloop]14

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the15
parallel or masked taskloop directives, except the in_reduction clause, with identical16
meanings and restrictions.17

If an end parallel masked taskloop directive is not specified, an18
end parallel masked taskloop directive is assumed at the end of the loop-nest.19

Fortran
The parallel master taskloop construct, which has been deprecated, has identical syntax20
to the parallel masked taskloop construct other than the use of21
parallel master taskloop as the directive name.22

Description23
The semantics are identical to explicitly specifying a parallel directive immediately followed24
by a masked taskloop directive.25

230 OpenMP API – Version 5.1 November 2020

Restrictions1
The restrictions for the parallel construct and the masked taskloop construct apply except2
for the following explicit modifications:3

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the4
directive must include a directive-name-modifier.5

• At most one if clause without a directive-name-modifier can appear on the directive.6

• At most one if clause with the parallel directive-name-modifier can appear on the directive.7

• At most one if clause with the taskloop directive-name-modifier can appear on the directive.8

Cross References9
• parallel construct, see Section 2.6.10

• Canonical loop nest form, see Section 2.11.1.11

• masked taskloop construct, see Section 2.16.7.12

• if clause, see Section 2.18.13

• Data attribute clauses, see Section 2.21.4.14

• in_reduction clause, see Section 2.21.5.6.15

2.16.10 parallel masked taskloop simd Construct16

Summary17
The parallel masked taskloop simd construct is a shortcut for specifying a parallel18
construct containing a masked taskloop simd construct and no other statements.19

Syntax20
C / C++

The syntax of the parallel masked taskloop simd construct is as follows:21

#pragma omp parallel masked taskloop simd [clause[[,] clause] ...] new-line22
loop-nest23

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the24
parallel or masked taskloop simd directives, except the in_reduction clause, with25
identical meanings and restrictions.26

C / C++

CHAPTER 2. DIRECTIVES 231

Fortran
The syntax of the parallel masked taskloop simd construct is as follows:1

!$omp parallel masked taskloop simd [clause[[,] clause] ...]2
loop-nest3

[!$omp end parallel masked taskloop simd]4

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the5
parallel or masked taskloop simd directives, except the in_reduction clause, with6
identical meanings and restrictions.7

If an end parallel masked taskloop simd directive is not specified, an end parallel8
masked taskloop simd directive is assumed at the end of the loop-nest.9

Fortran
The parallel master taskloop simd construct, which has been deprecated, has identical10
syntax to the parallel masked taskloop simd construct other than the use of11
parallel master taskloop simd as the directive name.12

Description13
The semantics are identical to explicitly specifying a parallel directive immediately followed14
by a masked taskloop simd directive.15

Restrictions16
The restrictions for the parallel construct and the masked taskloop simd construct apply17
except for the following explicit modifications:18

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the19
directive must include a directive-name-modifier.20

• At most one if clause without a directive-name-modifier can appear on the directive.21

• At most one if clause with the parallel directive-name-modifier can appear on the directive.22

• At most one if clause with the taskloop directive-name-modifier can appear on the directive.23

• At most one if clause with the simd directive-name-modifier can appear on the directive.24

Cross References25
• parallel construct, see Section 2.6.26

• Canonical loop nest form, see Section 2.11.1.27

• masked taskloop simd construct, see Section 2.16.8.28

• if clause, see Section 2.18.29

• Data attribute clauses, see Section 2.21.4.30

• in_reduction clause, see Section 2.21.5.6.31

232 OpenMP API – Version 5.1 November 2020

2.16.11 teams distribute Construct1

Summary2
The teams distribute construct is a shortcut for specifying a teams construct containing a3
distribute construct and no other statements.4

Syntax5
C / C++

The syntax of the teams distribute construct is as follows:6

#pragma omp teams distribute [clause[[,] clause] ...] new-line7
loop-nest8

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the9
teams or distribute directives with identical meanings and restrictions.10

C / C++
Fortran

The syntax of the teams distribute construct is as follows:11

!$omp teams distribute [clause[[,] clause] ...]12
loop-nest13

[!$omp end teams distribute]14

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the15
teams or distribute directives with identical meanings and restrictions.16

If an end teams distribute directive is not specified, an end teams distribute17
directive is assumed at the end of the loop-nest.18

Fortran

Description19
The semantics are identical to explicitly specifying a teams directive immediately followed by a20
distribute directive.21

Restrictions22
The restrictions for the teams and distribute constructs apply.23

Cross References24
• teams construct, see Section 2.7.25

• Canonical loop nest form, see Section 2.11.1.26

• distribute construct, see Section 2.11.6.1.27

• Data attribute clauses, see Section 2.21.4.28

CHAPTER 2. DIRECTIVES 233

2.16.12 teams distribute simd Construct1

Summary2
The teams distribute simd construct is a shortcut for specifying a teams construct3
containing a distribute simd construct and no other statements.4

Syntax5
C / C++

The syntax of the teams distribute simd construct is as follows:6

#pragma omp teams distribute simd [clause[[,] clause] ...] new-line7
loop-nest8

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the9
teams or distribute simd directives with identical meanings and restrictions.10

C / C++
Fortran

The syntax of the teams distribute simd construct is as follows:11

!$omp teams distribute simd [clause[[,] clause] ...]12
loop-nest13

[!$omp end teams distribute simd]14

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the15
teams or distribute simd directives with identical meanings and restrictions.16

If an end teams distribute simd directive is not specified, an end teams17
distribute simd directive is assumed at the end of the loop-nest.18

Fortran

Description19
The semantics are identical to explicitly specifying a teams directive immediately followed by a20
distribute simd directive.21

Restrictions22
The restrictions for the teams and distribute simd constructs apply.23

Cross References24
• teams construct, see Section 2.7.25

• Canonical loop nest form, see Section 2.11.1.26

• distribute simd construct, see Section 2.11.6.2.27

• Data attribute clauses, see Section 2.21.4.28

234 OpenMP API – Version 5.1 November 2020

2.16.13 Teams Distribute Parallel Worksharing-Loop1

Construct2

Summary3
The teams distribute parallel worksharing-loop construct is a shortcut for specifying a teams4
construct containing a distribute parallel worksharing-loop construct and no other statements.5

Syntax6
C / C++

The syntax of the teams distribute parallel worksharing-loop construct is as follows:7

#pragma omp teams distribute parallel for \8
[clause[[,] clause] ...] new-line9

loop-nest10

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the11
teams or distribute parallel for directives with identical meanings and restrictions.12

C / C++
Fortran

The syntax of the teams distribute parallel worksharing-loop construct is as follows:13

!$omp teams distribute parallel do [clause[[,] clause] ...]14
loop-nest15

[!$omp end teams distribute parallel do]16

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the17
teams or distribute parallel do directives with identical meanings and restrictions.18

If an end teams distribute parallel do directive is not specified, an end teams19
distribute parallel do directive is assumed at the end of the loop-nest.20

Fortran

Description21
The semantics are identical to explicitly specifying a teams directive immediately followed by a22
distribute parallel worksharing-loop directive.23

Restrictions24
The restrictions for the teams and distribute parallel worksharing-loop constructs apply.25

Cross References26
• teams construct, see Section 2.7.27

• Canonical loop nest form, see Section 2.11.1.28

• Distribute parallel worksharing-loop construct, see Section 2.11.6.3.29

• Data attribute clauses, see Section 2.21.4.30

CHAPTER 2. DIRECTIVES 235

2.16.14 Teams Distribute Parallel Worksharing-Loop SIMD1

Construct2

Summary3
The teams distribute parallel worksharing-loop SIMD construct is a shortcut for specifying a4
teams construct containing a distribute parallel worksharing-loop SIMD construct and no other5
statements.6

Syntax7
C / C++

The syntax of the teams distribute parallel worksharing-loop SIMD construct is as follows:8

#pragma omp teams distribute parallel for simd \9
[clause[[,] clause] ...] new-line10

loop-nest11

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the12
teams or distribute parallel for simd directives with identical meanings and13
restrictions.14

C / C++
Fortran

The syntax of the teams distribute parallel worksharing-loop SIMD construct is as follows:15

!$omp teams distribute parallel do simd [clause[[,] clause] ...]16
loop-nest17

[!$omp end teams distribute parallel do simd]18

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the19
teams or distribute parallel do simd directives with identical meanings and restrictions.20

If an end teams distribute parallel do simd directive is not specified, an end teams21
distribute parallel do simd directive is assumed at the end of the loop-nest.22

Fortran

Description23
The semantics are identical to explicitly specifying a teams directive immediately followed by a24
distribute parallel worksharing-loop SIMD directive.25

Restrictions26
The restrictions for the teams and distribute parallel worksharing-loop SIMD constructs apply.27

236 OpenMP API – Version 5.1 November 2020

Cross References1
• teams construct, see Section 2.7.2

• Canonical loop nest form, see Section 2.11.1.3

• Distribute parallel worksharing-loop SIMD construct, see Section 2.11.6.4.4

• Data attribute clauses, see Section 2.21.4.5

2.16.15 teams loop Construct6

Summary7
The teams loop construct is a shortcut for specifying a teams construct containing a loop8
construct and no other statements.9

Syntax10
C / C++

The syntax of the teams loop construct is as follows:11

#pragma omp teams loop [clause[[,] clause] ...] new-line12
loop-nest13

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the14
teams or loop directives with identical meanings and restrictions.15

C / C++
Fortran

The syntax of the teams loop construct is as follows:16

!$omp teams loop [clause[[,] clause] ...]17
loop-nest18

[!$omp end teams loop]19

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the20
teams or loop directives with identical meanings and restrictions.21

If an end teams loop directive is not specified, an end teams loop directive is assumed at the22
end of the loop-nest.23

Fortran

Description24
The semantics are identical to explicitly specifying a teams directive immediately followed by a25
loop directive.26

Restrictions27
The restrictions for the teams and loop constructs apply.28

CHAPTER 2. DIRECTIVES 237

Cross References1
• teams construct, see Section 2.7.2

• Canonical loop nest form, see Section 2.11.1.3

• loop construct, see Section 2.11.7.4

• Data attribute clauses, see Section 2.21.4.5

2.16.16 target parallel Construct6

Summary7
The target parallel construct is a shortcut for specifying a target construct containing a8
parallel construct and no other statements.9

Syntax10
C / C++

The syntax of the target parallel construct is as follows:11

#pragma omp target parallel [clause[[,] clause] ...] new-line12
structured-block13

where clause can be any of the clauses accepted by the target or parallel directives, except14
for copyin, with identical meanings and restrictions.15

C / C++
Fortran

The syntax of the target parallel construct is as follows:16

!$omp target parallel [clause[[,] clause] ...]17
loosely-structured-block18

!$omp end target parallel19

or20

!$omp target parallel [clause[[,] clause] ...]21
strictly-structured-block22

[!$omp end target parallel]23

where clause can be any of the clauses accepted by the target or parallel directives, except24
for copyin, with identical meanings and restrictions.25

Fortran

Description26
The semantics are identical to explicitly specifying a target directive immediately followed by a27
parallel directive.28

238 OpenMP API – Version 5.1 November 2020

Restrictions1
The restrictions for the target and parallel constructs apply except for the following explicit2
modifications:3

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the4
directive must include a directive-name-modifier.5

• At most one if clause without a directive-name-modifier can appear on the directive.6

• At most one if clause with the parallel directive-name-modifier can appear on the directive.7

• At most one if clause with the target directive-name-modifier can appear on the directive.8

Cross References9
• parallel construct, see Section 2.6.10

• target construct, see Section 2.14.5.11

• if clause, see Section 2.18.12

• Data attribute clauses, see Section 2.21.4.13

• copyin clause, see Section 2.21.6.1.14

2.16.17 Target Parallel Worksharing-Loop Construct15

Summary16
The target parallel worksharing-loop construct is a shortcut for specifying a target construct17
containing a parallel worksharing-loop construct and no other statements.18

Syntax19
C / C++

The syntax of the target parallel worksharing-loop construct is as follows:20

#pragma omp target parallel for [clause[[,] clause] ...] new-line21
loop-nest22

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the23
target or parallel for directives, except for copyin, with identical meanings and24
restrictions.25

C / C++

CHAPTER 2. DIRECTIVES 239

Fortran
The syntax of the target parallel worksharing-loop construct is as follows:1

!$omp target parallel do [clause[[,] clause] ...]2
loop-nest3

[!$omp end target parallel do]4

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the5
target or parallel do directives, except for copyin, with identical meanings and6
restrictions.7

If an end target parallel do directive is not specified, an end target parallel do8
directive is assumed at the end of the loop-nest.9

Fortran

Description10
The semantics are identical to explicitly specifying a target directive immediately followed by a11
parallel worksharing-loop directive.12

Restrictions13
The restrictions for the target and parallel worksharing-loop constructs apply except for the14
following explicit modifications:15

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the16
directive must include a directive-name-modifier.17

• At most one if clause without a directive-name-modifier can appear on the directive.18

• At most one if clause with the parallel directive-name-modifier can appear on the directive.19

• At most one if clause with the target directive-name-modifier can appear on the directive.20

Cross References21
• Canonical loop nest form, see Section 2.11.1.22

• target construct, see Section 2.14.5.23

• Parallel Worksharing-Loop construct, see Section 2.16.1.24

• if clause, see Section 2.18.25

• Data attribute clauses, see Section 2.21.4.26

• copyin clause, see Section 2.21.6.1.27

240 OpenMP API – Version 5.1 November 2020

2.16.18 Target Parallel Worksharing-Loop SIMD Construct1

Summary2
The target parallel worksharing-loop SIMD construct is a shortcut for specifying a target3
construct containing a parallel worksharing-loop SIMD construct and no other statements.4

Syntax5
C / C++

The syntax of the target parallel worksharing-loop SIMD construct is as follows:6

#pragma omp target parallel for simd \7
[clause[[,] clause] ...] new-line8

loop-nest9

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the10
target or parallel for simd directives, except for copyin, with identical meanings and11
restrictions.12

C / C++
Fortran

The syntax of the target parallel worksharing-loop SIMD construct is as follows:13

!$omp target parallel do simd [clause[[,] clause] ...]14
loop-nest15

[!$omp end target parallel do simd]16

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the17
target or parallel do simd directives, except for copyin, with identical meanings and18
restrictions.19

If an end target parallel do simd directive is not specified, an end target parallel20
do simd directive is assumed at the end of the loop-nest.21

Fortran

Description22
The semantics are identical to explicitly specifying a target directive immediately followed by a23
parallel worksharing-loop SIMD directive.24

CHAPTER 2. DIRECTIVES 241

Restrictions1
The restrictions for the target and parallel worksharing-loop SIMD constructs apply except for2
the following explicit modifications:3

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the4
directive must include a directive-name-modifier.5

• At most one if clause without a directive-name-modifier can appear on the directive.6

• At most one if clause with the parallel directive-name-modifier can appear on the directive.7

• At most one if clause with the target directive-name-modifier can appear on the directive.8

• At most one if clause with the simd directive-name-modifier can appear on the directive.9

Cross References10
• Canonical loop nest form, see Section 2.11.1.11

• target construct, see Section 2.14.5.12

• Parallel worksharing-loop SIMD construct, see Section 2.16.5.13

• if clause, see Section 2.18.14

• Data attribute clauses, see Section 2.21.4.15

• copyin clause, see Section 2.21.6.1.16

2.16.19 target parallel loop Construct17

Summary18
The target parallel loop construct is a shortcut for specifying a target construct19
containing a parallel loop construct and no other statements.20

Syntax21
C / C++

The syntax of the target parallel loop construct is as follows:22

#pragma omp target parallel loop [clause[[,] clause] ...] new-line23
loop-nest24

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the25
target or parallel loop directives, except for copyin, with identical meanings and26
restrictions.27

C / C++

242 OpenMP API – Version 5.1 November 2020

Fortran
The syntax of the target parallel loop construct is as follows:1

!$omp target parallel loop [clause[[,] clause] ...]2
loop-nest3

[!$omp end target parallel loop]4

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the5
target or parallel loop directives, except for copyin, with identical meanings and6
restrictions.7

If an end target parallel loop directive is not specified, an end target parallel8
loop directive is assumed at the end of the loop-nest. nowait may not be specified on an9
end target parallel loop directive.10

Fortran

Description11
The semantics are identical to explicitly specifying a target directive immediately followed by a12
parallel loop directive.13

Restrictions14
The restrictions for the target and parallel loop constructs apply except for the following15
explicit modifications:16

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the17
directive must include a directive-name-modifier.18

• At most one if clause without a directive-name-modifier can appear on the directive.19

• At most one if clause with the parallel directive-name-modifier can appear on the directive.20

• At most one if clause with the target directive-name-modifier can appear on the directive.21

Cross References22
• Canonical loop nest form, see Section 2.11.1.23

• target construct, see Section 2.14.5.24

• parallel loop construct, see Section 2.16.2.25

• if clause, see Section 2.18.26

• Data attribute clauses, see Section 2.21.4.27

• copyin clause, see Section 2.21.6.1.28

CHAPTER 2. DIRECTIVES 243

2.16.20 target simd Construct1

Summary2
The target simd construct is a shortcut for specifying a target construct containing a simd3
construct and no other statements.4

Syntax5
C / C++

The syntax of the target simd construct is as follows:6

#pragma omp target simd [clause[[,] clause] ...] new-line7
loop-nest8

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the9
target or simd directives with identical meanings and restrictions.10

C / C++
Fortran

The syntax of the target simd construct is as follows:11

!$omp target simd [clause[[,] clause] ...]12
loop-nest13

[!$omp end target simd]14

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the15
target or simd directives with identical meanings and restrictions.16

If an end target simd directive is not specified, an end target simd directive is assumed at17
the end of the loop-nest.18

Fortran

Description19
The semantics are identical to explicitly specifying a target directive immediately followed by a20
simd directive.21

Restrictions22
The restrictions for the target and simd constructs apply except for the following explicit23
modifications:24

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the25
directive must include a directive-name-modifier.26

• At most one if clause without a directive-name-modifier can appear on the directive.27

• At most one if clause with the target directive-name-modifier can appear on the directive.28

• At most one if clause with the simd directive-name-modifier can appear on the directive.29

244 OpenMP API – Version 5.1 November 2020

Cross References1
• Canonical loop nest form, see Section 2.11.1.2

• simd construct, see Section 2.11.5.1.3

• target construct, see Section 2.14.5.4

• if clause, see Section 2.18.5

• Data attribute clauses, see Section 2.21.4.6

2.16.21 target teams Construct7

Summary8
The target teams construct is a shortcut for specifying a target construct containing a9
teams construct and no other statements.10

Syntax11
C / C++

The syntax of the target teams construct is as follows:12

#pragma omp target teams [clause[[,] clause] ...] new-line13
structured-block14

where clause can be any of the clauses accepted by the target or teams directives with identical15
meanings and restrictions.16

C / C++
Fortran

The syntax of the target teams construct is as follows:17

!$omp target teams [clause[[,] clause] ...]18
loosely-structured-block19

!$omp end target teams20

or21

!$omp target teams [clause[[,] clause] ...]22
strictly-structured-block23

[!$omp end target teams]24

where clause can be any of the clauses accepted by the target or teams directives with identical25
meanings and restrictions.26

Fortran

Description27
The semantics are identical to explicitly specifying a target directive immediately followed by a28
teams directive.29

CHAPTER 2. DIRECTIVES 245

Restrictions1
The restrictions for the target and teams constructs apply.2

Cross References3
• teams construct, see Section 2.7.4

• target construct, see Section 2.14.5.5

• Data attribute clauses, see Section 2.21.4.6

2.16.22 target teams distribute Construct7

Summary8
The target teams distribute construct is a shortcut for specifying a target construct9
containing a teams distribute construct and no other statements.10

Syntax11
C / C++

The syntax of the target teams distribute construct is as follows:12

#pragma omp target teams distribute [clause[[,] clause] ...] new-line13
loop-nest14

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the15
target or teams distribute directives with identical meanings and restrictions.16

C / C++
Fortran

The syntax of the target teams distribute construct is as follows:17

!$omp target teams distribute [clause[[,] clause] ...]18
loop-nest19

[!$omp end target teams distribute]20

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the21
target or teams distribute directives with identical meanings and restrictions.22

If an end target teams distribute directive is not specified, an end target teams23
distribute directive is assumed at the end of the loop-nest.24

Fortran

Description25
The semantics are identical to explicitly specifying a target directive immediately followed by a26
teams distribute directive.27

Restrictions28
The restrictions for the target and teams distribute constructs apply.29

246 OpenMP API – Version 5.1 November 2020

Cross References1
• Canonical loop nest form, see Section 2.11.1.2

• target construct, see Section 2.14.2.3

• teams distribute construct, see Section 2.16.11.4

• Data attribute clauses, see Section 2.21.4.5

2.16.23 target teams distribute simd Construct6

Summary7
The target teams distribute simd construct is a shortcut for specifying a target8
construct containing a teams distribute simd construct and no other statements.9

Syntax10
C / C++

The syntax of the target teams distribute simd construct is as follows:11

#pragma omp target teams distribute simd \12
[clause[[,] clause] ...] new-line13

loop-nest14

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the15
target or teams distribute simd directives with identical meanings and restrictions.16

C / C++
Fortran

The syntax of the target teams distribute simd construct is as follows:17

!$omp target teams distribute simd [clause[[,] clause] ...]18
loop-nest19

[!$omp end target teams distribute simd]20

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the21
target or teams distribute simd directives with identical meanings and restrictions.22

If an end target teams distribute simd directive is not specified, an end target23
teams distribute simd directive is assumed at the end of the loop-nest.24

Fortran

Description25
The semantics are identical to explicitly specifying a target directive immediately followed by a26
teams distribute simd directive.27

CHAPTER 2. DIRECTIVES 247

Restrictions1
The restrictions for the target and teams distribute simd constructs apply except for the2
following explicit modifications:3

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the4
directive must include a directive-name-modifier.5

• At most one if clause without a directive-name-modifier can appear on the directive.6

• At most one if clause with the target directive-name-modifier can appear on the directive.7

• At most one if clause with the simd directive-name-modifier can appear on the directive.8

Cross References9
• Canonical loop nest form, see Section 2.11.1.10

• target construct, see Section 2.14.2.11

• teams distribute simd construct, see Section 2.16.12.12

• if clause, see Section 2.18.13

• Data attribute clauses, see Section 2.21.4.14

2.16.24 target teams loop Construct15

Summary16
The target teams loop construct is a shortcut for specifying a target construct containing a17
teams loop construct and no other statements.18

Syntax19
C / C++

The syntax of the target teams loop construct is as follows:20

#pragma omp target teams loop [clause[[,] clause] ...] new-line21
loop-nest22

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the23
target or teams loop directives with identical meanings and restrictions.24

C / C++

248 OpenMP API – Version 5.1 November 2020

Fortran
The syntax of the target teams loop construct is as follows:1

!$omp target teams loop [clause[[,] clause] ...]2
loop-nest3

[!$omp end target teams loop]4

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the5
target or teams loop directives with identical meanings and restrictions.6

If an end target teams loop directive is not specified, an end target teams loop7
directive is assumed at the end of the loop-nest.8

Fortran

Description9
The semantics are identical to explicitly specifying a target directive immediately followed by a10
teams loop directive.11

Restrictions12
The restrictions for the target and teams loop constructs apply.13

Cross References14
• Canonical loop nest form, see Section 2.11.1.15

• target construct, see Section 2.14.5.16

• Teams loop construct, see Section 2.16.15.17

• Data attribute clauses, see Section 2.21.4.18

2.16.25 Target Teams Distribute Parallel Worksharing-Loop19

Construct20

Summary21
The target teams distribute parallel worksharing-loop construct is a shortcut for specifying a22
target construct containing a teams distribute parallel worksharing-loop construct and no other23
statements.24

CHAPTER 2. DIRECTIVES 249

Syntax1
C / C++

The syntax of the target teams distribute parallel worksharing-loop construct is as follows:2

#pragma omp target teams distribute parallel for \3
[clause[[,] clause] ...] new-line4

loop-nest5

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the6
target or teams distribute parallel for directives with identical meanings and7
restrictions.8

C / C++
Fortran

The syntax of the target teams distribute parallel worksharing-loop construct is as follows:9

!$omp target teams distribute parallel do [clause[[,] clause] ...]10
loop-nest11

[!$omp end target teams distribute parallel do]12

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the13
target or teams distribute parallel do directives with identical meanings and14
restrictions.15

If an end target teams distribute parallel do directive is not specified, an16
end target teams distribute parallel do directive is assumed at the end of the17
loop-nest.18

Fortran

Description19
The semantics are identical to explicitly specifying a target directive immediately followed by a20
teams distribute parallel worksharing-loop directive.21

Restrictions22
The restrictions for the target and teams distribute parallel worksharing-loop constructs apply23
except for the following explicit modifications:24

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the25
directive must include a directive-name-modifier.26

• At most one if clause without a directive-name-modifier can appear on the directive.27

• At most one if clause with the parallel directive-name-modifier can appear on the directive.28

• At most one if clause with the target directive-name-modifier can appear on the directive.29

250 OpenMP API – Version 5.1 November 2020

Cross References1
• Canonical loop nest form, see Section 2.11.1.2

• target construct, see Section 2.14.5.3

• Teams distribute parallel worksharing-loop construct, see Section 2.16.13.4

• if clause, see Section 2.18.5

• Data attribute clauses, see Section 2.21.4.6

2.16.26 Target Teams Distribute Parallel Worksharing-Loop7

SIMD Construct8

Summary9
The target teams distribute parallel worksharing-loop SIMD construct is a shortcut for specifying a10
target construct containing a teams distribute parallel worksharing-loop SIMD construct and no11
other statements.12

Syntax13
C / C++

The syntax of the target teams distribute parallel worksharing-loop SIMD construct is as follows:14

#pragma omp target teams distribute parallel for simd \15
[clause[[,] clause] ...] new-line16

loop-nest17

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the18
target or teams distribute parallel for simd directives with identical meanings and19
restrictions.20

C / C++
Fortran

The syntax of the target teams distribute parallel worksharing-loop SIMD construct is as follows:21

!$omp target teams distribute parallel do simd [clause[[,] clause] ...]22
loop-nest23

[!$omp end target teams distribute parallel do simd]24

where loop-nest is a canonical loop nest and clause can be any of the clauses accepted by the25
target or teams distribute parallel do simd directives with identical meanings and26
restrictions.27

If an end target teams distribute parallel do simd directive is not specified, an28
end target teams distribute parallel do simd directive is assumed at the end of the29
loop-nest.30

Fortran

CHAPTER 2. DIRECTIVES 251

Description1
The semantics are identical to explicitly specifying a target directive immediately followed by a2
teams distribute parallel worksharing-loop SIMD directive.3

Restrictions4
The restrictions for the target and teams distribute parallel worksharing-loop SIMD constructs5
apply except for the following explicit modifications:6

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the7
directive must include a directive-name-modifier.8

• At most one if clause without a directive-name-modifier can appear on the directive.9

• At most one if clause with the parallel directive-name-modifier can appear on the directive.10

• At most one if clause with the target directive-name-modifier can appear on the directive.11

• At most one if clause with the simd directive-name-modifier can appear on the directive.12

Cross References13
• Canonical loop nest form, see Section 2.11.1.14

• target construct, see Section 2.14.5.15

• Teams distribute parallel worksharing-loop SIMD construct, see Section 2.16.14.16

• if clause, see Section 2.18.17

• Data attribute clauses, see Section 2.21.4.18

2.17 Clauses on Combined and Composite19

Constructs20

This section specifies the handling of clauses on combined or composite constructs and the21
handling of implicit clauses from variables with predetermined data sharing if they are not22
predetermined only on a particular construct. Some clauses are permitted only on a single leaf23
construct of the combined or composite construct, in which case the effect is as if the clause is24
applied to that specific construct. As detailed in this section, other clauses have the effect as if they25
are applied to one or more leaf constructs.26

The collapse clause is applied once to the combined or composite construct.27

The effect of the private clause is as if it is applied only to the innermost leaf construct that28
permits it.29

252 OpenMP API – Version 5.1 November 2020

The effect of the firstprivate clause is as if it is applied to one or more leaf constructs as1
follows:2

• To the distribute construct if it is among the constituent constructs;3

• To the teams construct if it is among the constituent constructs and the distribute4
construct is not;5

• To the worksharing-loop construct if it is among the constituent constructs;6

• To the taskloop construct if it is among the constituent constructs;7

• To the parallel construct if it is among the constituent constructs and the worksharing-loop8
construct or the taskloop construct is not;9

• To the target construct if it is among the constituent constructs and the same list item does not10
appear in a lastprivate or map clause.11

If the parallel construct is among the constituent constructs and the effect is not as if the12
firstprivate clause is applied to it by the above rules, then the effect is as if the shared13
clause with the same list item is applied to the parallel construct. If the teams construct is14
among the constituent constructs and the effect is not as if the firstprivate clause is applied to15
it by the above rules, then the effect is as if the shared clause with the same list item is applied to16
the teams construct.17

The effect of the lastprivate clause is as if it is applied to all leaf constructs that permit the18
clause. If the parallel construct is among the constituent constructs and the list item is not also19
specified in the firstprivate clause, then the effect of the lastprivate clause is as if the20
shared clause with the same list item is applied to the parallel construct. If the teams21
construct is among the constituent constructs and the list item is not also specified in the22
firstprivate clause, then the effect of the lastprivate clause is as if the shared clause23
with the same list item is applied to the teams construct. If the target construct is among the24
constituent constructs and the list item is not specified in a map clause, the effect of the25
lastprivate clause is as if the same list item appears in a map clause with a map-type of26
tofrom.27

The effect of the shared, default, order, or allocate clause is as if it is applied to all leaf28
constructs that permit the clause.29

The effect of the reduction clause is as if it is applied to all leaf constructs that permit the30
clause, except for the following constructs:31

• The parallel construct, when combined with the sections, worksharing-loop, loop, or32
taskloop construct; and33

• The teams construct, when combined with the loop construct.34

For the parallel and teams constructs above, the effect of the reduction clause instead is as35
if each list item or, for any list item that is an array item, its corresponding base array or base36
pointer appears in a shared clause for the construct. If the task reduction-modifier is specified,37

CHAPTER 2. DIRECTIVES 253

the effect is as if it only modifies the behavior of the reduction clause on the innermost leaf1
construct that accepts the modifier (see Section 2.21.5.4). If the inscan reduction-modifier is2
specified, the effect is as if it modifies the behavior of the reduction clause on all constructs of3
the combined construct to which the clause is applied and that accept the modifier. If the target4
construct is among the constituent constructs and the list item is not specified in a map clause, the5
effect of the reduction clause is as if the same list item appears in a map clause with a map-type6
of tofrom.7

The in_reduction clause applies to the single leaf construct on which it is permitted. If that8
construct is a target construct, the effect is as if the same list item also appears in a map clause9
with a map-type of tofrom and a map-type-modifier of always.10

The effect of the if clause is described in Section 2.18.11

The effect of the linear clause is as if it is applied to the innermost leaf construct. Additionally,12
if the list item is not the iteration variable of a simd or worksharing-loop SIMD construct, the13
effect on the outer leaf constructs is as if the list item was specified in firstprivate and14
lastprivate clauses on the combined or composite construct, with the rules specified above15
applied. If a list item of the linear clause is the iteration variable of a simd or worksharing-loop16
SIMD construct and it is not declared in the construct, the effect on the outer leaf constructs is as if17
the list item was specified in a lastprivate clause on the combined or composite construct with18
the rules specified above applied.19

The effect of the nowait clause is as if it is applied to the outermost leaf construct that permits it.20

If the clauses have expressions on them, such as for various clauses where the argument of the21
clause is an expression, or lower-bound, length, or stride expressions inside array sections (or22
subscript and stride expressions in subscript-triplet for Fortran), or linear-step or alignment23
expressions, the expressions are evaluated immediately before the construct to which the clause has24
been split or duplicated per the above rules (therefore inside of the outer leaf constructs). However,25
the expressions inside the num_teams and thread_limit clauses are always evaluated before26
the outermost leaf construct.27

The restriction that a list item may not appear in more than one data sharing clause with the28
exception of specifying a variable in both firstprivate and lastprivate clauses applies29
after the clauses are split or duplicated per the above rules.30

2.18 if Clause31

Summary32
The semantics of an if clause are described in the section on the construct to which it applies. The33
if clause directive-name-modifier names the associated construct to which an expression applies,34
and is particularly useful for composite and combined constructs.35

254 OpenMP API – Version 5.1 November 2020

Syntax1
C / C++

The syntax of the if clause is as follows:2

if([directive-name-modifier :] scalar-expression)3

C / C++
Fortran

The syntax of the if clause is as follows:4

if([directive-name-modifier :] scalar-logical-expression)5

Fortran
Description6
The effect of the if clause depends on the construct to which it is applied. For combined or7
composite constructs, the if clause only applies to the semantics of the construct named in the8
directive-name-modifier if one is specified. If no directive-name-modifier is specified for a9
combined or composite construct then the if clause applies to all constructs to which an if clause10
can apply.11

2.19 Synchronization Constructs and Clauses12

A synchronization construct orders the completion of code executed by different threads. This13
ordering is imposed by synchronizing flush operations that are executed as part of the region that14
corresponds to the construct.15

Synchronization through the use of synchronizing flush operations and atomic operations is16
described in Section 1.4.4 and Section 1.4.6. Section 2.19.8.1 defines the behavior of synchronizing17
flush operations that are implied at various other locations in an OpenMP program.18

2.19.1 critical Construct19

Summary20
The critical construct restricts execution of the associated structured block to a single thread at21
a time.22

Syntax23
C / C++

The syntax of the critical construct is as follows:24

#pragma omp critical [(name) [[,] hint(hint-expression)]] new-line25
structured-block26

where hint-expression is an integer constant expression that evaluates to a valid synchronization27
hint (as described in Section 2.19.12).28

C / C++

CHAPTER 2. DIRECTIVES 255

Fortran
The syntax of the critical construct is as follows:1

!$omp critical [(name) [[,] hint(hint-expression)]]2
loosely-structured-block3

!$omp end critical [(name)]4

or5

!$omp critical [(name) [[,] hint(hint-expression)]]6
strictly-structured-block7

[!$omp end critical [(name)]]8

where hint-expression is a constant expression that evaluates to a scalar value with kind9
omp_sync_hint_kind and a value that is a valid synchronization hint (as described10
in Section 2.19.12).11

Fortran
Binding12
The binding thread set for a critical region is all threads in the contention group.13

Description14
The region that corresponds to a critical construct is executed as if only a single thread at a15
time among all threads in the contention group enters the region for execution, without regard to the16
teams to which the threads belong. An optional name may be used to identify the critical17
construct. All critical constructs without a name are considered to have the same unspecified18
name.19

C / C++
Identifiers used to identify a critical construct have external linkage and are in a name space20
that is separate from the name spaces used by labels, tags, members, and ordinary identifiers.21

C / C++
Fortran

The names of critical constructs are global entities of the program. If a name conflicts with22
any other entity, the behavior of the program is unspecified.23

Fortran
The threads of a contention group execute the critical region as if only one thread of the24
contention group executes the critical region at a time. The critical construct enforces25
these execution semantics with respect to all critical constructs with the same name in all26
threads in the contention group.27

If present, the hint clause gives the implementation additional information about the expected28
runtime properties of the critical region that can optionally be used to optimize the29
implementation. The presence of a hint clause does not affect the isolation guarantees provided30
by the critical construct. If no hint clause is specified, the effect is as if31
hint(omp_sync_hint_none) had been specified.32

256 OpenMP API – Version 5.1 November 2020

Execution Model Events1
The critical-acquiring event occurs in a thread that encounters the critical construct on entry2
to the critical region before initiating synchronization for the region.3

The critical-acquired event occurs in a thread that encounters the critical construct after it4
enters the region, but before it executes the structured block of the critical region.5

The critical-released event occurs in a thread that encounters the critical construct after it6
completes any synchronization on exit from the critical region.7

Tool Callbacks8
A thread dispatches a registered ompt_callback_mutex_acquire callback for each9
occurrence of a critical-acquiring event in that thread. This callback has the type signature10
ompt_callback_mutex_acquire_t.11

A thread dispatches a registered ompt_callback_mutex_acquired callback for each12
occurrence of a critical-acquired event in that thread. This callback has the type signature13
ompt_callback_mutex_t.14

A thread dispatches a registered ompt_callback_mutex_released callback for each15
occurrence of a critical-released event in that thread. This callback has the type signature16
ompt_callback_mutex_t.17

The callbacks occur in the task that encounters the critical construct. The callbacks should receive18
ompt_mutex_critical as their kind argument if practical, but a less specific kind is19
acceptable.20

Restrictions21
Restrictions to the critical construct are as follows:22

• Unless the effect is as if hint(omp_sync_hint_none) was specified, the critical23
construct must specify a name.24

• If the hint clause is specified, each of the critical constructs with the same name must25
have a hint clause for which the hint-expression evaluates to the same value.26

C++
• A throw executed inside a critical region must cause execution to resume within the same27
critical region, and the same thread that threw the exception must catch it.28

C++
Fortran

• If a name is specified on a critical directive, the same name must also be specified on the29
end critical directive.30

• If no name appears on the critical directive, no name can appear on the end critical31
directive.32

Fortran

CHAPTER 2. DIRECTIVES 257

Cross References1
• Synchronization Hints, see Section 2.19.12.2

• ompt_mutex_critical, see Section 4.4.4.16.3

• ompt_callback_mutex_acquire_t, see Section 4.5.2.14.4

• ompt_callback_mutex_t, see Section 4.5.2.15.5

2.19.2 barrier Construct6

Summary7
The barrier construct specifies an explicit barrier at the point at which the construct appears.8
The barrier construct is a stand-alone directive.9

Syntax10
C / C++

The syntax of the barrier construct is as follows:11

#pragma omp barrier new-line12

C / C++
Fortran

The syntax of the barrier construct is as follows:13

!$omp barrier14

Fortran

Binding15
The binding thread set for a barrier region is the current team. A barrier region binds to the16
innermost enclosing parallel region.17

Description18
All threads of the team that is executing the binding parallel region must execute the barrier19
region and complete execution of all explicit tasks bound to this parallel region before any are20
allowed to continue execution beyond the barrier.21

The barrier region includes an implicit task scheduling point in the current task region.22

Execution Model Events23
The explicit-barrier-begin event occurs in each thread that encounters the barrier construct on24
entry to the barrier region.25

The explicit-barrier-wait-begin event occurs when a task begins an interval of active or passive26
waiting in a barrier region.27

258 OpenMP API – Version 5.1 November 2020

The explicit-barrier-wait-end event occurs when a task ends an interval of active or passive waiting1
and resumes execution in a barrier region.2

The explicit-barrier-end event occurs in each thread that encounters the barrier construct after3
the barrier synchronization on exit from the barrier region.4

A cancellation event occurs if cancellation is activated at an implicit cancellation point in a5
barrier region.6

Tool Callbacks7
A thread dispatches a registered ompt_callback_sync_region callback with8
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_begin9
as its endpoint argument for each occurrence of an explicit-barrier-begin event. Similarly, a thread10
dispatches a registered ompt_callback_sync_region callback with11
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_end as12
its endpoint argument for each occurrence of an explicit-barrier-end event. These callbacks occur13
in the context of the task that encountered the barrier construct and have type signature14
ompt_callback_sync_region_t.15

A thread dispatches a registered ompt_callback_sync_region_wait callback with16
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_begin17
as its endpoint argument for each occurrence of an explicit-barrier-wait-begin event. Similarly, a18
thread dispatches a registered ompt_callback_sync_region_wait callback with19
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_end as20
its endpoint argument for each occurrence of an explicit-barrier-wait-end event. These callbacks21
occur in the context of the task that encountered the barrier construct and have type signature22
ompt_callback_sync_region_t.23

A thread dispatches a registered ompt_callback_cancel callback with24
ompt_cancel_detected as its flags argument for each occurrence of a cancellation event in25
that thread. The callback occurs in the context of the encountering task. The callback has type26
signature ompt_callback_cancel_t.27

Restrictions28
Restrictions to the barrier construct are as follows:29

• Each barrier region must be encountered by all threads in a team or by none at all, unless30
cancellation has been requested for the innermost enclosing parallel region.31

• The sequence of worksharing regions and barrier regions encountered must be the same for32
every thread in a team.33

CHAPTER 2. DIRECTIVES 259

Cross References1
• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.2

• ompt_sync_region_barrier, see Section 4.4.4.13.3

• ompt_callback_sync_region_t, see Section 4.5.2.13.4

• ompt_callback_cancel_t, see Section 4.5.2.18.5

2.19.3 Implicit Barriers6

This section describes the OMPT events and tool callbacks associated with implicit barriers, which7
occur at the end of various regions as defined in the description of the constructs to which they8
correspond. Implicit barriers are task scheduling points. For a description of task scheduling9
points, associated events, and tool callbacks, see Section 2.12.6.10

Execution Model Events11
The implicit-barrier-begin event occurs in each implicit task at the beginning of an implicit barrier12
region.13

The implicit-barrier-wait-begin event occurs when a task begins an interval of active or passive14
waiting in an implicit barrier region.15

The implicit-barrier-wait-end event occurs when a task ends an interval of active or waiting and16
resumes execution of an implicit barrier region.17

The implicit-barrier-end event occurs in each implicit task after the barrier synchronization on exit18
from an implicit barrier region.19

A cancellation event occurs if cancellation is activated at an implicit cancellation point in an20
implicit barrier region.21

Tool Callbacks22
A thread dispatches a registered ompt_callback_sync_region callback for each implicit23
barrier begin and end event. Similarly, a thread dispatches a registered24
ompt_callback_sync_region_wait callback for each implicit barrier wait-begin and25
wait-end event. All callbacks for implicit barrier events execute in the context of the encountering26
task and have type signature ompt_callback_sync_region_t.27

For the implicit barrier at the end of a worksharing construct, the kind argument is28
ompt_sync_region_barrier_implicit_workshare. For the implicit barrier at the end29
of a parallel region, the kind argument is30
ompt_sync_region_barrier_implicit_parallel. For an extra barrier added by an31
OpenMP implementation, the kind argument is32
ompt_sync_region_barrier_implementation. For a barrier at the end of a teams33
region, the kind argument is ompt_sync_region_barrier_teams.34

260 OpenMP API – Version 5.1 November 2020

A thread dispatches a registered ompt_callback_cancel callback with1
ompt_cancel_detected as its flags argument for each occurrence of a cancellation event in2
that thread. The callback occurs in the context of the encountering task. The callback has type3
signature ompt_callback_cancel_t.4

Restrictions5
Restrictions to implicit barriers are as follows:6

• If a thread is in the state ompt_state_wait_barrier_implicit_parallel, a call to7
ompt_get_parallel_info may return a pointer to a copy of the data object associated8
with the parallel region rather than a pointer to the associated data object itself. Writing to the9
data object returned by omp_get_parallel_info when a thread is in the10
ompt_state_wait_barrier_implicit_parallel results in unspecified behavior.11

Cross References12
• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.13

• ompt_sync_region_barrier_implementation,14
ompt_sync_region_barrier_implicit_parallel15
ompt_sync_region_barrier_teams, and16
ompt_sync_region_barrier_implicit_workshare, see Section 4.4.4.13.17

• ompt_cancel_detected, see Section 4.4.4.25.18

• ompt_callback_sync_region_t, see Section 4.5.2.13.19

• ompt_callback_cancel_t, see Section 4.5.2.18.20

2.19.4 Implementation-Specific Barriers21

An OpenMP implementation can execute implementation-specific barriers that are not implied by22
the OpenMP specification; therefore, no execution model events are bound to these barriers. The23
implementation can handle these barriers like implicit barriers and dispatch all events as for24
implicit barriers. These callbacks are dispatched with25
ompt_sync_region_barrier_implementation— or26
ompt_sync_region_barrier, if the implementation cannot make a distinction — as the kind27
argument.28

2.19.5 taskwait Construct29

Summary30
The taskwait construct specifies a wait on the completion of child tasks of the current task. The31
taskwait construct is a stand-alone directive.32

CHAPTER 2. DIRECTIVES 261

Syntax1
C / C++

The syntax of the taskwait construct is as follows:2

#pragma omp taskwait [clause[[,] clause] ...] new-line3

where clause is one of the following:4

depend([depend-modifier,]dependence-type : locator-list)5

nowait6

C / C++
Fortran

The syntax of the taskwait construct is as follows:7

!$omp taskwait [clause[[,] clause] ...]8

where clause is one of the following:9

depend([depend-modifier,]dependence-type : locator-list)10

nowait11

Fortran

Binding12
The taskwait region binds to the current task region. The binding thread set of the taskwait13
region is the current team.14

Description15
If no depend clause is present on the taskwait construct, the current task region is suspended16
at an implicit task scheduling point associated with the construct. The current task region remains17
suspended until all child tasks that it generated before the taskwait region complete execution.18

If one or more depend clauses are present on the taskwait construct and the nowait clause is19
not also present, the behavior is as if these clauses were applied to a task construct with an empty20
associated structured block that generates a mergeable and included task. Thus, the current task21
region is suspended until the predecessor tasks of this task complete execution.22

If one or more depend clauses are present on the taskwait construct and the nowait clause is23
also present, the behavior is as if these clauses were applied to a task construct with an empty24
associated structured block that generates a task for which execution may be deferred. Thus, all25
predecessor tasks of this task must complete execution before any subsequently generated task that26
depends on this task starts its execution.27

262 OpenMP API – Version 5.1 November 2020

Execution Model Events1
The taskwait-begin event occurs in a thread when it encounters a taskwait construct with no2
depend clause on entry to the taskwait region.3

The taskwait-wait-begin event occurs when a task begins an interval of active or passive waiting in4
a region corresponding to a taskwait construct with no depend clause.5

The taskwait-wait-end event occurs when a task ends an interval of active or passive waiting and6
resumes execution from a region corresponding to a taskwait construct with no depend clause.7

The taskwait-end event occurs in a thread when it encounters a taskwait construct with no8
depend clause after the taskwait synchronization on exit from the taskwait region.9

The taskwait-init event occurs in a thread when it encounters a taskwait construct with one or10
more depend clauses on entry to the taskwait region.11

The taskwait-complete event occurs on completion of the dependent task that results from a12
taskwait construct with one or more depend clauses, in the context of the thread that executes13
the dependent task and before any subsequently generated task that depends on the dependent task14
starts its execution.15

Tool Callbacks16
A thread dispatches a registered ompt_callback_sync_region callback with17
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin as its18
endpoint argument for each occurrence of a taskwait-begin event in the task that encounters the19
taskwait construct. Similarly, a thread dispatches a registered20
ompt_callback_sync_region callback with ompt_sync_region_taskwait as its21
kind argument and ompt_scope_end as its endpoint argument for each occurrence of a22
taskwait-end event in the task that encounters the taskwait construct. These callbacks occur in23
the task that encounters the taskwait construct and have the type signature24
ompt_callback_sync_region_t.25

A thread dispatches a registered ompt_callback_sync_region_wait callback with26
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin as its27
endpoint argument for each occurrence of a taskwait-wait-begin event. Similarly, a thread28
dispatches a registered ompt_callback_sync_region_wait callback with29
ompt_sync_region_taskwait as its kind argument and ompt_scope_end as its endpoint30
argument for each occurrence of a taskwait-wait-end event. These callbacks occur in the context of31
the task that encounters the taskwait construct and have type signature32
ompt_callback_sync_region_t.33

A thread dispatches a registered ompt_callback_task_create callback for each occurrence34
of a taskwait-init event in the context of the encountering task. This callback has the type signature35
ompt_callback_task_create_t. In the dispatched callback, (flags &36
ompt_task_taskwait) always evaluates to true. If the nowait clause is not present,37
(flags & ompt_task_undeferred) also evaluates to true.38

CHAPTER 2. DIRECTIVES 263

A thread dispatches a registered ompt_callback_task_schedule callback for each1
occurrence of a taskwait-complete event. This callback has the type signature2
ompt_callback_task_schedule_t with ompt_taskwait_complete as its3
prior_task_status argument.4

Restrictions5
Restrictions to the taskwait construct are as follows:6

• The mutexinoutset dependence-type may not appear in a depend clause on a taskwait7
construct.8

• If the dependence-type of a depend clause is depobj then the dependence objects cannot9
represent dependences of the mutexinoutset dependence type.10

• The nowait clause may only appear on a taskwait directive if the depend clause is present.11

• At most one nowait clause can appear on a taskwait directive.12

Cross References13
• task construct, see Section 2.12.1.14

• Task scheduling, see Section 2.12.6.15

• depend clause, see Section 2.19.11.16

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.17

• ompt_sync_region_taskwait, see Section 4.4.4.13.18

• ompt_callback_sync_region_t, see Section 4.5.2.13.19

2.19.6 taskgroup Construct20

Summary21
The taskgroup construct specifies a wait on completion of child tasks of the current task and22
their descendent tasks.23

Syntax24
C / C++

The syntax of the taskgroup construct is as follows:25

#pragma omp taskgroup [clause[[,] clause] ...] new-line26
structured-block27

where clause is one of the following:28

task_reduction(reduction-identifier : list)29

allocate([allocator:]list)30

C / C++

264 OpenMP API – Version 5.1 November 2020

Fortran
The syntax of the taskgroup construct is as follows:1

!$omp taskgroup [clause [[,] clause] ...]2
loosely-structured-block3

!$omp end taskgroup4

or5

!$omp taskgroup [clause [[,] clause] ...]6
strictly-structured-block7

[!$omp end taskgroup]8

where clause is one of the following:9

task_reduction(reduction-identifier : list)10

allocate([allocator:]list)11

Fortran

Binding12
The binding task set of a taskgroup region is all tasks of the current team that are generated in13
the region. A taskgroup region binds to the innermost enclosing parallel region.14

Description15
When a thread encounters a taskgroup construct, it starts executing the region. All child tasks16
generated in the taskgroup region and all of their descendants that bind to the same parallel17
region as the taskgroup region are part of the taskgroup set associated with the taskgroup18
region.19

An implicit task scheduling point occurs at the end of the taskgroup region. The current task is20
suspended at the task scheduling point until all tasks in the taskgroup set complete execution.21

Execution Model Events22
The taskgroup-begin event occurs in each thread that encounters the taskgroup construct on23
entry to the taskgroup region.24

The taskgroup-wait-begin event occurs when a task begins an interval of active or passive waiting25
in a taskgroup region.26

The taskgroup-wait-end event occurs when a task ends an interval of active or passive waiting and27
resumes execution in a taskgroup region.28

The taskgroup-end event occurs in each thread that encounters the taskgroup construct after the29
taskgroup synchronization on exit from the taskgroup region.30

CHAPTER 2. DIRECTIVES 265

Tool Callbacks1
A thread dispatches a registered ompt_callback_sync_region callback with2
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin as its3
endpoint argument for each occurrence of a taskgroup-begin event in the task that encounters the4
taskgroup construct. Similarly, a thread dispatches a registered5
ompt_callback_sync_region callback with ompt_sync_region_taskgroup as its6
kind argument and ompt_scope_end as its endpoint argument for each occurrence of a7
taskgroup-end event in the task that encounters the taskgroup construct. These callbacks occur8
in the task that encounters the taskgroup construct and have the type signature9
ompt_callback_sync_region_t.10

A thread dispatches a registered ompt_callback_sync_region_wait callback with11
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin as its12
endpoint argument for each occurrence of a taskgroup-wait-begin event. Similarly, a thread13
dispatches a registered ompt_callback_sync_region_wait callback with14
ompt_sync_region_taskgroup as its kind argument and ompt_scope_end as its15
endpoint argument for each occurrence of a taskgroup-wait-end event. These callbacks occur in the16
context of the task that encounters the taskgroup construct and have type signature17
ompt_callback_sync_region_t.18

Cross References19
• Task scheduling, see Section 2.12.6.20

• task_reduction clause, see Section 2.21.5.5.21

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.22

• ompt_sync_region_taskgroup, see Section 4.4.4.13.23

• ompt_callback_sync_region_t, see Section 4.5.2.13.24

2.19.7 atomic Construct25

Summary26
The atomic construct ensures that a specific storage location is accessed atomically, rather than27
exposing it to the possibility of multiple, simultaneous reading and writing threads that may result28
in indeterminate values.29

Syntax30
In the following syntax, atomic-clause is a clause that indicates the semantics for which atomicity is31
enforced, and memory-order-clause is a clause that indicates the memory ordering behavior of the32
construct. Specifically, atomic-clause is one of the following:33

read34

write35

update36

266 OpenMP API – Version 5.1 November 2020

memory-order-clause is one of the following:1

seq_cst2

acq_rel3

release4

acquire5

relaxed6

and clause is either atomic-clause, memory-order-clause or one of the following:7

capture8

compare9

hint(hint-expression)10

fail(seq_cst | acquire | relaxed)11

weak12

C / C++
The syntax of the atomic construct is:13

#pragma omp atomic [clause[[,] clause] ...] new-line14
statement15

where statement is a statement with one of the following forms:16

• If atomic-clause is read then statement is read-expr-stmt, a read expression statement that has17
the following form:18

v = x;19

• If atomic-clause is write then statement is write-expr-stmt, a write expression statement that20
has the following form:21

x = expr;22

• If atomic-clause is update then statement can be update-expr-stmt, an update expression23
statement that has one of the following forms:24

x++;25
x--;26
++x;27
--x;28
x binop= expr;29
x = x binop expr;30
x = expr binop x;31

CHAPTER 2. DIRECTIVES 267

C/C++ (cont.)

• If the compare clause is present then either statement is:1

– cond-expr-stmt, a conditional expression statement that has one of the following forms:2

x = expr ordop x ? expr : x;3
x = x ordop expr ? expr : x;4
x = x == e ? d : x;5

– or cond-update-stmt, a conditional update statement that has one of the following forms:6

if(expr ordop x) { x = expr; }7
if(x ordop expr) { x = expr; }8
if(x == e) { x = d; }9

• If the capture clause is present, statement can have one of the following forms:10

v = expr-stmt11
{ v = x; expr-stmt }12
{ expr-stmt v = x; }13

where expr-stmt is either write-expr-stmt, update-expr-stmt or cond-expr-stmt.14

• If both the compare and capture clauses are present then the following forms are also valid:15

{ v = x; cond-update-stmt }16
{ cond-update-stmt v = x; }17
if(x == e) { x = d; } else { v = x; }18
{ r = x == e; if(r) { x = d; } }19
{ r = x == e; if(r) { x = d; } else { v = x; } }20

In the preceding expressions:21

• x, r (result), and v (as applicable) are lvalue expressions with scalar type.22

• e (expected) is an expression with scalar type, in forms where e is assigned it must be an lvalue.23

• d (desired) is an expression with scalar type.24

• r must be of integral type.25

• During the execution of an atomic region, multiple syntactic occurrences of x must designate26
the same storage location.27

• None of v, x, r, d and expr (as applicable) may access the storage location designated by any28
other in the list.29

• e and v may refer to, or access, the same storage location.30

• expr is an expression with scalar type.31

• The order operation, ordop, is one of <, or >.32

• binop is one of +, *, -, /, &, ^, |, <<, or >>.33

268 OpenMP API – Version 5.1 November 2020

• binop, binop=, ordop, ==, ++, and -- are not overloaded operators.1

• The expression x binop expr must be numerically equivalent to x binop (expr). This requirement2
is satisfied if the operators in expr have precedence greater than binop, or by using parentheses3
around expr or subexpressions of expr.4

• The expression expr binop x must be numerically equivalent to (expr) binop x. This requirement5
is satisfied if the operators in expr have precedence equal to or greater than binop, or by using6
parentheses around expr or subexpressions of expr.7

• == comparisons are performed by comparing the bits that comprise each object as with memcmp.8

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is9
unspecified.10

• hint-expression is a constant integer expression that evaluates to a valid synchronization hint.11

C / C++
Fortran

The syntax of the atomic construct takes any of the following forms:12

!$omp atomic [clause[[[,] clause] ...] [,]]13
statement14

[!$omp end atomic]15

or16

!$omp atomic [clause[[[,] clause] ...] [,]] capture [[,] clause [[[,] clause] ...]]17
statement18
capture-statement19

[!$omp end atomic]20

or21

!$omp atomic [clause[[[,] clause] ...] [,]] capture [[,] clause [[[,] clause] ...]]22
capture-statement23
statement24

[!$omp end atomic]25

where capture-statement has the following form:26

v = x27

and statement is a statement with one of the following forms:28

• If atomic-clause is read then statement is:29

v = x;30

• If atomic-clause is write then statement is:31

x = expr32

CHAPTER 2. DIRECTIVES 269

Fortran (cont.)

• If atomic-clause is update then:1

– statement can have one of the following forms:2

x = x operator expr3
x = expr operator x4
x = intrinsic-procedure-name (x, expr-list)5
x = intrinsic-procedure-name (expr-list, x)6

– or, if the capture clause is present and statement is preceded or followed by7
capture-statement, statement can also have this form:8

x = expr9

• If the compare clause is present then:10

– statement has one of these forms:11

if (x == e) then12
x = d13

end if14

if (x == e) x = d15

– or, if the capture clause is also present and statement is not preceded or followed by16
capture-statement, statement has this form:17

if (x == e) then18
x = d19

else20
v = x21

end if22

In the preceding statements:23

• x, v, d and e (as applicable) are scalar variables of intrinsic type.24

• x must not have the ALLOCATABLE attribute.25

• During the execution of an atomic region, multiple syntactic occurrences of x must designate the26
same storage location.27

• None of v, expr, and expr-list (as applicable) may access the same storage location as x.28

• None of x, expr, and expr-list (as applicable) may access the same storage location as v.29

• expr is a scalar expression.30

• expr-list is a comma-separated, non-empty list of scalar expressions. If intrinsic-procedure-name31
refers to IAND, IOR, or IEOR, exactly one expression must appear in expr-list.32

• intrinsic-procedure-name is one of MAX, MIN, IAND, IOR, or IEOR.33

• operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV..34

270 OpenMP API – Version 5.1 November 2020

• The expression x operator expr must be numerically equivalent to x operator (expr). This1
requirement is satisfied if the operators in expr have precedence greater than operator, or by2
using parentheses around expr or subexpressions of expr.3

• The expression expr operator x must be numerically equivalent to (expr) operator x. This4
requirement is satisfied if the operators in expr have precedence equal to or greater than5
operator, or by using parentheses around expr or subexpressions of expr.6

• intrinsic-procedure-name must refer to the intrinsic procedure name and not to other program7
entities.8

• operator must refer to the intrinsic operator and not to a user-defined operator.9

• All assignments must be intrinsic assignments.10

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is11
unspecified.12

• hint-expression is a constant expression that evaluates to a scalar value with kind13
omp_sync_hint_kind and a value that is a valid synchronization hint.14

Fortran

Binding15
If the size of x is 8, 16, 32, or 64 bits and x is aligned to a multiple of its size, the binding thread set16
for the atomic region is all threads on the device. Otherwise, the binding thread set for the17
atomic region is all threads in the contention group. atomic regions enforce exclusive access18
with respect to other atomic regions that access the same storage location x among all threads in19
the binding thread set without regard to the teams to which the threads belong.20

Description21
If atomic-clause is not present on the construct, the behavior is as if the update clause is specified.22

The atomic construct with the read clause results in an atomic read of the location designated23
by x.24

The atomic construct with the write clause results in an atomic write of the location designated25
by x.26

The atomic construct with the update clause results in an atomic update of the location27
designated by x using the designated operator or intrinsic. Only the read and write of the location28
designated by x are performed mutually atomically. The evaluation of expr or expr-list need not be29
atomic with respect to the read or write of the location designated by x. No task scheduling points30
are allowed between the read and the write of the location designated by x.31

If the capture clause is present, the atomic update is an atomic captured update — an atomic32
update to the location designated by x using the designated operator or intrinsic while also33
capturing the original or final value of the location designated by x with respect to the atomic34
update. The original or final value of the location designated by x is written in the location35

CHAPTER 2. DIRECTIVES 271

designated by v based on the base language semantics of structured block or statements of the1
atomic construct. Only the read and write of the location designated by x are performed mutually2
atomically. Neither the evaluation of expr or expr-list, nor the write to the location designated by v,3
need be atomic with respect to the read or write of the location designated by x.4

If the compare clause is present, the atomic update is an atomic conditional update. For forms5
that use an equality comparison, the operation is an atomic compare-and-swap — it atomically6
compares the value of x to e and if they are equal writes the value of d into the location designated7
by x. Based on the base language semantics of the associated structured block of the atomic8
construct, the original or final value of the location designated by x is written to the location9
designated by v, which is allowed to be the same location as designated by e, or the result of the10
comparison is written to the location designated by r. Only the read and write of the location11
designated by x are performed mutually atomically. Neither the evaluation of either e or d nor12
writes to the locations designated by v and r need be atomic with respect to the read or write of the13
location designated by x.14

C / C++
If the compare clause is present, forms that use ordop are logically an atomic maximum or15
minimum, but they may be implemented with a compare-and-swap loop with short-circuiting. For16
forms where statement is cond-expr-stmt, if the result of the condition implies that the value of x17
does not change then the update may not occur.18

C / C++
If the weak clause is present, the comparison performed by an atomic compare-and-swap operation19
may spuriously fail, evaluating to not equal even when the values are equal.20

21

Note – Allowing for spurious failure by specifying a weak clause can result in performance gains22
on some systems when using compare-and-swap in a loop. For cases where a single23
compare-and-swap would otherwise be sufficient, using a loop over a weak compare-and-swap is24
unlikely to improve performance.25

26

If memory-order-clause is present, or implicitly provided by a requires directive, it specifies the27
effective memory ordering and otherwise the effective memory ordering is relaxed. If the fail28
clause is present, its parameter overrides the effective memory ordering used if the comparison for29
an atomic conditional update fails.30

The atomic construct may be used to enforce memory consistency between threads, based on the31
guarantees provided by Section 1.4.6. A strong flush on the location designated by x is performed32
on entry to and exit from the atomic operation, ensuring that the set of all atomic operations applied33
to the same location in a race-free program has a total completion order. If the write or update34
clause is specified, the atomic operation is not an atomic conditional update for which the35
comparison fails, and the effective memory ordering is release, acq_rel, or seq_cst, the36
strong flush on entry to the atomic operation is also a release flush. If the read or update clause37
is specified and the effective memory ordering is acquire, acq_rel, or seq_cst then the38

272 OpenMP API – Version 5.1 November 2020

strong flush on exit from the atomic operation is also an acquire flush. Therefore, if the effective1
memory ordering is not relaxed, release and/or acquire flush operations are implied and permit2
synchronization between the threads without the use of explicit flush directives.3

For all forms of the atomic construct, any combination of two or more of these atomic4
constructs enforces mutually exclusive access to the locations designated by x among threads in the5
binding thread set. To avoid data races, all accesses of the locations designated by x that could6
potentially occur in parallel must be protected with an atomic construct.7

atomic regions do not guarantee exclusive access with respect to any accesses outside of8
atomic regions to the same storage location x even if those accesses occur during a critical9
or ordered region, while an OpenMP lock is owned by the executing task, or during the10
execution of a reduction clause.11

However, other OpenMP synchronization can ensure the desired exclusive access. For example, a12
barrier that follows a series of atomic updates to x guarantees that subsequent accesses do not form13
a race with the atomic accesses.14

A compliant implementation may enforce exclusive access between atomic regions that update15
different storage locations. The circumstances under which this occurs are implementation defined.16

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a17
multiple of the size of x), then the behavior of the atomic region is implementation defined.18

If present, the hint clause gives the implementation additional information about the expected19
properties of the atomic operation that can optionally be used to optimize the implementation. The20
presence of a hint clause does not affect the semantics of the atomic construct, and all hints21
may be ignored. If no hint clause is specified, the effect is as if22
hint(omp_sync_hint_none) had been specified.23

Execution Model Events24
The atomic-acquiring event occurs in the thread that encounters the atomic construct on entry to25
the atomic region before initiating synchronization for the region.26

The atomic-acquired event occurs in the thread that encounters the atomic construct after it27
enters the region, but before it executes the structured block of the atomic region.28

The atomic-released event occurs in the thread that encounters the atomic construct after it29
completes any synchronization on exit from the atomic region.30

Tool Callbacks31
A thread dispatches a registered ompt_callback_mutex_acquire callback for each32
occurrence of an atomic-acquiring event in that thread. This callback has the type signature33
ompt_callback_mutex_acquire_t.34

A thread dispatches a registered ompt_callback_mutex_acquired callback for each35
occurrence of an atomic-acquired event in that thread. This callback has the type signature36
ompt_callback_mutex_t.37

CHAPTER 2. DIRECTIVES 273

A thread dispatches a registered ompt_callback_mutex_released callback with1
ompt_mutex_atomic as the kind argument if practical, although a less specific kind may be2
used, for each occurrence of an atomic-released event in that thread. This callback has the type3
signature ompt_callback_mutex_t and occurs in the task that encounters the atomic4
construct.5

Restrictions6
Restrictions to the atomic construct are as follows:7

• OpenMP constructs may not be encountered during execution of an atomic region.8

• At most one atomic-clause may appear on the construct.9

• At most one memory-order-clause may appear on the construct.10

• At most one hint clause may appear on the construct.11

• At most one capture clause may appear on the construct.12

• At most one compare clause may appear on the construct.13

• If a capture or compare clause appears on the construct then atomic-clause must be14
update.15

• At most one fail clause may appear on the construct.16

• At most one weak clause may appear on the construct.17

• If atomic-clause is read then memory-order-clause must not be release.18

• If atomic-clause is write then memory-order-clause must not be acquire.19

• The weak clause may only appear if the resulting atomic operation is an atomic conditional20
update for which the comparison tests for equality.21

C / C++
• All atomic accesses to the storage locations designated by x throughout the program are required22
to have a compatible type.23

• The fail clause may only appear if the resulting atomic operation is an atomic conditional24
update.25

C / C++
Fortran

• All atomic accesses to the storage locations designated by x throughout the program are required26
to have the same type and type parameters.27

• The fail clause may only appear if the resulting atomic operation is an atomic conditional28
update or an atomic update where intrinsic-procedure-name is either MAX or MIN.29

Fortran

274 OpenMP API – Version 5.1 November 2020

Cross References1
• requires directive, see Section 2.5.1.2

• critical construct, see Section 2.19.1.3

• barrier construct, see Section 2.19.2.4

• flush construct, see Section 2.19.8.5

• ordered construct, see Section 2.19.9.6

• Synchronization hints, see Section 2.19.12.7

• reduction clause, see Section 2.21.5.4.8

• lock routines, see Section 3.9.9

• ompt_mutex_atomic, see Section 4.4.4.16.10

• ompt_callback_mutex_acquire_t, see Section 4.5.2.14.11

• ompt_callback_mutex_t, see Section 4.5.2.15.12

2.19.8 flush Construct13

Summary14
The flush construct executes the OpenMP flush operation. This operation makes a thread’s15
temporary view of memory consistent with memory and enforces an order on the memory16
operations of the variables explicitly specified or implied. See the memory model description in17
Section 1.4 for more details. The flush construct is a stand-alone directive.18

Syntax19
C / C++

The syntax of the flush construct is as follows:20

#pragma omp flush [memory-order-clause] [(list)] new-line21

where memory-order-clause is one of the following:22

seq_cst23

acq_rel24

release25

acquire26

C / C++

CHAPTER 2. DIRECTIVES 275

Fortran
The syntax of the flush construct is as follows:1

!$omp flush [memory-order-clause] [(list)]2

where memory-order-clause is one of the following:3

seq_cst4

acq_rel5

release6

acquire7

Fortran

Binding8
The binding thread set for a flush region is all threads in the device-set of its flush operation.9
Execution of a flush region affects the memory and it affects the temporary view of memory of10
the encountering thread. It does not affect the temporary view of other threads. Other threads on11
devices in the device-set must themselves execute a flush operation in order to be guaranteed to12
observe the effects of the flush operation of the encountering thread.13

Description14
If neither memory-order-clause nor a list appears on the flush construct then the behavior is as if15
memory-order-clause is seq_cst.16

A flush construct with the seq_cst clause, executed on a given thread, operates as if all data17
storage blocks that are accessible to the thread are flushed by a strong flush operation. A flush18
construct with a list applies a strong flush operation to the items in the list, and the flush operation19
does not complete until the operation is complete for all specified list items. An implementation20
may implement a flush construct with a list by ignoring the list and treating it the same as a21
flush construct with the seq_cst clause.22

If no list items are specified, the flush operation has the release and/or acquire flush properties:23

• If memory-order-clause is seq_cst or acq_rel, the flush operation is both a release flush24
and an acquire flush.25

• If memory-order-clause is release, the flush operation is a release flush.26

• If memory-order-clause is acquire, the flush operation is an acquire flush.27

276 OpenMP API – Version 5.1 November 2020

C / C++
If a pointer is present in the list, the pointer itself is flushed, not the memory block to which the1
pointer refers.2

A flush construct without a list corresponds to a call to atomic_thread_fence, where the3
argument is given by the identifier that results from prefixing memory_order_ to4
memory-order-clause.5

For a flush construct without a list, the generated flush region implicitly performs the6
corresponding call to atomic_thread_fence. The behavior of an explicit call to7
atomic_thread_fence that occurs in the program and does not have the argument8
memory_order_consume is as if the call is replaced by its corresponding flush construct.9

C / C++
Fortran

If the list item or a subobject of the list item has the POINTER attribute, the allocation or10
association status of the POINTER item is flushed, but the pointer target is not. If the list item is a11
Cray pointer, the pointer is flushed, but the object to which it points is not. Cray pointer support has12
been deprecated. If the list item is of type C_PTR, the variable is flushed, but the storage that13
corresponds to that address is not flushed. If the list item or the subobject of the list item has the14
ALLOCATABLE attribute and has an allocation status of allocated, the allocated variable is flushed;15
otherwise the allocation status is flushed.16

Fortran
17

Note – Use of a flush construct with a list is extremely error prone and users are strongly18
discouraged from attempting it. The following examples illustrate the ordering properties of the19
flush operation. In the following incorrect pseudocode example, the programmer intends to prevent20
simultaneous execution of the protected section by the two threads, but the program does not work21
properly because it does not enforce the proper ordering of the operations on variables a and b.22
Any shared data accessed in the protected section is not guaranteed to be current or consistent23
during or after the protected section. The atomic notation in the pseudocode in the following two24
examples indicates that the accesses to a and b are atomic write and atomic read operations.25
Otherwise both examples would contain data races and automatically result in unspecified behavior.26
The flush operations are strong flushes that are applied to the specified flush lists27

CHAPTER 2. DIRECTIVES 277

Incorrect example:
a = b = 0

thread 1 thread 2

atomic(b = 1) atomic(a = 1)

flush(b) flush(a)
flush(a) flush(b)
atomic(tmp = a) atomic(tmp = b)

if (tmp == 0) then if (tmp == 0) then

protected section protected section
end if end if

1

The problem with this example is that operations on variables a and b are not ordered with respect2
to each other. For instance, nothing prevents the compiler from moving the flush of b on thread 1 or3
the flush of a on thread 2 to a position completely after the protected section (assuming that the4
protected section on thread 1 does not reference b and the protected section on thread 2 does not5
reference a). If either re-ordering happens, both threads can simultaneously execute the protected6
section.7

The following pseudocode example correctly ensures that the protected section is executed by only8
one thread at a time. Execution of the protected section by neither thread is considered correct in9
this example. This occurs if both flushes complete prior to either thread executing its if statement.10

Correct example:
a = b = 0

thread 1 thread 2

atomic(b = 1) atomic(a = 1)

flush(a,b) flush(a,b)

atomic(tmp = a) atomic(tmp = b)

if (tmp == 0) then if (tmp == 0) then

protected section protected section

end if end if

11

The compiler is prohibited from moving the flush at all for either thread, ensuring that the12
respective assignment is complete and the data is flushed before the if statement is executed.13

14

278 OpenMP API – Version 5.1 November 2020

Execution Model Events1
The flush event occurs in a thread that encounters the flush construct.2

Tool Callbacks3
A thread dispatches a registered ompt_callback_flush callback for each occurrence of a4
flush event in that thread. This callback has the type signature ompt_callback_flush_t.5

Restrictions6
Restrictions to the flush construct are as follows:7

• If a memory-order-clause is specified, list items must not be specified on the flush directive.8

Cross References9
• ompt_callback_flush_t, see Section 4.5.2.17.10

2.19.8.1 Implicit Flushes11

Flush operations implied when executing an atomic region are described in Section 2.19.7.12

A flush region that corresponds to a flush directive with the release clause present is13
implied at the following locations:14

• During a barrier region;15

• At entry to a parallel region;16

• At entry to a teams region;17

• At exit from a critical region;18

• During an omp_unset_lock region;19

• During an omp_unset_nest_lock region;20

• Immediately before every task scheduling point;21

• At exit from the task region of each implicit task;22

• At exit from an ordered region, if a threads clause or a depend clause with a source23
dependence type is present, or if no clauses are present; and24

• During a cancel region, if the cancel-var ICV is true.25

For a target construct, the device-set of an implicit release flush that is performed in a target task26
during the generation of the target region and that is performed on exit from the initial task27
region that implicitly encloses the target region consists of the devices that execute the target28
task and the target region.29

A flush region that corresponds to a flush directive with the acquire clause present is30
implied at the following locations:31

CHAPTER 2. DIRECTIVES 279

• During a barrier region;1

• At exit from a teams region;2

• At entry to a critical region;3

• If the region causes the lock to be set, during:4

– an omp_set_lock region;5

– an omp_test_lock region;6

– an omp_set_nest_lock region; and7

– an omp_test_nest_lock region;8

• Immediately after every task scheduling point;9

• At entry to the task region of each implicit task;10

• At entry to an ordered region, if a threads clause or a depend clause with a sink11
dependence type is present, or if no clauses are present; and12

• Immediately before a cancellation point, if the cancel-var ICV is true and cancellation has been13
activated.14

For a target construct, the device-set of an implicit acquire flush that is performed in a target15
task following the generation of the target region or that is performed on entry to the initial task16
region that implicitly encloses the target region consists of the devices that execute the target17
task and the target region.18

19

Note – A flush region is not implied at the following locations:20

• At entry to worksharing regions; and21

• At entry to or exit from masked regions.22

23

The synchronization behavior of implicit flushes is as follows:24

• When a thread executes an atomic region for which the corresponding construct has the25
release, acq_rel, or seq_cst clause and specifies an atomic operation that starts a given26
release sequence, the release flush that is performed on entry to the atomic operation27
synchronizes with an acquire flush that is performed by a different thread and has an associated28
atomic operation that reads a value written by a modification in the release sequence.29

• When a thread executes an atomic region for which the corresponding construct has the30
acquire, acq_rel, or seq_cst clause and specifies an atomic operation that reads a value31
written by a given modification, a release flush that is performed by a different thread and has an32

280 OpenMP API – Version 5.1 November 2020

associated release sequence that contains that modification synchronizes with the acquire flush1
that is performed on exit from the atomic operation.2

• When a thread executes a critical region that has a given name, the behavior is as if the3
release flush performed on exit from the region synchronizes with the acquire flush performed on4
entry to the next critical region with the same name that is performed by a different thread,5
if it exists.6

• When a thread team executes a barrier region, the behavior is as if the release flush7
performed by each thread within the region synchronizes with the acquire flush performed by all8
other threads within the region.9

• When a thread executes a taskwait region that does not result in the creation of a dependent10
task and the task that encounters the corresponding taskwait construct has at least one child11
task, the behavior is as if each thread that executes a child task that is generated before the12
taskwait region performs a release flush upon completion of the child task that synchronizes13
with an acquire flush performed in the taskwait region.14

• When a thread executes a taskgroup region, the behavior is as if each thread that executes a15
remaining descendant task performs a release flush upon completion of the descendant task that16
synchronizes with an acquire flush performed on exit from the taskgroup region.17

• When a thread executes an ordered region that does not arise from a stand-alone ordered18
directive, the behavior is as if the release flush performed on exit from the region synchronizes19
with the acquire flush performed on entry to an ordered region encountered in the next logical20
iteration to be executed by a different thread, if it exists.21

• When a thread executes an ordered region that arises from a stand-alone ordered directive,22
the behavior is as if the release flush performed in the ordered region from a given source23
iteration synchronizes with the acquire flush performed in all ordered regions executed by a24
different thread that are waiting for dependences on that iteration to be satisfied.25

• When a thread team begins execution of a parallel region, the behavior is as if the release26
flush performed by the primary thread on entry to the parallel region synchronizes with the27
acquire flush performed on entry to each implicit task that is assigned to a different thread.28

• When an initial thread begins execution of a target region that is generated by a different29
thread from a target task, the behavior is as if the release flush performed by the generating30
thread in the target task synchronizes with the acquire flush performed by the initial thread on31
entry to its initial task region.32

• When an initial thread completes execution of a target region that is generated by a different33
thread from a target task, the behavior is as if the release flush performed by the initial thread on34
exit from its initial task region synchronizes with the acquire flush performed by the generating35
thread in the target task.36

• When a thread encounters a teams construct, the behavior is as if the release flush performed by37
the thread on entry to the teams region synchronizes with the acquire flush performed on entry38

CHAPTER 2. DIRECTIVES 281

to each initial task that is executed by a different initial thread that participates in the execution of1
the teams region.2

• When a thread that encounters a teams construct reaches the end of the teams region, the3
behavior is as if the release flush performed by each different participating initial thread at exit4
from its initial task synchronizes with the acquire flush performed by the thread at exit from the5
teams region.6

• When a task generates an explicit task that begins execution on a different thread, the behavior is7
as if the thread that is executing the generating task performs a release flush that synchronizes8
with the acquire flush performed by the thread that begins to execute the explicit task.9

• When an undeferred task completes execution on a given thread that is different from the thread10
on which its generating task is suspended, the behavior is as if a release flush performed by the11
thread that completes execution of the undeferred task synchronizes with an acquire flush12
performed by the thread that resumes execution of the generating task.13

• When a dependent task with one or more predecessor tasks begins execution on a given thread,14
the behavior is as if each release flush performed by a different thread on completion of a15
predecessor task synchronizes with the acquire flush performed by the thread that begins to16
execute the dependent task.17

• When a task begins execution on a given thread and it is mutually exclusive with respect to18
another sibling task that is executed by a different thread, the behavior is as if each release flush19
performed on completion of the sibling task synchronizes with the acquire flush performed by20
the thread that begins to execute the task.21

• When a thread executes a cancel region, the cancel-var ICV is true, and cancellation is not22
already activated for the specified region, the behavior is as if the release flush performed during23
the cancel region synchronizes with the acquire flush performed by a different thread24
immediately before a cancellation point in which that thread observes cancellation was activated25
for the region.26

• When a thread executes an omp_unset_lock region that causes the specified lock to be unset,27
the behavior is as if a release flush is performed during the omp_unset_lock region that28
synchronizes with an acquire flush that is performed during the next omp_set_lock or29
omp_test_lock region to be executed by a different thread that causes the specified lock to be30
set.31

• When a thread executes an omp_unset_nest_lock region that causes the specified nested32
lock to be unset, the behavior is as if a release flush is performed during the33
omp_unset_nest_lock region that synchronizes with an acquire flush that is performed34
during the next omp_set_nest_lock or omp_test_nest_lock region to be executed by35
a different thread that causes the specified nested lock to be set.36

282 OpenMP API – Version 5.1 November 2020

2.19.9 ordered Construct1

Summary2
The ordered construct either specifies a structured block in a worksharing-loop, simd, or3
worksharing-loop SIMD region that will be executed in the order of the loop iterations, or it is a4
stand-alone directive that specifies cross-iteration dependences in a doacross loop nest. The5
ordered construct sequentializes and orders the execution of ordered regions while allowing6
code outside the region to run in parallel.7

Syntax8
C / C++

The syntax of the ordered construct is as follows:9

#pragma omp ordered [clause[[,] clause]] new-line10
structured-block11

where clause is one of the following:12

threads13

simd14

or15

#pragma omp ordered clause [[[,] clause] ...] new-line16

where clause is one of the following:17

depend(source)18

depend(sink : vec)19

C / C++
Fortran

The syntax of the ordered construct is as follows:20

!$omp ordered [clause[[,] clause]]21
loosely-structured-block22

!$omp end ordered23

or24

!$omp ordered [clause[[,] clause]]25
strictly-structured-block26

[!$omp end ordered]27

where clause is one of the following:28

threads29

simd30

CHAPTER 2. DIRECTIVES 283

or1

!$omp ordered clause [[[,] clause] ...]2

where clause is one of the following:3

depend(source)4

depend(sink : vec)5

Fortran
If the depend clause is specified, the ordered construct is a stand-alone directive.6

Binding7
The binding thread set for an ordered region is the current team. An ordered region binds to8
the innermost enclosing simd or worksharing-loop SIMD region if the simd clause is present, and9
otherwise it binds to the innermost enclosing worksharing-loop region. ordered regions that bind10
to different regions execute independently of each other.11

Description12
If no clause is specified, the ordered construct behaves as if the threads clause had been13
specified. If the threads clause is specified, the threads in the team that is executing the14
worksharing-loop region execute ordered regions sequentially in the order of the loop iterations.15
If any depend clauses are specified then those clauses specify the order in which the threads in the16
team execute ordered regions. If the simd clause is specified, the ordered regions17
encountered by any thread will execute one at a time in the order of the loop iterations.18

When the thread that is executing the first iteration of the loop encounters an ordered construct,19
it can enter the ordered region without waiting. When a thread that is executing any subsequent20
iteration encounters an ordered construct without a depend clause, it waits at the beginning of21
the ordered region until execution of all ordered regions that belong to all previous iterations22
has completed. When a thread that is executing any subsequent iteration encounters an ordered23
construct with one or more depend(sink:vec) clauses, it waits until its dependences on all24
valid iterations specified by the depend clauses are satisfied before it completes execution of the25
ordered region. A specific dependence is satisfied when a thread that is executing the26
corresponding iteration encounters an ordered construct with a depend(source) clause.27

Execution Model Events28
The ordered-acquiring event occurs in the task that encounters the ordered construct on entry to29
the ordered region before it initiates synchronization for the region.30

The ordered-acquired event occurs in the task that encounters the ordered construct after it31
enters the region, but before it executes the structured block of the ordered region.32

The ordered-released event occurs in the task that encounters the ordered construct after it33
completes any synchronization on exit from the ordered region.34

284 OpenMP API – Version 5.1 November 2020

The doacross-sink event occurs in the task that encounters an ordered construct for each1
depend(sink:vec) clause after the dependence is fulfilled.2

The doacross-source event occurs in the task that encounters an ordered construct with a3
depend(source:vec) clause before signaling the dependence to be fulfilled.4

Tool Callbacks5
A thread dispatches a registered ompt_callback_mutex_acquire callback for each6
occurrence of an ordered-acquiring event in that thread. This callback has the type signature7
ompt_callback_mutex_acquire_t.8

A thread dispatches a registered ompt_callback_mutex_acquired callback for each9
occurrence of an ordered-acquired event in that thread. This callback has the type signature10
ompt_callback_mutex_t.11

A thread dispatches a registered ompt_callback_mutex_released callback with12
ompt_mutex_ordered as the kind argument if practical, although a less specific kind may be13
used, for each occurrence of an ordered-released event in that thread. This callback has the type14
signature ompt_callback_mutex_t and occurs in the task that encounters the atomic15
construct.16

A thread dispatches a registered ompt_callback_dependences callback with all vector17
entries listed as ompt_dependence_type_sink in the deps argument for each occurrence of a18
doacross-sink event in that thread. A thread dispatches a registered19
ompt_callback_dependences callback with all vector entries listed as20
ompt_dependence_type_source in the deps argument for each occurrence of a21
doacross-source event in that thread. These callbacks have the type signature22
ompt_callback_dependences_t.23

Restrictions24
Restrictions to the ordered construct are as follows:25

• At most one threads clause can appear on an ordered construct.26

• At most one simd clause can appear on an ordered construct.27

• At most one depend(source) clause can appear on an ordered construct.28

• The construct that corresponds to the binding region of an ordered region must not specify a29
reduction clause with the inscan modifier.30

• Either depend(sink:vec) clauses or depend(source) clauses may appear on an31
ordered construct, but not both.32

• The worksharing-loop or worksharing-loop SIMD region to which an ordered region33
corresponding to an ordered construct without a depend clause binds must have an34
ordered clause without the parameter specified on the corresponding worksharing-loop or35
worksharing-loop SIMD directive.36

CHAPTER 2. DIRECTIVES 285

• The worksharing-loop region to which an ordered region that corresponds to an ordered1
construct with any depend clauses binds must have an ordered clause with the parameter2
specified on the corresponding worksharing-loop directive.3

• An ordered construct with the depend clause specified must be closely nested inside a4
worksharing-loop (or parallel worksharing-loop) construct.5

• An ordered region that corresponds to an ordered construct without the simd clause6
specified must be closely nested inside a worksharing-loop region.7

• An ordered region that corresponds to an ordered construct with the simd clause specified8
must be closely nested inside a simd or worksharing-loop SIMD region.9

• An ordered region that corresponds to an ordered construct with both the simd and10
threads clauses must be closely nested inside a worksharing-loop SIMD region or must be11
closely nested inside a worksharing-loop and simd region.12

• During execution of an iteration of a worksharing-loop or a loop nest within a worksharing-loop,13
simd, or worksharing-loop SIMD region, a thread must not execute more than one ordered14
region that corresponds to an ordered construct without a depend clause.15

C++
• A throw executed inside a ordered region must cause execution to resume within the same16
ordered region, and the same thread that threw the exception must catch it.17

C++

Cross References18
• worksharing-loop construct, see Section 2.11.4.19

• simd construct, see Section 2.11.5.1.20

• parallel Worksharing-loop construct, see Section 2.16.1.21

• depend Clause, see Section 2.19.1122

• ompt_mutex_ordered, see Section 4.4.4.16.23

• ompt_callback_mutex_acquire_t, see Section 4.5.2.14.24

• ompt_callback_mutex_t, see Section 4.5.2.15.25

2.19.10 Depend Objects26

This section describes constructs that support OpenMP depend objects that can be used to supply27
user-computed dependences to depend clauses. OpenMP depend objects must be accessed only28
through the depobj construct or through the depend clause; programs that otherwise access29
OpenMP depend objects are non-conforming.30

An OpenMP depend object can be in one of the following states: uninitialized or initialized.31
Initially OpenMP depend objects are in the uninitialized state.32

286 OpenMP API – Version 5.1 November 2020

2.19.10.1 depobj Construct1

Summary2
The depobj construct initializes, updates or destroys an OpenMP depend object. The depobj3
construct is a stand-alone directive.4

Syntax5
C / C++

The syntax of the depobj construct is as follows:6

#pragma omp depobj(depobj) clause new-line7

where depobj is an lvalue expression of type omp_depend_t.8

where clause is one of the following:9

depend(dependence-type : locator)10

destroy11

update(dependence-type)12

C / C++
Fortran

The syntax of the depobj construct is as follows:13

!$omp depobj(depobj) clause14

where depobj is a scalar integer variable of the omp_depend_kind kind.15

where clause is one of the following:16

depend(dependence-type : locator)17

destroy18

update(dependence-type)19

Fortran

Binding20
The binding thread set for a depobj region is the encountering thread.21

Description22
A depobj construct with a depend clause present sets the state of depobj to initialized. The23
depobj is initialized to represent the dependence that the depend clause specifies.24

A depobj construct with a destroy clause present changes the state of the depobj to25
uninitialized.26

A depobj construct with an update clause present changes the dependence type of the27
dependence represented by depobj to the one specified by the update clause.28

CHAPTER 2. DIRECTIVES 287

Restrictions1
Restrictions to the depobj construct are as follows:2

• A depend clause on a depobj construct must not have source or sink as dependence-type.3

• An update clause on a depobj construct must not have source, sink or depobj as4
dependence-type.5

• A depend clause on a depobj construct can only specify one locator.6

• The depobj of a depobj construct with the depend clause present must be in the uninitialized7
state.8

• The depobj of a depobj construct with the destroy clause present must be in the initialized9
state.10

• The depobj of a depobj construct with the update clause present must be in the initialized11
state.12

Cross References13
• depend clause, see Section 2.19.11.14

2.19.11 depend Clause15

Summary16
The depend clause enforces additional constraints on the scheduling of tasks or loop iterations.17
These constraints establish dependences only between sibling tasks or between loop iterations.18

Syntax19
The syntax of the depend clause is as follows:20

depend([depend-modifier,]dependence-type : locator-list)21

where dependence-type is one of the following:22

in23

out24

inout25

mutexinoutset26

inoutset27

depobj28

where depend-modifier is one of the following:29

iterator(iterators-definition)30

288 OpenMP API – Version 5.1 November 2020

or1

depend(dependence-type)2

where dependence-type is:3

source4

or5

depend(dependence-type : vec)6

where dependence-type is:7

sink8

and where vec is the iteration vector, which has the form:9

x1 [± d1], x2 [± d2], . . . , xn [± dn]10

where n is the value specified by the ordered clause in the worksharing-loop directive, xi denotes11
the loop iteration variable of the i-th nested loop associated with the worksharing-loop directive,12
and di is a constant non-negative integer.13

Description14
Task dependences are derived from the dependence-type of a depend clause and its list items15
when dependence-type is in, out, inout, mutexinoutset or inoutset. When the16
dependence-type is depobj, the task dependences are derived from the dependences represented17
by the depend objects specified in the depend clause as if the depend clauses of the depobj18
constructs were specified in the current construct.19

The storage location of a list item matches the storage location of another list item if they have the20
same storage location, or if any of the list items is omp_all_memory.21

For the in dependence-type, if the storage location of at least one of the list items matches the22
storage location of a list item appearing in a depend clause with an out, inout,23
mutexinoutset, or inoutset dependence-type on a construct from which a sibling task was24
previously generated, then the generated task will be a dependent task of that sibling task.25

For the out and inout dependence-types, if the storage location of at least one of the list items26
matches the storage location of a list item appearing in a depend clause with an in, out, inout,27
mutexinoutset, or inoutset dependence-type on a construct from which a sibling task was28
previously generated, then the generated task will be a dependent task of that sibling task.29

For the mutexinoutset dependence-type, if the storage location of at least one of the list items30
matches the storage location of a list item appearing in a depend clause with an in, out, inout,31
or inoutset dependence-type on a construct from which a sibling task was previously generated,32
then the generated task will be a dependent task of that sibling task.33

If a list item appearing in a depend clause with a mutexinoutset dependence-type on a task34
generating construct matches a list item appearing in a depend clause with a mutexinoutset35

CHAPTER 2. DIRECTIVES 289

dependence-type on a different task generating construct, and both constructs generate sibling tasks,1
the sibling tasks will be mutually exclusive tasks.2

For the inoutset dependence-type, if the storage location of at least one of the list items matches3
the storage location of a list item appearing in a depend clause with an in, out, inout, or4
mutexinoutset dependence-type on a construct from which a sibling task was previously5
generated, then the generated task will be a dependent task of that sibling task.6

The list items that appear in the depend clause may reference iterators defined by an7
iterators-definition appearing on an iterator modifier.8

The list items that appear in the depend clause may include array sections or the9
omp_all_memory reserved locator.10

Fortran
If a list item has the ALLOCATABLE attribute and its allocation status is unallocated, the behavior11
is unspecified. If a list item has the POINTER attribute and its association status is disassociated or12
undefined, the behavior is unspecified.13

Fortran
C / C++

The list items that appear in a depend clause may use shape-operators.14

C / C++
15

Note – The enforced task dependence establishes a synchronization of memory accesses16
performed by a dependent task with respect to accesses performed by the predecessor tasks.17
However, it is the responsibility of the programmer to synchronize properly with respect to other18
concurrent accesses that occur outside of those tasks.19

20

The source dependence-type specifies the satisfaction of cross-iteration dependences that arise21
from the current iteration.22

The sink dependence-type specifies a cross-iteration dependence, where the iteration vector vec23
indicates the iteration that satisfies the dependence.24

If the iteration vector vec does not occur in the iteration space, the depend clause is ignored. If all25
depend clauses on an ordered construct are ignored then the construct is ignored.26

27

Note – An iteration vector vec that does not indicate a lexicographically earlier iteration may cause28
a deadlock.29

30

290 OpenMP API – Version 5.1 November 2020

Execution Model Events1
The task-dependences event occurs in a thread that encounters a task generating construct or a2
taskwait construct with a depend clause immediately after the task-create event for the new3
task or the taskwait-init event.4

The task-dependence event indicates an unfulfilled dependence for the generated task. This event5
occurs in a thread that observes the unfulfilled dependence before it is satisfied.6

Tool Callbacks7
A thread dispatches the ompt_callback_dependences callback for each occurrence of the8
task-dependences event to announce its dependences with respect to the list items in the depend9
clause. This callback has type signature ompt_callback_dependences_t.10

A thread dispatches the ompt_callback_task_dependence callback for a task-dependence11
event to report a dependence between a predecessor task (src_task_data) and a dependent task12
(sink_task_data). This callback has type signature ompt_callback_task_dependence_t.13

Restrictions14
Restrictions to the depend clause are as follows:15

• List items, other than reserved locators, used in depend clauses of the same task or sibling tasks16
must indicate identical storage locations or disjoint storage locations.17

• List items used in depend clauses cannot be zero-length array sections.18

• The omp_all_memory reserved locator can only be used in a depend clause with an out or19
inout dependence-type.20

• Array sections cannot be specified in depend clauses with the depobj dependence type.21

• List items used in depend clauses with the depobj dependence type must be depend objects22
in the initialized state.23

C / C++
• List items used in depend clauses with the depobj dependence type must be expressions of24
the omp_depend_t type.25

• List items that are expressions of the omp_depend_t type can only be used in depend26
clauses with the depobj dependence type.27

C / C++
Fortran

• A common block name cannot appear in a depend clause.28

• List items used in depend clauses with the depobj dependence type must be integer29
expressions of the omp_depend_kind kind.30

Fortran

CHAPTER 2. DIRECTIVES 291

• For a vec element of sink dependence-type of the form xi + di or xi − di if the loop iteration1
variable xi has an integral or pointer type, the expression xi + di or xi − di for any value of the2
loop iteration variable xi that can encounter the ordered construct must be computable without3
overflow in the type of the loop iteration variable.4

C++
• For a vec element of sink dependence-type of the form xi + di or xi − di if the loop iteration5
variable xi is of a random access iterator type other than pointer type, the expression6
(xi − lbi) + di or (xi − lbi) − di for any value of the loop iteration variable xi that can7
encounter the ordered construct must be computable without overflow in the type that would8
be used by std::distance applied to variables of the type of xi.9

C++
C / C++

• A bit-field cannot appear in a depend clause.10

C / C++

Cross References11
• Array shaping, see Section 2.1.4.12

• Array sections, see Section 2.1.5.13

• Iterators, see Section 2.1.6.14

• task construct, see Section 2.12.1.15

• Task scheduling constraints, see Section 2.12.6.16

• target enter data construct, see Section 2.14.3.17

• target exit data construct, see Section 2.14.4.18

• target construct, see Section 2.14.5.19

• target update construct, see Section 2.14.6.20

• ordered construct, see Section 2.19.9.21

• depobj construct, see Section 2.19.10.1.22

• ompt_callback_dependences_t, see Section 4.5.2.8.23

• ompt_callback_task_dependence_t, see Section 4.5.2.9.24

292 OpenMP API – Version 5.1 November 2020

2.19.12 Synchronization Hints1

Hints about the expected dynamic behavior or suggested implementation can be provided by the2
programmer to locks (by using the omp_init_lock_with_hint or3
omp_init_nest_lock_with_hint functions to initialize the lock), and to atomic and4
critical directives by using the hint clause. The effect of a hint does not change the semantics5
of the associated construct; if ignoring the hint changes the program semantics, the result is6
unspecified.7

The C/C++ header file (omp.h) and the Fortran include file (omp_lib.h) and/or Fortran module8
file (omp_lib) define the valid hint constants. The valid constants must include the following,9
which can be extended with implementation-defined values:10

C / C++
typedef enum omp_sync_hint_t {11

omp_sync_hint_none = 0x0,12
omp_lock_hint_none = omp_sync_hint_none,13
omp_sync_hint_uncontended = 0x1,14
omp_lock_hint_uncontended = omp_sync_hint_uncontended,15
omp_sync_hint_contended = 0x2,16
omp_lock_hint_contended = omp_sync_hint_contended,17
omp_sync_hint_nonspeculative = 0x4,18
omp_lock_hint_nonspeculative = omp_sync_hint_nonspeculative,19
omp_sync_hint_speculative = 0x8,20
omp_lock_hint_speculative = omp_sync_hint_speculative21

} omp_sync_hint_t;22
23

typedef omp_sync_hint_t omp_lock_hint_t;24

C / C++
Fortran

integer, parameter :: omp_lock_hint_kind = omp_sync_hint_kind25
26

integer (kind=omp_sync_hint_kind), &27
parameter :: omp_sync_hint_none = &28

int(Z’0’, kind=omp_sync_hint_kind)29
integer (kind=omp_lock_hint_kind), &30

parameter :: omp_lock_hint_none = omp_sync_hint_none31
integer (kind=omp_sync_hint_kind), &32

parameter :: omp_sync_hint_uncontended = &33
int(Z’1’, kind=omp_sync_hint_kind)34

integer (kind=omp_lock_hint_kind), &35
parameter :: omp_lock_hint_uncontended = &36

omp_sync_hint_uncontended37
integer (kind=omp_sync_hint_kind), &38

CHAPTER 2. DIRECTIVES 293

parameter :: omp_sync_hint_contended = &1
int(Z’2’, kind=omp_sync_hint_kind)2

integer (kind=omp_lock_hint_kind), &3
parameter :: omp_lock_hint_contended = &4

omp_sync_hint_contended5
integer (kind=omp_sync_hint_kind), &6

parameter :: omp_sync_hint_nonspeculative = &7
int(Z’4’, kind=omp_sync_hint_kind)8

integer (kind=omp_lock_hint_kind), &9
parameter :: omp_lock_hint_nonspeculative = &10

omp_sync_hint_nonspeculative11
integer (kind=omp_sync_hint_kind), &12

parameter :: omp_sync_hint_speculative = &13
int(Z’8’, kind=omp_sync_hint_kind)14

integer (kind=omp_lock_hint_kind), &15
parameter :: omp_lock_hint_speculative = &16

omp_sync_hint_speculative17

Fortran
The hints can be combined by using the + or | operators in C/C++ or the + operator in Fortran.18
Combining omp_sync_hint_none with any other hint is equivalent to specifying the other hint.19

The intended meaning of each hint is:20

• omp_sync_hint_uncontended: low contention is expected in this operation, that is, few21
threads are expected to perform the operation simultaneously in a manner that requires22
synchronization;23

• omp_sync_hint_contended: high contention is expected in this operation, that is, many24
threads are expected to perform the operation simultaneously in a manner that requires25
synchronization;26

• omp_sync_hint_speculative: the programmer suggests that the operation should be27
implemented using speculative techniques such as transactional memory; and28

• omp_sync_hint_nonspeculative: the programmer suggests that the operation should29
not be implemented using speculative techniques such as transactional memory.30

31

Note – Future OpenMP specifications may add additional hints to the omp_sync_hint_t type32
and the omp_sync_hint_kind kind. Implementers are advised to add implementation-defined33
hints starting from the most significant bit of the omp_sync_hint_t type and34
omp_sync_hint_kind kind and to include the name of the implementation in the name of the35
added hint to avoid name conflicts with other OpenMP implementations.36

37

294 OpenMP API – Version 5.1 November 2020

The omp_sync_hint_t and omp_lock_hint_t enumeration types and the equivalent types1
in Fortran are synonyms for each other. The type omp_lock_hint_t has been deprecated.2

Restrictions3
Restrictions to the synchronization hints are as follows:4

• The hints omp_sync_hint_uncontended and omp_sync_hint_contended cannot5
be combined.6

• The hints omp_sync_hint_nonspeculative and omp_sync_hint_speculative7
cannot be combined.8

The restrictions for combining multiple values of omp_sync_hint apply equally to the9
corresponding values of omp_lock_hint, and expressions that mix the two types.10

Cross References11
• critical construct, see Section 2.19.1.12

• atomic construct, see Section 2.19.713

• omp_init_lock_with_hint and omp_init_nest_lock_with_hint, see14
Section 3.9.2.15

2.20 Cancellation Constructs16

2.20.1 cancel Construct17

Summary18
The cancel construct activates cancellation of the innermost enclosing region of the type19
specified. The cancel construct is a stand-alone directive.20

Syntax21
C / C++

The syntax of the cancel construct is as follows:22

#pragma omp cancel construct-type-clause [[,] if-clause] new-line23

where construct-type-clause is one of the following:24

parallel25

sections26

for27

taskgroup28

CHAPTER 2. DIRECTIVES 295

and if-clause is1

if([cancel :] scalar-expression)2

C / C++
Fortran

The syntax of the cancel construct is as follows:3

!$omp cancel construct-type-clause [[,] if-clause]4

where construct-type-clause is one of the following:5

parallel6

sections7

do8

taskgroup9

and if-clause is10

if([cancel :] scalar-logical-expression)11

Fortran
Binding12
The binding thread set of the cancel region is the current team. The binding region of the13
cancel region is the innermost enclosing region of the type corresponding to the14
construct-type-clause specified in the directive (that is, the innermost parallel, sections,15
worksharing-loop, or taskgroup region).16

Description17
The cancel construct activates cancellation of the binding region only if the cancel-var ICV is18
true, in which case the cancel construct causes the encountering task to continue execution at the19
end of the binding region if construct-type-clause is parallel, for, do, or sections. If the20
cancel-var ICV is true and construct-type-clause is taskgroup, the encountering task continues21
execution at the end of the current task region. If the cancel-var ICV is false, the cancel22
construct is ignored.23

Threads check for active cancellation only at cancellation points that are implied at the following24
locations:25

• cancel regions;26

• cancellation point regions;27

• barrier regions;28

• at the end of a worksharing-loop construct with a nowait clause and for which the same list29
item appears in both firstprivate and lastprivate clauses; and30

• implicit barrier regions.31

296 OpenMP API – Version 5.1 November 2020

When a thread reaches one of the above cancellation points and if the cancel-var ICV is true, then:1

• If the thread is at a cancel or cancellation point region and construct-type-clause is2
parallel, for, do, or sections, the thread continues execution at the end of the canceled3
region if cancellation has been activated for the innermost enclosing region of the type specified.4

• If the thread is at a cancel or cancellation point region and construct-type-clause is5
taskgroup, the encountering task checks for active cancellation of all of the taskgroup sets to6
which the encountering task belongs, and continues execution at the end of the current task7
region if cancellation has been activated for any of the taskgroup sets.8

• If the encountering task is at a barrier region or at the end of a worksharing-loop construct with a9
nowait clause and for which the same list item appears in both firstprivate and10
lastprivate clauses, the encountering task checks for active cancellation of the innermost11
enclosing parallel region. If cancellation has been activated, then the encountering task12
continues execution at the end of the canceled region.13

14

Note – If one thread activates cancellation and another thread encounters a cancellation point, the15
order of execution between the two threads is non-deterministic. Whether the thread that16
encounters a cancellation point detects the activated cancellation depends on the underlying17
hardware and operating system.18

19

When cancellation of tasks is activated through a cancel construct with the taskgroup20
construct-type-clause, the tasks that belong to the taskgroup set of the innermost enclosing21
taskgroup region will be canceled. The task that encountered that construct continues execution22
at the end of its task region, which implies completion of that task. Any task that belongs to the23
innermost enclosing taskgroup and has already begun execution must run to completion or until24
a cancellation point is reached. Upon reaching a cancellation point and if cancellation is active, the25
task continues execution at the end of its task region, which implies the task’s completion. Any task26
that belongs to the innermost enclosing taskgroup and that has not begun execution may be27
discarded, which implies its completion.28

When cancellation is active for a parallel, sections, or worksharing-loop region, each29
thread of the binding thread set resumes execution at the end of the canceled region if a cancellation30
point is encountered. If the canceled region is a parallel region, any tasks that have been31
created by a task or a taskloop construct and their descendant tasks are canceled according to32
the above taskgroup cancellation semantics. If the canceled region is a sections, or33
worksharing-loop region, no task cancellation occurs.34

C++
The usual C++ rules for object destruction are followed when cancellation is performed.35

C++

CHAPTER 2. DIRECTIVES 297

Fortran
All private objects or subobjects with ALLOCATABLE attribute that are allocated inside the1
canceled construct are deallocated.2

Fortran
If the canceled construct contains a reduction, task_reduction or lastprivate clause,3
the final values of the list items that appeared in those clauses are undefined.4

When an if clause is present on a cancel construct and the if expression evaluates to false, the5
cancel construct does not activate cancellation. The cancellation point associated with the6
cancel construct is always encountered regardless of the value of the if expression.7

8

Note – The programmer is responsible for releasing locks and other synchronization data9
structures that might cause a deadlock when a cancel construct is encountered and blocked10
threads cannot be canceled. The programmer is also responsible for ensuring proper11
synchronizations to avoid deadlocks that might arise from cancellation of OpenMP regions that12
contain OpenMP synchronization constructs.13

14

Execution Model Events15
If a task encounters a cancel construct that will activate cancellation then a cancel event occurs.16

A discarded-task event occurs for any discarded tasks.17

Tool Callbacks18
A thread dispatches a registered ompt_callback_cancel callback for each occurrence of a19
cancel event in the context of the encountering task. This callback has type signature20
ompt_callback_cancel_t; (flags & ompt_cancel_activated) always evaluates to21
true in the dispatched callback; (flags & ompt_cancel_parallel) evaluates to true in the22
dispatched callback if construct-type-clause is parallel;23
(flags & ompt_cancel_sections) evaluates to true in the dispatched callback if24
construct-type-clause is sections; (flags & ompt_cancel_loop) evaluates to true in the25
dispatched callback if construct-type-clause is for or do; and26
(flags & ompt_cancel_taskgroup) evaluates to true in the dispatched callback if27
construct-type-clause is taskgroup.28

A thread dispatches a registered ompt_callback_cancel callback with the ompt_data_t29
associated with the discarded task as its task_data argument and30
ompt_cancel_discarded_task as its flags argument for each occurrence of a31
discarded-task event. The callback occurs in the context of the task that discards the task and has32
type signature ompt_callback_cancel_t.33

298 OpenMP API – Version 5.1 November 2020

Restrictions1
Restrictions to the cancel construct are as follows:2

• The behavior for concurrent cancellation of a region and a region nested within it is unspecified.3

• If construct-type-clause is taskgroup, the cancel construct must be closely nested inside a4
task or a taskloop construct and the cancel region must be closely nested inside a5
taskgroup region.6

• If construct-type-clause is sections, the cancel construct must be closely nested inside a7
sections or section construct.8

• If construct-type-clause is neither sections nor taskgroup, the cancel construct must be9
closely nested inside an OpenMP construct that matches the type specified in10
construct-type-clause of the cancel construct.11

• A worksharing construct that is canceled must not have a nowait clause or a reduction12
clause with a user-defined reduction that uses omp_orig in the initializer-expr of the13
corresponding declare reduction directive.14

• A worksharing-loop construct that is canceled must not have an ordered clause or a15
reduction clause with the inscan modifier.16

• When cancellation is active for a parallel region, a thread in the team that binds to that17
region may not be executing or encounter a worksharing construct with an ordered clause, a18
reduction clause with the inscan modifier or a reduction clause with a user-defined19
reduction that uses omp_orig in the initializer-expr of the corresponding20
declare reduction directive.21

• When cancellation is active for a parallel region, a thread in the team that binds to that22
region may not be executing or encounter a scope construct with a reduction clause with a23
user-defined reduction that uses omp_orig in the initializer-expr of the corresponding24
declare reduction directive.25

• During execution of a construct that may be subject to cancellation, a thread must not encounter26
an orphaned cancellation point. That is, a cancellation point must only be encountered within27
that construct and must not be encountered elsewhere in its region.28

Cross References29
• cancel-var ICV, see Section 2.4.1.30

• if clause, see Section 2.18.31

• cancellation point construct, see Section 2.20.2.32

• omp_get_cancellation routine, see Section 3.2.8.33

• omp_cancel_flag_t enumeration type, see Section 4.4.4.25.34

• ompt_callback_cancel_t, see Section 4.5.2.18.35

CHAPTER 2. DIRECTIVES 299

2.20.2 cancellation point Construct1

Summary2
The cancellation point construct introduces a user-defined cancellation point at which3
implicit or explicit tasks check if cancellation of the innermost enclosing region of the type4
specified has been activated. The cancellation point construct is a stand-alone directive.5

Syntax6
C / C++

The syntax of the cancellation point construct is as follows:7

#pragma omp cancellation point construct-type-clause new-line8

where construct-type-clause is one of the following:9

parallel10

sections11

for12

taskgroup13

C / C++
Fortran

The syntax of the cancellation point construct is as follows:14

!$omp cancellation point construct-type-clause15

where construct-type-clause is one of the following:16

parallel17

sections18

do19

taskgroup20

Fortran

Binding21
The binding thread set of the cancellation point construct is the current team. The binding22
region of the cancellation point region is the innermost enclosing region of the type23
corresponding to the construct-type-clause specified in the directive (that is, the innermost24
parallel, sections, worksharing-loop, or taskgroup region).25

300 OpenMP API – Version 5.1 November 2020

Description1
This directive introduces a user-defined cancellation point at which an implicit or explicit task must2
check if cancellation of the innermost enclosing region of the type specified in the clause has been3
requested. This construct does not implement any synchronization between threads or tasks.4

When an implicit or explicit task reaches a user-defined cancellation point and if the cancel-var5
ICV is true, then:6

• If the construct-type-clause of the encountered cancellation point construct is7
parallel, for, do, or sections, the thread continues execution at the end of the canceled8
region if cancellation has been activated for the innermost enclosing region of the type specified.9

• If the construct-type-clause of the encountered cancellation point construct is10
taskgroup, the encountering task checks for active cancellation of all taskgroup sets to which11
the encountering task belongs and continues execution at the end of the current task region if12
cancellation has been activated for any of them.13

Execution Model Events14
The cancellation event occurs if a task encounters a cancellation point and detected the activation15
of cancellation.16

Tool Callbacks17
A thread dispatches a registered ompt_callback_cancel callback for each occurrence of a18
cancel event in the context of the encountering task. This callback has type signature19
ompt_callback_cancel_t; (flags & ompt_cancel_detected) always evaluates to true20
in the dispatched callback; (flags & ompt_cancel_parallel) evaluates to true in the21
dispatched callback if construct-type-clause of the encountered cancellation point22
construct is parallel; (flags & ompt_cancel_sections) evaluates to true in the23
dispatched callback if construct-type-clause of the encountered cancellation point24
construct is sections; (flags & ompt_cancel_loop) evaluates to true in the dispatched25
callback if construct-type-clause of the encountered cancellation point construct is for or26
do; and (flags & ompt_cancel_taskgroup) evaluates to true in the dispatched callback if27
construct-type-clause of the encountered cancellation point construct is taskgroup.28

Restrictions29
Restrictions to the cancellation point construct are as follows:30

• A cancellation point construct for which construct-type-clause is taskgroup must be31
closely nested inside a task or taskloop construct, and the cancellation point region32
must be closely nested inside a taskgroup region.33

• A cancellation point construct for which construct-type-clause is sections must be34
closely nested inside a sections or section construct.35

• A cancellation point construct for which construct-type-clause is neither sections nor36
taskgroup must be closely nested inside an OpenMP construct that matches the type specified37
in construct-type-clause.38

CHAPTER 2. DIRECTIVES 301

Cross References1
• cancel-var ICV, see Section 2.4.1.2

• cancel construct, see Section 2.20.1.3

• omp_get_cancellation routine, see Section 3.2.8.4

• ompt_callback_cancel_t, see Section 4.5.2.18.5

2.21 Data Environment6

This section presents directives and clauses for controlling data environments.7

2.21.1 Data-Sharing Attribute Rules8

This section describes how the data-sharing attributes of variables referenced in data environments9
are determined. The following two cases are described separately:10

• Section 2.21.1.1 describes the data-sharing attribute rules for variables referenced in a construct.11

• Section 2.21.1.2 describes the data-sharing attribute rules for variables referenced in a region,12
but outside any construct.13

2.21.1.1 Variables Referenced in a Construct14

The data-sharing attributes of variables that are referenced in a construct can be predetermined,15
explicitly determined, or implicitly determined, according to the rules outlined in this section.16

Specifying a variable in a data-sharing attribute clause, except for the private clause, or17
copyprivate clause of an enclosed construct, causes an implicit reference to the variable in the18
enclosing construct. Specifying a variable in a map clause of an enclosed construct may cause an19
implicit reference to the variable in the enclosing construct. Such implicit references are also20
subject to the data-sharing attribute rules outlined in this section.21

Certain variables and objects have predetermined data-sharing attributes with respect to the22
construct in which they are referenced. The first matching rule from the following list of23
predetermined data-sharing attribute rules applies for variables and objects that are referenced in a24
construct.25

C / C++
• Variables that appear in threadprivate directives or variables with the _Thread_local26
(in C) or thread_local (in C++) storage-class specifier are threadprivate.27

302 OpenMP API – Version 5.1 November 2020

C
• Variables with automatic storage duration that are declared in a scope inside the construct are1
private.2

C
C++

• Variables of non-reference type with automatic storage duration that are declared in a scope3
inside the construct are private.4

C++
• Objects with dynamic storage duration are shared.5

• The loop iteration variable in any associated loop of a for, parallel for, taskloop, or6
distribute construct is private.7

• The loop iteration variable in the associated loop of a simd construct with just one associated8
loop is linear with a linear-step that is the increment of the associated loop.9

• The loop iteration variables in the associated loops of a simd construct with multiple associated10
loops are lastprivate.11

• The loop iteration variable in any associated loop of a loop construct is lastprivate.12

• The implicitly declared variables of a range-based for loop are private.13

• Variables with static storage duration that are declared in a scope inside the construct are shared.14

• If a list item in a map clause on the target construct has a base pointer, and the base pointer is15
a scalar variable that does not appear in a map clause on the construct, the base pointer is16
firstprivate.17

• If a list item in a reduction or in_reduction clause on a construct has a base pointer then18
the base pointer is private.19

• Static data members are shared.20

• The __func__ variable and similar function-local predefined variables are shared.21

C / C++
Fortran

• Variables declared within a BLOCK construct inside a construct that do not have the SAVE22
attribute are private.23

• Variables and common blocks that appear in threadprivate directives are threadprivate.24

• The loop iteration variable in any associated do-loop of a do, parallel do, taskloop, or25
distribute construct is private.26

• The loop iteration variable in the associated do-loop of a simd construct with just one27
associated do-loop is linear with a linear-step that is the increment of the associated do-loop.28

CHAPTER 2. DIRECTIVES 303

• The loop iteration variables in the associated do-loops of a simd construct with multiple1
associated do-loops are lastprivate.2

• The loop iteration variable in any associated do-loop of a loop construct is lastprivate.3

• Loop iteration variables inside parallel or task generating constructs are private in the4
innermost such construct that encloses the loop.5

• Implied-do, FORALL and DO CONCURRENT indices are private.6

• Cray pointees have the same data-sharing attribute as the storage with which their Cray pointers7
are associated. Cray pointer support has been deprecated.8

• Assumed-size arrays are shared.9

• Named constants are shared.10

• An associate name that may appear in a variable definition context is shared if its association11
occurs outside of the construct and otherwise it has the same data-sharing attribute as the12
selector with which it is associated.13

Fortran
Variables with predetermined data-sharing attributes may not be listed in data-sharing attribute14
clauses, except for the cases listed below. For these exceptions only, listing a predetermined15
variable in a data-sharing attribute clause is allowed and overrides the variable’s predetermined16
data-sharing attributes.17

C / C++
• The loop iteration variable in any associated loop of a for, taskloop, distribute, or18
loop construct may be listed in a private or lastprivate clause.19

• If a simd construct has just one associated loop then its loop iteration variable may be listed in a20
private, lastprivate, or linear clause with a linear-step that is the increment of the21
associated loop.22

• If a simd construct has more than one associated loop then their loop iteration variables may be23
listed in a private or lastprivate clause.24

• Variables with const-qualified type with no mutable members may be listed in a25
firstprivate clause, even if they are static data members.26

• The __func__ variable and similar function-local predefined variables may be listed in a27
shared or firstprivate clause.28

C / C++

304 OpenMP API – Version 5.1 November 2020

Fortran
• The loop iteration variable in any associated do-loop of a do, taskloop, distribute, or1
loop construct may be listed in a private or lastprivate clause.2

• The loop iteration variable in the associated do-loop of a simd construct with just one3
associated do-loop may be listed in a private, lastprivate, or linear clause with a4
linear-step that is the increment of the associated loop.5

• The loop iteration variables in the associated do-loops of a simd construct with multiple6
associated do-loops may be listed in a private or lastprivate clause.7

• Loop iteration variables of loops that are not associated with any OpenMP directive may be8
listed in data-sharing attribute clauses on the surrounding teams, parallel or task generating9
construct, and on enclosed constructs, subject to other restrictions.10

• Assumed-size arrays may be listed in a shared clause.11

• Named constants may be listed in a firstprivate clause.12

Fortran
Additional restrictions on the variables that may appear in individual clauses are described with13
each clause in Section 2.21.4.14

Variables with explicitly determined data-sharing attributes are those that are referenced in a given15
construct and are listed in a data-sharing attribute clause on the construct.16

Variables with implicitly determined data-sharing attributes are those that are referenced in a given17
construct, do not have predetermined data-sharing attributes, and are not listed in a data-sharing18
attribute clause on the construct.19

Rules for variables with implicitly determined data-sharing attributes are as follows:20

• In a parallel, teams, or task generating construct, the data-sharing attributes of these21
variables are determined by the default clause, if present (see Section 2.21.4.1).22

• In a parallel construct, if no default clause is present, these variables are shared.23

• For constructs other than task generating constructs, if no default clause is present, these24
variables reference the variables with the same names that exist in the enclosing context.25

• In a target construct, variables that are not mapped after applying data-mapping attribute26
rules (see Section 2.21.7) are firstprivate.27

C++
• In an orphaned task generating construct, if no default clause is present, formal arguments28
passed by reference are firstprivate.29

C++

CHAPTER 2. DIRECTIVES 305

Fortran
• In an orphaned task generating construct, if no default clause is present, dummy arguments1
are firstprivate.2

Fortran
• In a task generating construct, if no default clause is present, a variable for which the3
data-sharing attribute is not determined by the rules above and that in the enclosing context is4
determined to be shared by all implicit tasks bound to the current team is shared.5

• In a task generating construct, if no default clause is present, a variable for which the6
data-sharing attribute is not determined by the rules above is firstprivate.7

Additional restrictions on the variables for which data-sharing attributes cannot be implicitly8
determined in a task generating construct are described in Section 2.21.4.4.9

2.21.1.2 Variables Referenced in a Region but not in a Construct10

The data-sharing attributes of variables that are referenced in a region, but not in a construct, are11
determined as follows:12

C / C++
• Variables with static storage duration that are declared in called routines in the region are shared.13

• File-scope or namespace-scope variables referenced in called routines in the region are shared14
unless they appear in a threadprivate directive.15

• Objects with dynamic storage duration are shared.16

• Static data members are shared unless they appear in a threadprivate directive.17

• In C++, formal arguments of called routines in the region that are passed by reference have the18
same data-sharing attributes as the associated actual arguments.19

• Other variables declared in called routines in the region are private.20

C / C++
Fortran

• Local variables declared in called routines in the region and that have the save attribute, or that21
are data initialized, are shared unless they appear in a threadprivate directive.22

• Variables belonging to common blocks, or accessed by host or use association, and referenced in23
called routines in the region are shared unless they appear in a threadprivate directive.24

• Dummy arguments of called routines in the region that have the VALUE attribute are private.25

• Dummy arguments of called routines in the region that do not have the VALUE attribute are26
private if the associated actual argument is not shared.27

306 OpenMP API – Version 5.1 November 2020

• Dummy arguments of called routines in the region that do not have the VALUE attribute are1
shared if the actual argument is shared and it is a scalar variable, structure, an array that is not a2
pointer or assumed-shape array, or a simply contiguous array section. Otherwise, the3
data-sharing attribute of the dummy argument is implementation-defined if the associated actual4
argument is shared.5

• Cray pointees have the same data-sharing attribute as the storage with which their Cray pointers6
are associated. Cray pointer support has been deprecated.7

• Implied-do indices, DO CONCURRENT indices, FORALL indices, and other local variables8
declared in called routines in the region are private.9

Fortran

2.21.2 threadprivate Directive10

Summary11
The threadprivate directive specifies that variables are replicated, with each thread having its12
own copy. The threadprivate directive is a declarative directive.13

Syntax14
C / C++

The syntax of the threadprivate directive is as follows:15

#pragma omp threadprivate(list) new-line16

where list is a comma-separated list of file-scope, namespace-scope, or static block-scope variables17
that do not have incomplete types.18

C / C++
Fortran

The syntax of the threadprivate directive is as follows:19

!$omp threadprivate(list)20

where list is a comma-separated list of named variables and named common blocks. Common21
block names must appear between slashes.22

Fortran

Description23
Unless otherwise specified, each copy of a threadprivate variable is initialized once, in the manner24
specified by the program, but at an unspecified point in the program prior to the first reference to25
that copy. The storage of all copies of a threadprivate variable is freed according to how static26
variables are handled in the base language, but at an unspecified point in the program.27

CHAPTER 2. DIRECTIVES 307

C++
Each copy of a block-scope threadprivate variable that has a dynamic initializer is initialized the1
first time its thread encounters its definition; if its thread does not encounter its definition, its2
initialization is unspecified.3

C++
The content of a threadprivate variable can change across a task scheduling point if the executing4
thread switches to another task that modifies the variable. For more details on task scheduling, see5
Section 1.3 and Section 2.12.6

In parallel regions, references by the primary thread will be to the copy of the variable in the7
thread that encountered the parallel region.8

During a sequential part references will be to the initial thread’s copy of the variable. The values of9
data in the initial thread’s copy of a threadprivate variable are guaranteed to persist between any10
two consecutive references to the variable in the program provided that no teams construct that is11
not nested inside of a target construct is encountered between the references and that the initial12
thread is not nested inside of a teams region. For initial threads nested inside of a teams region,13
the values of data in the copies of a threadprivate variable of those initial threads are guaranteed to14
persist between any two consecutive references to the variable inside of that teams region.15

The values of data in the threadprivate variables of threads that are not initial threads are16
guaranteed to persist between two consecutive active parallel regions only if all of the17
following conditions hold:18

• Neither parallel region is nested inside another explicit parallel region;19

• The number of threads used to execute both parallel regions is the same;20

• The thread affinity policies used to execute both parallel regions are the same;21

• The value of the dyn-var internal control variable in the enclosing task region is false at entry to22
both parallel regions;23

• No teams construct that is not nested inside of a target construct is encountered between the24
parallel regions;25

• No construct with an order clause that specifies concurrent is encountered between the26
parallel regions; and27

• Neither the omp_pause_resource nor omp_pause_resource_all routine is called.28

If these conditions all hold, and if a threadprivate variable is referenced in both regions, then29
threads with the same thread number in their respective regions will reference the same copy of that30
variable.31

308 OpenMP API – Version 5.1 November 2020

C / C++
If the above conditions hold, the storage duration, lifetime, and value of a thread’s copy of a1
threadprivate variable that does not appear in any copyin clause on the second region will span2
the two consecutive active parallel regions. Otherwise, the storage duration, lifetime, and value3
of a thread’s copy of the variable in the second region is unspecified.4

C / C++
Fortran

If the above conditions hold, the definition, association, or allocation status of a thread’s copy of a5
threadprivate variable or a variable in a threadprivate common block that is not affected by any6
copyin clause that appears on the second region (a variable is affected by a copyin clause if the7
variable appears in the copyin clause or it is in a common block that appears in the copyin8
clause) will span the two consecutive active parallel regions. Otherwise, the definition and9
association status of a thread’s copy of the variable in the second region are undefined, and the10
allocation status of an allocatable variable will be implementation defined.11

If a threadprivate variable or a variable in a threadprivate common block is not affected by any12
copyin clause that appears on the first parallel region in which it is referenced, the thread’s13
copy of the variable inherits the declared type parameter and the default parameter values from the14
original variable. The variable or any subobject of the variable is initially defined or undefined15
according to the following rules:16

• If it has the ALLOCATABLE attribute, each copy created will have an initial allocation status of17
unallocated;18

• If it has the POINTER attribute, each copy will have the same association status as the initial19
association status.20

• If it does not have either the POINTER or the ALLOCATABLE attribute:21

– If it is initially defined, either through explicit initialization or default initialization, each copy22
created is so defined;23

– Otherwise, each copy created is undefined.24

Fortran
C / C++

The address of a threadprivate variable may not be an address constant.25

C / C++
C++

The order in which any constructors for different threadprivate variables of class type are called is26
unspecified. The order in which any destructors for different threadprivate variables of class type27
are called is unspecified.28

C++

CHAPTER 2. DIRECTIVES 309

Restrictions1
Restrictions to the threadprivate directive are as follows:2

• A thread must not reference another thread’s copy of a threadprivate variable.3

• A threadprivate variable must not appear in any clause except the copyin, copyprivate,4
schedule, num_threads, thread_limit, and if clauses.5

• A program in which an untied task accesses threadprivate storage is non-conforming.6

C / C++
• If the value of a variable referenced in an explicit initializer of a threadprivate variable is7
modified prior to the first reference to any instance of the threadprivate variable, then the8
behavior is unspecified.9

• A variable that is part of another variable (as an array or structure element) cannot appear in a10
threadprivate directive unless it is a static data member of a C++ class.11

• A threadprivate directive for file-scope variables must appear outside any definition or12
declaration, and must lexically precede all references to any of the variables in its list.13

• A threadprivate directive for namespace-scope variables must appear outside any14
definition or declaration other than the namespace definition itself, and must lexically precede all15
references to any of the variables in its list.16

• Each variable in the list of a threadprivate directive at file, namespace, or class scope must17
refer to a variable declaration at file, namespace, or class scope that lexically precedes the18
directive.19

• A threadprivate directive for static block-scope variables must appear in the scope of the20
variable and not in a nested scope. The directive must lexically precede all references to any of21
the variables in its list.22

• Each variable in the list of a threadprivate directive in block scope must refer to a variable23
declaration in the same scope that lexically precedes the directive. The variable must have static24
storage duration.25

• If a variable is specified in a threadprivate directive in one translation unit, it must be26
specified in a threadprivate directive in every translation unit in which it is declared.27

C / C++
C++

• A threadprivate directive for static class member variables must appear in the class28
definition, in the same scope in which the member variables are declared, and must lexically29
precede all references to any of the variables in its list.30

• A threadprivate variable must not have an incomplete type or a reference type.31

• A threadprivate variable with class type must have:32

310 OpenMP API – Version 5.1 November 2020

– An accessible, unambiguous default constructor in the case of default initialization without a1
given initializer;2

– An accessible, unambiguous constructor that accepts the given argument in the case of direct3
initialization; and4

– An accessible, unambiguous copy constructor in the case of copy initialization with an explicit5
initializer.6

C++
Fortran

• A variable that is part of another variable (as an array, structure element or type parameter7
inquiry) cannot appear in a threadprivate directive.8

• A coarray cannot appear in a threadprivate directive.9

• An associate name cannot appear in a threadprivate directive.10

• The threadprivate directive must appear in the declaration section of a scoping unit in11
which the common block or variable is declared.12

• If a threadprivate directive that specifies a common block name appears in one program13
unit, then such a directive must also appear in every other program unit that contains a COMMON14
statement that specifies the same name. It must appear after the last such COMMON statement in15
the program unit.16

• If a threadprivate variable or a threadprivate common block is declared with the BIND attribute,17
the corresponding C entities must also be specified in a threadprivate directive in the C18
program.19

• A variable can only appear in a threadprivate directive in the scope in which it is declared.20
It must not be an element of a common block or appear in an EQUIVALENCE statement.21

• A variable that appears in a threadprivate directive must be declared in the scope of a22
module or have the SAVE attribute, either explicitly or implicitly.23

• The effect of an access to a threadprivate variable in a DO CONCURRENT construct is unspecified.24

Fortran

Cross References25
• dyn-var ICV, see Section 2.4.26

• Number of threads used to execute a parallel region, see Section 2.6.1.27

• order clause, see Section 2.11.3.28

• copyin clause, see Section 2.21.6.1.29

CHAPTER 2. DIRECTIVES 311

2.21.3 List Item Privatization1

For any construct, a list item that appears in a data-sharing attribute clause, including a reduction2
clause, may be privatized. Each task that references a privatized list item in any statement in the3
construct receives at least one new list item if the construct has one or more associated loops, and4
otherwise each such task receives one new list item. Each SIMD lane used in a simd construct that5
references a privatized list item in any statement in the construct receives at least one new list item.6
Language-specific attributes for new list items are derived from the corresponding original list item.7
Inside the construct, all references to the original list item are replaced by references to a new list8
item received by the task or SIMD lane.9

If the construct has one or more associated loops, within the same logical iteration of the loops,10
then the same new list item replaces all references to the original list item. For any two logical11
iterations, if the references to the original list item are replaced by the same list item then the logical12
iterations must execute in some sequential order.13

In the rest of the region, whether references are to a new list item or the original list item is14
unspecified. Therefore, if an attempt is made to reference the original item, its value after the15
region is also unspecified. If a task or a SIMD lane does not reference a privatized list item,16
whether the task or SIMD lane receives a new list item is unspecified.17

The value and/or allocation status of the original list item will change only:18

• If accessed and modified via pointer;19

• If possibly accessed in the region but outside of the construct;20

• As a side effect of directives or clauses; or21

Fortran
• If accessed and modified via construct association.22

Fortran
C++

If the construct is contained in a member function, whether accesses anywhere in the region23
through the implicit this pointer refer to the new list item or the original list item is unspecified.24

C++
C / C++

A new list item of the same type, with automatic storage duration, is allocated for the construct.25
The storage and thus lifetime of these list items last until the block in which they are created exits.26
The size and alignment of the new list item are determined by the type of the variable. This27
allocation occurs once for each task generated by the construct and once for each SIMD lane used28
by the construct.29

The new list item is initialized, or has an undefined initial value, as if it had been locally declared30
without an initializer.31

C / C++

312 OpenMP API – Version 5.1 November 2020

C++
If the type of a list item is a reference to a type T then the type will be considered to be T for all1
purposes of this clause.2

The order in which any default constructors for different private variables of class type are called is3
unspecified. The order in which any destructors for different private variables of class type are4
called is unspecified.5

C++
Fortran

If any statement of the construct references a list item, a new list item of the same type and type6
parameters is allocated. This allocation occurs once for each task generated by the construct and7
once for each SIMD lane used by the construct. If the type of the list item has default initialization,8
the new list item has default initialization. Otherwise, the initial value of the new list item is9
undefined. The initial status of a private pointer is undefined.10

For a list item or the subobject of a list item with the ALLOCATABLE attribute:11

• If the allocation status is unallocated, the new list item or the subobject of the new list item will12
have an initial allocation status of unallocated;13

• If the allocation status is allocated, the new list item or the subobject of the new list item will14
have an initial allocation status of allocated; and15

• If the new list item or the subobject of the new list item is an array, its bounds will be the same as16
those of the original list item or the subobject of the original list item.17

A privatized list item may be storage-associated with other variables when the data-sharing18
attribute clause is encountered. Storage association may exist because of constructs such as19
EQUIVALENCE or COMMON. If A is a variable that is privatized by a construct and B is a variable20
that is storage-associated with A, then:21

• The contents, allocation, and association status of B are undefined on entry to the region;22

• Any definition of A, or of its allocation or association status, causes the contents, allocation, and23
association status of B to become undefined; and24

• Any definition of B, or of its allocation or association status, causes the contents, allocation, and25
association status of A to become undefined.26

A privatized list item may be a selector of an ASSOCIATE or SELECT TYPE construct. If the27
construct association is established prior to a parallel region, the association between the28
associate name and the original list item will be retained in the region.29

Finalization of a list item of a finalizable type or subobjects of a list item of a finalizable type30
occurs at the end of the region. The order in which any final subroutines for different variables of a31
finalizable type are called is unspecified.32

Fortran

CHAPTER 2. DIRECTIVES 313

If a list item appears in both firstprivate and lastprivate clauses, the update required1
for the lastprivate clause occurs after all initializations for the firstprivate clause.2

Restrictions3
The following restrictions apply to any list item that is privatized unless otherwise stated for a given4
data-sharing attribute clause:5

C
• A variable that is part of another variable (as an array or structure element) cannot be privatized.6

C
C++

• A variable that is part of another variable (as an array or structure element) cannot be privatized7
except if the data-sharing attribute clause is associated with a construct within a class non-static8
member function and the variable is an accessible data member of the object for which the9
non-static member function is invoked.10

• A variable of class type (or array thereof) that is privatized requires an accessible, unambiguous11
default constructor for the class type.12

C++
C / C++

• A variable that is privatized must not have a const-qualified type unless it is of class type with13
a mutable member. This restriction does not apply to the firstprivate clause.14

• A variable that is privatized must not have an incomplete type or be a reference to an incomplete15
type.16

C / C++
Fortran

• A variable that is part of another variable (as an array or structure element) cannot be privatized.17

• Variables that appear in namelist statements, in variable format expressions, and in expressions18
for statement function definitions, may not be privatized.19

• Pointers with the INTENT(IN) attribute may not be privatized. This restriction does not apply20
to the firstprivate clause.21

• A private variable must not be coindexed or appear as an actual argument to a procedure where22
the corresponding dummy argument is a coarray.23

• Assumed-size arrays may not be privatized in a target, teams, or distribute construct.24

Fortran

314 OpenMP API – Version 5.1 November 2020

2.21.4 Data-Sharing Attribute Clauses1

Several constructs accept clauses that allow a user to control the data-sharing attributes of variables2
referenced in the construct. Not all of the clauses listed in this section are valid on all directives.3
The set of clauses that is valid on a particular directive is described with the directive.4

Most of the clauses accept a comma-separated list of list items (see Section 2.1). All list items that5
appear in a clause must be visible, according to the scoping rules of the base language. With the6
exception of the default clause, clauses may be repeated as needed. A list item may not appear7
in more than one clause on the same directive, except that it may be specified in both8
firstprivate and lastprivate clauses.9

The reduction data-sharing attribute clauses are explained in Section 2.21.5.10

C++
If a variable referenced in a data-sharing attribute clause has a type derived from a template, and11
the program does not otherwise reference that variable then any behavior related to that variable is12
unspecified.13

C++
Fortran

If individual members of a common block appear in a data-sharing attribute clause other than the14
shared clause, the variables no longer have a Fortran storage association with the common block.15

Fortran

2.21.4.1 default Clause16

Summary17
The default clause explicitly determines the data-sharing attributes of variables that are18
referenced in a parallel, teams, or task generating construct and would otherwise be implicitly19
determined (see Section 2.21.1.1).20

Syntax21
The syntax of the default clause is as follows:22

default(data-sharing-attribute)23

where data-sharing-attribute is one of the following:24

shared25

firstprivate26

private27

none28

CHAPTER 2. DIRECTIVES 315

Description1
If data-sharing-attribute is shared or, for Fortran, firstprivate or private, the2
data-sharing attribute of all variables referenced in the construct that have implicitly determined3
data-sharing attributes will be data-sharing-attribute.4

C / C++
If data-sharing-attribute is firstprivate or private, each variable with static storage5
duration that is declared in a namespace or global scope and referenced in the construct, and that6
does not have a predetermined data-sharing attribute, must have its data-sharing attribute explicitly7
determined by being listed in a data-sharing attribute clause. The data-sharing attribute of all other8
variables that are referenced in the construct and that have implicitly determined data-sharing9
attributes will be data-sharing-attribute.10

C / C++
The default(none) clause requires that each variable that is referenced in the construct, and11
that does not have a predetermined data-sharing attribute, must have its data-sharing attribute12
explicitly determined by being listed in a data-sharing attribute clause.13

Restrictions14
Restrictions to the default clause are as follows:15

• Only a single default clause may be specified on a parallel, task, taskloop or16
teams directive.17

2.21.4.2 shared Clause18

Summary19
The shared clause declares one or more list items to be shared by tasks generated by a20
parallel, teams, or task generating construct.21

Syntax22
The syntax of the shared clause is as follows:23

shared(list)24

Description25
All references to a list item within a task refer to the storage area of the original variable at the point26
the directive was encountered.27

The programmer must ensure, by adding proper synchronization, that storage shared by an explicit28
task region does not reach the end of its lifetime before the explicit task region completes its29
execution.30

316 OpenMP API – Version 5.1 November 2020

Fortran
The association status of a shared pointer becomes undefined upon entry to and exit from a1
parallel, teams, or task generating construct if it is associated with a target or a subobject of a2
target that appears as a privatized list item in a data-sharing attribute clause on the construct.3

4

Note – Passing a shared variable to a procedure may result in the use of temporary storage in place5
of the actual argument when the corresponding dummy argument does not have the VALUE or6
CONTIGUOUS attribute and its data-sharing attribute is implementation-defined as per the rules in7
Section 2.21.1.2. These conditions effectively result in references to, and definitions of, the8
temporary storage during the procedure reference. Furthermore, the value of the shared variable is9
copied into the intervening temporary storage before the procedure reference when the dummy10
argument does not have the INTENT(OUT) attribute, and is copied out of the temporary storage11
into the shared variable when the dummy argument does not have the INTENT(IN) attribute. Any12
references to (or definitions of) the shared storage that is associated with the dummy argument by13
any other task must be synchronized with the procedure reference to avoid possible data races.14

15
16

Fortran

Restrictions17
Restrictions to the shared clause are as follows:18

C
• A variable that is part of another variable (as an array or structure element) cannot appear in a19
shared clause.20

C
C++

• A variable that is part of another variable (as an array or structure element) cannot appear in a21
shared clause except if the shared clause is associated with a construct within a class22
non-static member function and the variable is an accessible data member of the object for which23
the non-static member function is invoked.24

C++
Fortran

• A variable that is part of another variable (as an array, structure element or type parameter25
inquiry) cannot appear in a shared clause.26

Fortran

CHAPTER 2. DIRECTIVES 317

2.21.4.3 private Clause1

Summary2
The private clause declares one or more list items to be private to a task or to a SIMD lane.3

Syntax4
The syntax of the private clause is as follows:5

private(list)6

Description7
The private clause specifies that its list items are to be privatized according to Section 2.21.3.8
Each task or SIMD lane that references a list item in the construct receives only one new list item,9
unless the construct has one or more associated loops and an order clause that specifies10
concurrent is also present.11

Restrictions12
Restrictions to the private clause are as specified in Section 2.21.3.13

Cross References14
• List Item Privatization, see Section 2.21.3.15

2.21.4.4 firstprivate Clause16

Summary17
The firstprivate clause declares one or more list items to be private to a task, and initializes18
each of them with the value that the corresponding original item has when the construct is19
encountered.20

Syntax21
The syntax of the firstprivate clause is as follows:22

firstprivate(list)23

Description24
The firstprivate clause provides a superset of the functionality provided by the private25
clause.26

Fortran
The list items that appear in a firstprivate clause may include named constants.27

Fortran

318 OpenMP API – Version 5.1 November 2020

A list item that appears in a firstprivate clause is subject to the private clause semantics1
described in Section 2.21.4.3, except as noted. In addition, the new list item is initialized from the2
original list item that exists before the construct. The initialization of the new list item is done once3
for each task that references the list item in any statement in the construct. The initialization is done4
prior to the execution of the construct.5

For a firstprivate clause on a parallel, task, taskloop, target, or teams6
construct, the initial value of the new list item is the value of the original list item that exists7
immediately prior to the construct in the task region where the construct is encountered unless8
otherwise specified. For a firstprivate clause on a worksharing construct, the initial value of9
the new list item for each implicit task of the threads that execute the worksharing construct is the10
value of the original list item that exists in the implicit task immediately prior to the point in time11
that the worksharing construct is encountered unless otherwise specified.12

To avoid data races, concurrent updates of the original list item must be synchronized with the read13
of the original list item that occurs as a result of the firstprivate clause.14

C / C++
For variables of non-array type, the initialization occurs by copy assignment. For an array of15
elements of non-array type, each element is initialized as if by assignment from an element of the16
original array to the corresponding element of the new array.17

C / C++
C++

For each variable of class type:18

• If the firstprivate clause is not on a target construct then a copy constructor is invoked19
to perform the initialization; and20

• If the firstprivate clause is on a target construct then how many copy constructors, if21
any, are invoked is unspecified.22

If copy constructors are called, the order in which copy constructors for different variables of class23
type are called is unspecified.24

C++
Fortran

If the original list item does not have the POINTER attribute, initialization of the new list items25
occurs as if by intrinsic assignment unless the original list item has a compatible type-bound26
defined assignment, in which case initialization of the new list items occurs as if by the defined27
assignment. If the original list item that does not have the POINTER attribute has the allocation28
status of unallocated, the new list items will have the same status.29

If the original list item has the POINTER attribute, the new list items receive the same association30
status of the original list item as if by pointer assignment.31

Fortran

CHAPTER 2. DIRECTIVES 319

Restrictions1
Restrictions to the firstprivate clause are as follows:2

• A list item that is private within a parallel region must not appear in a firstprivate3
clause on a worksharing construct if any of the worksharing regions that arise from the4
worksharing construct ever bind to any of the parallel regions that arise from the5
parallel construct.6

• A list item that is private within a teams region must not appear in a firstprivate clause7
on a distribute construct if any of the distribute regions that arise from the8
distribute construct ever bind to any of the teams regions that arise from the teams9
construct.10

• A list item that appears in a reduction clause of a parallel construct must not appear in a11
firstprivate clause on a worksharing, task, or taskloop construct if any of the12
worksharing or task regions that arise from the worksharing, task, or taskloop construct13
ever bind to any of the parallel regions that arise from the parallel construct.14

• A list item that appears in a reduction clause of a teams construct must not appear in a15
firstprivate clause on a distribute construct if any of the distribute regions that16
arise from the distribute construct ever bind to any of the teams regions that arise from the17
teams construct.18

• A list item that appears in a reduction clause of a worksharing construct must not appear in a19
firstprivate clause in a task construct encountered during execution of any of the20
worksharing regions that arise from the worksharing construct.21

C++
• A variable of class type (or array thereof) that appears in a firstprivate clause requires an22
accessible, unambiguous copy constructor for the class type.23

C++
C / C++

• If a list item in a firstprivate clause on a worksharing construct has a reference type then it24
must bind to the same object for all threads of the team.25

C / C++
Fortran

• If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is26
unspecified.27

Fortran

320 OpenMP API – Version 5.1 November 2020

2.21.4.5 lastprivate Clause1

Summary2
The lastprivate clause declares one or more list items to be private to an implicit task or to a3
SIMD lane, and causes the corresponding original list item to be updated after the end of the region.4

Syntax5
The syntax of the lastprivate clause is as follows:6

lastprivate([lastprivate-modifier:] list)7

where lastprivate-modifier is:8

conditional9

Description10
The lastprivate clause provides a superset of the functionality provided by the private11
clause.12

A list item that appears in a lastprivate clause is subject to the private clause semantics13
described in Section 2.21.4.3. In addition, when a lastprivate clause without the14
conditional modifier appears on a directive and the list item is not an iteration variable of one15
of the associated loops, the value of each new list item from the sequentially last iteration of the16
associated loops, or the lexically last section construct, is assigned to the original list item.17
When the conditional modifier appears on the clause or the list item is an iteration variable of18
one of the associated loops, if sequential execution of the loop nest would assign a value to the list19
item then the original list item is assigned the value that the list item would have after sequential20
execution of the loop nest.21

C / C++
For an array of elements of non-array type, each element is assigned to the corresponding element22
of the original array.23

C / C++
Fortran

If the original list item does not have the POINTER attribute, its update occurs as if by intrinsic24
assignment unless it has a type bound procedure as a defined assignment.25

If the original list item has the POINTER attribute, its update occurs as if by pointer assignment.26

Fortran
When the conditional modifier does not appear on the lastprivate clause, any list item27
that is not an iteration variable of the associated loops and that is not assigned a value by the28
sequentially last iteration of the loops, or by the lexically last section construct, has an29
unspecified value after the construct. When the conditional modifier does not appear on the30
lastprivate clause, a list item that is the iteration variable of an associated loop and that would31
not be assigned a value during sequential execution of the loop nest has an unspecified value after32
the construct. Unassigned subcomponents also have unspecified values after the construct.33

CHAPTER 2. DIRECTIVES 321

If the lastprivate clause is used on a construct to which neither the nowait nor the1
nogroup clauses are applied, the original list item becomes defined at the end of the construct. To2
avoid data races, concurrent reads or updates of the original list item must be synchronized with the3
update of the original list item that occurs as a result of the lastprivate clause.4

Otherwise, If the lastprivate clause is used on a construct to which the nowait or the5
nogroup clauses are applied, accesses to the original list item may create a data race. To avoid6
this data race, if an assignment to the original list item occurs then synchronization must be inserted7
to ensure that the assignment completes and the original list item is flushed to memory.8

If a list item that appears in a lastprivate clause with the conditional modifier is9
modified in the region by an assignment outside the construct or not to the list item then the value10
assigned to the original list item is unspecified.11

Restrictions12
Restrictions to the lastprivate clause are as follows:13

• A list item that is private within a parallel region, or that appears in the reduction clause14
of a parallel construct, must not appear in a lastprivate clause on a worksharing15
construct if any of the corresponding worksharing regions ever binds to any of the corresponding16
parallel regions.17

• A list item that appears in a lastprivate clause with the conditional modifier must be a18
scalar variable.19

C++
• A variable of class type (or array thereof) that appears in a lastprivate clause requires an20
accessible, unambiguous default constructor for the class type, unless the list item is also21
specified in a firstprivate clause.22

• A variable of class type (or array thereof) that appears in a lastprivate clause requires an23
accessible, unambiguous copy assignment operator for the class type. The order in which copy24
assignment operators for different variables of class type are called is unspecified.25

C++
C / C++

• If a list item in a lastprivate clause on a worksharing construct has a reference type then it26
must bind to the same object for all threads of the team.27

C / C++
Fortran

• A variable that appears in a lastprivate clause must be definable.28

• If the original list item has the ALLOCATABLE attribute, the corresponding list item of which the29
value is assigned to the original item must have an allocation status of allocated upon exit from30
the sequentially last iteration or lexically last section construct.31

• If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is32
unspecified.33

Fortran

322 OpenMP API – Version 5.1 November 2020

2.21.4.6 linear Clause1

Summary2
The linear clause declares one or more list items to be private and to have a linear relationship3
with respect to the iteration space of a loop associated with the construct on which the clause4
appears.5

Syntax6
C

The syntax of the linear clause is as follows:7

linear(linear-list[: linear-step])8

where linear-list is one of the following9

list10

modifier(list)11

where modifier is one of the following:12

val13

C
C++

The syntax of the linear clause is as follows:14

linear(linear-list[: linear-step])15

where linear-list is one of the following16

list17

modifier(list)18

where modifier is one of the following:19

ref20

val21

uval22

C++

CHAPTER 2. DIRECTIVES 323

Fortran
The syntax of the linear clause is as follows:1

linear(linear-list[: linear-step])2

where linear-list is one of the following3

list4

modifier(list)5

where modifier is one of the following:6

ref7

val8

uval9

Fortran

Description10
The linear clause provides a superset of the functionality provided by the private clause. A11
list item that appears in a linear clause is subject to the private clause semantics described in12
Section 2.21.4.3 except as noted. If linear-step is not specified, it is assumed to be 1.13

When a linear clause is specified on a construct, the value of the new list item on each logical14
iteration of the associated loops corresponds to the value of the original list item before entering the15
construct plus the logical number of the iteration times linear-step. The value corresponding to the16
sequentially last logical iteration of the associated loops is assigned to the original list item.17

When a linear clause is specified on a declarative directive, all list items must be formal18
parameters (or, in Fortran, dummy arguments) of a function that will be invoked concurrently on19
each SIMD lane. If no modifier is specified or the val or uval modifier is specified, the value of20
each list item on each lane corresponds to the value of the list item upon entry to the function plus21
the logical number of the lane times linear-step. If the uval modifier is specified, each invocation22
uses the same storage location for each SIMD lane; this storage location is updated with the final23
value of the logically last lane. If the ref modifier is specified, the storage location of each list24
item on each lane corresponds to an array at the storage location upon entry to the function indexed25
by the logical number of the lane times linear-step.26

Restrictions27
Restrictions to the linear clause are as follows:28

• The linear-step expression must be invariant during the execution of the region that corresponds29
to the construct.30

• Only a loop iteration variable of a loop that is associated with the construct may appear as a31
list-item in a linear clause if a reduction clause with the inscan modifier also appears32
on the construct.33

324 OpenMP API – Version 5.1 November 2020

C
• A list-item that appears in a linear clause must be of integral or pointer type.1

C
C++

• A list-item that appears in a linear clause without the ref modifier must be of integral or2
pointer type, or must be a reference to an integral or pointer type.3

• The ref or uval modifier can only be used if the list-item is of a reference type.4

• If a list item in a linear clause on a worksharing construct has a reference type then it must5
bind to the same object for all threads of the team.6

• If the list item is of a reference type and the ref modifier is not specified and if any write to the7
list item occurs before any read of the list item then the result is unspecified.8

C++
Fortran

• A list-item that appears in a linear clause without the ref modifier must be of type9
integer.10

• The ref or uval modifier can only be used if the list-item is a dummy argument without the11
VALUE attribute.12

• Variables that have the POINTER attribute and Cray pointers may not appear in a linear13
clause. Cray pointer support has been deprecated.14

• If the list item has the ALLOCATABLE attribute and the ref modifier is not specified, the15
allocation status of the list item in the sequentially last iteration must be allocated upon exit from16
that iteration.17

• If the ref modifier is specified, variables with the ALLOCATABLE attribute, assumed-shape18
arrays and polymorphic variables may not appear in the linear clause.19

• If the list item is a dummy argument without the VALUE attribute and the ref modifier is not20
specified, any read of the list item must occur before any write to the list item.21

• A common block name cannot appear in a linear clause.22

Fortran

2.21.5 Reduction Clauses and Directives23

The reduction clauses are data-sharing attribute clauses that can be used to perform some forms of24
recurrence calculations in parallel. Reduction clauses include reduction scoping clauses and25
reduction participating clauses. Reduction scoping clauses define the region in which a reduction is26
computed. Reduction participating clauses define the participants in the reduction.27

CHAPTER 2. DIRECTIVES 325

2.21.5.1 Properties Common to All Reduction Clauses1

Syntax2
The syntax of a reduction-identifier is defined as follows:3

C
A reduction-identifier is either an identifier or one of the following operators: +, -, *, &, |, ^, &&4
and ||.5

C
C++

A reduction-identifier is either an id-expression or one of the following operators: +, -, *, &, |, ^,6
&& and ||.7

C++
Fortran

A reduction-identifier is either a base language identifier, or a user-defined operator, or one of the8
following operators: +, -, *, .and., .or., .eqv., .neqv., or one of the following intrinsic9
procedure names: max, min, iand, ior, ieor.10

Fortran
C / C++

Table 2.11 lists each reduction-identifier that is implicitly declared at every scope for arithmetic11
types and its semantic initializer value. The actual initializer value is that value as expressed in the12
data type of the reduction list item.13

TABLE 2.11: Implicitly Declared C/C++ reduction-identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out += omp_in

- omp_priv = 0 omp_out += omp_in

* omp_priv = 1 omp_out *= omp_in

& omp_priv = ~ 0 omp_out &= omp_in

| omp_priv = 0 omp_out |= omp_in

^ omp_priv = 0 omp_out ^= omp_in

&& omp_priv = 1 omp_out = omp_in && omp_out

|| omp_priv = 0 omp_out = omp_in || omp_out

table continued on next page

326 OpenMP API – Version 5.1 November 2020

table continued from previous page

Identifier Initializer Combiner

max omp_priv = Minimal
representable number in the
reduction list item type

omp_out = omp_in > omp_out ?
omp_in : omp_out

min omp_priv = Maximal
representable number in the
reduction list item type

omp_out = omp_in < omp_out ?
omp_in : omp_out

C / C++
Fortran

Table 2.12 lists each reduction-identifier that is implicitly declared for numeric and logical types1
and its semantic initializer value. The actual initializer value is that value as expressed in the data2
type of the reduction list item.3

TABLE 2.12: Implicitly Declared Fortran reduction-identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out = omp_in + omp_out

- omp_priv = 0 omp_out = omp_in + omp_out

* omp_priv = 1 omp_out = omp_in * omp_out

.and. omp_priv = .true. omp_out = omp_in .and. omp_out

.or. omp_priv = .false. omp_out = omp_in .or. omp_out

.eqv. omp_priv = .true. omp_out = omp_in .eqv. omp_out

.neqv. omp_priv = .false. omp_out = omp_in .neqv. omp_out

max omp_priv = Minimal
representable number in the
reduction list item type

omp_out = max(omp_in, omp_out)

min omp_priv = Maximal
representable number in the
reduction list item type

omp_out = min(omp_in, omp_out)

table continued on next page

CHAPTER 2. DIRECTIVES 327

table continued from previous page

Identifier Initializer Combiner

iand omp_priv = All bits on omp_out = iand(omp_in, omp_out)

ior omp_priv = 0 omp_out = ior(omp_in, omp_out)

ieor omp_priv = 0 omp_out = ieor(omp_in, omp_out)

Fortran
In the above tables, omp_in and omp_out correspond to two identifiers that refer to storage of the1
type of the list item. If the list item is an array or array section, the identifiers to which omp_in2
and omp_out correspond each refer to an array element. omp_out holds the final value of the3
combiner operation.4

Any reduction-identifier that is defined with the declare reduction directive is also valid. In5
that case, the initializer and combiner of the reduction-identifier are specified by the6
initializer-clause and the combiner in the declare reduction directive.7

Description8
A reduction clause specifies a reduction-identifier and one or more list items.9

The reduction-identifier specified in a reduction clause must match a previously declared10
reduction-identifier of the same name and type for each of the list items. This match is done by11
means of a name lookup in the base language.12

The list items that appear in a reduction clause may include array sections.13

C++
If the type is a derived class, then any reduction-identifier that matches its base classes is also a14
match, if no specific match for the type has been specified.15

If the reduction-identifier is not an id-expression, then it is implicitly converted to one by16
prepending the keyword operator (for example, + becomes operator+).17

If the reduction-identifier is qualified then a qualified name lookup is used to find the declaration.18

If the reduction-identifier is unqualified then an argument-dependent name lookup must be19
performed using the type of each list item.20

C++
If a list item is an array or array section, it will be treated as if a reduction clause would be applied21
to each separate element of the array section.22

If a list item is an array section, the elements of any copy of the array section will be stored23
contiguously.24

328 OpenMP API – Version 5.1 November 2020

Fortran
If the original list item has the POINTER attribute, any copies of the list item are associated with1
private targets.2

Fortran
Any copies of a list item associated with the reduction are initialized with the initializer value of the3
reduction-identifier.4

Any copies are combined using the combiner associated with the reduction-identifier.5

Execution Model Events6
The reduction-begin event occurs before a task begins to perform loads and stores that belong to the7
implementation of a reduction and the reduction-end event occurs after the task has completed8
loads and stores associated with the reduction. If a task participates in multiple reductions, each9
reduction may be bracketed by its own pair of reduction-begin/reduction-end events or multiple10
reductions may be bracketed by a single pair of events. The interval defined by a pair of11
reduction-begin/reduction-end events may not contain a task scheduling point.12

Tool Callbacks13
A thread dispatches a registered ompt_callback_reduction with14
ompt_sync_region_reduction in its kind argument and ompt_scope_begin as its15
endpoint argument for each occurrence of a reduction-begin event in that thread. Similarly, a thread16
dispatches a registered ompt_callback_reduction with17
ompt_sync_region_reduction in its kind argument and ompt_scope_end as its18
endpoint argument for each occurrence of a reduction-end event in that thread. These callbacks19
occur in the context of the task that performs the reduction and has the type signature20
ompt_callback_sync_region_t.21

Restrictions22
Restrictions common to reduction clauses are as follows:23

• Any number of reduction clauses can be specified on the directive, but a list item (or any array24
element in an array section) can appear only once in reduction clauses for that directive.25

• For a reduction-identifier declared in a declare reduction directive, the directive must26
appear before its use in a reduction clause.27

• If a list item is an array section or an array element, its base expression must be a base language28
identifier.29

• If a list item is an array section, it must specify contiguous storage and it cannot be a zero-length30
array section.31

• If a list item is an array section or an array element, accesses to the elements of the array outside32
the specified array section or array element result in unspecified behavior.33

CHAPTER 2. DIRECTIVES 329

C
• A variable that is part of another variable, with the exception of array elements, cannot appear in1
a reduction clause.2

C
C++

• A variable that is part of another variable, with the exception of array elements, cannot appear in3
a reduction clause except if the reduction clause is associated with a construct within a class4
non-static member function and the variable is an accessible data member of the object for which5
the non-static member function is invoked.6

C++
C / C++

• The type of a list item that appears in a reduction clause must be valid for the7
reduction-identifier. For a max or min reduction in C, the type of the list item must be an8
allowed arithmetic data type: char, int, float, double, or _Bool, possibly modified with9
long, short, signed, or unsigned. For a max or min reduction in C++, the type of the10
list item must be an allowed arithmetic data type: char, wchar_t, int, float, double, or11
bool, possibly modified with long, short, signed, or unsigned.12

• A list item that appears in a reduction clause must not be const-qualified.13

• The reduction-identifier for any list item must be unambiguous and accessible.14

C / C++
Fortran

• A variable that is part of another variable, with the exception of array elements, cannot appear in15
a reduction clause.16

• A type parameter inquiry cannot appear in a reduction clause.17

• The type, type parameters and rank of a list item that appears in a reduction clause must be valid18
for the combiner and initializer.19

• A list item that appears in a reduction clause must be definable.20

• A procedure pointer may not appear in a reduction clause.21

• A pointer with the INTENT(IN) attribute may not appear in the reduction clause.22

• An original list item with the POINTER attribute or any pointer component of an original list23
item that is referenced in the combiner must be associated at entry to the construct that contains24
the reduction clause. Additionally, the list item or the pointer component of the list item must not25
be deallocated, allocated, or pointer assigned within the region.26

330 OpenMP API – Version 5.1 November 2020

• An original list item with the ALLOCATABLE attribute or any allocatable component of an1
original list item that corresponds to a special variable identifier in the combiner or the initializer2
must be in the allocated state at entry to the construct that contains the reduction clause.3
Additionally, the list item or the allocatable component of the list item must be neither4
deallocated nor allocated, explicitly or implicitly, within the region.5

• If the reduction-identifier is defined in a declare reduction directive, the6
declare reduction directive must be in the same subprogram, or accessible by host or use7
association.8

• If the reduction-identifier is a user-defined operator, the same explicit interface for that operator9
must be accessible at the location of the declare reduction directive that defines the10
reduction-identifier.11

• If the reduction-identifier is defined in a declare reduction directive, any procedure12
referenced in the initializer clause or combiner expression must be an intrinsic function,13
or must have an explicit interface where the same explicit interface is accessible as at the14
declare reduction directive.15

Fortran

Cross References16
• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11.17

• ompt_sync_region_reduction, see Section 4.4.4.13.18

• ompt_callback_sync_region_t, see Section 4.5.2.13.19

2.21.5.2 Reduction Scoping Clauses20

Reduction scoping clauses define the region in which a reduction is computed by tasks or SIMD21
lanes. All properties common to all reduction clauses, which are defined in Section 2.21.5.1, apply22
to reduction scoping clauses.23

The number of copies created for each list item and the time at which those copies are initialized24
are determined by the particular reduction scoping clause that appears on the construct.25

The time at which the original list item contains the result of the reduction is determined by the26
particular reduction scoping clause.27

The location in the OpenMP program at which values are combined and the order in which values28
are combined are unspecified. Therefore, when comparing sequential and parallel executions, or29
when comparing one parallel execution to another (even if the number of threads used is the same),30
bitwise-identical results are not guaranteed to be obtained. Similarly, side effects (such as31
floating-point exceptions) may not be identical and may not take place at the same location in the32
OpenMP program.33

To avoid data races, concurrent reads or updates of the original list item must be synchronized with34
the update of the original list item that occurs as a result of the reduction computation.35

CHAPTER 2. DIRECTIVES 331

2.21.5.3 Reduction Participating Clauses1

A reduction participating clause specifies a task or a SIMD lane as a participant in a reduction2
defined by a reduction scoping clause. All properties common to all reduction clauses, which are3
defined in Section 2.21.5.1, apply to reduction participating clauses.4

Accesses to the original list item may be replaced by accesses to copies of the original list item5
created by a region that corresponds to a construct with a reduction scoping clause.6

In any case, the final value of the reduction must be determined as if all tasks or SIMD lanes that7
participate in the reduction are executed sequentially in some arbitrary order.8

2.21.5.4 reduction Clause9

Summary10
The reduction clause specifies a reduction-identifier and one or more list items. For each list11
item, a private copy is created for each implicit task or SIMD lane and is initialized with the12
initializer value of the reduction-identifier. After the end of the region, the original list item is13
updated with the values of the private copies using the combiner associated with the14
reduction-identifier.15

Syntax16
The syntax of the reduction clause is as follows:17

reduction([reduction-modifier,]reduction-identifier : list)18

Where reduction-identifier is defined in Section 2.21.5.1, and reduction-modifier is one of the19
following:20

inscan21

task22

default23

Description24
The reduction clause is a reduction scoping clause and a reduction participating clause, as25
described in Section 2.21.5.2 and Section 2.21.5.3.26

If reduction-modifier is not present or the default reduction-modifier is present, the behavior is27
as follows. For parallel, scope and worksharing constructs, one or more private copies of28
each list item are created for each implicit task, as if the private clause had been used. For the29
simd construct, one or more private copies of each list item are created for each SIMD lane, as if30
the private clause had been used. For the taskloop construct, private copies are created31
according to the rules of the reduction scoping clauses. For the teams construct, one or more32
private copies of each list item are created for the initial task of each team in the league, as if the33
private clause had been used. For the loop construct, private copies are created and used in the34

332 OpenMP API – Version 5.1 November 2020

construct according to the description and restrictions in Section 2.21.3. At the end of a region that1
corresponds to a construct for which the reduction clause was specified, the original list item is2
updated by combining its original value with the final value of each of the private copies, using the3
combiner of the specified reduction-identifier.4

If the inscan reduction-modifier is present, a scan computation is performed over updates to the5
list item performed in each logical iteration of the loop associated with the worksharing-loop,6
worksharing-loop SIMD, or simd construct (see Section 2.11.8). The list items are privatized in7
the construct according to the description and restrictions in Section 2.21.3. At the end of the8
region, each original list item is assigned the value described in Section 2.11.8.9

If the task reduction-modifier is present for a parallel, scope, or worksharing construct,10
then each list item is privatized according to the description and restrictions in Section 2.21.3, and11
an unspecified number of additional private copies may be created to support task reductions. Any12
copies associated with the reduction are initialized before they are accessed by the tasks that13
participate in the reduction, which include all implicit tasks in the corresponding region and all14
participating explicit tasks that specify an in_reduction clause (see Section 2.21.5.6). After15
the end of the region, the original list item contains the result of the reduction.16

If nowait is not specified for the construct, the reduction computation will be complete at the end17
of the region that corresponds to the construct; however, if the reduction clause is used on a18
construct to which nowait is also applied, accesses to the original list item will create a race and,19
thus, have unspecified effect unless synchronization ensures that they occur after all threads have20
executed all of their iterations or section constructs, and the reduction computation has21
completed and stored the computed value of that list item. This can be ensured simply through a22
barrier synchronization in most cases.23

Restrictions24
Restrictions to the reduction clause are as follows:25

• All restrictions common to all reduction clauses, which are listed in Section 2.21.5.1, apply to26
this clause.27

• A list item that appears in a reduction clause of a worksharing construct must be shared in28
the parallel region to which a corresponding worksharing region binds.29

• A list item that appears in a reduction clause of a scope construct must be shared in the30
parallel region to which a corresponding scope region binds.31

• If an array section or an array element appears as a list item in a reduction clause of a32
worksharing construct, scope construct or loop construct for which the corresponding region33
binds to a parallel region, all threads that participate in the reduction must specify the same34
storage location.35

• A list item that appears in a reduction clause with the inscan reduction-modifier must36
appear as a list item in an inclusive or exclusive clause on a scan directive enclosed by37
the construct.38

CHAPTER 2. DIRECTIVES 333

• A reduction clause without the inscan reduction-modifier may not appear on a construct1
on which a reduction clause with the inscan reduction-modifier appears.2

• A reduction clause with the task reduction-modifier may only appear on a parallel3
construct, a scope construct, a worksharing construct or a combined or composite construct for4
which any of the aforementioned constructs is a constituent construct and simd or loop are not5
constituent constructs.6

• A reduction clause with the inscan reduction-modifier may only appear on a7
worksharing-loop construct, a simd construct or a combined or composite construct for which8
any of the aforementioned constructs is a constituent construct and distribute is not a9
constituent construct.10

• A list item that appears in a reduction clause of the innermost enclosing worksharing,11
parallel or scope construct may not be accessed in an explicit task generated by a construct12
for which an in_reduction clause over the same list item does not appear.13

• The task reduction-modifier may not appear in a reduction clause if the nowait clause is14
specified on the same construct.15

C / C++
• If a list item in a reduction clause on a worksharing construct, scope construct or loop16
construct for which the corresponding region binds to a parallel region has a reference type then17
it must bind to the same object for all threads of the team.18

• If a list item in a reduction clause on a worksharing construct, scope or loop construct for19
which the corresponding region binds to a parallel region is an array section or an array element20
then the base pointer must point to the same variable for all threads of the team.21

• A variable of class type (or array thereof) that appears in a reduction clause with the22
inscan reduction-modifier requires an accessible, unambiguous default constructor for the23
class type. The number of calls to the default constructor while performing the scan computation24
is unspecified.25

• A variable of class type (or array thereof) that appears in a reduction clause with the26
inscan reduction-modifier requires an accessible, unambiguous copy assignment operator for27
the class type. The number of calls to the copy assignment operator while performing the scan28
computation is unspecified.29

C / C++

Cross References30
• scan directive, see Section 2.11.8.31

• List Item Privatization, see Section 2.21.3.32

• private clause, see Section 2.21.4.3.33

334 OpenMP API – Version 5.1 November 2020

2.21.5.5 task_reduction Clause1

Summary2
The task_reduction clause specifies a reduction among tasks.3

Syntax4
The syntax of the task_reduction clause is as follows:5

task_reduction(reduction-identifier : list)6

where reduction-identifier is defined in Section 2.21.5.1.7

Description8
The task_reduction clause is a reduction scoping clause, as described in 2.21.5.2.9

For each list item, the number of copies is unspecified. Any copies associated with the reduction10
are initialized before they are accessed by the tasks that participate in the reduction. After the end11
of the region, the original list item contains the result of the reduction.12

Restrictions13
Restrictions to the task_reduction clause are as follows:14

• All restrictions common to all reduction clauses, which are listed in Section 2.21.5.1, apply to15
this clause.16

2.21.5.6 in_reduction Clause17

Summary18
The in_reduction clause specifies that a task participates in a reduction.19

Syntax20
The syntax of the in_reduction clause is as follows:21

in_reduction(reduction-identifier : list)22

where reduction-identifier is defined in Section 2.21.5.1.23

Description24
The in_reduction clause is a reduction participating clause, as described in Section 2.21.5.3.25
For a given list item, the in_reduction clause defines a task to be a participant in a task26
reduction that is defined by an enclosing region for a matching list item that appears in a27
task_reduction clause or a reduction clause with task as the reduction-modifier, where28
either:29

1. The matching list item has the same storage location as the list item in the in_reduction30
clause; or31

2. A private copy, derived from the matching list item, that is used to perform the task reduction32
has the same storage location as the list item in the in_reduction clause.33

CHAPTER 2. DIRECTIVES 335

For the task construct, the generated task becomes the participating task. For each list item, a1
private copy may be created as if the private clause had been used.2

For the target construct, the target task becomes the participating task. For each list item, a3
private copy may be created in the data environment of the target task as if the private clause4
had been used. This private copy will be implicitly mapped into the device data environment of the5
target device, if the target device is not the parent device.6

At the end of the task region, if a private copy was created its value is combined with a copy created7
by a reduction scoping clause or with the original list item.8

Restrictions9
Restrictions to the in_reduction clause are as follows:10

• All restrictions common to all reduction clauses, which are listed in Section 2.21.5.1, apply to11
this clause.12

• A list item that appears in a task_reduction clause or a reduction clause with task as13
the reduction-modifier that is specified on a construct that corresponds to a region in which the14
region of the participating task is closely nested must match each list item. The construct that15
corresponds to the innermost enclosing region that meets this condition must specify the same16
reduction-identifier for the matching list item as the in_reduction clause.17

2.21.5.7 declare reduction Directive18

Summary19
The following section describes the directive for declaring user-defined reductions. The20
declare reduction directive declares a reduction-identifier that can be used in a reduction21
clause. The declare reduction directive is a declarative directive.22

Syntax23
C

The syntax of the declare reduction directive is as follows:24

#pragma omp declare reduction(reduction-identifier : typename-list :25
combiner)[initializer-clause] new-line26

where:27

• reduction-identifier is either a base language identifier or one of the following operators: +, -, *,28
&, |, ^, && or ||29

• typename-list is a list of type names30

• combiner is an expression31

• initializer-clause is initializer(initializer-expr) where initializer-expr is32
omp_priv = initializer or function-name(argument-list)33

C

336 OpenMP API – Version 5.1 November 2020

C++
The syntax of the declare reduction directive is as follows:1

#pragma omp declare reduction(reduction-identifier : typename-list :2
combiner) [initializer-clause] new-line3

where:4

• reduction-identifier is either an id-expression or one of the following operators: +, -, *, &, |, ^,5
&& or ||6

• typename-list is a list of type names7

• combiner is an expression8

• initializer-clause is initializer(initializer-expr) where initializer-expr is9
omp_priv initializer or function-name(argument-list)10

C++
Fortran

The syntax of the declare reduction directive is as follows:11

!$omp declare reduction(reduction-identifier : type-list : combiner)12
[initializer-clause]13

where:14

• reduction-identifier is either a base language identifier, or a user-defined operator, or one of the15
following operators: +, -, *, .and., .or., .eqv., .neqv., or one of the following intrinsic16
procedure names: max, min, iand, ior, ieor.17

• type-list is a list of type specifiers that must not be CLASS(*) or an abstract type18

• combiner is either an assignment statement or a subroutine name followed by an argument list19

• initializer-clause is initializer(initializer-expr), where initializer-expr is20
omp_priv = expression or subroutine-name(argument-list)21

Fortran

Description22
User-defined reductions can be defined using the declare reduction directive. The23
reduction-identifier and the type identify the declare reduction directive. The24
reduction-identifier can later be used in a reduction clause that uses variables of the type or25
types specified in the declare reduction directive. If the directive specifies several types then26
the behavior is as if a declare reduction directive was specified for each type.27

CHAPTER 2. DIRECTIVES 337

Fortran
If a type with deferred or assumed length type parameter is specified in a declare reduction1
directive, the reduction-identifier of that directive can be used in a reduction clause with any2
variable of the same type and the same kind parameter, regardless of the length type Fortran3
parameters with which the variable is declared.4

Fortran
The visibility and accessibility of a user-defined reduction are the same as those of a variable5
declared at the same location in the program. The enclosing context of the combiner and of the6
initializer-expr is that of the declare reduction directive. The combiner and the7
initializer-expr must be correct in the base language as if they were the body of a function defined8
at the same location in the program.9

Fortran
If the reduction-identifier is the same as the name of a user-defined operator or an extended10
operator, or the same as a generic name that is one of the allowed intrinsic procedures, and if the11
operator or procedure name appears in an accessibility statement in the same module, the12
accessibility of the corresponding declare reduction directive is determined by the13
accessibility attribute of the statement.14

If the reduction-identifier is the same as a generic name that is one of the allowed intrinsic15
procedures and is accessible, and if it has the same name as a derived type in the same module, the16
accessibility of the corresponding declare reduction directive is determined by the17
accessibility of the generic name according to the base language.18

Fortran
C++

The declare reduction directive can also appear at the locations in a program where a static19
data member could be declared. In this case, the visibility and accessibility of the declaration are20
the same as those of a static data member declared at the same location in the program.21

C++
The combiner specifies how partial results are combined into a single value. The combiner can use22
the special variable identifiers omp_in and omp_out that are of the type of the variables that this23
reduction-identifier reduces. Each of the two special variable identifiers denotes one of the values24
to be combined before executing the combiner. The special omp_out identifier refers to the25
storage that holds the resulting combined value after executing the combiner.26

The number of times that the combiner is executed and the order of these executions for any27
reduction clause are unspecified.28

Fortran
If the combiner is a subroutine name with an argument list, the combiner is evaluated by calling the29
subroutine with the specified argument list.30

If the combiner is an assignment statement, the combiner is evaluated by executing the assignment31
statement.32

338 OpenMP API – Version 5.1 November 2020

If a generic name is used in the combiner expression and the list item in the corresponding1
reduction clause is an array or array section, it is resolved to the specific procedure that is2
elemental or only has scalar dummy arguments.3

Fortran
If the initializer-expr value of a user-defined reduction is not known a priori, the initializer-clause4
can be used to specify one. The content of the initializer-clause will be used as the initializer for the5
private copies of reduction list items where the omp_priv identifier will refer to the storage to be6
initialized. The special identifier omp_orig can also appear in the initializer-clause and it will7
refer to the storage of the original variable to be reduced.8

The number of times that the initializer-expr is evaluated and the order of these evaluations are9
unspecified.10

C / C++
If the initializer-expr is a function name with an argument list, the initializer-expr is evaluated by11
calling the function with the specified argument list. Otherwise, the initializer-expr specifies how12
omp_priv is declared and initialized.13

C / C++
C

If no initializer-clause is specified, the private variables will be initialized following the rules for14
initialization of objects with static storage duration.15

C
C++

If no initializer-expr is specified, the private variables will be initialized following the rules for16
default-initialization.17

C++
Fortran

If the initializer-expr is a subroutine name with an argument list, the initializer-expr is evaluated by18
calling the subroutine with the specified argument list.19

If the initializer-expr is an assignment statement, the initializer-expr is evaluated by executing the20
assignment statement.21

If no initializer-clause is specified, the private variables will be initialized as follows:22

• For complex, real, or integer types, the value 0 will be used.23

• For logical types, the value .false. will be used.24

• For derived types for which default initialization is specified, default initialization will be used.25

• Otherwise, not specifying an initializer-clause results in unspecified behavior.26

Fortran

CHAPTER 2. DIRECTIVES 339

C / C++
If reduction-identifier is used in a target region then a declare target directive must be specified1
for any function that can be accessed through the combiner and initializer-expr.2

C / C++
Fortran

If reduction-identifier is used in a target region then a declare target directive must be3
specified for any function or subroutine that can be accessed through the combiner and4
initializer-expr.5

Fortran

Restrictions6
Restrictions to the declare reduction directive are as follows:7

• The only variables allowed in the combiner are omp_in and omp_out.8

• The only variables allowed in the initializer-clause are omp_priv and omp_orig.9

• If the variable omp_orig is modified in the initializer-clause, the behavior is unspecified.10

• If execution of the combiner or the initializer-expr results in the execution of an OpenMP11
construct or an OpenMP API call, then the behavior is unspecified.12

• A reduction-identifier may not be re-declared in the current scope for the same type or for a type13
that is compatible according to the base language rules.14

• At most one initializer-clause can be specified.15

• The typename-list must not declare new types.16

C / C++
• A type name in a declare reduction directive cannot be a function type, an array type, a17
reference type, or a type qualified with const, volatile or restrict.18

C / C++
C

• If the initializer-expr is a function name with an argument list, then one of the arguments must be19
the address of omp_priv.20

C
C++

• If the initializer-expr is a function name with an argument list, then one of the arguments must be21
omp_priv or the address of omp_priv.22

C++

340 OpenMP API – Version 5.1 November 2020

Fortran
• Any selectors in the designator of omp_in and omp_out can only be component selectors.1

• If the initializer-expr is a subroutine name with an argument list, then one of the arguments must2
be omp_priv.3

• Any subroutine or function used in the initializer clause or combiner expression must be4
an intrinsic function, or must have an accessible interface.5

• Any user-defined operator, defined assignment or extended operator used in the initializer6
clause or combiner expression must have an accessible interface.7

• If any subroutine, function, user-defined operator, defined assignment or extended operator is8
used in the initializer clause or combiner expression, it must be accessible to the9
subprogram in which the corresponding reduction clause is specified.10

• If the length type parameter is specified for a type, it must be a constant, a colon or an *.11

• If a type with deferred or assumed length parameter is specified in a declare reduction12
directive, no other declare reduction directive with the same type, the same kind13
parameters and the same reduction-identifier is allowed in the same scope.14

• Any subroutine used in the initializer clause or combiner expression must not have any15
alternate returns appear in the argument list.16

• If the list item in the corresponding reduction clause is an array or array section, then any17
procedure used in the initializer clause or combiner expression must either be elemental18
or have dummy arguments that are scalar.19

• Any procedure called in the region of initializer-expr or combiner must be pure and may not20
reference any host-associated variables.21

Fortran

Cross References22
• Properties Common to All Reduction Clauses, see Section 2.21.5.1.23

2.21.6 Data Copying Clauses24

This section describes the copyin clause (allowed on the parallel construct and combined25
parallel worksharing constructs) and the copyprivate clause (allowed on the single26
construct).27

These two clauses support copying data values from private or threadprivate variables of an28
implicit task or thread to the corresponding variables of other implicit tasks or threads in the team.29

The clauses accept a comma-separated list of list items (see Section 2.1). All list items appearing in30
a clause must be visible, according to the scoping rules of the base language. Clauses may be31
repeated as needed, but a list item that specifies a given variable may not appear in more than one32
clause on the same directive.33

CHAPTER 2. DIRECTIVES 341

2.21.6.1 copyin Clause1

Summary2
The copyin clause provides a mechanism to copy the value of a threadprivate variable of the3
primary thread to the threadprivate variable of each other member of the team that is executing the4
parallel region.5

Syntax6
The syntax of the copyin clause is as follows:7

copyin(list)8

Description9
C / C++

The copy is performed after the team is formed and prior to the execution of the associated10
structured block. For variables of non-array type, the copy is by copy assignment. For an array of11
elements of non-array type, each element is copied as if by assignment from an element of the array12
of the primary thread to the corresponding element of the array of all other threads.13

C / C++
C++

For class types, the copy assignment operator is invoked. The order in which copy assignment14
operators for different variables of the same class type are invoked is unspecified.15

C++
Fortran

The copy is performed, as if by assignment, after the team is formed and prior to the execution of16
the associated structured block.17

On entry to any parallel region, each thread’s copy of a variable that is affected by a copyin18
clause for the parallel region will acquire the type parameters, allocation, association, and19
definition status of the copy of the primary thread, according to the following rules:20

• If the original list item has the POINTER attribute, each copy receives the same association21
status as that of the copy of the primary thread as if by pointer assignment.22

• If the original list item does not have the POINTER attribute, each copy becomes defined with23
the value of the copy of the primary thread as if by intrinsic assignment unless the list item has a24
type bound procedure as a defined assignment. If the original list item that does not have the25
POINTER attribute has the allocation status of unallocated, each copy will have the same status.26

• If the original list item is unallocated or unassociated, each copy inherits the declared type27
parameters and the default type parameter values from the original list item.28

Fortran

342 OpenMP API – Version 5.1 November 2020

Restrictions1
Restrictions to the copyin clause are as follows:2

C / C++
• A list item that appears in a copyin clause must be threadprivate.3

• A variable of class type (or array thereof) that appears in a copyin clause requires an4
accessible, unambiguous copy assignment operator for the class type.5

C / C++
Fortran

• A list item that appears in a copyin clause must be threadprivate. Named variables that appear6
in a threadprivate common block may be specified: the whole common block does not need to be7
specified.8

• A common block name that appears in a copyin clause must be declared to be a common block9
in the same scoping unit in which the copyin clause appears.10

• If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is11
unspecified.12

Fortran

Cross References13
• parallel construct, see Section 2.6.14

• threadprivate directive, see Section 2.21.2.15

2.21.6.2 copyprivate Clause16

Summary17
The copyprivate clause provides a mechanism to use a private variable to broadcast a value18
from the data environment of one implicit task to the data environments of the other implicit tasks19
that belong to the parallel region.20

To avoid data races, concurrent reads or updates of the list item must be synchronized with the21
update of the list item that occurs as a result of the copyprivate clause.22

Syntax23
The syntax of the copyprivate clause is as follows:24

copyprivate(list)25

CHAPTER 2. DIRECTIVES 343

Description1
The effect of the copyprivate clause on the specified list items occurs after the execution of the2
structured block associated with the single construct (see Section 2.10.2), and before any of the3
threads in the team have left the barrier at the end of the construct.4

C / C++
In all other implicit tasks that belong to the parallel region, each specified list item becomes5
defined with the value of the corresponding list item in the implicit task associated with the thread6
that executed the structured block. For variables of non-array type, the definition occurs by copy7
assignment. For an array of elements of non-array type, each element is copied by copy assignment8
from an element of the array in the data environment of the implicit task that is associated with the9
thread that executed the structured block to the corresponding element of the array in the data10
environment of the other implicit tasks.11

C / C++
C++

For class types, a copy assignment operator is invoked. The order in which copy assignment12
operators for different variables of class type are called is unspecified.13

C++
Fortran

If a list item does not have the POINTER attribute, then in all other implicit tasks that belong to the14
parallel region, the list item becomes defined as if by intrinsic assignment with the value of the15
corresponding list item in the implicit task that is associated with the thread that executed the16
structured block. If the list item has a type bound procedure as a defined assignment, the17
assignment is performed by the defined assignment.18

If the list item has the POINTER attribute, then, in all other implicit tasks that belong to the19
parallel region, the list item receives, as if by pointer assignment, the same association status of20
the corresponding list item in the implicit task that is associated with the thread that executed the21
structured block.22

The order in which any final subroutines for different variables of a finalizable type are called is23
unspecified.24

Fortran
25

Note – The copyprivate clause is an alternative to using a shared variable for the value when26
providing such a shared variable would be difficult (for example, in a recursion requiring a different27
variable at each level).28

29

344 OpenMP API – Version 5.1 November 2020

Restrictions1
Restrictions to the copyprivate clause are as follows:2

• All list items that appear in the copyprivate clause must be either threadprivate or private in3
the enclosing context.4

• A list item that appears in a copyprivate clause may not appear in a private or5
firstprivate clause on the single construct.6

C++
• A variable of class type (or array thereof) that appears in a copyprivate clause requires an7
accessible unambiguous copy assignment operator for the class type.8

C++
Fortran

• A common block that appears in a copyprivate clause must be threadprivate.9

• Pointers with the INTENT(IN) attribute may not appear in the copyprivate clause.10

• Any list item with the ALLOCATABLE attribute must have the allocation status of allocated when11
the intrinsic assignment is performed.12

• If a list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is13
unspecified.14

Fortran

Cross References15
• parallel construct, see Section 2.6.16

• threadprivate directive, see Section 2.21.2.17

• private clause, see Section 2.21.4.3.18

2.21.7 Data-Mapping Attribute Rules, Clauses, and19

Directives20

This section describes how the data-mapping and data-sharing attributes of any variable referenced21
in a target region are determined. When specified, explicit data-sharing attribute, map,22
is_device_ptr or has_device_addr clauses on target directives determine these23
attributes. Otherwise, the first matching rule from the following implicit data-mapping rules applies24
for variables referenced in a target construct that are not declared in the construct and do not25
appear in one of the data-sharing attribute, map, is_device_ptr or has_device_addr26
clauses.27

• If a variable appears in a to or link clause on a declare target directive that does not have a28
device_type(nohost) clause then it is treated as if it had appeared in a map clause with a29
map-type of tofrom.30

CHAPTER 2. DIRECTIVES 345

• If a list item appears in a reduction, lastprivate or linear clause on a combined target1
construct then it is treated as if it also appears in a map clause with a map-type of tofrom.2

• If a list item appears in an in_reduction clause on a target construct then it is treated as if3
it also appears in a map clause with a map-type of tofrom and a map-type-modifier of4
always.5

• If a defaultmap clause is present for the category of the variable and specifies an implicit6
behavior other than default, the data-mapping attribute is determined by that clause.7

C++
• If the target construct is within a class non-static member function, and a variable is an8
accessible data member of the object for which the non-static data member function is invoked,9
the variable is treated as if the this[:1] expression had appeared in a map clause with a10
map-type of tofrom. Additionally, if the variable is of type pointer or reference to pointer, it is11
also treated as if it had appeared in a map clause as a zero-length array section.12

• If the this keyword is referenced inside a target construct within a class non-static member13
function, it is treated as if the this[:1] expression had appeared in a map clause with a14
map-type of tofrom.15

C++
C / C++

• A variable that is of type pointer, but not a function pointer or (for C++) a pointer to a member16
function, is treated as if it is the base pointer of a zero-length array section that had appeared as a17
list item in a map clause.18

C / C++
C++

• A variable that is of type reference to pointer, but not a function pointer or a reference to a19
pointer to a member function is treated as if it had appeared in a map clause as a zero-length20
array section.21

C++
• If a variable is not a scalar then it is treated as if it had appeared in a map clause with a map-type22
of tofrom.23

Fortran
• If a scalar variable has the TARGET, ALLOCATABLE or POINTER attribute then it is treated as24
if it had appeared in a map clause with a map-type of tofrom.25

Fortran
• If none of the above rules applies then a scalar variable is not mapped, but instead has an implicit26
data-sharing attribute of firstprivate (see Section 2.21.1.1).27

346 OpenMP API – Version 5.1 November 2020

2.21.7.1 map Clause1

Summary2
The map clause specifies how an original list item is mapped from the current task’s data3
environment to a corresponding list item in the device data environment of the device identified by4
the construct.5

Syntax6
The syntax of the map clause is as follows:7

map([[map-type-modifier[,] [map-type-modifier[,] ...]] map-type:] locator-list)8

where map-type is one of the following:9

to10

from11

tofrom12

alloc13

release14

delete15

and map-type-modifier is one of the following:16

always17

close18

mapper(mapper-identifier)19

present20

iterator(iterators-definition)21

Description22
The list items that appear in a map clause may include array sections and structure elements.23

The map-type and map-type-modifier specify the effect of the map clause, as described below.24

For a given construct, the effect of a map clause with the to, from, or tofrom map-type is25
ordered before the effect of a map clause with the alloc, release, or delete map-type. If a26
map clause with a present map-type-modifier appears in a map clause, then the effect of the27
clause is ordered before all other map clauses that do not have the present modifier.28

If the mapper map-type-modifier is not present, the behavior is as if the mapper(default)29
modifier was specified. The map behavior of a list item in a map clause is modified by a visible30
user-defined mapper (see Section 2.21.7.4) if the mapper has the same mapper-identifier as the31
mapper-identifier in the mapper map-type-modifier and is specified for a type that matches the32
type of the list item. The effect of the mapper is to remove the list item from the map clause, if the33

CHAPTER 2. DIRECTIVES 347

present modifier does not also appear, and to apply the clauses specified in the declared mapper1
to the construct on which the map clause appears. In the clauses applied by the mapper, references2
to var are replaced with references to the list item and the map-type is replaced with a final map3
type that is determined according to the rules of map-type decay (see Section 2.21.7.4).4

A list item that is an array or array section of a type for which a user-defined mapper exists is5
mapped as if the map type decays to alloc, release, or delete, and then each array element6
is mapped with the original map type, as if by a separate construct, according to the mapper.7

A list item in a map clause may reference iterators defined by an iterators-definition of an8
iterator modifier.9

If a list item in a map clause is a variable of structure type then it is treated as if each structure10
element contained in the variable is a list item in the clause.11

If a list item in a map clause is a structure element then all other structure elements of the12
containing structure variable form a structure sibling list. The map clause and the structure sibling13
list are associated with the same construct. If a corresponding list item of the structure sibling list14
item is present in the device data environment when the construct is encountered then:15

• If the structure sibling list item does not appear in a map clause on the construct then:16

– If the construct is a target, target data, or target enter data construct then the17
structure sibling list item is treated as if it is a list item in a map clause on the construct with a18
map-type of alloc.19

– If the construct is target exit data construct, then the structure sibling list item is treated20
as if it is a list item in a map clause on the construct with a map-type of release.21

• If the map clause in which the structure element appears as a list item has a map-type of22
delete and the structure sibling list item does not appear as a list item in a map clause on the23
construct with a map-type of delete then the structure sibling list item is treated as if it is a list24
item in a map clause on the construct with a map-type of delete.25

Fortran
If a component of a derived type variable is a list item that results from the above rules for mapped26
structures and mapped structure elements, and it does not explicitly appear as another list item or as27
the base expression of another list item in a map clause on the construct, then:28

• If it has the POINTER attribute, the map clause treats its association status as if it is undefined;29
and30

• If it has the ALLOCATABLE attribute and an allocated allocation status, and it is present in the31
device data environment when the construct is encountered, the map clause may treat its32
allocation status as if it is unallocated if the corresponding component does not have allocated33
storage.34

Fortran

348 OpenMP API – Version 5.1 November 2020

Given item1 is a list item in a map clause, and item2 is another list item in a map clause on the same1
construct, if item2 has a base pointer that is, or is part of, item1, then:2

• If the construct is a target, target data, or target enter data construct, then, on3
entry to the corresponding region, the effect of the map clause on item1 is ordered to occur4
before the effect of the map clause on item2.5

• If the construct is a target, target data, or target exit data construct, then, on exit6
from the corresponding region, the effect of the map clause on item2 is ordered to occur before7
the effect of the map clause on item1.8

Fortran
If a list item in a map clause is an associated pointer and the pointer is not the base pointer of9
another list item in a map clause on the same construct, then it is treated as if its pointer target is10
implicitly mapped in the same clause. For the purposes of the map clause, the mapped pointer11
target is treated as if its base pointer is the associated pointer.12

Fortran
If a list item in a map clause has a base pointer, a pointer variable is present in the device data13
environment that corresponds to the base pointer when the effect of the map clause occurs, and the14
corresponding pointer or the corresponding list item is created in the device data environment on15
entry to the construct, then:16

C / C++
1. The corresponding pointer variable is assigned an address such that the corresponding list item17

can be accessed through the pointer in a target region.18

C / C++
Fortran

1. The corresponding pointer variable is associated with a pointer target that has the same rank and19
bounds as the pointer target of the original pointer, such that the corresponding list item can be20
accessed through the pointer in a target region.21

Fortran
2. The corresponding pointer variable becomes an attached pointer for the corresponding list item.22

3. If the original base pointer and the corresponding attached pointer share storage, then the23
original list item and the corresponding list item must share storage.24

C++
If a lambda is mapped explicitly or implicitly, variables that are captured by the lambda behave as25
follows:26

• The variables that are of pointer type are treated as if they had appeared in a map clause as27
zero-length array sections; and28

• The variables that are of reference type are treated as if they had appeared in a map clause.29

CHAPTER 2. DIRECTIVES 349

If a member variable is captured by a lambda in class scope, and the lambda is later mapped1
explicitly or implicitly with its full static type, the this pointer is treated as if it had appeared on a2
map clause.3

C++
The original and corresponding list items may share storage such that writes to either item by one4
task followed by a read or write of the other item by another task without intervening5
synchronization can result in data races. They are guaranteed to share storage if the map clause6
appears on a target construct that corresponds to an inactive target region, or if it appears on7
a target data, target enter data, or target exit data construct that applies to the8
device data environment of the host device.9

If a map clause appears on a target, target data, target enter data or10
target exit data construct with a present map-type-modifier then on entry to the region if11
the corresponding list item does not appear in the device data environment then an error occurs and12
the program terminates.13

If a map clause appears on a target, target data, or target enter data construct then14
on entry to the region the following sequence of steps occurs as if they are performed as a single15
atomic operation:16

1. If a corresponding list item of the original list item is not present in the device data environment,17
then:18

a) A new list item with language-specific attributes is derived from the original list item and19
created in the device data environment;20

b) The new list item becomes the corresponding list item of the original list item in the device21
data environment;22

c) The corresponding list item has a reference count that is initialized to zero; and23

d) The value of the corresponding list item is undefined;24

2. If the reference count of the corresponding list item was not already incremented because of the25
effect of a map clause on the construct then:26

a) The reference count is incremented by one;27

3. If the reference count of the corresponding list item is one or the always map-type-modifier is28
present, and if the map-type is to or tofrom, then:29

C / C++
a) For each part of the list item that is an attached pointer, that part of the corresponding list30

item will have the value that it had at the point immediately prior to the effect of the map31
clause; and32

C / C++

350 OpenMP API – Version 5.1 November 2020

Fortran
a) For each part of the list item that is an attached pointer, that part of the corresponding list1

item, if associated, will be associated with the same pointer target that it was associated with2
at the point immediately prior to the effect of the map clause.3

Fortran
b) For each part of the list item that is not an attached pointer, the value of that part of the4

original list item is assigned to that part of the corresponding list item.5

6

Note – If the effect of the map clauses on a construct would assign the value of an original list7
item to a corresponding list item more than once, then an implementation is allowed to ignore8
additional assignments of the same value to the corresponding list item.9

10

In all cases on entry to the region, concurrent reads or updates of any part of the corresponding list11
item must be synchronized with any update of the corresponding list item that occurs as a result of12
the map clause to avoid data races.13

If the map clause appears on a target, target data, or target exit data construct and a14
corresponding list item of the original list item is not present in the device data environment on exit15
from the region then the list item is ignored. Alternatively, if the map clause appears on a target,16
target data, or target exit data construct and a corresponding list item of the original list17
item is present in the device data environment on exit from the region, then the following sequence18
of steps occurs as if performed as a single atomic operation:19

1. If the map-type is not delete and the reference count of the corresponding list item is finite20
and was not already decremented because of the effect of a map clause on the construct then:21

a) The reference count of the corresponding list item is decremented by one;22

2. If the map-type is delete and the reference count of the corresponding list item is finite then:23

a) The reference count of the corresponding list item is set to zero;24

3. If the map-type is from or tofrom and if the reference count of the corresponding list item is25
zero or the always map-type-modifier is present then:26

C / C++
a) For each part of the list item that is an attached pointer, that part of the original list item will27

have the value that it had at the point immediately prior to the effect of the map clause; and28

C / C++
Fortran

a) For each part of the list item that is an attached pointer, that part of the original list item, if29
associated, will be associated with the same pointer target with which it was associated at30
the point immediately prior to the effect of the map clause; and31

Fortran

CHAPTER 2. DIRECTIVES 351

b) For each part of the list item that is not an attached pointer, the value of that part of the1
corresponding list item is assigned to that part of the original list item; and2

4. If the reference count of the corresponding list item is zero then the corresponding list item is3
removed from the device data environment.4

5

Note – If the effect of the map clauses on a construct would assign the value of a corresponding6
list item to an original list item more than once, then an implementation is allowed to ignore7
additional assignments of the same value to the original list item.8

9

In all cases on exit from the region, concurrent reads or updates of any part of the original list item10
must be synchronized with any update of the original list item that occurs as a result of the map11
clause to avoid data races.12

If a single contiguous part of the original storage of a list item with an implicit data-mapping13
attribute has corresponding storage in the device data environment prior to a task encountering the14
construct that is associated with the map clause, only that part of the original storage will have15
corresponding storage in the device data environment as a result of the map clause.16

If a list item with an implicit data-mapping attribute does not have any corresponding storage in the17
device data environment prior to a task encountering the construct associated with the map clause,18
and one or more contiguous parts of the original storage are either list items or base pointers to list19
items that are explicitly mapped on the construct, only those parts of the original storage will have20
corresponding storage in the device data environment as a result of the map clauses on the21
construct.22

C / C++
If a new list item is created then a new list item of the same type, with automatic storage duration, is23
allocated for the construct. The size and alignment of the new list item are determined by the static24
type of the variable. This allocation occurs if the region references the list item in any statement.25
Initialization and assignment of the new list item are through bitwise copy.26

C / C++
Fortran

If a new list item is created then a new list item of the same type, type parameter, and rank is27
allocated. The new list item inherits all default values for the type parameters from the original list28
item. The value of the new list item becomes that of the original list item in the map initialization29
and assignment.30

If the allocation status of an original list item that has the ALLOCATABLE attribute is changed31
while a corresponding list item is present in the device data environment, the allocation status of the32
corresponding list item is unspecified until the list item is again mapped with an always modifier33
on entry to a target, target data or target enter data region.34

Fortran

352 OpenMP API – Version 5.1 November 2020

The map-type determines how the new list item is initialized.1

If a map-type is not specified, the map-type defaults to tofrom.2

The close map-type-modifier is a hint to the runtime to allocate memory close to the target device.3

Execution Model Events4
The target-map event occurs when a thread maps data to or from a target device.5

The target-data-op-begin event occurs before a thread initiates a data operation on a target device.6

The target-data-op-end event occurs after a thread initiates a data operation on a target device.7

Tool Callbacks8
A thread dispatches a registered ompt_callback_target_map or9
ompt_callback_target_map_emi callback for each occurrence of a target-map event in10
that thread. The callback occurs in the context of the target task and has type signature11
ompt_callback_target_map_t or ompt_callback_target_map_emi_t,12
respectively.13

A thread dispatches a registered ompt_callback_target_data_op_emi callback with14
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin15
event in that thread. Similarly, a thread dispatches a registered16
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint17
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have18
type signature ompt_callback_target_data_op_emi_t.19

A thread dispatches a registered ompt_callback_target_data_op callback for each20
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the21
target task and has type signature ompt_callback_target_data_op_t.22

Restrictions23
Restrictions to the map clause are as follows:24

• Each of the map-type-modifier modifiers can appear at most once in the map clause.25

C / C++
• List items of the map clauses on the same construct must not share original storage unless they26
are the same lvalue expression or array section.27

C / C++
• If a list item is an array section, it must specify contiguous storage.28

• If an expression that is used to form a list item in a map clause contains an iterator identifier, the29
list item instances that would result from different values of the iterator must not have the same30
containing array and must not have base pointers that share original storage.31

CHAPTER 2. DIRECTIVES 353

• If multiple list items are explicitly mapped on the same construct and have the same containing1
array or have base pointers that share original storage, and if any of the list items do not have2
corresponding list items that are present in the device data environment prior to a task3
encountering the construct, then the list items must refer to the same array elements of either the4
containing array or the implicit array of the base pointers.5

• If any part of the original storage of a list item with an explicit data-mapping attribute has6
corresponding storage in the device data environment prior to a task encountering the construct7
associated with the map clause, all of the original storage must have corresponding storage in the8
device data environment prior to the task encountering the construct.9

• If an array appears as a list item in a map clause, multiple parts of the array have corresponding10
storage in the device data environment prior to a task encountering the construct associated with11
the map clause, and the corresponding storage for those parts was created by maps from more12
than one earlier construct, the behavior is unspecified.13

• If a list item is an element of a structure, and a different element of the structure has a14
corresponding list item in the device data environment prior to a task encountering the construct15
associated with the map clause, then the list item must also have a corresponding list item in the16
device data environment prior to the task encountering the construct.17

• A list item must have a mappable type.18

• Threadprivate variables cannot appear in a map clause.19

• If a mapper map-type-modifier appears in a map clause, the type on which the specified mapper20
operates must match the type of the list items in the clause.21

• Memory spaces and memory allocators cannot appear as a list item in a map clause.22

C++
• If the type of a list item is a reference to a type T then the reference in the device data23
environment is initialized to refer to the object in the device data environment that corresponds to24
the object referenced by the list item. If mapping occurs, it occurs as though the object were25
mapped through a pointer with an array section of type T and length one.26

• No type mapped through a reference can contain a reference to its own type, or any references to27
types that could produce a cycle of references.28

• If a list item is a lambda, any pointers and references captured by the lambda must have the29
corresponding list item in the device data environment prior to the task encountering the30
construct.31

C++

354 OpenMP API – Version 5.1 November 2020

C / C++
• A list item cannot be a variable that is a member of a structure of a union type.1

• A bit-field cannot appear in a map clause.2

• A pointer that has a corresponding attached pointer must not be modified for the duration of the3
lifetime of the list item to which the corresponding pointer is attached in the device data4
environment.5

C / C++
Fortran

• List items of the map clauses on the same construct must not share original storage unless they6
are the same variable or array section.7

• If a list item of a map clause is an allocatable variable or is the subobject of an allocatable8
variable, the original allocatable variable may not be allocated, deallocated or reshaped while the9
corresponding allocatable variable has allocated storage.10

• A pointer that has a corresponding attached pointer and is associated with a given pointer target11
must not become associated with a different pointer target for the duration of the lifetime of the12
list item to which the corresponding pointer is attached in the device data environment.13

• If an array section is mapped and the size of the section is smaller than that of the whole array,14
the behavior of referencing the whole array in the target region is unspecified.15

• A list item must not be a whole array of an assumed-size array.16

Fortran

Cross References17
• Array sections, see Section 2.1.5.18

• Iterators, see Section 2.1.6.19

• declare mapper directive, see Section 2.21.7.4.20

• ompt_callback_target_data_op_t or21
ompt_callback_target_data_op_emi_t callback type, see Section 4.5.2.25.22

• ompt_callback_target_map_t or ompt_callback_target_map_emi_t callback23
type, see Section 4.5.2.27.24

CHAPTER 2. DIRECTIVES 355

C / C++

2.21.7.2 Pointer Initialization for Device Data Environments1

This section describes how a pointer that is predetermined firstprivate for a target construct may2
be assigned an initial value that is the address of an object that exists in a device data environment3
and corresponds to a matching mapped list item.4

All previously mapped list items that have corresponding storage in a given device data5
environment constitute the set of currently mapped list items. If a currently mapped list item has a6
base pointer, the base address of the currently mapped list item is the value of its base pointer.7
Otherwise, the base address is determined by the following steps:8

1. Let X refer to the currently mapped list item.9

2. If X refers to an array section or array element, let X refer to its base array.10

3. If X refers to a structure element, let X refer to its containing structure and return to step 2.11

4. The base address for the currently mapped list item is the address of X.12

Additionally, each currently mapped list item has a starting address and an ending address. The13
starting address is the address of the first storage location associated with the list item, and the14
ending address is the address of the storage location that immediately follows the last storage15
location associated with the list item.16

The mapped address range of the currently mapped list item is the range of addresses that starts17
from the starting address and ends with the ending address. The extended address range of the18
currently mapped list item is the range of addresses that starts from the minimum of the starting19
address and the base address and that ends with the maximum of the ending address and the base20
address.21

If the value of a given pointer is in the mapped address range of a currently mapped list item then22
that currently mapped list item is a matching mapped list item. Otherwise, if the value of the23
pointer is in the extended address range of a currently mapped list item then that currently mapped24
list item is a matching mapped list item.25

If multiple matching mapped list items are found and they all appear as part of the same containing26
structure, the one that has the lowest starting address is treated as the sole matching mapped list27
item. Otherwise, if multiple matching mapped list items are found then the behavior is unspecified.28

If a matching mapped list item is found, the initial value that is assigned to the pointer is a device29
address such that the corresponding list item in the device data environment can be accessed30
through the pointer in a target region.31

If a matching mapped list item is not found, the assigned initial value of the pointer is NULL unless32
otherwise specified (see Section 2.5.1).33

356 OpenMP API – Version 5.1 November 2020

Cross References1
• requires directive, see Section 2.5.1.2

• target construct, see Section 2.14.5.3

• map clause, see Section 2.21.7.1.4

C / C++

2.21.7.3 defaultmap Clause5

Summary6
The defaultmap clause explicitly determines the data-mapping attributes of variables that are7
referenced in a target construct for which the data-mapping attributes would otherwise be8
implicitly determined (see Section 2.21.7).9

Syntax10
The syntax of the defaultmap clause is as follows:11

defaultmap(implicit-behavior[:variable-category])12

Where implicit-behavior is one of:13

alloc14

to15

from16

tofrom17

firstprivate18

none19

default20

present21

C / C++
and variable-category is one of:22

scalar23

aggregate24

pointer25

C / C++

CHAPTER 2. DIRECTIVES 357

Fortran
and variable-category is one of:1

scalar2

aggregate3

allocatable4

pointer5

Fortran

Description6
The defaultmap clause sets the implicit data-mapping attribute for all variables referenced in the7
construct. If variable-category is specified, the effect of the defaultmap clause is as follows:8

• If variable-category is scalar, all scalar variables of non-pointer type or all non-pointer9
non-allocatable scalar variables that have an implicitly determined data-mapping or data-sharing10
attribute will have a data-mapping or data-sharing attribute specified by implicit-behavior.11

• If variable-category is aggregate or allocatable, all aggregate or allocatable variables12
that have an implicitly determined data-mapping or data-sharing attribute will have a13
data-mapping or data-sharing attribute specified by implicit-behavior.14

• If variable-category is pointer, all variables of pointer type or with the POINTER attribute15
that have implicitly determined data-mapping or data-sharing attributes will have a data-mapping16
or data-sharing attribute specified by implicit-behavior.17

If no variable-category is specified in the clause then implicit-behavior specifies the implicitly18
determined data-mapping or data-sharing attribute for all variables referenced in the construct. If19
implicit-behavior is none, each variable referenced in the construct that does not have a20
predetermined data-sharing attribute and does not appear in a to or link clause on a declare21
target directive must be listed in a data-mapping attribute clause, a data-sharing attribute clause22
(including a data-sharing attribute clause on a combined construct where target is one of the23
constituent constructs), an is_device_ptr clause or a has_device_addr clause. If24
implicit-behavior is default, then the clause has no effect for the variables in the category25
specified by variable-category. If implicit-behavior is present, each variable referenced in the26
construct in the category specified by variable-category is treated as if it had been listed in a map27
clause with the map-type of alloc and map-type-modifier of present.28

2.21.7.4 declare mapper Directive29

Summary30
The declare mapper directive declares a user-defined mapper for a given type, and may define a31
mapper-identifier that can be used in a map clause. The declare mapper directive is a32
declarative directive.33

358 OpenMP API – Version 5.1 November 2020

Syntax1
C / C++

The syntax of the declare mapper directive is as follows:2

#pragma omp declare mapper([mapper-identifier:]type var) \3
[clause[[,] clause] ...] new-line4

C / C++
Fortran

The syntax of the declare mapper directive is as follows:5

!$omp declare mapper([mapper-identifier:] type :: var) &6
[clause[[,] clause] ...]7

Fortran
where:8

• mapper-identifier is a base language identifier or default9

• type is a valid type in scope10

• var is a valid base language identifier11

• clause is map([[map-type-modifier[,] [map-type-modifier[,] ...]] map-type:] list), where12
map-type is one of the following:13

– alloc14

– to15

– from16

– tofrom17

and where map-type-modifier is one of the following:18

– always19

– close20

Description21
User-defined mappers can be defined using the declare mapper directive. The type and an22
optional mapper-identifier uniquely identify the mapper for use in a map clause or motion clause23
later in the program. The visibility and accessibility of this declaration are the same as those of a24
variable declared at the same location in the program.25

If mapper-identifier is not specified, the behavior is as if mapper-identifier is default.26

The variable declared by var is available for use in all map clauses on the directive, and no part of27
the variable to be mapped is mapped by default.28

CHAPTER 2. DIRECTIVES 359

The default mapper for all types T, designated by the predefined mapper-identifier default, is1
defined as if by the following directive, unless a user-defined mapper is specified for that type.2

C / C++
#pragma omp declare mapper(T v) map(tofrom: v)3

C / C++
Fortran

!$omp declare mapper(T :: v) map(tofrom: v)4

Fortran
A declare mapper directive that uses the default mapper-identifier overrides the predefined5
default mapper for the given type, making it the default mapper for variables of that type.6

The effect that a user-defined mapper has on either a map clause that maps a list item of the given7
type or a motion clause that invokes the mapper and updates a list item of the given type is to8
replace the map or update with a set of map clauses or updates derived from the map clauses9
specified by the mapper, as described in Section 2.21.7.1 and Section 2.14.6.10

The final map types that a mapper applies for a map clause that maps a list item of the given type11
are determined according to the rules of map-type decay, defined according to Table 2.13.12
Table 2.13 shows the final map type that is determined by the combination of two map types, where13
the rows represent the map type specified by the mapper and the columns represent the map type14
specified by a map clause that invokes the mapper. For a target exit data construct that15
invokes a mapper with a map clause that has the from map type, if a map clause in the mapper16
specifies an alloc or to map type then the result is a release map type.17

A list item in a map clause that appears on a declare mapper directive may include array18
sections.19

All map clauses that are introduced by a mapper are further subject to mappers that are in scope,20
except a map clause with list item var maps var without invoking a mapper.21

TABLE 2.13: Map-Type Decay of Map Type Combinations

alloc to from tofrom release delete

alloc alloc alloc alloc (release) alloc release delete

to alloc to alloc (release) to release delete

from alloc alloc from from release delete

tofrom alloc to from tofrom release delete

360 OpenMP API – Version 5.1 November 2020

C++
The declare mapper directive can also appear at locations in the program at which a static data1
member could be declared. In this case, the visibility and accessibility of the declaration are the2
same as those of a static data member declared at the same location in the program.3

C++

Restrictions4
Restrictions to the declare mapper directive are as follows:5

• No instance of type can be mapped as part of the mapper, either directly or indirectly through6
another type, except the instance var that is passed as the list item. If a set of7
declare mapper directives results in a cyclic definition then the behavior is unspecified.8

• The type must not declare a new type.9

• At least one map clause that maps var or at least one element of var is required.10

• List items in map clauses on the declare mapper directive may only refer to the declared11
variable var and entities that could be referenced by a procedure defined at the same location.12

• Each map-type-modifier can appear at most once on the map clause.13

• Multiple declare mapper directives that specify the same mapper-identifier for the same type14
or for compatible types, according to the base language rules, may not appear in the same scope.15

C
• type must be a struct or union type.16

C
C++

• type must be a struct, union, or class type.17

C++
Fortran

• type must not be an intrinsic type or an abstract type.18

Fortran

Cross References19
• target update construct, see Section 2.14.6.20

• map clause, see Section 2.21.7.1.21

CHAPTER 2. DIRECTIVES 361

2.22 Nesting of Regions1

This section describes a set of restrictions on the nesting of regions. The restrictions on nesting are2
as follows:3

• A loop region that binds to a parallel region or a worksharing region may not be closely4
nested inside a worksharing, loop, task, taskloop, critical, ordered, atomic, or5
masked region.6

• A barrier region may not be closely nested inside a worksharing, loop, task, taskloop,7
critical, ordered, atomic, or masked region.8

• A masked region may not be closely nested inside a worksharing, loop, atomic, task, or9
taskloop region.10

• An ordered region that corresponds to an ordered construct without any clause or with the11
threads or depend clause may not be closely nested inside a critical, ordered, loop,12
atomic, task, or taskloop region.13

• An ordered region that corresponds to an ordered construct without the simd clause14
specified must be closely nested inside a worksharing-loop region.15

• An ordered region that corresponds to an ordered construct with the simd clause specified16
must be closely nested inside a simd or worksharing-loop SIMD region.17

• An ordered region that corresponds to an ordered construct with both the simd and18
threads clauses must be closely nested inside a worksharing-loop SIMD region or closely19
nested inside a worksharing-loop and simd region.20

• A critical region may not be nested (closely or otherwise) inside a critical region with21
the same name. This restriction is not sufficient to prevent deadlock.22

• OpenMP constructs may not be encountered during execution of an atomic region.23

• The only OpenMP constructs that can be encountered during execution of a simd (or24
worksharing-loop SIMD) region are the atomic construct, the loop construct without a25
defined binding region, the simd construct and the ordered construct with the simd clause.26

• If a target update, target data, target enter data, or target exit data27
construct is encountered during execution of a target region, the behavior is unspecified.28

• If a target construct is encountered during execution of a target region and a device29
clause in which the ancestor device-modifier appears is not present on the construct, the30
behavior is unspecified.31

• A teams region must be strictly nested either within the implicit parallel region that surrounds32
the whole OpenMP program or within a target region. If a teams construct is nested within33
a target construct, that target construct must contain no statements, declarations or34
directives outside of the teams construct.35

362 OpenMP API – Version 5.1 November 2020

• distribute, distribute simd, distribute parallel worksharing-loop, distribute parallel1
worksharing-loop SIMD, loop, parallel regions, including any parallel regions arising2
from combined constructs, omp_get_num_teams() regions, and omp_get_team_num()3
regions are the only OpenMP regions that may be strictly nested inside the teams region.4

• A loop region that binds to a teams region must be strictly nested inside a teams region.5

• A distribute region must be strictly nested inside a teams region.6

• If construct-type-clause is taskgroup, the cancel construct must be closely nested inside a7
task construct and the cancel region must be closely nested inside a taskgroup region. If8
construct-type-clause is sections, the cancel construct must be closely nested inside a9
sections or section construct. Otherwise, the cancel construct must be closely nested10
inside an OpenMP construct that matches the type specified in construct-type-clause of the11
cancel construct.12

• A cancellation point construct for which construct-type-clause is taskgroup must be13
closely nested inside a task construct, and the cancellation point region must be closely14
nested inside a taskgroup region. A cancellation point construct for which15
construct-type-clause is sections must be closely nested inside a sections or section16
construct. Otherwise, a cancellation point construct must be closely nested inside an17
OpenMP construct that matches the type specified in construct-type-clause.18

• The only constructs that may be encountered inside a region that corresponds to a construct with19
an order clause that specifies concurrent are the loop construct, the parallel20
construct, the simd construct, and combined constructs for which the first construct is a21
parallel construct.22

• A region that corresponds to a construct with an order clause that specifies concurrent may23
not contain calls to procedures that contain OpenMP directives or calls to the OpenMP Runtime24
API.25

• A scope region may not be closely nested inside a worksharing, loop, task, taskloop,26
critical, ordered, atomic, or masked region.27

CHAPTER 2. DIRECTIVES 363

This page intentionally left blank

3 Runtime Library Routines1

This chapter describes the OpenMP API runtime library routines and queryable runtime states. In2
this chapter, true and false are used as generic terms to simplify the description of the routines.3

C / C++
true means a non-zero integer value and false means an integer value of zero.4

C / C++

Fortran
true means a logical value of .TRUE. and false means a logical value of .FALSE..5

Fortran

Fortran

Restrictions6
The following restrictions apply to all OpenMP runtime library routines:7

• OpenMP runtime library routines may not be called from PURE or ELEMENTAL procedures.8

• OpenMP runtime library routines may not be called in DO CONCURRENT constructs.9

Fortran

3.1 Runtime Library Definitions10

For each base language, a compliant implementation must supply a set of definitions for the11
OpenMP API runtime library routines and the special data types of their parameters. The set of12
definitions must contain a declaration for each OpenMP API runtime library routine and variable13
and a definition of each required data type listed below. In addition, each set of definitions may14
specify other implementation specific values.15

C / C++
The library routines are external functions with “C” linkage.16

Prototypes for the C/C++ runtime library routines described in this chapter shall be provided in a17
header file named omp.h. This file also defines the following:18

CHAPTER 3. RUNTIME LIBRARY ROUTINES 365

• The type omp_allocator_handle_t, which must be an implementation-defined (for C++1
possibly scoped) enum type with at least the omp_null_allocator enumerator with the2
value zero and an enumerator for each predefined memory allocator in Table 2.10;3

• omp_atv_default, which is an instance of a type compatible with omp_uintptr_t with4
the value -1;5

• The type omp_control_tool_result_t;6

• The type omp_control_tool_t;7

• The type omp_depend_t;8

• The type omp_event_handle_t, which must be an implementation-defined (for C++9
possibly scoped) enum type;10

• The type omp_intptr_t, which is a signed integer type that is at least the size of a pointer on11
any device;12

• The type omp_interop_t, which must be an implementation-defined integral or pointer type;13

• The type omp_interop_fr_t, which must be an implementation-defined enum type with14
enumerators named omp_ifr_name where name is a foreign runtime name that is defined in15
the OpenMP Additional Definitions document;16

• The type omp_lock_hint_t (deprecated);17

• The type omp_lock_t;18

• The type omp_memspace_handle_t, which must be an implementation-defined (for C++19
possibly scoped) enum type with an enumerator for at least each predefined memory space in20
Table 2.8;21

• The type omp_nest_lock_t;22

• The type omp_pause_resource_t;23

• The type omp_proc_bind_t;24

• The type omp_sched_t;25

• The type omp_sync_hint_t; and26

• The type omp_uintptr_t, which is an unsigned integer type capable of holding a pointer on27
any device.28

C / C++

366 OpenMP API – Version 5.1 November 2020

C++
The OpenMP enumeration types provided in the omp.h header file shall not be scoped1
enumeration types unless explicitly allowed.2

The omp.h header file also defines a class template that models the Allocator concept in the3
omp::allocator namespace for each predefined memory allocator in Table 2.10 for which the4
name includes neither the omp_ prefix nor the _alloc suffix.5

C++
Fortran

The OpenMP Fortran API runtime library routines are external procedures. The return values of6
these routines are of default kind, unless otherwise specified.7

Interface declarations for the OpenMP Fortran runtime library routines described in this chapter8
shall be provided in the form of a Fortran module named omp_lib or a Fortran include file9
named omp_lib.h. Whether the omp_lib.h file provides derived-type definitions or those10
routines that require an explicit interface is implementation defined. Whether the include file or11
the module file (or both) is provided is also implementation defined.12

These files also define the following:13

• The default integer named constant omp_allocator_handle_kind;14

• An integer named constant of kind omp_allocator_handle_kind for each predefined15
memory allocator in Table 2.10;16

• The default integer named constant omp_alloctrait_key_kind;17

• The default integer named constant omp_alloctrait_val_kind;18

• The default integer named constant omp_control_tool_kind;19

• The default integer named constant omp_control_tool_result_kind;20

• The default integer named constant omp_depend_kind;21

• The default integer named constant omp_event_handle_kind;22

• The default integer named constant omp_interop_kind;23

• The default integer named constant omp_interop_fr_kind;24

• An integer named constant omp_ifr_name of kind omp_interop_fr_kind for each name25
that is a foreign runtime name that is defined in the OpenMP Additional Definitions document;26

• The default integer named constant omp_lock_hint_kind (deprecated);27

• The default integer named constant omp_lock_kind;28

• The default integer named constant omp_memspace_handle_kind;29

CHAPTER 3. RUNTIME LIBRARY ROUTINES 367

• An integer named constant of kind omp_memspace_handle_kind for each predefined1
memory space in Table 2.8;2

• The default integer named constant omp_nest_lock_kind;3

• The default integer named constant omp_pause_resource_kind;4

• The default integer named constant omp_proc_bind_kind;5

• The default integer named constant omp_sched_kind;6

• The default integer named constant omp_sync_hint_kind; and7

• The default integer named constant openmp_version with a value yyyymm where yyyy and8
mm are the year and month designations of the version of the OpenMP Fortran API that the9
implementation supports; this value matches that of the C preprocessor macro _OPENMP, when10
a macro preprocessor is supported (see Section 2.2).11

Whether any of the OpenMP runtime library routines that take an argument are extended with a12
generic interface so arguments of different KIND type can be accommodated is implementation13
defined.14

Fortran

3.2 Thread Team Routines15

This section describes routines that affect and monitor thread teams in the current contention group.16

3.2.1 omp_set_num_threads17

Summary18
The omp_set_num_threads routine affects the number of threads to be used for subsequent19
parallel regions that do not specify a num_threads clause, by setting the value of the first20
element of the nthreads-var ICV of the current task.21

Format22
C / C++

void omp_set_num_threads(int num_threads);23

C / C++
Fortran

subroutine omp_set_num_threads(num_threads)24
integer num_threads25

Fortran

368 OpenMP API – Version 5.1 November 2020

Constraints on Arguments1
The value of the argument passed to this routine must evaluate to a positive integer, or else the2
behavior of this routine is implementation defined.3

Binding4
The binding task set for an omp_set_num_threads region is the generating task.5

Effect6
The effect of this routine is to set the value of the first element of the nthreads-var ICV of the7
current task to the value specified in the argument.8

Cross References9
• nthreads-var ICV, see Section 2.4.10

• parallel construct and num_threads clause, see Section 2.6.11

• Determining the number of threads for a parallel region, see Section 2.6.1.12

• omp_get_num_threads routine, see Section 3.2.2.13

• omp_get_max_threads routine, see Section 3.2.3.14

• OMP_NUM_THREADS environment variable, see Section 6.2.15

3.2.2 omp_get_num_threads16

Summary17
The omp_get_num_threads routine returns the number of threads in the current team.18

Format19
C / C++

int omp_get_num_threads(void);20

C / C++
Fortran

integer function omp_get_num_threads()21

Fortran

Binding22
The binding region for an omp_get_num_threads region is the innermost enclosing23
parallel region.24

Effect25
The omp_get_num_threads routine returns the number of threads in the team that is executing26
the parallel region to which the routine region binds. If called from the sequential part of a27
program, this routine returns 1.28

CHAPTER 3. RUNTIME LIBRARY ROUTINES 369

Cross References1
• nthreads-var ICV, see Section 2.4.2

• parallel construct and num_threads clause, see Section 2.6.3

• Determining the number of threads for a parallel region, see Section 2.6.1.4

• omp_set_num_threads routine, see Section 3.2.1.5

• OMP_NUM_THREADS environment variable, see Section 6.2.6

3.2.3 omp_get_max_threads7

Summary8
The omp_get_max_threads routine returns an upper bound on the number of threads that9
could be used to form a new team if a parallel construct without a num_threads clause were10
encountered after execution returns from this routine.11

Format12
C / C++

int omp_get_max_threads(void);13

C / C++
Fortran

integer function omp_get_max_threads()14

Fortran

Binding15
The binding task set for an omp_get_max_threads region is the generating task.16

Effect17
The value returned by omp_get_max_threads is the value of the first element of the18
nthreads-var ICV of the current task. This value is also an upper bound on the number of threads19
that could be used to form a new team if a parallel region without a num_threads clause were20
encountered after execution returns from this routine.21

22

Note – The return value of the omp_get_max_threads routine can be used to allocate23
sufficient storage dynamically for all threads in the team formed at the subsequent active24
parallel region.25

26

370 OpenMP API – Version 5.1 November 2020

Cross References1
• nthreads-var ICV, see Section 2.4.2

• parallel construct and num_threads clause, see Section 2.6.3

• Determining the number of threads for a parallel region, see Section 2.6.1.4

• omp_set_num_threads routine, see Section 3.2.1.5

• omp_get_num_threads routine, see Section 3.2.2.6

• omp_get_thread_num routine, see Section 3.2.4.7

• OMP_NUM_THREADS environment variable, see Section 6.2.8

3.2.4 omp_get_thread_num9

Summary10
The omp_get_thread_num routine returns the thread number, within the current team, of the11
calling thread.12

Format13
C / C++

int omp_get_thread_num(void);14

C / C++
Fortran

integer function omp_get_thread_num()15

Fortran

Binding16
The binding thread set for an omp_get_thread_num region is the current team. The binding17
region for an omp_get_thread_num region is the innermost enclosing parallel region.18

Effect19
The omp_get_thread_num routine returns the thread number of the calling thread, within the20
team that is executing the parallel region to which the routine region binds. The thread number21
is an integer between 0 and one less than the value returned by omp_get_num_threads,22
inclusive. The thread number of the primary thread of the team is 0. The routine returns 0 if it is23
called from the sequential part of a program.24

25

Note – The thread number may change during the execution of an untied task. The value returned26
by omp_get_thread_num is not generally useful during the execution of such a task region.27

28

CHAPTER 3. RUNTIME LIBRARY ROUTINES 371

Cross References1
• nthreads-var ICV, see Section 2.4.2

• parallel construct and num_threads clause, see Section 2.6.3

• Determining the number of threads for a parallel region, see Section 2.6.1.4

• omp_set_num_threads routine, see Section 3.2.1.5

• omp_get_num_threads routine, see Section 3.2.2.6

• OMP_NUM_THREADS environment variable, see Section 6.2.7

3.2.5 omp_in_parallel8

Summary9
The omp_in_parallel routine returns true if the active-levels-var ICV is greater than zero;10
otherwise, it returns false.11

Format12
C / C++

int omp_in_parallel(void);13

C / C++
Fortran

logical function omp_in_parallel()14

Fortran

Binding15
The binding task set for an omp_in_parallel region is the generating task.16

Effect17
The effect of the omp_in_parallel routine is to return true if the current task is enclosed by an18
active parallel region, and the parallel region is enclosed by the outermost initial task19
region on the device; otherwise it returns false.20

Cross References21
• active-levels-var, see Section 2.4.22

• parallel construct, see Section 2.6.23

• omp_get_num_threads routine, see Section 3.2.2.24

• omp_get_active_level routine, see Section 3.2.20.25

372 OpenMP API – Version 5.1 November 2020

3.2.6 omp_set_dynamic1

Summary2
The omp_set_dynamic routine enables or disables dynamic adjustment of the number of3
threads available for the execution of subsequent parallel regions by setting the value of the4
dyn-var ICV.5

Format6
C / C++

void omp_set_dynamic(int dynamic_threads);7

C / C++

Fortran
subroutine omp_set_dynamic(dynamic_threads)8
logical dynamic_threads9

Fortran

Binding10
The binding task set for an omp_set_dynamic region is the generating task.11

Effect12
For implementations that support dynamic adjustment of the number of threads, if the argument to13
omp_set_dynamic evaluates to true, dynamic adjustment is enabled for the current task;14
otherwise, dynamic adjustment is disabled for the current task. For implementations that do not15
support dynamic adjustment of the number of threads, this routine has no effect: the value of16
dyn-var remains false.17

Cross References18
• dyn-var ICV, see Section 2.4.19

• Determining the number of threads for a parallel region, see Section 2.6.1.20

• omp_get_num_threads routine, see Section 3.2.2.21

• omp_get_dynamic routine, see Section 3.2.7.22

• OMP_DYNAMIC environment variable, see Section 6.3.23

3.2.7 omp_get_dynamic24

Summary25
The omp_get_dynamic routine returns the value of the dyn-var ICV, which determines whether26
dynamic adjustment of the number of threads is enabled or disabled.27

CHAPTER 3. RUNTIME LIBRARY ROUTINES 373

Format1
C / C++

int omp_get_dynamic(void);2

C / C++
Fortran

logical function omp_get_dynamic()3

Fortran

Binding4
The binding task set for an omp_get_dynamic region is the generating task.5

Effect6
This routine returns true if dynamic adjustment of the number of threads is enabled for the current7
task; it returns false, otherwise. If an implementation does not support dynamic adjustment of the8
number of threads, then this routine always returns false.9

Cross References10
• dyn-var ICV, see Section 2.4.11

• Determining the number of threads for a parallel region, see Section 2.6.1.12

• omp_set_dynamic routine, see Section 3.2.6.13

• OMP_DYNAMIC environment variable, see Section 6.3.14

3.2.8 omp_get_cancellation15

Summary16
The omp_get_cancellation routine returns the value of the cancel-var ICV, which17
determines if cancellation is enabled or disabled.18

Format19
C / C++

int omp_get_cancellation(void);20

C / C++
Fortran

logical function omp_get_cancellation()21

Fortran

Binding22
The binding task set for an omp_get_cancellation region is the whole program.23

374 OpenMP API – Version 5.1 November 2020

Effect1
This routine returns true if cancellation is enabled. It returns false otherwise.2

Cross References3
• cancel-var ICV, see Section 2.4.1.4

• cancel construct, see Section 2.20.1.5

• OMP_CANCELLATION environment variable, see Section 6.11.6

3.2.9 omp_set_nested (Deprecated)7

Summary8
The deprecated omp_set_nested routine enables or disables nested parallelism by setting the9
max-active-levels-var ICV.10

Format11
C / C++

void omp_set_nested(int nested);12

C / C++
Fortran

subroutine omp_set_nested(nested)13
logical nested14

Fortran

Binding15
The binding task set for an omp_set_nested region is the generating task.16

Effect17
If the argument to omp_set_nested evaluates to true, the value of the max-active-levels-var18
ICV is set to the number of active levels of parallelism that the implementation supports; otherwise,19
if the value of max-active-levels-var is greater than 1 then it is set to 1. This routine has been20
deprecated.21

Cross References22
• max-active-levels-var ICV, see Section 2.4.23

• Determining the number of threads for a parallel region, see Section 2.6.1.24

• omp_get_nested routine, see Section 3.2.10.25

• omp_set_max_active_levels routine, see Section 3.2.15.26

• omp_get_max_active_levels routine, see Section 3.2.16.27

• OMP_NESTED environment variable, see Section 6.9.28

CHAPTER 3. RUNTIME LIBRARY ROUTINES 375

3.2.10 omp_get_nested (Deprecated)1

Summary2
The deprecated omp_get_nested routine returns whether nested parallelism is enabled or3
disabled, according to the value of the max-active-levels-var ICV.4

Format5
C / C++

int omp_get_nested(void);6

C / C++
Fortran

logical function omp_get_nested()7

Fortran

Binding8
The binding task set for an omp_get_nested region is the generating task.9

Effect10
This routine returns true if max-active-levels-var is greater than 1 and greater than active-levels-var11
for the current task; it returns false, otherwise. If an implementation does not support nested12
parallelism, this routine always returns false. This routine has been deprecated.13

Cross References14
• max-active-levels-var ICV, see Section 2.4.15

• Determining the number of threads for a parallel region, see Section 2.6.1.16

• omp_set_nested routine, see Section 3.2.9.17

• omp_set_max_active_levels routine, see Section 3.2.15.18

• omp_get_max_active_levels routine, see Section 3.2.16.19

• OMP_NESTED environment variable, see Section 6.9.20

3.2.11 omp_set_schedule21

Summary22
The omp_set_schedule routine affects the schedule that is applied when runtime is used as23
schedule kind, by setting the value of the run-sched-var ICV.24

376 OpenMP API – Version 5.1 November 2020

Format1
C / C++

void omp_set_schedule(omp_sched_t kind, int chunk_size);2

C / C++
Fortran

subroutine omp_set_schedule(kind, chunk_size)3
integer (kind=omp_sched_kind) kind4
integer chunk_size5

Fortran

Constraints on Arguments6
The first argument passed to this routine can be one of the valid OpenMP schedule kinds (except for7
runtime) or any implementation-specific schedule. The C/C++ header file (omp.h) and the8
Fortran include file (omp_lib.h) and/or Fortran module file (omp_lib) define the valid9
constants. The valid constants must include the following, which can be extended with10
implementation-specific values:11

C / C++
typedef enum omp_sched_t {12

// schedule kinds13
omp_sched_static = 0x1,14
omp_sched_dynamic = 0x2,15
omp_sched_guided = 0x3,16
omp_sched_auto = 0x4,17

18
// schedule modifier19
omp_sched_monotonic = 0x80000000u20

} omp_sched_t;21

C / C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 377

Fortran
! schedule kinds1
integer(kind=omp_sched_kind), &2

parameter :: omp_sched_static = &3
int(Z’1’, kind=omp_sched_kind)4

integer(kind=omp_sched_kind), &5
parameter :: omp_sched_dynamic = &6

int(Z’2’, kind=omp_sched_kind)7
integer(kind=omp_sched_kind), &8

parameter :: omp_sched_guided = &9
int(Z’3’, kind=omp_sched_kind)10

integer(kind=omp_sched_kind), &11
parameter :: omp_sched__auto = &12

int(Z’4’, kind=omp_sched_kind)13
14

! schedule modifier15
integer(kind=omp_sched_kind), &16

parameter :: omp_sched_monotonic = &17
int(Z’80000000’, kind=omp_sched_kind)18

Fortran

Binding19
The binding task set for an omp_set_schedule region is the generating task.20

Effect21
The effect of this routine is to set the value of the run-sched-var ICV of the current task to the22
values specified in the two arguments. The schedule is set to the schedule kind that is specified by23
the first argument kind. It can be any of the standard schedule kinds or any other24
implementation-specific one. For the schedule kinds static, dynamic, and guided the25
chunk_size is set to the value of the second argument, or to the default chunk_size if the value of the26
second argument is less than 1; for the schedule kind auto the second argument has no meaning;27
for implementation-specific schedule kinds, the values and associated meanings of the second28
argument are implementation defined.29

Each of the schedule kinds can be combined with the omp_sched_monotonic modifier by30
using the + or | operators in C/C++ or the + operator in Fortran. If the schedule kind is combined31
with the omp_sched_monotonic modifier, the schedule is modified as if the monotonic32
schedule modifier was specified. Otherwise, the schedule modifier is nonmonotonic.33

378 OpenMP API – Version 5.1 November 2020

Cross References1
• run-sched-var ICV, see Section 2.4.2

• Determining the schedule of a worksharing-loop, see Section 2.11.4.1.3

• omp_get_schedule routine, see Section 3.2.12.4

• OMP_SCHEDULE environment variable, see Section 6.1.5

3.2.12 omp_get_schedule6

Summary7
The omp_get_schedule routine returns the schedule that is applied when the runtime schedule8
is used.9

Format10
C / C++

void omp_get_schedule(omp_sched_t *kind, int *chunk_size);11

C / C++
Fortran

subroutine omp_get_schedule(kind, chunk_size)12
integer (kind=omp_sched_kind) kind13
integer chunk_size14

Fortran

Binding15
The binding task set for an omp_get_schedule region is the generating task.16

Effect17
This routine returns the run-sched-var ICV in the task to which the routine binds. The first18
argument kind returns the schedule to be used. It can be any of the standard schedule kinds as19
defined in Section 3.2.11, or any implementation-specific schedule kind. The second argument20
chunk_size returns the chunk size to be used, or a value less than 1 if the default chunk size is to be21
used, if the returned schedule kind is static, dynamic, or guided. The value returned by the22
second argument is implementation defined for any other schedule kinds.23

Cross References24
• run-sched-var ICV, see Section 2.4.25

• Determining the schedule of a worksharing-loop, see Section 2.11.4.1.26

• omp_set_schedule routine, see Section 3.2.11.27

• OMP_SCHEDULE environment variable, see Section 6.1.28

CHAPTER 3. RUNTIME LIBRARY ROUTINES 379

3.2.13 omp_get_thread_limit1

Summary2
The omp_get_thread_limit routine returns the maximum number of OpenMP threads3
available to participate in the current contention group.4

Format5
C / C++

int omp_get_thread_limit(void);6

C / C++
Fortran

integer function omp_get_thread_limit()7

Fortran

Binding8
The binding task set for an omp_get_thread_limit region is the generating task.9

Effect10
The omp_get_thread_limit routine returns the value of the thread-limit-var ICV.11

Cross References12
• thread-limit-var ICV, see Section 2.4.13

• omp_get_num_threads routine, see Section 3.2.2.14

• OMP_NUM_THREADS environment variable, see Section 6.2.15

• OMP_THREAD_LIMIT environment variable, see Section 6.10.16

3.2.14 omp_get_supported_active_levels17

Summary18
The omp_get_supported_active_levels routine returns the number of active levels of19
parallelism supported by the implementation.20

Format21
C / C++

int omp_get_supported_active_levels(void);22

C / C++
Fortran

integer function omp_get_supported_active_levels()23

Fortran

380 OpenMP API – Version 5.1 November 2020

Binding1
The binding task set for an omp_get_supported_active_levels region is the generating2
task.3

Effect4
The omp_get_supported_active_levels routine returns the number of active levels of5
parallelism supported by the implementation. The max-active-levels-var ICV may not have a value6
that is greater than this number. The value returned by the7
omp_get_supported_active_levels routine is implementation defined, but it must be8
greater than 0.9

Cross References10
• max-active-levels-var ICV, see Section 2.4.11

• omp_set_max_active_levels routine, see Section 3.2.15.12

• omp_get_max_active_levels routine, see Section 3.2.16.13

3.2.15 omp_set_max_active_levels14

Summary15
The omp_set_max_active_levels routine limits the number of nested active parallel16
regions when a new nested parallel region is generated by the current task by setting the17
max-active-levels-var ICV.18

Format19
C / C++

void omp_set_max_active_levels(int max_levels);20

C / C++
Fortran

subroutine omp_set_max_active_levels(max_levels)21
integer max_levels22

Fortran

Constraints on Arguments23
The value of the argument passed to this routine must evaluate to a non-negative integer, otherwise24
the behavior of this routine is implementation defined.25

Binding26
The binding task set for an omp_set_max_active_levels region is the generating task.27

CHAPTER 3. RUNTIME LIBRARY ROUTINES 381

Effect1
The effect of this routine is to set the value of the max-active-levels-var ICV to the value specified2
in the argument.3

If the number of active levels requested exceeds the number of active levels of parallelism4
supported by the implementation, the value of the max-active-levels-var ICV will be set to the5
number of active levels supported by the implementation.6

Cross References7
• max-active-levels-var ICV, see Section 2.4.8

• parallel construct, see Section 2.6.9

• omp_get_supported_active_levels routine, see Section 3.2.14.10

• omp_get_max_active_levels routine, see Section 3.2.16.11

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8.12

3.2.16 omp_get_max_active_levels13

Summary14
The omp_get_max_active_levels routine returns the value of the max-active-levels-var15
ICV, which determines the maximum number of nested active parallel regions when the innermost16
parallel region is generated by the current task.17

Format18
C / C++

int omp_get_max_active_levels(void);19

C / C++
Fortran

integer function omp_get_max_active_levels()20

Fortran

Binding21
The binding task set for an omp_get_max_active_levels region is the generating task.22

Effect23
The omp_get_max_active_levels routine returns the value of the max-active-levels-var24
ICV. The current task may only generate an active parallel region if the returned value is greater25
than the value of the active-levels-var ICV.26

382 OpenMP API – Version 5.1 November 2020

Cross References1
• max-active-levels-var ICV, see Section 2.4.2

• parallel construct, see Section 2.6.3

• omp_get_supported_active_levels routine, see Section 3.2.14.4

• omp_set_max_active_levels routine, see Section 3.2.15.5

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8.6

3.2.17 omp_get_level7

Summary8
The omp_get_level routine returns the value of the levels-var ICV.9

Format10
C / C++

int omp_get_level(void);11

C / C++
Fortran

integer function omp_get_level()12

Fortran

Binding13
The binding task set for an omp_get_level region is the generating task.14

Effect15
The effect of the omp_get_level routine is to return the number of nested parallel regions16
(whether active or inactive) that enclose the current task such that all of the parallel regions are17
enclosed by the outermost initial task region on the current device.18

Cross References19
• levels-var ICV, see Section 2.4.20

• parallel construct, see Section 2.6.21

• omp_get_active_level routine, see Section 3.2.20.22

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8.23

CHAPTER 3. RUNTIME LIBRARY ROUTINES 383

3.2.18 omp_get_ancestor_thread_num1

Summary2
The omp_get_ancestor_thread_num routine returns, for a given nested level of the current3
thread, the thread number of the ancestor of the current thread.4

Format5
C / C++

int omp_get_ancestor_thread_num(int level);6

C / C++
Fortran

integer function omp_get_ancestor_thread_num(level)7
integer level8

Fortran

Binding9
The binding thread set for an omp_get_ancestor_thread_num region is the encountering10
thread. The binding region for an omp_get_ancestor_thread_num region is the innermost11
enclosing parallel region.12

Effect13
The omp_get_ancestor_thread_num routine returns the thread number of the ancestor at a14
given nest level of the current thread or the thread number of the current thread. If the requested15
nest level is outside the range of 0 and the nest level of the current thread, as returned by the16
omp_get_level routine, the routine returns -1.17

18

Note – When the omp_get_ancestor_thread_num routine is called with a value of19
level=0, the routine always returns 0. If level=omp_get_level(), the routine has the20
same effect as the omp_get_thread_num routine.21

22

Cross References23
• parallel construct, see Section 2.6.24

• omp_get_num_threads routine, see Section 3.2.2.25

• omp_get_thread_num routine, see Section 3.2.4.26

• omp_get_level routine, see Section 3.2.17.27

• omp_get_team_size routine, see Section 3.2.19.28

384 OpenMP API – Version 5.1 November 2020

3.2.19 omp_get_team_size1

Summary2
The omp_get_team_size routine returns, for a given nested level of the current thread, the size3
of the thread team to which the ancestor or the current thread belongs.4

Format5
C / C++

int omp_get_team_size(int level);6

C / C++
Fortran

integer function omp_get_team_size(level)7
integer level8

Fortran

Binding9
The binding thread set for an omp_get_team_size region is the encountering thread. The10
binding region for an omp_get_team_size region is the innermost enclosing parallel11
region.12

Effect13
The omp_get_team_size routine returns the size of the thread team to which the ancestor or14
the current thread belongs. If the requested nested level is outside the range of 0 and the nested15
level of the current thread, as returned by the omp_get_level routine, the routine returns -1.16
Inactive parallel regions are regarded like active parallel regions executed with one thread.17

18

Note – When the omp_get_team_size routine is called with a value of level=0, the routine19
always returns 1. If level=omp_get_level(), the routine has the same effect as the20
omp_get_num_threads routine.21

22

Cross References23
• omp_get_num_threads routine, see Section 3.2.2.24

• omp_get_level routine, see Section 3.2.17.25

• omp_get_ancestor_thread_num routine, see Section 3.2.18.26

3.2.20 omp_get_active_level27

Summary28
The omp_get_active_level routine returns the value of the active-level-var ICV.29

CHAPTER 3. RUNTIME LIBRARY ROUTINES 385

Format1
C / C++

int omp_get_active_level(void);2

C / C++
Fortran

integer function omp_get_active_level()3

Fortran

Binding4
The binding task set for the an omp_get_active_level region is the generating task.5

Effect6
The effect of the omp_get_active_level routine is to return the number of nested active7
parallel regions enclosing the current task such that all of the parallel regions are enclosed8
by the outermost initial task region on the current device.9

Cross References10
• active-levels-var ICV, see Section 2.4.11

• omp_set_max_active_levels routine, see Section 3.2.15.12

• omp_get_max_active_levels routine, see Section 3.2.16.13

• omp_get_level routine, see Section 3.2.17.14

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8.15

3.3 Thread Affinity Routines16

This section describes routines that affect and access thread affinity policies that are in effect.17

3.3.1 omp_get_proc_bind18

Summary19
The omp_get_proc_bind routine returns the thread affinity policy to be used for the20
subsequent nested parallel regions that do not specify a proc_bind clause.21

Format22
C / C++

omp_proc_bind_t omp_get_proc_bind(void);23

C / C++

386 OpenMP API – Version 5.1 November 2020

Fortran
integer (kind=omp_proc_bind_kind) function omp_get_proc_bind()1

Fortran

Constraints on Arguments2
The value returned by this routine must be one of the valid affinity policy kinds. The C/C++ header3
file (omp.h) and the Fortran include file (omp_lib.h) and/or Fortran module file (omp_lib)4
define the valid constants. The valid constants must include the following:5

C / C++
typedef enum omp_proc_bind_t {6

omp_proc_bind_false = 0,7
omp_proc_bind_true = 1,8
omp_proc_bind_primary = 2,9
omp_proc_bind_master = omp_proc_bind_primary, // (deprecated)10
omp_proc_bind_close = 3,11
omp_proc_bind_spread = 412

} omp_proc_bind_t;13

C / C++
Fortran

integer (kind=omp_proc_bind_kind), &14
parameter :: omp_proc_bind_false = 015

integer (kind=omp_proc_bind_kind), &16
parameter :: omp_proc_bind_true = 117

integer (kind=omp_proc_bind_kind), &18
parameter :: omp_proc_bind_primary = 219

integer (kind=omp_proc_bind_kind), &20
parameter :: omp_proc_bind_master = &21
omp_proc_bind_primary ! (deprecated)22

integer (kind=omp_proc_bind_kind), &23
parameter :: omp_proc_bind_close = 324

integer (kind=omp_proc_bind_kind), &25
parameter :: omp_proc_bind_spread = 426

Fortran

Binding27
The binding task set for an omp_get_proc_bind region is the generating task.28

Effect29
The effect of this routine is to return the value of the first element of the bind-var ICV of the current30
task. See Section 2.6.2 for the rules that govern the thread affinity policy.31

CHAPTER 3. RUNTIME LIBRARY ROUTINES 387

Cross References1
• bind-var ICV, see Section 2.4.2

• Controlling OpenMP thread affinity, see Section 2.6.2.3

• omp_get_num_places routine, see Section 3.3.2.4

• OMP_PROC_BIND environment variable, see Section 6.4.5

• OMP_PLACES environment variable, see Section 6.5.6

3.3.2 omp_get_num_places7

Summary8
The omp_get_num_places routine returns the number of places available to the execution9
environment in the place list.10

Format11
C / C++

int omp_get_num_places(void);12

C / C++
Fortran

integer function omp_get_num_places()13

Fortran

Binding14
The binding thread set for an omp_get_num_places region is all threads on a device. The15
effect of executing this routine is not related to any specific region corresponding to any construct16
or API routine.17

Effect18
The omp_get_num_places routine returns the number of places in the place list. This value is19
equivalent to the number of places in the place-partition-var ICV in the execution environment of20
the initial task.21

Cross References22
• place-partition-var ICV, see Section 2.4.23

• Controlling OpenMP thread affinity, see Section 2.6.2.24

• omp_get_place_num routine, see Section 3.3.5.25

• OMP_PLACES environment variable, see Section 6.5.26

388 OpenMP API – Version 5.1 November 2020

3.3.3 omp_get_place_num_procs1

Summary2
The omp_get_place_num_procs routine returns the number of processors available to the3
execution environment in the specified place.4

Format5
C / C++

int omp_get_place_num_procs(int place_num);6

C / C++
Fortran

integer function omp_get_place_num_procs(place_num)7
integer place_num8

Fortran

Binding9
The binding thread set for an omp_get_place_num_procs region is all threads on a device.10
The effect of executing this routine is not related to any specific region corresponding to any11
construct or API routine.12

Effect13
The omp_get_place_num_procs routine returns the number of processors associated with14
the place numbered place_num. The routine returns zero when place_num is negative, or is greater15
than or equal to the value returned by omp_get_num_places().16

Cross References17
• place-partition-var ICV, see Section 2.4.18

• Controlling OpenMP thread affinity, see Section 2.6.2.19

• omp_get_num_places routine, see Section 3.3.2.20

• omp_get_place_proc_ids routine, see Section 3.3.4.21

• OMP_PLACES environment variable, see Section 6.5.22

3.3.4 omp_get_place_proc_ids23

Summary24
The omp_get_place_proc_ids routine returns the numerical identifiers of the processors25
available to the execution environment in the specified place.26

Format27
C / C++

void omp_get_place_proc_ids(int place_num, int *ids);28

C / C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 389

Fortran
subroutine omp_get_place_proc_ids(place_num, ids)1
integer place_num2
integer ids(*)3

Fortran

Binding4
The binding thread set for an omp_get_place_proc_ids region is all threads on a device.5
The effect of executing this routine is not related to any specific region corresponding to any6
construct or API routine.7

Effect8
The omp_get_place_proc_ids routine returns the numerical identifiers of each processor9
associated with the place numbered place_num. The numerical identifiers are non-negative and10
their meaning is implementation defined. The numerical identifiers are returned in the array ids and11
their order in the array is implementation defined. The array must be sufficiently large to contain12
omp_get_place_num_procs(place_num) integers; otherwise, the behavior is unspecified.13
The routine has no effect when place_num has a negative value or a value greater than or equal to14
omp_get_num_places().15

Cross References16
• place-partition-var ICV, see Section 2.4.17

• Controlling OpenMP thread affinity, see Section 2.6.2.18

• omp_get_num_places routine, see Section 3.3.2.19

• omp_get_place_num_procs routine, see Section 3.3.3.20

• OMP_PLACES environment variable, see Section 6.5.21

3.3.5 omp_get_place_num22

Summary23
The omp_get_place_num routine returns the place number of the place to which the24
encountering thread is bound.25

Format26
C / C++

int omp_get_place_num(void);27

C / C++
Fortran

integer function omp_get_place_num()28

Fortran

390 OpenMP API – Version 5.1 November 2020

Binding1
The binding thread set for an omp_get_place_num region is the encountering thread.2

Effect3
When the encountering thread is bound to a place, the omp_get_place_num routine returns the4
place number associated with the thread. The returned value is between 0 and one less than the5
value returned by omp_get_num_places(), inclusive. When the encountering thread is not6
bound to a place, the routine returns -1.7

Cross References8
• place-partition-var ICV, see Section 2.4.9

• Controlling OpenMP thread affinity, see Section 2.6.2.10

• omp_get_num_places routine, see Section 3.3.2.11

• OMP_PLACES environment variable, see Section 6.5.12

3.3.6 omp_get_partition_num_places13

Summary14
The omp_get_partition_num_places routine returns the number of places in the place15
partition of the innermost implicit task.16

Format17
C / C++

int omp_get_partition_num_places(void);18

C / C++
Fortran

integer function omp_get_partition_num_places()19

Fortran

Binding20
The binding task set for an omp_get_partition_num_places region is the encountering21
implicit task.22

Effect23
The omp_get_partition_num_places routine returns the number of places in the24
place-partition-var ICV.25

CHAPTER 3. RUNTIME LIBRARY ROUTINES 391

Cross References1
• place-partition-var ICV, see Section 2.4.2

• Controlling OpenMP thread affinity, see Section 2.6.2.3

• omp_get_num_places routine, see Section 3.3.2.4

• OMP_PLACES environment variable, see Section 6.5.5

3.3.7 omp_get_partition_place_nums6

Summary7
The omp_get_partition_place_nums routine returns the list of place numbers8
corresponding to the places in the place-partition-var ICV of the innermost implicit task.9

Format10
C / C++

void omp_get_partition_place_nums(int *place_nums);11

C / C++
Fortran

subroutine omp_get_partition_place_nums(place_nums)12
integer place_nums(*)13

Fortran

Binding14
The binding task set for an omp_get_partition_place_nums region is the encountering15
implicit task.16

Effect17
The omp_get_partition_place_nums routine returns the list of place numbers that18
correspond to the places in the place-partition-var ICV of the innermost implicit task. The array19
must be sufficiently large to contain omp_get_partition_num_places() integers;20
otherwise, the behavior is unspecified.21

Cross References22
• place-partition-var ICV, see Section 2.4.23

• Controlling OpenMP thread affinity, see Section 2.6.2.24

• omp_get_partition_num_places routine, see Section 3.3.6.25

• OMP_PLACES environment variable, see Section 6.5.26

392 OpenMP API – Version 5.1 November 2020

3.3.8 omp_set_affinity_format1

Summary2
The omp_set_affinity_format routine sets the affinity format to be used on the device by3
setting the value of the affinity-format-var ICV.4

Format5
C / C++

void omp_set_affinity_format(const char *format);6

C / C++
Fortran

subroutine omp_set_affinity_format(format)7
character(len=*),intent(in) :: format8

Fortran

Binding9
When called from a sequential part of the program, the binding thread set for an10
omp_set_affinity_format region is the encountering thread. When called from within any11
parallel or teams region, the binding thread set (and binding region, if required) for the12
omp_set_affinity_format region is implementation defined.13

Effect14
The effect of omp_set_affinity_format routine is to copy the character string specified by15
the format argument into the affinity-format-var ICV on the current device.16

This routine has the described effect only when called from a sequential part of the program. When17
called from within a parallel or teams region, the effect of this routine is implementation18
defined.19

Cross References20
• Controlling OpenMP thread affinity, see Section 2.6.2.21

• omp_get_affinity_format routine, see Section 3.3.9.22

• omp_display_affinity routine, see Section 3.3.10.23

• omp_capture_affinity routine, see Section 3.3.11.24

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13.25

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14.26

CHAPTER 3. RUNTIME LIBRARY ROUTINES 393

3.3.9 omp_get_affinity_format1

Summary2
The omp_get_affinity_format routine returns the value of the affinity-format-var ICV on3
the device.4

Format5
C / C++

size_t omp_get_affinity_format(char *buffer, size_t size);6

C / C++
Fortran

integer function omp_get_affinity_format(buffer)7
character(len=*),intent(out) :: buffer8

Fortran

Binding9
When called from a sequential part of the program, the binding thread set for an10
omp_get_affinity_format region is the encountering thread. When called from within any11
parallel or teams region, the binding thread set (and binding region, if required) for the12
omp_get_affinity_format region is implementation defined.13

Effect14
C / C++

The omp_get_affinity_format routine returns the number of characters in the15
affinity-format-var ICV on the current device, excluding the terminating null byte (’\0’) and if16
size is non-zero, writes the value of the affinity-format-var ICV on the current device to buffer17
followed by a null byte. If the return value is larger or equal to size, the affinity format specification18
is truncated, with the terminating null byte stored to buffer[size-1]. If size is zero, nothing is19
stored and buffer may be NULL.20

C / C++
Fortran

The omp_get_affinity_format routine returns the number of characters that are required to21
hold the affinity-format-var ICV on the current device and writes the value of the22
affinity-format-var ICV on the current device to buffer. If the return value is larger than23
len(buffer), the affinity format specification is truncated.24

Fortran
If the buffer argument does not conform to the specified format then the result is implementation25
defined.26

394 OpenMP API – Version 5.1 November 2020

Cross References1
• Controlling OpenMP thread affinity, see Section 2.6.2.2

• omp_set_affinity_format routine, see Section 3.3.8.3

• omp_display_affinity routine, see Section 3.3.10.4

• omp_capture_affinity routine, see Section 3.3.11.5

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13.6

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14.7

3.3.10 omp_display_affinity8

Summary9
The omp_display_affinity routine prints the OpenMP thread affinity information using the10
format specification provided.11

Format12
C / C++

void omp_display_affinity(const char *format);13

C / C++
Fortran

subroutine omp_display_affinity(format)14
character(len=*),intent(in) :: format15

Fortran

Binding16
The binding thread set for an omp_display_affinity region is the encountering thread.17

Effect18
The omp_display_affinity routine prints the thread affinity information of the current19
thread in the format specified by the format argument, followed by a new-line. If the format is20
NULL (for C/C++) or a zero-length string (for Fortran and C/C++), the value of the21
affinity-format-var ICV is used. If the format argument does not conform to the specified format22
then the result is implementation defined.23

CHAPTER 3. RUNTIME LIBRARY ROUTINES 395

Cross References1
• Controlling OpenMP thread affinity, see Section 2.6.2.2

• omp_set_affinity_format routine, see Section 3.3.8.3

• omp_get_affinity_format routine, see Section 3.3.9.4

• omp_capture_affinity routine, see Section 3.3.11.5

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13.6

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14.7

3.3.11 omp_capture_affinity8

Summary9
The omp_capture_affinity routine prints the OpenMP thread affinity information into a10
buffer using the format specification provided.11

Format12
C / C++

size_t omp_capture_affinity(13
char *buffer,14
size_t size,15
const char *format16

);17

C / C++
Fortran

integer function omp_capture_affinity(buffer,format)18
character(len=*),intent(out) :: buffer19
character(len=*),intent(in) :: format20

Fortran

Binding21
The binding thread set for an omp_capture_affinity region is the encountering thread.22

Effect23
C / C++

The omp_capture_affinity routine returns the number of characters in the entire thread24
affinity information string excluding the terminating null byte (’\0’) and if size is non-zero, writes25
the thread affinity information of the current thread in the format specified by the format argument26
into the character string buffer followed by a null byte. If the return value is larger or equal to27
size, the thread affinity information string is truncated, with the terminating null byte stored to28
buffer[size-1]. If size is zero, nothing is stored and buffer may be NULL. If the format is NULL or29
a zero-length string, the value of the affinity-format-var ICV is used.30

C / C++

396 OpenMP API – Version 5.1 November 2020

Fortran
The omp_capture_affinity routine returns the number of characters required to hold the1
entire thread affinity information string and prints the thread affinity information of the current2
thread into the character string buffer with the size of len(buffer) in the format specified by3
the format argument. If the format is a zero-length string, the value of the affinity-format-var ICV4
is used. If the return value is larger than len(buffer), the thread affinity information string is5
truncated. If the format is a zero-length string, the value of the affinity-format-var ICV is used.6

Fortran
If the format argument does not conform to the specified format then the result is implementation7
defined.8

Cross References9
• Controlling OpenMP thread affinity, see Section 2.6.2.10

• omp_set_affinity_format routine, see Section 3.3.8.11

• omp_get_affinity_format routine, see Section 3.3.9.12

• omp_display_affinity routine, see Section 3.3.10.13

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13.14

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14.15

3.4 Teams Region Routines16

This section describes routines that affect and monitor the league of teams that may execute a17
teams region.18

3.4.1 omp_get_num_teams19

Summary20
The omp_get_num_teams routine returns the number of initial teams in the current teams21
region.22

Format23
C / C++

int omp_get_num_teams(void);24

C / C++
Fortran

integer function omp_get_num_teams()25

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 397

Binding1
The binding task set for an omp_get_num_teams region is the generating task2

Effect3
The effect of this routine is to return the number of initial teams in the current teams region. The4
routine returns 1 if it is called from outside of a teams region.5

Cross References6
• teams construct, see Section 2.7.7

• omp_get_team_num routine, see Section 3.4.2.8

3.4.2 omp_get_team_num9

Summary10
The omp_get_team_num routine returns the initial team number of the calling thread.11

Format12
C / C++

int omp_get_team_num(void);13

C / C++
Fortran

integer function omp_get_team_num()14

Fortran

Binding15
The binding task set for an omp_get_team_num region is the generating task.16

Effect17
The omp_get_team_num routine returns the initial team number of the calling thread. The18
initial team number is an integer between 0 and one less than the value returned by19
omp_get_num_teams(), inclusive. The routine returns 0 if it is called outside of a teams20
region.21

Cross References22
• teams construct, see Section 2.7.23

• omp_get_num_teams routine, see Section 3.4.1.24

398 OpenMP API – Version 5.1 November 2020

3.4.3 omp_set_num_teams1

Summary2
The omp_set_num_teams routine affects the number of threads to be used for subsequent3
teams regions that do not specify a num_teams clause, by setting the value of the nteams-var4
ICV of the current task.5

Format6
C / C++

void omp_set_num_teams(int num_teams);7

C / C++
Fortran

subroutine omp_set_num_teams(num_teams)8
integer num_teams9

Fortran

Constraints on Arguments10
The value of the argument passed to this routine must evaluate to a positive integer, or else the11
behavior of this routine is implementation defined.12

Binding13
The binding task set for an omp_set_num_teams region is the generating task.14

Effect15
The effect of this routine is to set the value of the nteams-var ICV of the current task to the value16
specified in the argument.17

Restrictions18
Restrictions to the omp_set_num_teams routine are as follows:19

• The routine may not be called from within a parallel region that is not the implicit parallel region20
that surrounds the whole OpenMP program.21

Cross References22
• nteams-var ICV, see Section 2.4.23

• teams construct and num_teams clause, see Section 2.7.24

• omp_get_num_teams routine, see Section 3.4.1.25

• omp_get_max_teams routine, see Section 3.4.4.26

• OMP_NUM_TEAMS environment variable, see Section 6.23.27

CHAPTER 3. RUNTIME LIBRARY ROUTINES 399

3.4.4 omp_get_max_teams1

Summary2
The omp_get_max_teams routine returns an upper bound on the number of teams that could be3
created by a teams construct without a num_teams clause that is encountered after execution4
returns from this routine.5

Format6
C / C++

int omp_get_max_teams(void);7

C / C++
Fortran

integer function omp_get_max_teams()8

Fortran

Binding9
The binding task set for an omp_get_max_teams region is the generating task.10

Effect11
The value returned by omp_get_max_teams is the value of the nteams-var ICV of the current12
task. This value is also an upper bound on the number of teams that can be created by a teams13
construct without a num_teams clause that is encountered after execution returns from this14
routine.15

Cross References16
• nteams-var ICV, see Section 2.4.17

• teams construct and num_teams clause, see Section 2.7.18

• omp_get_num_teams routine, see Section 3.4.1.19

• omp_set_num_teams routine, see Section 3.4.3.20

3.4.5 omp_set_teams_thread_limit21

Summary22
The omp_set_teams_thread_limit routine defines the maximum number of OpenMP23
threads that can participate in each contention group created by a teams construct.24

Format25
C / C++

void omp_set_teams_thread_limit(int thread_limit);26

C / C++

400 OpenMP API – Version 5.1 November 2020

Fortran
subroutine omp_set_teams_thread_limit(thread_limit)1
integer thread_limit2

Fortran

Constraints on Arguments3
The value of the argument passed to this routine must evaluate to a positive integer, or else the4
behavior of this routine is implementation defined.5

Binding6
The binding task set for an omp_set_teams_thread_limit region is the generating task.7

Effect8
The omp_set_teams_thread_limit routine sets the value of the teams-thread-limit-var9
ICV to the value of the thread_limit argument.10

If the value of thread_limit exceeds the number of OpenMP threads that an implementation11
supports for each contention group created by a teams construct, the value of the12
teams-thread-limit-var ICV will be set to the number that is supported by the implementation.13

Restrictions14
Restrictions to the omp_set_teams_thread_limit routine are as follows:15

• The routine may not be called from within a parallel region other than the implicit parallel region16
that surrounds the whole OpenMP program.17

Cross References18
• teams_thread-limit-var ICV, see Section 2.4.19

• teams construct and thread_limit clause, see Section 2.7.20

• omp_get_teams_thread_limit routine, see Section 3.4.6.21

• OMP_TEAMS_THREAD_LIMIT environment variable, see Section 6.24.22

3.4.6 omp_get_teams_thread_limit23

Summary24
The omp_get_teams_thread_limit routine returns the maximum number of OpenMP25
threads available to participate in each contention group created by a teams construct.26

Format27
C / C++

int omp_get_teams_thread_limit(void);28

C / C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 401

Fortran
integer function omp_get_teams_thread_limit()1

Fortran

Binding2
The binding task set for an omp_get_teams_thread_limit region is the generating task.3

Effect4
The omp_get_teams_thread_limit routine returns the value of the teams-thread-limit-var5
ICV.6

Cross References7
• teams_thread-limit-var ICV, see Section 2.4.8

• teams construct and thread_limit clause, see Section 2.7.9

• omp_set_teams_thread_limit routine, see Section 3.4.5.10

• OMP_TEAMS_THREAD_LIMIT environment variable, see Section 6.24.11

3.5 Tasking Routines12

This section describes routines that pertain to OpenMP explicit tasks.13

3.5.1 omp_get_max_task_priority14

Summary15
The omp_get_max_task_priority routine returns the maximum value that can be specified16
in the priority clause.17

Format18
C / C++

int omp_get_max_task_priority(void);19

C / C++
Fortran

integer function omp_get_max_task_priority()20

Fortran

Binding21
The binding thread set for an omp_get_max_task_priority region is all threads on the22
device. The effect of executing this routine is not related to any specific region that corresponds to23
any construct or API routine.24

402 OpenMP API – Version 5.1 November 2020

Effect1
The omp_get_max_task_priority routine returns the value of the max-task-priority-var2
ICV, which determines the maximum value that can be specified in the priority clause.3

Cross References4
• max-task-priority-var, see Section 2.4.5

• task construct, see Section 2.12.1.6

3.5.2 omp_in_final7

Summary8
The omp_in_final routine returns true if the routine is executed in a final task region;9
otherwise, it returns false.10

Format11
C / C++

int omp_in_final(void);12

C / C++
Fortran

logical function omp_in_final()13

Fortran

Binding14
The binding task set for an omp_in_final region is the generating task.15

Effect16
omp_in_final returns true if the enclosing task region is final. Otherwise, it returns false.17

Cross References18
• task construct, see Section 2.12.1.19

CHAPTER 3. RUNTIME LIBRARY ROUTINES 403

3.6 Resource Relinquishing Routines1

This section describes routines that relinquish resources used by the OpenMP runtime.2

3.6.1 omp_pause_resource3

Summary4
The omp_pause_resource routine allows the runtime to relinquish resources used by OpenMP5
on the specified device.6

Format7
C / C++

int omp_pause_resource(8
omp_pause_resource_t kind,9
int device_num10

);11

C / C++
Fortran

integer function omp_pause_resource(kind, device_num)12
integer (kind=omp_pause_resource_kind) kind13
integer device_num14

Fortran

Constraints on Arguments15
The first argument passed to this routine can be one of the valid OpenMP pause kind, or any16
implementation specific pause kind. The C/C++ header file (omp.h) and the Fortran include file17
(omp_lib.h) and/or Fortran module file (omp_lib) define the valid constants. The valid18
constants must include the following, which can be extended with implementation-specific values:19

Format20
C / C++

typedef enum omp_pause_resource_t {21
omp_pause_soft = 1,22
omp_pause_hard = 223

} omp_pause_resource_t;24

C / C++
Fortran

integer (kind=omp_pause_resource_kind), parameter :: &25
omp_pause_soft = 126

integer (kind=omp_pause_resource_kind), parameter :: &27
omp_pause_hard = 228

Fortran

404 OpenMP API – Version 5.1 November 2020

The second argument passed to this routine indicates the device that will be paused. The1
device_num parameter must be greater than or equal to zero and less than or equal to the result2
of omp_get_num_devices().3

Binding4
The binding task set for an omp_pause_resource region is the whole program.5

Effect6
The omp_pause_resource routine allows the runtime to relinquish resources used by OpenMP7
on the specified device.8

If successful, the omp_pause_hard value results in a hard pause for which the OpenMP state is9
not guaranteed to persist across the omp_pause_resource call. A hard pause may relinquish10
any data allocated by OpenMP on a given device, including data allocated by memory routines for11
that device as well as data present on the device as a result of a declare target directive or12
target data construct. A hard pause may also relinquish any data associated with a13
threadprivate directive. When relinquished and when applicable, base language appropriate14
deallocation/finalization is performed. When relinquished and when applicable, mapped data on a15
device will not be copied back from the device to the host.16

If successful, the omp_pause_soft value results in a soft pause for which the OpenMP state is17
guaranteed to persist across the call, with the exception of any data associated with a18
threadprivate directive, which may be relinquished across the call. When relinquished and19
when applicable, base language appropriate deallocation/finalization is performed.20

21

Note – A hard pause may relinquish more resources, but may resume processing OpenMP regions22
more slowly. A soft pause allows OpenMP regions to restart more quickly, but may relinquish fewer23
resources. An OpenMP implementation will reclaim resources as needed for OpenMP regions24
encountered after the omp_pause_resource region. Since a hard pause may unmap data on the25
specified device, appropriate data mapping is required before using data on the specified device26
after the omp_pause_region region.27

28

The routine returns zero in case of success, and non-zero otherwise.29

Tool Callbacks30
If the tool is not allowed to interact with the specified device after encountering this call, then the31
runtime must call the tool finalizer for that device.32

Restrictions33
Restrictions to the omp_pause_resource routine are as follows:34

• The omp_pause_resource region may not be nested in any explicit OpenMP region.35

• The routine may only be called when all explicit tasks have finalized execution.36

CHAPTER 3. RUNTIME LIBRARY ROUTINES 405

Cross References1
• target construct, see Section 2.14.5.2

• Declare target directive, see Section 2.14.7.3

• threadprivate directives, see Section 2.21.2.4

• To pause resources on all devices at once, see Section 3.6.2.5

• omp_get_num_devices, see Section 3.7.4.6

3.6.2 omp_pause_resource_all7

Summary8
The omp_pause_resource_all routine allows the runtime to relinquish resources used by9
OpenMP on all devices.10

Format11
C / C++

int omp_pause_resource_all(omp_pause_resource_t kind);12

C / C++
Fortran

integer function omp_pause_resource_all(kind)13
integer (kind=omp_pause_resource_kind) kind14

Fortran

Binding15
The binding task set for an omp_pause_resource_all region is the whole program.16

Effect17
The omp_pause_resource_all routine allows the runtime to relinquish resources used by18
OpenMP on all devices. It is equivalent to calling the omp_pause_resource routine once for19
each available device, including the host device.20

The argument kind passed to this routine can be one of the valid OpenMP pause kind as defined in21
Section 3.6.1, or any implementation-specific pause kind.22

Tool Callbacks23
If the tool is not allowed to interact with a given device after encountering this call, then the24
runtime must call the tool finalizer for that device.25

406 OpenMP API – Version 5.1 November 2020

Restrictions1
Restrictions to the omp_pause_resource_all routine are as follows:2

• The omp_pause_resource_all region may not be nested in any explicit OpenMP region.3

• The routine may only be called when all explicit tasks have finalized execution.4

Cross References5
• target construct, see Section 2.14.5.6

• Declare target directive, see Section 2.14.7.7

• To pause resources on a specific device only, see Section 3.6.1.8

3.7 Device Information Routines9

This section describes routines that pertain to the set of devices that are accessible to an OpenMP10
program.11

3.7.1 omp_get_num_procs12

Summary13
The omp_get_num_procs routine returns the number of processors available to the device.14

Format15
C / C++

int omp_get_num_procs(void);16

C / C++
Fortran

integer function omp_get_num_procs()17

Fortran

Binding18
The binding thread set for an omp_get_num_procs region is all threads on a device. The effect19
of executing this routine is not related to any specific region corresponding to any construct or API20
routine.21

Effect22
The omp_get_num_procs routine returns the number of processors that are available to the23
device at the time the routine is called. This value may change between the time that it is24
determined by the omp_get_num_procs routine and the time that it is read in the calling25
context due to system actions outside the control of the OpenMP implementation.26

CHAPTER 3. RUNTIME LIBRARY ROUTINES 407

Cross References1
• omp_get_num_places routine, see Section 3.3.2.2

• omp_get_place_num_procs routine, see Section 3.3.3.3

• omp_get_place_proc_ids routine, see Section 3.3.4.4

• omp_get_place_num routine, see Section 3.3.5.5

3.7.2 omp_set_default_device6

Summary7
The omp_set_default_device routine controls the default target device by assigning the8
value of the default-device-var ICV.9

Format10
C / C++

void omp_set_default_device(int device_num);11

C / C++
Fortran

subroutine omp_set_default_device(device_num)12
integer device_num13

Fortran

Binding14
The binding task set for an omp_set_default_device region is the generating task.15

Effect16
The effect of this routine is to set the value of the default-device-var ICV of the current task to the17
value specified in the argument. When called from within a target region the effect of this18
routine is unspecified.19

Cross References20
• default-device-var, see Section 2.4.21

• target construct, see Section 2.14.5.22

• omp_get_default_device, see Section 3.7.3.23

• OMP_DEFAULT_DEVICE environment variable, see Section 6.15.24

3.7.3 omp_get_default_device25

Summary26
The omp_get_default_device routine returns the default target device.27

408 OpenMP API – Version 5.1 November 2020

Format1
C / C++

int omp_get_default_device(void);2

C / C++
Fortran

integer function omp_get_default_device()3

Fortran

Binding4
The binding task set for an omp_get_default_device region is the generating task.5

Effect6
The omp_get_default_device routine returns the value of the default-device-var ICV of the7
current task. When called from within a target region the effect of this routine is unspecified.8

Cross References9
• default-device-var, see Section 2.4.10

• target construct, see Section 2.14.5.11

• omp_set_default_device, see Section 3.7.2.12

• OMP_DEFAULT_DEVICE environment variable, see Section 6.15.13

3.7.4 omp_get_num_devices14

Summary15
The omp_get_num_devices routine returns the number of non-host devices available for16
offloading code or data.17

Format18
C / C++

int omp_get_num_devices(void);19

C / C++
Fortran

integer function omp_get_num_devices()20

Fortran

Binding21
The binding task set for an omp_get_num_devices region is the generating task.22

CHAPTER 3. RUNTIME LIBRARY ROUTINES 409

Effect1
The omp_get_num_devices routine returns the number of available non-host devices onto2
which code or data may be offloaded. When called from within a target region the effect of this3
routine is unspecified.4

Cross References5
• target construct, see Section 2.14.5.6

• omp_get_default_device, see Section 3.7.3.7

• omp_get_device_num, see Section 3.7.5.8

3.7.5 omp_get_device_num9

Summary10
The omp_get_device_num routine returns the device number of the device on which the11
calling thread is executing.12

Format13
C / C++

int omp_get_device_num(void);14

C / C++
Fortran

integer function omp_get_device_num()15

Fortran

Binding16
The binding task set for an omp_get_device_num region is the generating task.17

Effect18
The omp_get_device_num routine returns the device number of the device on which the19
calling thread is executing. When called on the host device, it will return the same value as the20
omp_get_initial_device routine.21

Cross References22
• target construct, see Section 2.14.5.23

• omp_get_default_device, see Section 3.7.3.24

• omp_get_num_devices, see Section 3.7.4.25

• omp_get_initial_device routine, see Section 3.7.7.26

410 OpenMP API – Version 5.1 November 2020

3.7.6 omp_is_initial_device1

Summary2
The omp_is_initial_device routine returns true if the current task is executing on the host3
device; otherwise, it returns false.4

Format5
C / C++

int omp_is_initial_device(void);6

C / C++
Fortran

logical function omp_is_initial_device()7

Fortran

Binding8
The binding task set for an omp_is_initial_device region is the generating task.9

Effect10
The effect of this routine is to return true if the current task is executing on the host device;11
otherwise, it returns false.12

Cross References13
• omp_get_initial_device routine, see Section 3.7.7.14

• Device memory routines, see Section 3.8.15

3.7.7 omp_get_initial_device16

Summary17
The omp_get_initial_device routine returns a device number that represents the host18
device.19

Format20
C / C++

int omp_get_initial_device(void);21

C / C++
Fortran

integer function omp_get_initial_device()22

Fortran

Binding23
The binding task set for an omp_get_initial_device region is the generating task.24

CHAPTER 3. RUNTIME LIBRARY ROUTINES 411

Effect1
The effect of this routine is to return the device number of the host device. The value of the device2
number is the value returned by the omp_get_num_devices routine. When called from within3
a target region the effect of this routine is unspecified.4

Cross References5
• target construct, see Section 2.14.5.6

• omp_is_initial_device routine, see Section 3.7.6.7

• Device memory routines, see Section 3.8.8

3.8 Device Memory Routines9

This section describes routines that support allocation of memory and management of pointers in10
the data environments of target devices.11

3.8.1 omp_target_alloc12

Summary13
The omp_target_alloc routine allocates memory in a device data environment and returns a14
device pointer to that memory.15

Format16
C / C++

void* omp_target_alloc(size_t size, int device_num);17

C / C++
Fortran

type(c_ptr) function omp_target_alloc(size, device_num) bind(c)18
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t, c_int19
integer(c_size_t), value :: size20
integer(c_int), value :: device_num21

Fortran

Constraints on Arguments22
The device_num argument must be greater than or equal to zero and less than or equal to the result23
of omp_get_num_devices().24

Binding25
The binding task set for an omp_target_alloc region is the generating task, which is the target26
task generated by the call to the omp_target_alloc routine.27

412 OpenMP API – Version 5.1 November 2020

Effect1
The omp_target_alloc routine returns a device pointer that references the device address of a2
storage location of size bytes. The storage location is dynamically allocated in the device data3
environment of the device specified by device_num.4

The omp_target_alloc routine executes as if part of a target task that is generated by the call5
to the routine and that is an included task.6

The omp_target_alloc routine returns NULL (or, C_NULL_PTR, for Fortran) if it cannot7
dynamically allocate the memory in the device data environment.8

The device pointer returned by omp_target_alloc can be used in an is_device_ptr9
clause, Section 2.14.5.10

Fortran
The omp_target_alloc routine requires an explicit interface and so might not be provided in11
omp_lib.h.12

Fortran

Execution Model Events13
The target-data-allocation-begin event occurs before a thread initiates a data allocation on a target14
device.15

The target-data-allocation-end event occurs after a thread initiates a data allocation on a target16
device.17

Tool Callbacks18
A thread dispatches a registered ompt_callback_target_data_op_emi callback with19
ompt_scope_begin as its endpoint argument for each occurrence of a20
target-data-allocation-begin event in that thread. Similarly, a thread dispatches a registered21
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint22
argument for each occurrence of a target-data-allocation-end event in that thread. These callbacks23
have type signature ompt_callback_target_data_op_emi_t.24

A thread dispatches a registered ompt_callback_target_data_op callback for each25
occurrence of a target-data-allocation-begin event in that thread. The callback occurs in the context26
of the target task and has type signature ompt_callback_target_data_op_t.27

Restrictions28
Restrictions to the omp_target_alloc routine are as follows.29

• Freeing the storage returned by omp_target_alloc with any routine other than30
omp_target_free results in unspecified behavior.31

• When called from within a target region the effect is unspecified.32

CHAPTER 3. RUNTIME LIBRARY ROUTINES 413

C / C++
• Unless the unified_address clause appears on a requires directive in the compilation1
unit, pointer arithmetic is not supported on the device pointer returned by2
omp_target_alloc.3

C / C++

Cross References4
• target construct, see Section 2.14.5.5

• omp_get_num_devices routine, see Section 3.7.4.6

• omp_target_free routine, see Section 3.8.2.7

• ompt_callback_target_data_op_t or8
ompt_callback_target_data_op_emi_t callback type, see Section 4.5.2.25.9

3.8.2 omp_target_free10

Summary11
The omp_target_free routine frees the device memory allocated by the12
omp_target_alloc routine.13

Format14
C / C++

void omp_target_free(void *device_ptr, int device_num);15

C / C++
Fortran

subroutine omp_target_free(device_ptr, device_num) bind(c)16
use, intrinsic :: iso_c_binding, only : c_ptr, c_int17
type(c_ptr), value :: device_ptr18
integer(c_int), value :: device_num19

Fortran

Constraints on Arguments20
A program that calls omp_target_free with a non-null pointer that does not have a value21
returned from omp_target_alloc is non-conforming. The device_num argument must be22
greater than or equal to zero and less than or equal to the result of omp_get_num_devices().23

Binding24
The binding task set for an omp_target_free region is the generating task, which is the target25
task generated by the call to the omp_target_free routine.26

414 OpenMP API – Version 5.1 November 2020

Effect1
The omp_target_free routine frees the memory in the device data environment associated2
with device_ptr. If device_ptr is NULL (or C_NULL_PTR, for Fortran), the operation is ignored.3

The omp_target_free routine executes as if part of a target task that is generated by the call to4
the routine and that is an included task.5

Synchronization must be inserted to ensure that all accesses to device_ptr are completed before the6
call to omp_target_free.7

Fortran
The omp_target_free routine requires an explicit interface and so might not be provided in8
omp_lib.h.9

Fortran

Execution Model Events10
The target-data-free-begin event occurs before a thread initiates a data free on a target device.11

The target-data-free-end event occurs after a thread initiates a data free on a target device.12

Tool Callbacks13
A thread dispatches a registered ompt_callback_target_data_op_emi callback with14
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-free-begin15
event in that thread. Similarly, a thread dispatches a registered16
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint17
argument for each occurrence of a target-data-free-end event in that thread. These callbacks have18
type signature ompt_callback_target_data_op_emi_t.19

A thread dispatches a registered ompt_callback_target_data_op callback for each20
occurrence of a target-data-free-begin event in that thread. The callback occurs in the context of the21
target task and has type signature ompt_callback_target_data_op_t.22

Restrictions23
Restrictions to the omp_target_free routine are as follows.24

• When called from within a target region the effect is unspecified.25

Cross References26
• target construct, see Section 2.14.5.27

• omp_get_num_devices routine, see Section 3.7.4.28

• omp_target_alloc routine, see Section 3.8.1.29

• ompt_callback_target_data_op_t or30
ompt_callback_target_data_op_emi_t callback type, see Section 4.5.2.25.31

CHAPTER 3. RUNTIME LIBRARY ROUTINES 415

3.8.3 omp_target_is_present1

Summary2
The omp_target_is_present routine tests whether a host pointer refers to storage that is3
mapped to a given device.4

Format5
C / C++

int omp_target_is_present(const void *ptr, int device_num);6

C / C++
Fortran

integer(c_int) function omp_target_is_present(ptr, device_num) &7
bind(c)8

use, intrinsic :: iso_c_binding, only : c_ptr, c_int9
type(c_ptr), value :: ptr10
integer(c_int), value :: device_num11

Fortran

Constraints on Arguments12
The value of ptr must be a valid host pointer or NULL (or C_NULL_PTR, for Fortran). The13
device_num argument must be greater than or equal to zero and less than or equal to the result of14
omp_get_num_devices().15

Binding16
The binding task set for an omp_target_is_present region is the encountering task.17

Effect18
The omp_target_is_present routine returns true if device_num refers to the host device or19
if ptr refers to storage that has corresponding storage in the device data environment of device20
device_num. Otherwise, the routine returns false.21

Restrictions22
Restrictions to the omp_target_is_present routine are as follows.23

• When called from within a target region the effect is unspecified.24

Cross References25
• target construct, see Section 2.14.5.26

• map clause, see Section 2.21.7.1.27

• omp_get_num_devices routine, see Section 3.7.4.28

416 OpenMP API – Version 5.1 November 2020

3.8.4 omp_target_is_accessible1

Summary2
The omp_target_is_accessible routine tests whether host memory is accessible from a3
given device.4

Format5
C / C++

int omp_target_is_accessible(const void *ptr, size_t size,6
int device_num);7

C / C++
Fortran

integer(c_int) function omp_target_is_accessible(&8
ptr, size, device_num) bind(c)9

use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t, c_int10
type(c_ptr), value :: ptr11
integer(c_size_t), value :: size12
integer(c_int), value :: device_num13

Fortran

Constraints on Arguments14
The value of ptr must be a valid host pointer or NULL (or C_NULL_PTR, for Fortran). The15
device_num argument must be greater than or equal to zero and less than or equal to the result of16
omp_get_num_devices().17

Binding18
The binding task set for an omp_target_is_accessible region is the encountering task.19

Effect20
This routine returns true if the storage of size bytes starting at the address given by ptr is accessible21
from device device_num. Otherwise, it returns false.22

Restrictions23
Restrictions to the omp_target_is_accessible routine are as follows.24

• When called from within a target region the effect is unspecified.25

Cross References26
• target construct, see Section 2.14.5.27

• omp_get_num_devices routine, see Section 3.7.4.28

CHAPTER 3. RUNTIME LIBRARY ROUTINES 417

3.8.5 omp_target_memcpy1

Summary2
The omp_target_memcpy routine copies memory between any combination of host and device3
pointers.4

Format5
C / C++

int omp_target_memcpy(6
void *dst,7
const void *src,8
size_t length,9
size_t dst_offset,10
size_t src_offset,11
int dst_device_num,12
int src_device_num13

);14

C / C++
Fortran

integer(c_int) function omp_target_memcpy(dst, src, length, &15
dst_offset, src_offset, dst_device_num, src_device_num) bind(c)16

use, intrinsic :: iso_c_binding, only : c_ptr, c_int, c_size_t17
type(c_ptr), value :: dst, src18
integer(c_size_t), value :: length, dst_offset, src_offset19
integer(c_int), value :: dst_device_num, src_device_num20

Fortran
Constraints on Arguments21
Each device pointer specified must be valid for the device on the same side of the copy. The22
dst_device_num and src_device_num arguments must be greater than or equal to zero and less than23
or equal to the result of omp_get_num_devices().24

Binding25
The binding task set for an omp_target_memcpy region is the generating task, which is the26
target task generated by the call to the omp_target_memcpy routine.27

Effect28
This routine copies length bytes of memory at offset src_offset from src in the device data29
environment of device src_device_num to dst starting at offset dst_offset in the device data30
environment of device dst_device_num.31

The omp_target_memcpy routine executes as if part of a target task that is generated by the call32
to the routine and that is an included task.33

The return value is zero on success and non-zero on failure. This routine contains a task scheduling34
point.35

418 OpenMP API – Version 5.1 November 2020

Fortran
The omp_target_memcpy routine requires an explicit interface and so might not be provided in1
omp_lib.h.2

Fortran

Execution Model Events3
The target-data-op-begin event occurs before a thread initiates a data transfer.4

The target-data-op-end event occurs after a thread initiated a data transfer.5

Tool Callbacks6
A thread dispatches a registered ompt_callback_target_data_op_emi callback with7
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin8
event in that thread. Similarly, a thread dispatches a registered9
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint10
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have11
type signature ompt_callback_target_data_op_emi_t.12

A thread dispatches a registered ompt_callback_target_data_op callback for each13
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the14
target task and has type signature ompt_callback_target_data_op_t.15

Restrictions16
Restrictions to the omp_target_memcpy routine are as follows.17

• When called from within a target region the effect is unspecified.18

Cross References19
• target construct, see Section 2.14.5.20

• omp_get_num_devices routine, see Section 3.7.4.21

• ompt_callback_target_data_op_t or22
ompt_callback_target_data_op_emi_t callback type, see Section 4.5.2.25.23

3.8.6 omp_target_memcpy_rect24

Summary25
The omp_target_memcpy_rect routine copies a rectangular subvolume from a26
multi-dimensional array to another multi-dimensional array. The omp_target_memcpy_rect27
routine performs a copy between any combination of host and device pointers.28

CHAPTER 3. RUNTIME LIBRARY ROUTINES 419

Format1
C / C++

int omp_target_memcpy_rect(2
void *dst,3
const void *src,4
size_t element_size,5
int num_dims,6
const size_t *volume,7
const size_t *dst_offsets,8
const size_t *src_offsets,9
const size_t *dst_dimensions,10
const size_t *src_dimensions,11
int dst_device_num,12
int src_device_num13

);14

C / C++
Fortran

integer(c_int) function omp_target_memcpy_rect(dst,src,element_size, &15
num_dims, volume, dst_offsets, src_offsets, dst_dimensions, src_dimensions, &16
dst_device_num, src_device_num) bind(c)17

use, intrinsic :: iso_c_binding, only : c_ptr, c_int, c_size_t18
type(c_ptr), value :: dst, src19
integer(c_size_t), value :: element_size20
integer(c_int), value :: num_dims, dst_device_num, src_device_num21
integer(c_size_t), intent(in) :: volume(*), dst_offsets(*), &22

src_offsets(*), dst_dimensions(*), src_dimensions(*)23

Fortran

Constraints on Arguments24
Each device pointer specified must be valid for the device on the same side of the copy. The25
dst_device_num and src_device_num arguments must be greater than or equal to zero and less than26
or equal to the result of omp_get_num_devices().27

The length of the offset and dimension arrays must be at least the value of num_dims. The value of28
num_dims must be between 1 and the implementation-defined limit, which must be at least three.29

Fortran
Because the interface binds directly to a C language function the function assumes C memory30
ordering.31

Fortran

Binding32
The binding task set for an omp_target_memcpy_rect region is the generating task, which is33
the target task generated by the call to the omp_target_memcpy_rect routine.34

420 OpenMP API – Version 5.1 November 2020

Effect1
This routine copies a rectangular subvolume of src, in the device data environment of device2
src_device_num, to dst, in the device data environment of device dst_device_num. The volume is3
specified in terms of the size of an element, number of dimensions, and constant arrays of length4
num_dims. The maximum number of dimensions supported is at least three; support for higher5
dimensionality is implementation defined. The volume array specifies the length, in number of6
elements, to copy in each dimension from src to dst. The dst_offsets (src_offsets) parameter7
specifies the number of elements from the origin of dst (src) in elements. The dst_dimensions8
(src_dimensions) parameter specifies the length of each dimension of dst (src).9

The omp_target_memcpy_rect routine executes as if part of a target task that is generated by10
the call to the routine and that is an included task.11

The routine returns zero if successful. Otherwise, it returns a non-zero value. The routine contains12
a task scheduling point.13

An application can determine the inclusive number of dimensions supported by an implementation14
by passing NULL pointers for both dst and src. The routine returns the number of dimensions15
supported by the implementation for the specified device numbers. No copy operation is performed.16

Fortran
The omp_target_memcpy_rect routine requires an explicit interface and so might not be17
provided in omp_lib.h.18

Fortran

Execution Model Events19
The target-data-op-begin event occurs before a thread initiates a data transfer.20

The target-data-op-end event occurs after a thread initiated a data transfer.21

Tool Callbacks22
A thread dispatches a registered ompt_callback_target_data_op_emi callback with23
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin24
event in that thread. Similarly, a thread dispatches a registered25
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint26
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have27
type signature ompt_callback_target_data_op_emi_t.28

A thread dispatches a registered ompt_callback_target_data_op callback for each29
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the30
target task and has type signature ompt_callback_target_data_op_t.31

Restrictions32
Restrictions to the omp_target_memcpy_rect routine are as follows.33

• When called from within a target region the effect is unspecified.34

CHAPTER 3. RUNTIME LIBRARY ROUTINES 421

Cross References1
• target construct, see Section 2.14.5.2

• omp_get_num_devices routine, see Section 3.7.4.3

• ompt_callback_target_data_op_t or4
ompt_callback_target_data_op_emi_t callback type, see Section 4.5.2.25.5

3.8.7 omp_target_memcpy_async6

Summary7
The omp_target_memcpy_async routine asynchronously performs a copy between any8
combination of host and device pointers.9

Format10
C / C++

int omp_target_memcpy_async(11
void *dst,12
const void *src,13
size_t length,14
size_t dst_offset,15
size_t src_offset,16
int dst_device_num,17
int src_device_num,18
int depobj_count,19
omp_depend_t *depobj_list20

);21

C / C++
Fortran

integer(c_int) function omp_target_memcpy_async(dst, src, length, &22
dst_offset, src_offset, dst_device_num, src_device_num, &23
depobj_count, depobj_list) bind(c)24

use, intrinsic :: iso_c_binding, only : c_ptr, c_int, c_size_t25
type(c_ptr), value :: dst, src26
integer(c_size_t), value :: length, dst_offset, src_offset27
integer(c_int), value :: dst_device_num, src_device_num, depobj_count28
integer(omp_depend_kind), optional :: depobj_list(*)29

Fortran

Constraints on Arguments30
Each device pointer specified must be valid for the device on the same side of the copy. The31
dst_device_num and src_device_num arguments must be greater than or equal to zero and less than32
or equal to the result of omp_get_num_devices().33

422 OpenMP API – Version 5.1 November 2020

Binding1
The binding task set for an omp_target_memcpy_async region is the generating task, which2
is the target task generated by the call to the omp_target_memcpy_async routine.3

Effect4
This routine performs an asynchronous memory copy where length bytes of memory at offset5
src_offset from src in the device data environment of device src_device_num are copied to dst6
starting at offset dst_offset in the device data environment of device dst_device_num.7

The omp_target_memcpy_async routine executes as if part of a target task that is generated8
by the call to the routine and for which execution may be deferred.9

Task dependences are expressed with zero or more omp_depend_t objects. The dependences are10
specified by passing the number of omp_depend_t objects followed by an array of11
omp_depend_t objects. The generated target task is not a dependent task if the program passes12
in a count of zero for depobj_count. depojb_list is ignored if the value of depobj_count is zero.13

The routine returns zero if successful. Otherwise, it returns a non-zero value. The routine contains14
a task scheduling point.15

Fortran
The omp_target_memcpy_async routine requires an explicit interface and so might not be16
provided in omp_lib.h.17

Fortran

Execution Model Events18
The target-data-op-begin event occurs before a thread initiates a data transfer.19

The target-data-op-end event occurs after a thread initiated a data transfer.20

Tool Callbacks21
A thread dispatches a registered ompt_callback_target_data_op_emi callback with22
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin23
event in that thread. Similarly, a thread dispatches a registered24
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint25
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have26
type signature ompt_callback_target_data_op_emi_t.27

A thread dispatches a registered ompt_callback_target_data_op callback for each28
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the29
target task and has type signature ompt_callback_target_data_op_t.30

Restrictions31
Restrictions to the omp_target_memcpy_async routine are as follows.32

• When called from within a target region the effect is unspecified.33

CHAPTER 3. RUNTIME LIBRARY ROUTINES 423

Cross References1
• target construct, see Section 2.14.5.2

• Depend objects, see Section 2.19.10.3

• omp_get_num_devices routine, see Section 3.7.4.4

• ompt_callback_target_data_op_t or5
ompt_callback_target_data_op_emi_t callback type, see Section 4.5.2.25.6

3.8.8 omp_target_memcpy_rect_async7

Summary8
The omp_target_memcpy_rect_async routine asynchronously performs a copy between9
any combination of host and device pointers.10

Format11
C / C++

int omp_target_memcpy_rect_async(12
void *dst,13
const void *src,14
size_t element_size,15
int num_dims,16
const size_t *volume,17
const size_t *dst_offsets,18
const size_t *src_offsets,19
const size_t *dst_dimensions,20
const size_t *src_dimensions,21
int dst_device_num,22
int src_device_num,23
int depobj_count,24
omp_depend_t *depobj_list25

);26

C / C++
Fortran

integer(c_int) function omp_target_memcpy_rect_async(dst, src, &27
element_size, num_dims, volume, dst_offsets, src_offsets, &28
dst_dimensions, src_dimensions, dst_device_num, src_device_num, &29
depobj_count, depobj_list) bind(c)30

use, intrinsic :: iso_c_binding, only : c_ptr, c_int, c_size_t31
type(c_ptr), value :: dst, src32
integer(c_size_t), value :: element_size33
integer(c_int), value :: num_dims, dst_device_num, src_device_num, &34

depobj_count35

424 OpenMP API – Version 5.1 November 2020

integer(c_size_t), intent(in) :: volume(*), dst_offsets(*), &1
src_offsets(*), dst_dimensions(*), src_dimensions(*)2

integer(omp_depobj_kind), optional :: depobj_list(*)3

Fortran

Constraints on Arguments4
Each device pointer specified must be valid for the device on the same side of the copy. The5
dst_device_num and src_device_num arguments must be greater than or equal to zero and less than6
or equal to the result of omp_get_num_devices().7

The length of the offset and dimension arrays must be at least the value of num_dims. The value of8
num_dims must be between 1 and the implementation-defined limit, which must be at least three.9

Fortran
Because the interface binds directly to a C language function the function assumes C memory10
ordering.11

Fortran

Binding12
The binding task set for an omp_target_memcpy_rect_async region is the generating task,13
which is the target task generated by the call to the omp_target_memcpy_rect_async14
routine.15

Effect16
This routine copies a rectangular subvolume of src, in the device data environment of device17
src_device_num, to dst, in the device data environment of device dst_device_num. The volume is18
specified in terms of the size of an element, number of dimensions, and constant arrays of length19
num_dims. The maximum number of dimensions supported is at least three; support for higher20
dimensionality is implementation defined. The volume array specifies the length, in number of21
elements, to copy in each dimension from src to dst. The dst_offsets (src_offsets) parameter22
specifies the number of elements from the origin of dst (src) in elements. The dst_dimensions23
(src_dimensions) parameter specifies the length of each dimension of dst (src).24

The omp_target_memcpy_rect_async routine executes as if part of a target task that is25
generated by the call to the routine and for which execution may be deferred.26

Task dependences are expressed with zero or more omp_depend_t objects. The dependences are27
specified by passing the number of omp_depend_t objects followed by an array of28
omp_depend_t objects. The generated target task is not a dependent task if the program passes29
in a count of zero for depobj_count. depobj_list is ignored if the value of depobj_count is zero.30

The routine returns zero if successful. Otherwise, it returns a non-zero value. The routine contains31
a task scheduling point.32

An application can determine the number of inclusive dimensions supported by an implementation33
by passing NULL pointers (or C_NULL_PTR, for Fortran) for both dst and src. The routine returns34

CHAPTER 3. RUNTIME LIBRARY ROUTINES 425

the number of dimensions supported by the implementation for the specified device numbers. No1
copy operation is performed.2

Fortran
The omp_target_memcpy_rect_async routine requires an explicit interface and so might3
not be provided in omp_lib.h.4

Fortran

Execution Model Events5
The target-data-op-begin event occurs before a thread initiates a data transfer.6

The target-data-op-end event occurs after a thread initiated a data transfer.7

Tool Callbacks8
A thread dispatches a registered ompt_callback_target_data_op_emi callback with9
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin10
event in that thread. Similarly, a thread dispatches a registered11
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint12
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have13
type signature ompt_callback_target_data_op_emi_t.14

A thread dispatches a registered ompt_callback_target_data_op callback for each15
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the16
target task and has type signature ompt_callback_target_data_op_t.17

Restrictions18
Restrictions to the omp_target_memcpy_rect_async routine are as follows.19

• When called from within a target region the effect is unspecified.20

Cross References21
• target construct, see Section 2.14.5.22

• Depend objects, see Section 2.19.10.23

• omp_get_num_devices routine, see Section 3.7.4.24

• ompt_callback_target_data_op_t or25
ompt_callback_target_data_op_emi_t callback type, see Section 4.5.2.25.26

3.8.9 omp_target_associate_ptr27

Summary28
The omp_target_associate_ptr routine maps a device pointer, which may be returned29
from omp_target_alloc or implementation-defined runtime routines, to a host pointer.30

426 OpenMP API – Version 5.1 November 2020

Format1
C / C++

int omp_target_associate_ptr(2
const void *host_ptr,3
const void *device_ptr,4
size_t size,5
size_t device_offset,6
int device_num7

);8

C / C++
Fortran

integer(c_int) function omp_target_associate_ptr(host_ptr, &9
device_ptr, size, device_offset, device_num) bind(c)10

use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t, c_int11
type(c_ptr), value :: host_ptr, device_ptr12
integer(c_size_t), value :: size, device_offset13
integer(c_int), value :: device_num14

Fortran

Constraints on Arguments15
The value of device_ptr value must be a valid pointer to device memory for the device denoted by16
the value of device_num. The device_num argument must be greater than or equal to zero and less17
than or equal to the result of omp_get_num_devices().18

Binding19
The binding task set for an omp_target_associate_ptr region is the generating task, which20
is the target task generated by the call to the omp_target_associate_ptr routine.21

Effect22
The omp_target_associate_ptr routine associates a device pointer in the device data23
environment of device device_num with a host pointer such that when the host pointer appears in a24
subsequent map clause, the associated device pointer is used as the target for data motion25
associated with that host pointer. The device_offset parameter specifies the offset into device_ptr26
that is used as the base address for the device side of the mapping. The reference count of the27
resulting mapping will be infinite. After being successfully associated, the buffer to which the28
device pointer points is invalidated and accessing data directly through the device pointer results in29
unspecified behavior. The pointer can be retrieved for other uses by using the30
omp_target_disassociate_ptr routine to disassociate it .31

The omp_target_associate_ptr routine executes as if part of a target task that is generated32
by the call to the routine and that is an included task.33

The routine returns zero if successful. Otherwise it returns a non-zero value.34

CHAPTER 3. RUNTIME LIBRARY ROUTINES 427

Only one device buffer can be associated with a given host pointer value and device number pair.1
Attempting to associate a second buffer will return non-zero. Associating the same pair of pointers2
on the same device with the same offset has no effect and returns zero. Associating pointers that3
share underlying storage will result in unspecified behavior. The omp_target_is_present4
function can be used to test whether a given host pointer has a corresponding variable in the device5
data environment.6

Fortran
The omp_target_associate_ptr routine requires an explicit interface and so might not be7
provided in omp_lib.h.8

Fortran

Execution Model Events9
The target-data-associate event occurs before a thread initiates a device pointer association on a10
target device.11

Tool Callbacks12
A thread dispatches a registered ompt_callback_target_data_op callback, or a registered13
ompt_callback_target_data_op_emi callback with ompt_scope_beginend as its14
endpoint argument for each occurrence of a target-data-associate event in that thread. These15
callbacks have type signature ompt_callback_target_data_op_t or16
ompt_callback_target_data_op_emi_t, respectively.17

Restrictions18
Restrictions to the omp_target_associate_ptr routine are as follows.19

• When called from within a target region the effect is unspecified.20

Cross References21
• target construct, see Section 2.14.5.22

• map clause, see Section 2.21.7.1.23

• omp_get_num_devices routine, see Section 3.7.4.24

• omp_target_alloc routine, see Section 3.8.1.25

• omp_target_is_present routine, see Section 3.8.3.26

• omp_target_disassociate_ptr routine, see Section 3.8.10.27

• omp_get_mapped_ptr routine, see Section 3.8.11.28

• ompt_callback_target_data_op_t or29
ompt_callback_target_data_op_emi_t callback type, see Section 4.5.2.25.30

428 OpenMP API – Version 5.1 November 2020

3.8.10 omp_target_disassociate_ptr1

Summary2
The omp_target_disassociate_ptr removes the associated pointer for a given device3
from a host pointer.4

Format5
C / C++

int omp_target_disassociate_ptr(const void *ptr, int device_num);6

C / C++
Fortran

integer(c_int) function omp_target_disassociate_ptr(ptr, &7
device_num) bind(c)8

use, intrinsic :: iso_c_binding, only : c_ptr, c_int9
type(c_ptr), value :: ptr10
integer(c_int), value :: device_num11

Fortran

Constraints on Arguments12
The device_num argument must be greater than or equal to zero and less than or equal to the result13
of omp_get_num_devices().14

Binding15
The binding task set for an omp_target_disassociate_ptr region is the generating task,16
which is the target task generated by the call to the omp_target_disassociate_ptr routine.17

Effect18
The omp_target_disassociate_ptr removes the associated device data on device19
device_num from the presence table for host pointer ptr. A call to this routine on a pointer that is20
not NULL (or C_NULL_PTR, for Fortran) and does not have associated data on the given device21
results in unspecified behavior. The reference count of the mapping is reduced to zero, regardless of22
its current value.23

The omp_target_disassociate_ptr routine executes as if part of a target task that is24
generated by the call to the routine and that is an included task.25

The routine returns zero if successful. Otherwise it returns a non-zero value.26

After a call to omp_target_disassociate_ptr, the contents of the device buffer are27
invalidated.28

Fortran
The omp_target_disassociate_ptr routine requires an explicit interface and so might not29
be provided in omp_lib.h.30

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 429

Execution Model Events1
The target-data-disassociate event occurs before a thread initiates a device pointer disassociation2
on a target device.3

Tool Callbacks4
A thread dispatches a registered ompt_callback_target_data_op callback, or a registered5
ompt_callback_target_data_op_emi callback with ompt_scope_beginend as its6
endpoint argument for each occurrence of a target-data-disassociate event in that thread. These7
callbacks have type signature ompt_callback_target_data_op_t or8
ompt_callback_target_data_op_emi_t, respectively.9

Restrictions10
Restrictions to the omp_target_disassociate_ptr routine are as follows.11

• When called from within a target region the effect is unspecified.12

Cross References13
• target construct, see Section 2.14.5.14

• omp_get_num_devices routine, see Section 3.7.4.15

• omp_target_associate_ptr routine, see Section 3.8.9.16

• ompt_callback_target_data_op_t or17
ompt_callback_target_data_op_emi_t callback type, see Section 4.5.2.25.18

3.8.11 omp_get_mapped_ptr19

Summary20
The omp_get_mapped_ptr routine returns the device pointer that is associated with a host21
pointer for a given device.22

Format23
C / C++

void * omp_get_mapped_ptr(const void *ptr, int device_num);24

C / C++
Fortran

type(c_ptr) function omp_get_mapped_ptr(ptr, &25
device_num) bind(c)26

use, intrinsic :: iso_c_binding, only : c_ptr, c_int27
type(c_ptr), value :: ptr28
integer(c_int), value :: device_num29

Fortran

430 OpenMP API – Version 5.1 November 2020

Constraints on Arguments1
The device_num argument must be greater than or equal to zero and less than or equal to the result2
of omp_get_num_devices().3

Binding4
The binding task set for an omp_get_mapped_ptr region is the encountering task.5

Effect6
The omp_get_mapped_ptr routine returns the associated device pointer on device device_num.7
A call to this routine for a pointer that is not NULL (or C_NULL_PTR, for Fortran) and does not8
have an associated pointer on the given device results in a NULL pointer.9

The routine returns NULL (or C_NULL_PTR, for Fortran) if unsuccessful. Otherwise it returns the10
device pointer, which is ptr if device_num is the value returned by11
omp_get_initial_device().12

Fortran
The omp_get_mapped_ptr routine requires an explicit interface and so might not be provided13
in omp_lib.h.14

Fortran

Execution Model Events15
No events are associated with this routine.16

Restrictions17
Restrictions to the omp_get_mapped_ptr routine are as follows.18

• When called from within a target region the effect is unspecified.19

Cross References20
• omp_get_num_devices routine, see Section 3.7.4.21

• omp_get_initial_device routine, see Section 3.7.7.22

CHAPTER 3. RUNTIME LIBRARY ROUTINES 431

3.9 Lock Routines1

The OpenMP runtime library includes a set of general-purpose lock routines that can be used for2
synchronization. These general-purpose lock routines operate on OpenMP locks that are3
represented by OpenMP lock variables. OpenMP lock variables must be accessed only through the4
routines described in this section; programs that otherwise access OpenMP lock variables are5
non-conforming.6

An OpenMP lock can be in one of the following states: uninitialized; unlocked; or locked. If a lock7
is in the unlocked state, a task can set the lock, which changes its state to locked. The task that sets8
the lock is then said to own the lock. A task that owns a lock can unset that lock, returning it to the9
unlocked state. A program in which a task unsets a lock that is owned by another task is10
non-conforming.11

Two types of locks are supported: simple locks and nestable locks. A nestable lock can be set12
multiple times by the same task before being unset; a simple lock cannot be set if it is already13
owned by the task trying to set it. Simple lock variables are associated with simple locks and can14
only be passed to simple lock routines. Nestable lock variables are associated with nestable locks15
and can only be passed to nestable lock routines.16

Each type of lock can also have a synchronization hint that contains information about the intended17
usage of the lock by the application code. The effect of the hint is implementation defined. An18
OpenMP implementation can use this hint to select a usage-specific lock, but hints do not change19
the mutual exclusion semantics of locks. A conforming implementation can safely ignore the hint.20

Constraints on the state and ownership of the lock accessed by each of the lock routines are21
described with the routine. If these constraints are not met, the behavior of the routine is22
unspecified.23

The OpenMP lock routines access a lock variable such that they always read and update the most24
current value of the lock variable. An OpenMP program does not need to include explicit flush25
directives to ensure that the lock variable’s value is consistent among different tasks.26

Binding27
The binding thread set for all lock routine regions is all threads in the contention group. As a28
consequence, for each OpenMP lock, the lock routine effects relate to all tasks that call the routines,29
without regard to which teams in the contention group the threads that are executing the tasks30
belong.31

Simple Lock Routines32
C / C++

The type omp_lock_t represents a simple lock. For the following routines, a simple lock variable33
must be of omp_lock_t type. All simple lock routines require an argument that is a pointer to a34
variable of type omp_lock_t.35

C / C++

432 OpenMP API – Version 5.1 November 2020

Fortran
For the following routines, a simple lock variable must be an integer variable of1
kind=omp_lock_kind.2

Fortran
The simple lock routines are as follows:3

• The omp_init_lock routine initializes a simple lock;4

• The omp_init_lock_with_hint routine initializes a simple lock and attaches a hint to it;5

• The omp_destroy_lock routine uninitializes a simple lock;6

• The omp_set_lock routine waits until a simple lock is available and then sets it;7

• The omp_unset_lock routine unsets a simple lock; and8

• The omp_test_lock routine tests a simple lock and sets it if it is available.9

Nestable Lock Routines10
C / C++

The type omp_nest_lock_t represents a nestable lock. For the following routines, a nestable11
lock variable must be of omp_nest_lock_t type. All nestable lock routines require an12
argument that is a pointer to a variable of type omp_nest_lock_t.13

C / C++
Fortran

For the following routines, a nestable lock variable must be an integer variable of14
kind=omp_nest_lock_kind.15

Fortran
The nestable lock routines are as follows:16

• The omp_init_nest_lock routine initializes a nestable lock;17

• The omp_init_nest_lock_with_hint routine initializes a nestable lock and attaches a18
hint to it;19

• The omp_destroy_nest_lock routine uninitializes a nestable lock;20

• The omp_set_nest_lock routine waits until a nestable lock is available and then sets it;21

• The omp_unset_nest_lock routine unsets a nestable lock; and22

• The omp_test_nest_lock routine tests a nestable lock and sets it if it is available.23

Restrictions24
Restrictions to OpenMP lock routines are as follows:25

• The use of the same OpenMP lock in different contention groups results in unspecified behavior.26

CHAPTER 3. RUNTIME LIBRARY ROUTINES 433

3.9.1 omp_init_lock and omp_init_nest_lock1

Summary2
These routines initialize an OpenMP lock without a hint.3

Format4
C / C++

void omp_init_lock(omp_lock_t *lock);5
void omp_init_nest_lock(omp_nest_lock_t *lock);6

C / C++
Fortran

subroutine omp_init_lock(svar)7
integer (kind=omp_lock_kind) svar8

9
subroutine omp_init_nest_lock(nvar)10
integer (kind=omp_nest_lock_kind) nvar11

Fortran

Constraints on Arguments12
A program that accesses a lock that is not in the uninitialized state through either routine is13
non-conforming.14

Effect15
The effect of these routines is to initialize the lock to the unlocked state; that is, no task owns the16
lock. In addition, the nesting count for a nestable lock is set to zero.17

Execution Model Events18
The lock-init event occurs in a thread that executes an omp_init_lock region after initialization19
of the lock, but before it finishes the region. The nest-lock-init event occurs in a thread that executes20
an omp_init_nest_lock region after initialization of the lock, but before it finishes the region.21

Tool Callbacks22
A thread dispatches a registered ompt_callback_lock_init callback with23
omp_sync_hint_none as the hint argument and ompt_mutex_lock as the kind argument24
for each occurrence of a lock-init event in that thread. Similarly, a thread dispatches a registered25
ompt_callback_lock_init callback with omp_sync_hint_none as the hint argument26
and ompt_mutex_nest_lock as the kind argument for each occurrence of a nest-lock-init27
event in that thread. These callbacks have the type signature28
ompt_callback_mutex_acquire_t and occur in the task that encounters the routine.29

Cross References30
• ompt_callback_mutex_acquire_t, see Section 4.5.2.14.31

434 OpenMP API – Version 5.1 November 2020

3.9.2 omp_init_lock_with_hint and1

omp_init_nest_lock_with_hint2

Summary3
These routines initialize an OpenMP lock with a hint. The effect of the hint is4
implementation-defined. The OpenMP implementation can ignore the hint without changing5
program semantics.6

Format7
C / C++

void omp_init_lock_with_hint(8
omp_lock_t *lock,9
omp_sync_hint_t hint10

);11
void omp_init_nest_lock_with_hint(12

omp_nest_lock_t *lock,13
omp_sync_hint_t hint14

);15

C / C++
Fortran

subroutine omp_init_lock_with_hint(svar, hint)16
integer (kind=omp_lock_kind) svar17
integer (kind=omp_sync_hint_kind) hint18

19
subroutine omp_init_nest_lock_with_hint(nvar, hint)20
integer (kind=omp_nest_lock_kind) nvar21
integer (kind=omp_sync_hint_kind) hint22

Fortran

Constraints on Arguments23
A program that accesses a lock that is not in the uninitialized state through either routine is24
non-conforming.25

The second argument passed to these routines (hint) is a hint as described in Section 2.19.12.26

Effect27
The effect of these routines is to initialize the lock to the unlocked state and, optionally, to choose a28
specific lock implementation based on the hint. After initialization no task owns the lock. In29
addition, the nesting count for a nestable lock is set to zero.30

CHAPTER 3. RUNTIME LIBRARY ROUTINES 435

Execution Model Events1
The lock-init-with-hint event occurs in a thread that executes an omp_init_lock_with_hint2
region after initialization of the lock, but before it finishes the region. The nest-lock-init-with-hint3
event occurs in a thread that executes an omp_init_nest_lock region after initialization of the4
lock, but before it finishes the region.5

Tool Callbacks6
A thread dispatches a registered ompt_callback_lock_init callback with the same value7
for its hint argument as the hint argument of the call to omp_init_lock_with_hint and8
ompt_mutex_lock as the kind argument for each occurrence of a lock-init-with-hint event in9
that thread. Similarly, a thread dispatches a registered ompt_callback_lock_init callback10
with the same value for its hint argument as the hint argument of the call to11
omp_init_nest_lock_with_hint and ompt_mutex_nest_lock as the kind argument12
for each occurrence of a nest-lock-init-with-hint event in that thread. These callbacks have the type13
signature ompt_callback_mutex_acquire_t and occur in the task that encounters the14
routine.15

Cross References16
• Synchronization Hints, see Section 2.19.12.17

• ompt_callback_mutex_acquire_t, see Section 4.5.2.14.18

3.9.3 omp_destroy_lock and19

omp_destroy_nest_lock20

Summary21
These routines ensure that the OpenMP lock is uninitialized.22

Format23
C / C++

void omp_destroy_lock(omp_lock_t *lock);24
void omp_destroy_nest_lock(omp_nest_lock_t *lock);25

C / C++
Fortran

subroutine omp_destroy_lock(svar)26
integer (kind=omp_lock_kind) svar27

28
subroutine omp_destroy_nest_lock(nvar)29
integer (kind=omp_nest_lock_kind) nvar30

Fortran

436 OpenMP API – Version 5.1 November 2020

Constraints on Arguments1
A program that accesses a lock that is not in the unlocked state through either routine is2
non-conforming.3

Effect4
The effect of these routines is to change the state of the lock to uninitialized.5

Execution Model Events6
The lock-destroy event occurs in a thread that executes an omp_destroy_lock region before it7
finishes the region. The nest-lock-destroy event occurs in a thread that executes an8
omp_destroy_nest_lock region before it finishes the region.9

Tool Callbacks10
A thread dispatches a registered ompt_callback_lock_destroy callback with11
ompt_mutex_lock as the kind argument for each occurrence of a lock-destroy event in that12
thread. Similarly, a thread dispatches a registered ompt_callback_lock_destroy callback13
with ompt_mutex_nest_lock as the kind argument for each occurrence of a nest-lock-destroy14
event in that thread. These callbacks have the type signature ompt_callback_mutex_t and15
occur in the task that encounters the routine.16

Cross References17
• ompt_callback_mutex_t, see Section 4.5.2.15.18

3.9.4 omp_set_lock and omp_set_nest_lock19

Summary20
These routines provide a means of setting an OpenMP lock. The calling task region behaves as if it21
was suspended until the lock can be set by this task.22

Format23
C / C++

void omp_set_lock(omp_lock_t *lock);24
void omp_set_nest_lock(omp_nest_lock_t *lock);25

C / C++
Fortran

subroutine omp_set_lock(svar)26
integer (kind=omp_lock_kind) svar27

28
subroutine omp_set_nest_lock(nvar)29
integer (kind=omp_nest_lock_kind) nvar30

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 437

Constraints on Arguments1
A program that accesses a lock that is in the uninitialized state through either routine is2
non-conforming. A simple lock accessed by omp_set_lock that is in the locked state must not3
be owned by the task that contains the call or deadlock will result.4

Effect5
Each of these routines has an effect equivalent to suspension of the task that is executing the routine6
until the specified lock is available.7

8

Note – The semantics of these routines is specified as if they serialize execution of the region9
guarded by the lock. However, implementations may implement them in other ways provided that10
the isolation properties are respected so that the actual execution delivers a result that could arise11
from some serialization.12

13

A simple lock is available if it is unlocked. Ownership of the lock is granted to the task that14
executes the routine.15

A nestable lock is available if it is unlocked or if it is already owned by the task that executes the16
routine. The task that executes the routine is granted, or retains, ownership of the lock, and the17
nesting count for the lock is incremented.18

Execution Model Events19
The lock-acquire event occurs in a thread that executes an omp_set_lock region before the20
associated lock is requested. The nest-lock-acquire event occurs in a thread that executes an21
omp_set_nest_lock region before the associated lock is requested.22

The lock-acquired event occurs in a thread that executes an omp_set_lock region after it23
acquires the associated lock but before it finishes the region. The nest-lock-acquired event occurs in24
a thread that executes an omp_set_nest_lock region if the thread did not already own the25
lock, after it acquires the associated lock but before it finishes the region.26

The nest-lock-owned event occurs in a thread when it already owns the lock and executes an27
omp_set_nest_lock region. The event occurs after the nesting count is incremented but28
before the thread finishes the region.29

Tool Callbacks30
A thread dispatches a registered ompt_callback_mutex_acquire callback for each31
occurrence of a lock-acquire or nest-lock-acquire event in that thread. This callback has the type32
signature ompt_callback_mutex_acquire_t.33

A thread dispatches a registered ompt_callback_mutex_acquired callback for each34
occurrence of a lock-acquired or nest-lock-acquired event in that thread. This callback has the type35
signature ompt_callback_mutex_t.36

438 OpenMP API – Version 5.1 November 2020

A thread dispatches a registered ompt_callback_nest_lock callback with1
ompt_scope_begin as its endpoint argument for each occurrence of a nest-lock-owned event in2
that thread. This callback has the type signature ompt_callback_nest_lock_t.3

The above callbacks occur in the task that encounters the lock function. The kind argument of these4
callbacks is ompt_mutex_lock when the events arise from an omp_set_lock region while it5
is ompt_mutex_nest_lock when the events arise from an omp_set_nest_lock region.6

Cross References7
• ompt_callback_mutex_acquire_t, see Section 4.5.2.14.8

• ompt_callback_mutex_t, see Section 4.5.2.15.9

• ompt_callback_nest_lock_t, see Section 4.5.2.16.10

3.9.5 omp_unset_lock and omp_unset_nest_lock11

Summary12
These routines provide the means of unsetting an OpenMP lock.13

Format14
C / C++

void omp_unset_lock(omp_lock_t *lock);15
void omp_unset_nest_lock(omp_nest_lock_t *lock);16

C / C++
Fortran

subroutine omp_unset_lock(svar)17
integer (kind=omp_lock_kind) svar18

19
subroutine omp_unset_nest_lock(nvar)20
integer (kind=omp_nest_lock_kind) nvar21

Fortran

Constraints on Arguments22
A program that accesses a lock that is not in the locked state or that is not owned by the task that23
contains the call through either routine is non-conforming.24

Effect25
For a simple lock, the omp_unset_lock routine causes the lock to become unlocked.26

For a nestable lock, the omp_unset_nest_lock routine decrements the nesting count, and27
causes the lock to become unlocked if the resulting nesting count is zero.28

For either routine, if the lock becomes unlocked, and if one or more task regions were effectively29
suspended because the lock was unavailable, the effect is that one task is chosen and given30
ownership of the lock.31

CHAPTER 3. RUNTIME LIBRARY ROUTINES 439

Execution Model Events1
The lock-release event occurs in a thread that executes an omp_unset_lock region after it2
releases the associated lock but before it finishes the region. The nest-lock-release event occurs in a3
thread that executes an omp_unset_nest_lock region after it releases the associated lock but4
before it finishes the region.5

The nest-lock-held event occurs in a thread that executes an omp_unset_nest_lock region6
before it finishes the region when the thread still owns the lock after the nesting count is7
decremented.8

Tool Callbacks9
A thread dispatches a registered ompt_callback_mutex_released callback with10
ompt_mutex_lock as the kind argument for each occurrence of a lock-release event in that11
thread. Similarly, a thread dispatches a registered ompt_callback_mutex_released12
callback with ompt_mutex_nest_lock as the kind argument for each occurrence of a13
nest-lock-release event in that thread. These callbacks have the type signature14
ompt_callback_mutex_t and occur in the task that encounters the routine.15

A thread dispatches a registered ompt_callback_nest_lock callback with16
ompt_scope_end as its endpoint argument for each occurrence of a nest-lock-held event in that17
thread. This callback has the type signature ompt_callback_nest_lock_t.18

Cross References19
• ompt_callback_mutex_t, see Section 4.5.2.15.20

• ompt_callback_nest_lock_t, see Section 4.5.2.16.21

3.9.6 omp_test_lock and omp_test_nest_lock22

Summary23
These routines attempt to set an OpenMP lock but do not suspend execution of the task that24
executes the routine.25

Format26
C / C++

int omp_test_lock(omp_lock_t *lock);27
int omp_test_nest_lock(omp_nest_lock_t *lock);28

C / C++
Fortran

logical function omp_test_lock(svar)29
integer (kind=omp_lock_kind) svar30

31
integer function omp_test_nest_lock(nvar)32
integer (kind=omp_nest_lock_kind) nvar33

Fortran

440 OpenMP API – Version 5.1 November 2020

Constraints on Arguments1
A program that accesses a lock that is in the uninitialized state through either routine is2
non-conforming. The behavior is unspecified if a simple lock accessed by omp_test_lock is in3
the locked state and is owned by the task that contains the call.4

Effect5
These routines attempt to set a lock in the same manner as omp_set_lock and6
omp_set_nest_lock, except that they do not suspend execution of the task that executes the7
routine.8

For a simple lock, the omp_test_lock routine returns true if the lock is successfully set;9
otherwise, it returns false.10

For a nestable lock, the omp_test_nest_lock routine returns the new nesting count if the lock11
is successfully set; otherwise, it returns zero.12

Execution Model Events13
The lock-test event occurs in a thread that executes an omp_test_lock region before the14
associated lock is tested. The nest-lock-test event occurs in a thread that executes an15
omp_test_nest_lock region before the associated lock is tested.16

The lock-test-acquired event occurs in a thread that executes an omp_test_lock region before it17
finishes the region if the associated lock was acquired. The nest-lock-test-acquired event occurs in a18
thread that executes an omp_test_nest_lock region before it finishes the region if the19
associated lock was acquired and the thread did not already own the lock.20

The nest-lock-owned event occurs in a thread that executes an omp_test_nest_lock region21
before it finishes the region after the nesting count is incremented if the thread already owned the22
lock.23

Tool Callbacks24
A thread dispatches a registered ompt_callback_mutex_acquire callback for each25
occurrence of a lock-test or nest-lock-test event in that thread. This callback has the type signature26
ompt_callback_mutex_acquire_t.27

A thread dispatches a registered ompt_callback_mutex_acquired callback for each28
occurrence of a lock-test-acquired or nest-lock-test-acquired event in that thread. This callback has29
the type signature ompt_callback_mutex_t.30

A thread dispatches a registered ompt_callback_nest_lock callback with31
ompt_scope_begin as its endpoint argument for each occurrence of a nest-lock-owned event in32
that thread. This callback has the type signature ompt_callback_nest_lock_t.33

The above callbacks occur in the task that encounters the lock function. The kind argument of these34
callbacks is ompt_mutex_test_lock when the events arise from an omp_test_lock35
region while it is ompt_mutex_test_nest_lock when the events arise from an36
omp_test_nest_lock region.37

CHAPTER 3. RUNTIME LIBRARY ROUTINES 441

Cross References1
• ompt_callback_mutex_acquire_t, see Section 4.5.2.14.2

• ompt_callback_mutex_t, see Section 4.5.2.15.3

• ompt_callback_nest_lock_t, see Section 4.5.2.16.4

3.10 Timing Routines5

This section describes routines that support a portable wall clock timer.6

3.10.1 omp_get_wtime7

Summary8
The omp_get_wtime routine returns elapsed wall clock time in seconds.9

Format10
C / C++

double omp_get_wtime(void);11

C / C++
Fortran

double precision function omp_get_wtime()12

Fortran

Binding13
The binding thread set for an omp_get_wtime region is the encountering thread. The routine’s14
return value is not guaranteed to be consistent across any set of threads.15

Effect16
The omp_get_wtime routine returns a value equal to the elapsed wall clock time in seconds17
since some time-in-the-past. The actual time-in-the-past is arbitrary, but it is guaranteed not to18
change during the execution of the application program. The time returned is a per-thread time, so19
it is not required to be globally consistent across all threads that participate in an application.20

3.10.2 omp_get_wtick21

Summary22
The omp_get_wtick routine returns the precision of the timer used by omp_get_wtime.23

Format24
C / C++

double omp_get_wtick(void);25

C / C++

442 OpenMP API – Version 5.1 November 2020

Fortran
double precision function omp_get_wtick()1

Fortran

Binding2
The binding thread set for an omp_get_wtick region is the encountering thread. The routine’s3
return value is not guaranteed to be consistent across any set of threads.4

Effect5
The omp_get_wtick routine returns a value equal to the number of seconds between successive6
clock ticks of the timer used by omp_get_wtime.7

3.11 Event Routine8

This section describes a routine that supports OpenMP event objects.9

Binding10
The binding thread set for all event routine regions is the encountering thread.11

3.11.1 omp_fulfill_event12

Summary13
This routine fulfills and destroys an OpenMP event.14

Format15
C / C++

void omp_fulfill_event(omp_event_handle_t event);16

C / C++
Fortran

subroutine omp_fulfill_event(event)17
integer (kind=omp_event_handle_kind) event18

Fortran

Constraints on Arguments19
A program that calls this routine on an event that was already fulfilled is non-conforming. A20
program that calls this routine with an event handle that was not created by the detach clause is21
non-conforming.22

Effect23
The effect of this routine is to fulfill the event associated with the event handle argument. The effect24
of fulfilling the event will depend on how the event was created. The event is destroyed and cannot25
be accessed after calling this routine, and the event handle becomes unassociated with any event.26

CHAPTER 3. RUNTIME LIBRARY ROUTINES 443

Execution Model Events1
The task-fulfill event occurs in a thread that executes an omp_fulfill_event region before the2
event is fulfilled if the OpenMP event object was created by a detach clause on a task.3

Tool Callbacks4
A thread dispatches a registered ompt_callback_task_schedule callback with NULL as its5
next_task_data argument while the argument prior_task_data binds to the detached task for each6
occurrence of a task-fulfill event. If the task-fulfill event occurs before the detached task finished the7
execution of the associated structured-block, the callback has ompt_task_early_fulfill as8
its prior_task_status argument; otherwise the callback has ompt_task_late_fulfill as its9
prior_task_status argument. This callback has type signature10
ompt_callback_task_schedule_t.11

Cross References12
• detach clause, see Section 2.12.1.13

• ompt_callback_task_schedule_t, see Section 4.5.2.10.14

C / C++

3.12 Interoperability Routines15

The interoperability routines provide mechanisms to inspect the properties associated with an16
omp_interop_t object. Such objects may be initialized, destroyed or otherwise used by an17
interop construct. Additionally, an omp_interop_t object can be initialized to18
omp_interop_none, which is defined to be zero. An omp_interop_t object may only be19
accessed or modified through OpenMP directives and API routines.20

An omp_interop_t object can be copied without affecting, or copying, the underlying state.21
Destruction of an omp_interop_t object destroys the state to which all copies of the object refer.22

OpenMP reserves all negative values for properties, as listed in Table 3.1; implementation-defined23
properties may use zero and positive values. The special property, omp_ipr_first, will always24
have the lowest property value which may change in future versions of this specification. Valid25
values and types for the properties that Table 3.1 lists are specified in the OpenMP Additional26
Definitions document or are implementation defined unless otherwise specified.27

Table 3.2 lists the return codes used by routines that take an int* ret_code argument.28

Binding29
The binding task set for all interoperability routine regions is the generating task.30

444 OpenMP API – Version 5.1 November 2020

C/C++ (cont.)

TABLE 3.1: Required Values of the omp_interop_property_t enum Type

enum name contexts name property

omp_ipr_fr_id = -1 all fr_id
An intptr_t value that
represents the foreign runtime
id of context

omp_ipr_fr_name = -2 all fr_name
C string value that represents the
foreign runtime name of context

omp_ipr_vendor = -3 all vendor
An intptr_t that represents
the vendor of context

omp_ipr_vendor_name =
-4

all vendor_name
C string value that represents the
vendor of context

omp_ipr_device_num = -5 all device_num

The OpenMP device ID for
the device in the range 0 to
omp_get_num_devices()
inclusive

omp_ipr_platform = -6 target platform
A foreign platform handle
usually spanning multiple
devices

omp_ipr_device = -7 target device A foreign device handle

omp_ipr_device_context
= -8

target device_context
A handle to an instance of a
foreign device context

omp_ipr_targetsync = -9 targetsync targetsync
A handle to a synchronization
object of a foreign execution
context

omp_ipr_first = -9

CHAPTER 3. RUNTIME LIBRARY ROUTINES 445

C/C++ (cont.)

TABLE 3.2: Required Values for the omp_interop_rc_t enum Type

enum name description

omp_irc_no_value = 1 Parameters valid, no meaningful value available

omp_irc_success = 0 Successful, value is usable

omp_irc_empty = -1 The object provided is equal to omp_interop_none

omp_irc_out_of_range = -2 Property ID is out of range, see Table 3.1

omp_irc_type_int = -3 Property type is int; use omp_get_interop_int

omp_irc_type_ptr = -4 Property type is pointer; use omp_get_interop_ptr

omp_irc_type_str = -5 Property type is string; use omp_get_interop_str

omp_irc_other = -6 Other error; use omp_get_interop_rc_desc

3.12.1 omp_get_num_interop_properties1

Summary2
The omp_get_num_interop_properties routine retrieves the number of3
implementation-defined properties available for an omp_interop_t object.4

Format5
int omp_get_num_interop_properties(const omp_interop_t interop);6

Effect7
The omp_get_num_interop_properties routine returns the number of8
implementation-defined properties available for interop. The total number of properties available9
for interop is the returned value minus omp_ipr_first.10

Cross References11
• interop construct, see Section 2.15.1.12

3.12.2 omp_get_interop_int13

Summary14
The omp_get_interop_int routine retrieves an integer property from an omp_interop_t15
object.16

Format17
omp_intptr_t omp_get_interop_int(const omp_interop_t interop,18

omp_interop_property_t property_id,19
int *ret_code);20

446 OpenMP API – Version 5.1 November 2020

C/C++ (cont.)

Effect1
The omp_get_interop_int routine returns the requested integer property, if available, and2
zero if an error occurs or no value is available.3

If the interop is omp_interop_none, an empty error occurs.4

If the property_id is smaller than omp_ipr_first or not smaller than5
omp_get_num_interop_properties(interop), an out of range error occurs.6

If the requested property value is not convertible into an integer value, a type error occurs.7

If a non-null pointer is passed to ret_code, an omp_interop_rc_t value that indicates the8
return code is stored in the object to which ret_code points. If an error occurred, the stored value9
will be negative and it will match the error as defined in Table 3.2. On success, zero will be stored.10
If no error occurred but no meaningful value can be returned, omp_irc_no_value, which is11
one, will be stored.12

Restrictions13
Restrictions to the omp_get_interop_int routine are as follows:14

• The behavior of the routine is unspecified if an invalid omp_interop_t object is provided.15

Cross References16
• interop construct, see Section 2.15.1.17

• omp_get_num_interop_properties routine, see Section 3.12.1.18

3.12.3 omp_get_interop_ptr19

Summary20
The omp_get_interop_ptr routine retrieves a pointer property from an omp_interop_t21
object.22

Format23
void* omp_get_interop_ptr(const omp_interop_t interop,24

omp_interop_property_t property_id,25
int *ret_code);26

Effect27
The omp_get_interop_ptr routine returns the requested pointer property, if available, and28
NULL if an error occurs or no value is available.29

If the interop is omp_interop_none, an empty error occurs.30

If the property_id is smaller than omp_ipr_first or not smaller than31
omp_get_num_interop_properties(interop), an out of range error occurs.32

If the requested property value is not convertible into a pointer value, a type error occurs.33

CHAPTER 3. RUNTIME LIBRARY ROUTINES 447

C/C++ (cont.)

If a non-null pointer is passed to ret_code, an omp_interop_rc_t value that indicates the1
return code is stored in the object to which the ret_code points. If an error occurred, the stored2
value will be negative and it will match the error as defined in Table 3.2. On success, zero will be3
stored. If no error occurred but no meaningful value can be returned, omp_irc_no_value,4
which is one, will be stored.5

Restrictions6
Restrictions to the omp_get_interop_ptr routine are as follows:7

• The behavior of the routine is unspecified if an invalid omp_interop_t object is provided.8

• Memory referenced by the pointer returned by the omp_get_interop_ptr routine is9
managed by the OpenMP implementation and should not be freed or modified.10

Cross References11
• interop construct, see Section 2.15.1.12

• omp_get_num_interop_properties routine, see Section 3.12.1.13

3.12.4 omp_get_interop_str14

Summary15
The omp_get_interop_str routine retrieves a string property from an omp_interop_t16
object.17

Format18
const char* omp_get_interop_str(const omp_interop_t interop,19

omp_interop_property_t property_id,20
int *ret_code);21

Effect22
The omp_get_interop_str routine returns the requested string property as a C string, if23
available, and NULL if an error occurs or no value is available.24

If the interop is omp_interop_none, an empty error occurs.25

If the property_id is smaller than omp_ipr_first or not smaller than26
omp_get_num_interop_properties(interop), an out of range error occurs.27

If the requested property value is not convertible into a string value, a type error occurs.28

If a non-null pointer is passed to ret_code, an omp_interop_rc_t value that indicates the29
return code is stored in the object to which the ret_code points. If an error occurred, the stored30
value will be negative and it will match the error as defined in Table 3.2. On success, zero will be31
stored. If no error occurred but no meaningful value can be returned, omp_irc_no_value,32
which is one, will be stored.33

448 OpenMP API – Version 5.1 November 2020

C/C++ (cont.)

Restrictions1
Restrictions to the omp_get_interop_str routine are as follows:2

• The behavior of the routine is unspecified if an invalid omp_interop_t object is provided.3

• Memory referenced by the pointer returned by the omp_get_interop_str routine is4
managed by the OpenMP implementation and should not be freed or modified.5

Cross References6
• interop construct, see Section 2.15.1.7

• omp_get_num_interop_properties routine, see Section 3.12.1.8

3.12.5 omp_get_interop_name9

Summary10
The omp_get_interop_name routine retrieves a property name from an omp_interop_t11
object.12

Format13
const char* omp_get_interop_name(const omp_interop_t interop,14

omp_interop_property_t property_id)15
;16

Effect17
The omp_get_interop_name routine returns the name of the property identified by18
property_id as a C string.19

Property names for non-implementation defined properties are listed in Table 3.1.20

If the property_id is smaller than omp_ipr_first or not smaller than21
omp_get_num_interop_properties(interop), NULL is returned.22

Restrictions23
Restrictions to the omp_get_interop_name routine are as follows:24

• The behavior of the routine is unspecified if an invalid object is provided.25

• Memory referenced by the pointer returned by the omp_get_interop_name routine is26
managed by the OpenMP implementation and should not be freed or modified.27

Cross References28
• interop construct, see Section 2.15.1.29

• omp_get_num_interop_properties routine, see Section 3.12.1.30

CHAPTER 3. RUNTIME LIBRARY ROUTINES 449

C/C++ (cont.)

3.12.6 omp_get_interop_type_desc1

Summary2
The omp_get_interop_type_desc routine retrieves a description of the type of a property3
associated with an omp_interop_t object.4

Format5
const char* omp_get_interop_type_desc(const omp_interop_t interop,6

omp_interop_property_t7
property_id);8

Effect9
The omp_get_interop_type_desc routine returns a C string that describes the type of the10
property identified by property_id in human-readable form. That may contain a valid C type11
declaration possibly followed by a description or name of the type.12

If interop has the value omp_interop_none, NULL is returned.13

If the property_id is smaller than omp_ipr_first or not smaller than14
omp_get_num_interop_properties(interop), NULL is returned.15

Restrictions16
Restrictions to the omp_get_interop_type_desc routine are as follows:17

• The behavior of the routine is unspecified if an invalid object is provided.18

• Memory referenced by the pointer returned from the omp_get_interop_type_desc19
routine is managed by the OpenMP implementation and should not be freed or modified.20

Cross References21
• interop construct, see Section 2.15.1.22

• omp_get_num_interop_properties routine, see Section 3.12.1.23

3.12.7 omp_get_interop_rc_desc24

Summary25
The omp_get_interop_rc_desc routine retrieves a description of the return code associated26
with an omp_interop_t object.27

Format28
const char* omp_get_interop_rc_desc(const omp_interop_t interop,29

omp_interop_rc_t ret_code);30

Effect31
The omp_get_interop_rc_desc routine returns a C string that describes the return code32
ret_code in human-readable form.33

450 OpenMP API – Version 5.1 November 2020

Restrictions1
Restrictions to the omp_get_interop_rc_desc routine are as follows:2

• The behavior of the routine is unspecified if an invalid object is provided or if ret_code was not3
last written by an interoperability routine invoked with the omp_interop_t object interop.4

• Memory referenced by the pointer returned by the omp_get_interop_rc_desc routine is5
managed by the OpenMP implementation and should not be freed or modified.6

Cross References7
• interop construct, see Section 2.15.1.8

• omp_get_num_interop_properties routine, see Section 3.12.1.9

C / C++

3.13 Memory Management Routines10

This section describes routines that support memory management on the current device.11

Instances of memory management types must be accessed only through the routines described in12
this section; programs that otherwise access instances of these types are non-conforming.13

3.13.1 Memory Management Types14

The following type definitions are used by the memory management routines:15

C / C++
typedef enum omp_alloctrait_key_t {16

omp_atk_sync_hint = 1,17
omp_atk_alignment = 2,18
omp_atk_access = 3,19
omp_atk_pool_size = 4,20
omp_atk_fallback = 5,21
omp_atk_fb_data = 6,22
omp_atk_pinned = 7,23
omp_atk_partition = 824

} omp_alloctrait_key_t;25
26

typedef enum omp_alloctrait_value_t {27
omp_atv_false = 0,28
omp_atv_true = 1,29
omp_atv_contended = 3,30
omp_atv_uncontended = 4,31
omp_atv_serialized = 5,32

CHAPTER 3. RUNTIME LIBRARY ROUTINES 451

omp_atv_sequential = omp_atv_serialized, // (deprecated)1
omp_atv_private = 6,2
omp_atv_all = 7,3
omp_atv_thread = 8,4
omp_atv_pteam = 9,5
omp_atv_cgroup = 10,6
omp_atv_default_mem_fb = 11,7
omp_atv_null_fb = 12,8
omp_atv_abort_fb = 13,9
omp_atv_allocator_fb = 14,10
omp_atv_environment = 15,11
omp_atv_nearest = 16,12
omp_atv_blocked = 17,13
omp_atv_interleaved = 1814

} omp_alloctrait_value_t;15
16

typedef struct omp_alloctrait_t {17
omp_alloctrait_key_t key;18
omp_uintptr_t value;19

} omp_alloctrait_t;20

C / C++
Fortran

21
integer(kind=omp_alloctrait_key_kind), &22

parameter :: omp_atk_sync_hint = 123
integer(kind=omp_alloctrait_key_kind), &24

parameter :: omp_atk_alignment = 225
integer(kind=omp_alloctrait_key_kind), &26

parameter :: omp_atk_access = 327
integer(kind=omp_alloctrait_key_kind), &28

parameter :: omp_atk_pool_size = 429
integer(kind=omp_alloctrait_key_kind), &30

parameter :: omp_atk_fallback = 531
integer(kind=omp_alloctrait_key_kind), &32

parameter :: omp_atk_fb_data = 633
integer(kind=omp_alloctrait_key_kind), &34

parameter :: omp_atk_pinned = 735
integer(kind=omp_alloctrait_key_kind), &36

parameter :: omp_atk_partition = 837
38

integer(kind=omp_alloctrait_val_kind), &39
parameter :: omp_atv_default = -140

integer(kind=omp_alloctrait_val_kind), &41

452 OpenMP API – Version 5.1 November 2020

Fortran (cont.)

parameter :: omp_atv_false = 01
integer(kind=omp_alloctrait_val_kind), &2

parameter :: omp_atv_true = 13
integer(kind=omp_alloctrait_val_kind), &4

parameter :: omp_atv_contended = 35
integer(kind=omp_alloctrait_val_kind), &6

parameter :: omp_atv_uncontended = 47
integer(kind=omp_alloctrait_val_kind), &8

parameter :: omp_atv_serialized = 59
integer(kind=omp_alloctrait_val_kind), &10

parameter :: omp_atv_sequential = &11
omp_atv_serialized ! (deprecated)12

integer(kind=omp_alloctrait_val_kind), &13
parameter :: omp_atv_private = 614

integer(kind=omp_alloctrait_val_kind), &15
parameter :: omp_atv_all = 716

integer(kind=omp_alloctrait_val_kind), &17
parameter :: omp_atv_thread = 818

integer(kind=omp_alloctrait_val_kind), &19
parameter :: omp_atv_pteam = 920

integer(kind=omp_alloctrait_val_kind), &21
parameter :: omp_atv_cgroup = 1022

integer(kind=omp_alloctrait_val_kind), &23
parameter :: omp_atv_default_mem_fb = 1124

integer(kind=omp_alloctrait_val_kind), &25
parameter :: omp_atv_null_fb = 1226

integer(kind=omp_alloctrait_val_kind), &27
parameter :: omp_atv_abort_fb = 1328

integer(kind=omp_alloctrait_val_kind), &29
parameter :: omp_atv_allocator_fb = 1430

integer(kind=omp_alloctrait_val_kind), &31
parameter :: omp_atv_environment = 1532

integer(kind=omp_alloctrait_val_kind), &33
parameter :: omp_atv_nearest = 1634

integer(kind=omp_alloctrait_val_kind), &35
parameter :: omp_atv_blocked = 1736

integer(kind=omp_alloctrait_val_kind), &37
parameter :: omp_atv_interleaved = 1838

39
! omp_alloctrait might not be provided in omp_lib.h.40
type omp_alloctrait41

integer(kind=omp_alloctrait_key_kind) key42
integer(kind=omp_alloctrait_val_kind) value43

CHAPTER 3. RUNTIME LIBRARY ROUTINES 453

end type omp_alloctrait1
2

integer(kind=omp_allocator_handle_kind), &3
parameter :: omp_null_allocator = 04

Fortran

3.13.2 omp_init_allocator5

Summary6
The omp_init_allocator routine initializes an allocator and associates it with a memory7
space.8

Format9
C / C++

omp_allocator_handle_t omp_init_allocator (10
omp_memspace_handle_t memspace,11
int ntraits,12
const omp_alloctrait_t traits[]13

);14

C / C++
Fortran

integer(kind=omp_allocator_handle_kind) &15
function omp_init_allocator (memspace, ntraits, traits)16
integer(kind=omp_memspace_handle_kind),intent(in) :: memspace17
integer,intent(in) :: ntraits18
type(omp_alloctrait),intent(in) :: traits(*)19

Fortran

Constraints on Arguments20
The memspace argument must be one of the predefined memory spaces defined in Table 2.8.21

If the ntraits argument is greater than zero then the traits argument must specify at least that many22
traits. If it specifies fewer than ntraits traits the behavior is unspecified.23

Binding24
The binding thread set for an omp_init_allocator region is all threads on a device. The25
effect of executing this routine is not related to any specific region that corresponds to any construct26
or API routine.27

454 OpenMP API – Version 5.1 November 2020

Effect1
The omp_init_allocator routine creates a new allocator that is associated with the2
memspace memory space and returns a handle to it. All allocations through the created allocator3
will behave according to the allocator traits specified in the traits argument. The number of traits in4
the traits argument is specified by the ntraits argument. Specifying the same allocator trait more5
than once results in unspecified behavior. The routine returns a handle for the created allocator. If6
the special omp_atv_default value is used for a given trait, then its value will be the default7
value specified in Table 2.9 for that given trait.8

If memspace is omp_default_mem_space and the traits argument is an empty set this9
routine will always return a handle to an allocator. Otherwise if an allocator based on the10
requirements cannot be created then the special omp_null_allocator handle is returned.11

Restrictions12
The restrictions to the omp_init_allocator routine are as follows:13

• The use of an allocator returned by this routine on a device other than the one on which it was14
created results in unspecified behavior.15

• Unless a requires directive with the dynamic_allocators clause is present in the same16
compilation unit, using this routine in a target region results in unspecified behavior.17

Cross References18
• Memory Spaces, see Section 2.13.1.19

• Memory Allocators, see Section 2.13.2.20

3.13.3 omp_destroy_allocator21

Summary22
The omp_destroy_allocator routine releases all resources used by the allocator handle.23

Format24
C / C++

void omp_destroy_allocator (omp_allocator_handle_t allocator);25

C / C++
Fortran

subroutine omp_destroy_allocator (allocator)26
integer(kind=omp_allocator_handle_kind),intent(in) :: allocator27

Fortran

Constraints on Arguments28
The allocator argument must not represent a predefined memory allocator.29

CHAPTER 3. RUNTIME LIBRARY ROUTINES 455

Binding1
The binding thread set for an omp_destroy_allocator region is all threads on a device. The2
effect of executing this routine is not related to any specific region that corresponds to any construct3
or API routine.4

Effect5
The omp_destroy_allocator routine releases all resources used to implement the allocator6
handle.7

If allocator is omp_null_allocator then this routine will have no effect.8

Restrictions9
The restrictions to the omp_destroy_allocator routine are as follows:10

• Accessing any memory allocated by the allocator after this call results in unspecified behavior.11

• Unless a requires directive with the dynamic_allocators clause is present in the same12
compilation unit, using this routine in a target region results in unspecified behavior.13

Cross References14
• Memory Allocators, see Section 2.13.2.15

3.13.4 omp_set_default_allocator16

Summary17
The omp_set_default_allocator routine sets the default memory allocator to be used by18
allocation calls, allocate directives and allocate clauses that do not specify an allocator.19

Format20
C / C++

void omp_set_default_allocator (omp_allocator_handle_t allocator);21

C / C++
Fortran

subroutine omp_set_default_allocator (allocator)22
integer(kind=omp_allocator_handle_kind),intent(in) :: allocator23

Fortran

Constraints on Arguments24
The allocator argument must be a valid memory allocator handle.25

Binding26
The binding task set for an omp_set_default_allocator region is the binding implicit task.27

456 OpenMP API – Version 5.1 November 2020

Effect1
The effect of this routine is to set the value of the def-allocator-var ICV of the binding implicit task2
to the value specified in the allocator argument.3

Cross References4
• def-allocator-var ICV, see Section 2.4.5

• Memory Allocators, see Section 2.13.2.6

• omp_alloc routine, see Section 3.13.6.7

3.13.5 omp_get_default_allocator8

Summary9
The omp_get_default_allocator routine returns a handle to the memory allocator to be10
used by allocation calls, allocate directives and allocate clauses that do not specify an11
allocator.12

Format13
C / C++

omp_allocator_handle_t omp_get_default_allocator (void);14

C / C++
Fortran

integer(kind=omp_allocator_handle_kind)&15
function omp_get_default_allocator ()16

Fortran

Binding17
The binding task set for an omp_get_default_allocator region is the binding implicit task.18

Effect19
The effect of this routine is to return the value of the def-allocator-var ICV of the binding implicit20
task.21

Cross References22
• def-allocator-var ICV, see Section 2.4.23

• Memory Allocators, see Section 2.13.2.24

• omp_alloc routine, see Section 3.13.6.25

CHAPTER 3. RUNTIME LIBRARY ROUTINES 457

3.13.6 omp_alloc and omp_aligned_alloc1

Summary2
The omp_alloc and omp_aligned_alloc routines request a memory allocation from a3
memory allocator.4

Format5
C

void *omp_alloc(size_t size, omp_allocator_handle_t allocator);6
void *omp_aligned_alloc(7

size_t alignment,8
size_t size,9
omp_allocator_handle_t allocator);10

C
C++

void *omp_alloc(11
size_t size,12
omp_allocator_handle_t allocator=omp_null_allocator13

);14
void *omp_aligned_alloc(15

size_t alignment,16
size_t size,17
omp_allocator_handle_t allocator=omp_null_allocator18

);19

C++
Fortran

type(c_ptr) function omp_alloc(size, allocator) bind(c)20
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t21
integer(c_size_t), value :: size22
integer(omp_allocator_handle_kind), value :: allocator23

24
type(c_ptr) function omp_aligned_alloc(alignment, &25

size, allocator) bind(c)26
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t27
integer(c_size_t), value :: alignment, size28
integer(omp_allocator_handle_kind), value :: allocator29

Fortran

458 OpenMP API – Version 5.1 November 2020

Constraints on Arguments1
Unless dynamic_allocators appears on a requires directive in the same compilation unit,2
omp_alloc and omp_aligned_alloc invocations that appear in target regions must not3
pass omp_null_allocator as the allocator argument, which must be a constant expression4
that evaluates to one of the predefined memory allocator values.5

The alignment argument to omp_aligned_alloc must be a power of two and the size argument6
must be a multiple of alignment.7

Binding8
The binding task set for an omp_alloc or omp_aligned_alloc region is the generating task.9

Effect10
The omp_alloc and omp_aligned_alloc routines request a memory allocation of size bytes11
from the specified memory allocator. If the allocator argument is omp_null_allocator the12
memory allocator used by the routines will be the one specified by the def-allocator-var ICV of the13
binding implicit task. Upon success they return a pointer to the allocated memory. Otherwise, the14
behavior that the fallback trait of the allocator specifies will be followed.15

If size is 0, omp_alloc and omp_aligned_alloc will return NULL (or, C_NULL_PTR, for16
Fortran).17

Memory allocated by omp_alloc will be byte-aligned to at least the maximum of the alignment18
required by malloc and the alignment trait of the allocator.19

Memory allocated by omp_aligned_alloc will be byte-aligned to at least the maximum of the20
alignment required by malloc, the alignment trait of the allocator and the alignment argument21
value.22

Fortran
The omp_alloc and omp_aligned_alloc routines require an explicit interface and so might23
not be provided in omp_lib.h.24

Fortran

Cross References25
• Memory allocators, see Section 2.13.2.26

3.13.7 omp_free27

Summary28
The omp_free routine deallocates previously allocated memory.29

Format30
C

void omp_free (void *ptr, omp_allocator_handle_t allocator);31

C

CHAPTER 3. RUNTIME LIBRARY ROUTINES 459

C++
void omp_free(1

void *ptr,2
omp_allocator_handle_t allocator=omp_null_allocator3

);4

C++
Fortran

subroutine omp_free(ptr, allocator) bind(c)5
use, intrinsic :: iso_c_binding, only : c_ptr6
type(c_ptr), value :: ptr7
integer(omp_allocator_handle_kind), value :: allocator8

Fortran

Binding9
The binding task set for an omp_free region is the generating task.10

Effect11
The omp_free routine deallocates the memory to which ptr points. The ptr argument must have12
been returned by an OpenMP allocation routine. If the allocator argument is specified it must be13
the memory allocator to which the allocation request was made. If the allocator argument is14
omp_null_allocator the implementation will determine that value automatically.15

If ptr is NULL (or, C_NULL_PTR, for Fortran), no operation is performed.16

Fortran
The omp_free routine requires an explicit interface and so might not be provided in17
omp_lib.h.18

Fortran

Restrictions19
The restrictions to the omp_free routine are as follows:20

• Using omp_free on memory that was already deallocated or that was allocated by an allocator21
that has already been destroyed with omp_destroy_allocator results in unspecified22
behavior.23

Cross References24
• Memory allocators, see Section 2.13.2.25

460 OpenMP API – Version 5.1 November 2020

3.13.8 omp_calloc and omp_aligned_calloc1

Summary2
The omp_calloc and omp_aligned_calloc routines request a zero initialized memory3
allocation from a memory allocator.4

Format5
C

void *omp_calloc(6
size_t nmemb,7
size_t size,8
omp_allocator_handle_t allocator9

);10
void *omp_aligned_calloc(11

size_t alignment,12
size_t nmemb,13
size_t size,14
omp_allocator_handle_t allocator15

);16

C
C++

void *omp_calloc(17
size_t nmemb,18
size_t size,19
omp_allocator_handle_t allocator=omp_null_allocator20

);21
void *omp_aligned_calloc(22

size_t alignment,23
size_t nmemb,24
size_t size,25
omp_allocator_handle_t allocator=omp_null_allocator26

);27

C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 461

Fortran
type(c_ptr) function omp_calloc(nmemb, size, allocator) bind(c)1
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t2
integer(c_size_t), value :: nmemb, size3
integer(omp_allocator_handle_kind), value :: allocator4

5
type(c_ptr) function omp_aligned_calloc(alignment, nmemb, size, &6

allocator) bind(c)7
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t8
integer(c_size_t), value :: alignment, nmemb, size9
integer(omp_allocator_handle_kind), value :: allocator10

Fortran

Constraints on Arguments11
Unless dynamic_allocators appears on a requires directive in the same compilation unit,12
omp_calloc and omp_aligned_calloc invocations that appear in target regions must13
not pass omp_null_allocator as the allocator argument, which must be a constant expression14
that evaluates to one of the predefined memory allocator values.15

The alignment argument to omp_aligned_calloc must be a power of two and the size16
argument must be a multiple of alignment.17

Binding18
The binding task set for an omp_calloc or omp_aligned_calloc region is the generating19
task.20

Effect21
The omp_calloc and omp_aligned_calloc routines request a memory allocation from the22
specified memory allocator for an array of nmemb elements each of which has a size of size bytes.23
If the allocator argument is omp_null_allocator the memory allocator used by the routines24
will be the one specified by the def-allocator-var ICV of the binding implicit task. Upon success25
they return a pointer to the allocated memory. Otherwise, the behavior that the fallback trait of26
the allocator specifies will be followed. Any memory allocated by these routines will be set to zero27
before returning.28

If either nmemb or size is 0, omp_calloc will return NULL (or, C_NULL_PTR, for Fortran).29

Memory allocated by omp_calloc will be byte-aligned to at least the maximum of the alignment30
required by malloc and the alignment trait of the allocator.31

Memory allocated by omp_aligned_calloc will be byte-aligned to at least the maximum of32
the alignment required by malloc, the alignment trait of the allocator and the alignment33
argument value.34

462 OpenMP API – Version 5.1 November 2020

Fortran
The omp_calloc and omp_aligned_calloc routines require an explicit interface and so1
might not be provided in omp_lib.h.2

Fortran

Cross References3
• Memory allocators, see Section 2.13.2.4

3.13.9 omp_realloc5

Summary6
The omp_realloc routine deallocates previously allocated memory and requests a memory7
allocation from a memory allocator.8

Format9
C

void *omp_realloc(10
void *ptr,11
size_t size,12
omp_allocator_handle_t allocator,13
omp_allocator_handle_t free_allocator14

);15

C
C++

void *omp_realloc(16
void *ptr,17
size_t size,18
omp_allocator_handle_t allocator=omp_null_allocator,19
omp_allocator_handle_t free_allocator=omp_null_allocator20

);21

C++
Fortran

type(c_ptr) &22
function omp_realloc(ptr, size, allocator, free_allocator) bind(c)23
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t24
type(c_ptr), value :: ptr25
integer(c_size_t), value :: size26
integer(omp_allocator_handle_kind), value :: allocator, free_allocator27

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 463

Constraints on Arguments1
Unless a dynamic_allocators clause appears on a requires directive in the same2
compilation unit, omp_realloc invocations that appear in target regions must not pass3
omp_null_allocator as the allocator or free_allocator argument, which must be constant4
expressions that evaluate to one of the predefined memory allocator values.5

Binding6
The binding task set for an omp_realloc region is the generating task.7

Effect8
The omp_realloc routine deallocates the memory to which ptr points and requests a new9
memory allocation of size bytes from the specified memory allocator. If the free_allocator10
argument is specified, it must be the memory allocator to which the previous allocation request was11
made. If the free_allocator argument is omp_null_allocator the implementation will12
determine that value automatically. If the allocator argument is omp_null_allocator the13
behavior is as if the memory allocator that allocated the memory to which ptr argument points is14
passed to the allocator argument. Upon success it returns a (possibly moved) pointer to the15
allocated memory and the contents of the new object shall be the same as that of the old object16
prior to deallocation, up to the minimum size of old allocated size and size. Any bytes in the new17
object beyond the old allocated size will have unspecified values. If the allocation failed, the18
behavior that the fallback trait of the allocator specifies will be followed.19

If ptr is NULL (or, C_NULL_PTR, for Fortran), omp_realloc will behave the same as20
omp_alloc with the same size and allocator arguments.21

If size is 0, omp_realloc will return NULL (or, C_NULL_PTR, for Fortran) and the old22
allocation will be deallocated.23

If size is not 0, the old allocation will be deallocated if and only if the function returns a non-NULL24
value (or, a non-C_NULL_PTR value, for Fortran).25

Memory allocated by omp_realloc will be byte-aligned to at least the maximum of the26
alignment required by malloc and the alignment trait of the allocator.27

Fortran
The omp_realloc routine requires an explicit interface and so might not be provided in28
omp_lib.h.29

Fortran

Restrictions30
The restrictions to the omp_realloc routine are as follows:31

• The ptr argument must have been returned by an OpenMP allocation routine.32

• Using omp_realloc on memory that was already deallocated or that was allocated by an33
allocator that has already been destroyed with omp_destroy_allocator results in34
unspecified behavior.35

464 OpenMP API – Version 5.1 November 2020

Cross References1
• Memory allocators, see Section 2.13.2.2

3.14 Tool Control Routine3

Summary4
The omp_control_tool routine enables a program to pass commands to an active tool.5

Format6
C / C++

int omp_control_tool(int command, int modifier, void *arg);7

C / C++
Fortran

integer function omp_control_tool(command, modifier)8
integer (kind=omp_control_tool_kind) command9
integer modifier10

Fortran

Constraints on Arguments11
The following enumeration type defines four standard commands. Table 3.3 describes the actions12
that these commands request from a tool.13

C / C++
typedef enum omp_control_tool_t {14

omp_control_tool_start = 1,15
omp_control_tool_pause = 2,16
omp_control_tool_flush = 3,17
omp_control_tool_end = 418

} omp_control_tool_t;19

C / C++
Fortran

integer (kind=omp_control_tool_kind), &20
parameter :: omp_control_tool_start = 121

integer (kind=omp_control_tool_kind), &22
parameter :: omp_control_tool_pause = 223

integer (kind=omp_control_tool_kind), &24
parameter :: omp_control_tool_flush = 325

integer (kind=omp_control_tool_kind), &26
parameter :: omp_control_tool_end = 427

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 465

Tool-specific values for command must be greater or equal to 64. Tools must ignore command1
values that they are not explicitly designed to handle. Other values accepted by a tool for command,2
and any values for modifier and arg are tool-defined.3

TABLE 3.3: Standard Tool Control Commands

Command Action

omp_control_tool_start Start or restart monitoring if it is off. If monitoring
is already on, this command is idempotent. If
monitoring has already been turned off permanently,
this command will have no effect.

omp_control_tool_pause Temporarily turn monitoring off. If monitoring is
already off, it is idempotent.

omp_control_tool_flush Flush any data buffered by a tool. This command may
be applied whether monitoring is on or off.

omp_control_tool_end Turn monitoring off permanently; the tool finalizes
itself and flushes all output.

Binding4
The binding task set for an omp_control_tool region is the generating task.5

Effect6
An OpenMP program may use omp_control_tool to pass commands to a tool. An application7
can use omp_control_tool to request that a tool starts or restarts data collection when a code8
region of interest is encountered, that a tool pauses data collection when leaving the region of9
interest, that a tool flushes any data that it has collected so far, or that a tool ends data collection.10
Additionally, omp_control_tool can be used to pass tool-specific commands to a particular11
tool.12

The following types correspond to return values from omp_control_tool:13

C / C++
typedef enum omp_control_tool_result_t {14

omp_control_tool_notool = -2,15
omp_control_tool_nocallback = -1,16
omp_control_tool_success = 0,17
omp_control_tool_ignored = 118

} omp_control_tool_result_t;19

C / C++

466 OpenMP API – Version 5.1 November 2020

Fortran
integer (kind=omp_control_tool_result_kind), &1

parameter :: omp_control_tool_notool = -22
integer (kind=omp_control_tool_result_kind), &3

parameter :: omp_control_tool_nocallback = -14
integer (kind=omp_control_tool_result_kind), &5

parameter :: omp_control_tool_success = 06
integer (kind=omp_control_tool_result_kind), &7

parameter :: omp_control_tool_ignored = 18

Fortran
If the OMPT interface state is inactive, the OpenMP implementation returns9
omp_control_tool_notool. If the OMPT interface state is active, but no callback is10
registered for the tool-control event, the OpenMP implementation returns11
omp_control_tool_nocallback. An OpenMP implementation may return other12
implementation-defined negative values strictly smaller than -64; an application may assume that13
any negative return value indicates that a tool has not received the command. A return value of14
omp_control_tool_success indicates that the tool has performed the specified command. A15
return value of omp_control_tool_ignored indicates that the tool has ignored the specified16
command. A tool may return other positive values strictly greater than 64 that are tool-defined.17

Execution Model Events18
The tool-control event occurs in the thread that encounters a call to omp_control_tool at a19
point inside its corresponding OpenMP region.20

Tool Callbacks21
A thread dispatches a registered ompt_callback_control_tool callback for each22
occurrence of a tool-control event. The callback executes in the context of the call that occurs in the23
user program and has type signature ompt_callback_control_tool_t. The callback may24
return any non-negative value, which will be returned to the application by the OpenMP25
implementation as the return value of the omp_control_tool call that triggered the callback.26

Arguments passed to the callback are those passed by the user to omp_control_tool. If the27
call is made in Fortran, the tool will be passed NULL as the third argument to the callback. If any of28
the four standard commands is presented to a tool, the tool will ignore the modifier and arg29
argument values.30

Restrictions31
Restrictions on access to the state of an OpenMP first-party tool are as follows:32

• An application may access the tool state modified by an OMPT callback only by using33
omp_control_tool.34

CHAPTER 3. RUNTIME LIBRARY ROUTINES 467

Cross References1
• OMPT Interface, see Chapter 42

• ompt_callback_control_tool_t, see Section 4.5.2.29.3

3.15 Environment Display Routine4

Summary5
The omp_display_env routine displays the OpenMP version number and the initial values of6
ICVs associated with the environment variables described in Chapter 6.7

Format8
C / C++

void omp_display_env(int verbose);9

C / C++
Fortran

subroutine omp_display_env(verbose)10
logical,intent(in) :: verbose11

Fortran

Binding12
The binding thread set for an omp_display_env region is the encountering thread.13

Effect14
Each time the omp_display_env routine is invoked, the runtime system prints the OpenMP15
version number and the initial values of the ICVs associated with the environment variables16
described in Chapter 6. The displayed values are the values of the ICVs after they have been17
modified according to the environment variable settings and before the execution of any OpenMP18
construct or API routine.19

The display begins with "OPENMP DISPLAY ENVIRONMENT BEGIN", followed by the20
_OPENMP version macro (or the openmp_version named constant for Fortran) and ICV values,21
in the format NAME ’=’ VALUE. NAME corresponds to the macro or environment variable name,22
optionally prepended with a bracketed DEVICE. VALUE corresponds to the value of the macro or23
ICV associated with this environment variable. Values are enclosed in single quotes. DEVICE24
corresponds to the device on which the value of the ICV is applied. The display is terminated with25
"OPENMP DISPLAY ENVIRONMENT END".26

For the OMP_NESTED environment variable, the printed value is true if the max-active-levels-var27
ICV is initialized to a value greater than 1; otherwise the printed value is false. The OMP_NESTED28
environment variable has been deprecated.29

468 OpenMP API – Version 5.1 November 2020

If the verbose argument is set to 0 (or false in Fortran), the runtime displays the OpenMP version1
number defined by the _OPENMP version macro (or the openmp_version named constant for2
Fortran) value and the initial ICV values for the environment variables listed in Chapter 6. If the3
verbose argument is set to 1 (or true for Fortran), the runtime may also display the values of4
vendor-specific ICVs that may be modified by vendor-specific environment variables.5

Example output:6

OPENMP DISPLAY ENVIRONMENT BEGIN7
_OPENMP=’202011’8
[host] OMP_SCHEDULE=’GUIDED,4’9
[host] OMP_NUM_THREADS=’4,3,2’10
[device] OMP_NUM_THREADS=’2’11
[host,device] OMP_DYNAMIC=’TRUE’12
[host] OMP_PLACES=’{0:4},{4:4},{8:4},{12:4}’13
...14

OPENMP DISPLAY ENVIRONMENT END15

Cross References16
• OMP_DISPLAY_ENV environment variable, see Section 6.12.17

CHAPTER 3. RUNTIME LIBRARY ROUTINES 469

This page intentionally left blank

4 OMPT Interface1

This chapter describes OMPT, which is an interface for first-party tools. First-party tools are linked2
or loaded directly into the OpenMP program. OMPT defines mechanisms to initialize a tool, to3
examine OpenMP state associated with an OpenMP thread, to interpret the call stack of an OpenMP4
thread, to receive notification about OpenMP events, to trace activity on OpenMP target devices, to5
assess implementation-dependent details of an OpenMP implementation (such as supported states6
and mutual exclusion implementations), and to control a tool from an OpenMP application.7

4.1 OMPT Interfaces Definitions8

C / C++
A compliant implementation must supply a set of definitions for the OMPT runtime entry points,9
OMPT callback signatures, and the special data types of their parameters and return values. These10
definitions, which are listed throughout this chapter, and their associated declarations shall be11
provided in a header file named omp-tools.h. In addition, the set of definitions may specify12
other implementation-specific values.13

The ompt_start_tool function is an external function with C linkage.14

C / C++

4.2 Activating a First-Party Tool15

To activate a tool, an OpenMP implementation first determines whether the tool should be16
initialized. If so, the OpenMP implementation invokes the initializer of the tool, which enables the17
tool to prepare to monitor execution on the host. The tool may then also arrange to monitor18
computation that executes on target devices. This section explains how the tool and an OpenMP19
implementation interact to accomplish these tasks.20

4.2.1 ompt_start_tool21

Summary22
In order to use the OMPT interface provided by an OpenMP implementation, a tool must implement23
the ompt_start_tool function, through which the OpenMP implementation initializes the tool.24

CHAPTER 4. OMPT INTERFACE 471

Format1
C

ompt_start_tool_result_t *ompt_start_tool(2
unsigned int omp_version,3
const char *runtime_version4

);5

C

Description6
For a tool to use the OMPT interface that an OpenMP implementation provides, the tool must define7
a globally-visible implementation of the function ompt_start_tool. The tool indicates that it8
will use the OMPT interface that an OpenMP implementation provides by returning a non-null9
pointer to an ompt_start_tool_result_t structure from the ompt_start_tool10
implementation that it provides. The ompt_start_tool_result_t structure contains11
pointers to tool initialization and finalization callbacks as well as a tool data word that an OpenMP12
implementation must pass by reference to these callbacks. A tool may return NULL from13
ompt_start_tool to indicate that it will not use the OMPT interface in a particular execution.14

A tool may use the omp_version argument to determine if it is compatible with the OMPT interface15
that the OpenMP implementation provides.16

Description of Arguments17
The argument omp_version is the value of the _OPENMP version macro associated with the18
OpenMP API implementation. This value identifies the OpenMP API version that an OpenMP19
implementation supports, which specifies the version of the OMPT interface that it supports.20

The argument runtime_version is a version string that unambiguously identifies the OpenMP21
implementation.22

Constraints on Arguments23
The argument runtime_version must be an immutable string that is defined for the lifetime of a24
program execution.25

Effect26
If a tool returns a non-null pointer to an ompt_start_tool_result_t structure, an OpenMP27
implementation will call the tool initializer specified by the initialize field in this structure before28
beginning execution of any OpenMP construct or completing execution of any environment routine29
invocation; the OpenMP implementation will call the tool finalizer specified by the finalize field in30
this structure when the OpenMP implementation shuts down.31

Cross References32
• ompt_start_tool_result_t, see Section 4.4.1.33

472 OpenMP API – Version 5.1 November 2020

Inactive
Runtime

(re)start tool-var Pending

Find next tool

Return
value r

Active

Call
ompt_start_tool

Found?Inactive
Runtime shutdown

or pause

Call
r->initialize

Return
value

enabled

disabled

r=non-null

r=NULLyes

no

1

0

FIGURE 4.1: First-Party Tool Activation Flow Chart

4.2.2 Determining Whether a First-Party Tool Should be1

Initialized2

An OpenMP implementation examines the tool-var ICV as one of its first initialization steps. If the3
value of tool-var is disabled, the initialization continues without a check for the presence of a tool4
and the functionality of the OMPT interface will be unavailable as the program executes. In this5
case, the OMPT interface state remains inactive.6

Otherwise, the OMPT interface state changes to pending and the OpenMP implementation activates7
any first-party tool that it finds. A tool can provide a definition of ompt_start_tool to an8
OpenMP implementation in three ways:9

• By statically-linking its definition of ompt_start_tool into an OpenMP application;10

• By introducing a dynamically-linked library that includes its definition of ompt_start_tool11
into the application’s address space; or12

• By providing, in the tool-libraries-var ICV, the name of a dynamically-linked library that is13
appropriate for the architecture and operating system used by the application and that includes a14
definition of ompt_start_tool.15

CHAPTER 4. OMPT INTERFACE 473

If the value of tool-var is enabled, the OpenMP implementation must check if a tool has provided1
an implementation of ompt_start_tool. The OpenMP implementation first checks if a2
tool-provided implementation of ompt_start_tool is available in the address space, either3
statically-linked into the application or in a dynamically-linked library loaded in the address space.4
If multiple implementations of ompt_start_tool are available, the OpenMP implementation5
will use the first tool-provided implementation of ompt_start_tool that it finds.6

If the implementation does not find a tool-provided implementation of ompt_start_tool in the7
address space, it consults the tool-libraries-var ICV, which contains a (possibly empty) list of8
dynamically-linked libraries. As described in detail in Section 6.19, the libraries in9
tool-libraries-var are then searched for the first usable implementation of ompt_start_tool10
that one of the libraries in the list provides.11

If the implementation finds a tool-provided definition of ompt_start_tool, it invokes that12
method; if a NULL pointer is returned, the OMPT interface state remains pending and the13
implementation continues to look for implementations of ompt_start_tool; otherwise a14
non-null pointer to an ompt_start_tool_result_t structure is returned, the OMPT15
interface state changes to active and the OpenMP implementation makes the OMPT interface16
available as the program executes. In this case, as the OpenMP implementation completes its17
initialization, it initializes the OMPT interface.18

If no tool can be found, the OMPT interface state changes to inactive.19

Cross References20
• tool-libraries-var ICV, see Section 2.4.21

• tool-var ICV, see Section 2.4.22

• ompt_start_tool function, see Section 4.2.1.23

• ompt_start_tool_result_t type, see Section 4.4.1.24

4.2.3 Initializing a First-Party Tool25

To initialize the OMPT interface, the OpenMP implementation invokes the tool initializer that is26
specified in the ompt_start_tool_result_t structure that is indicated by the non-null27
pointer that ompt_start_tool returns. The initializer is invoked prior to the occurrence of any28
OpenMP event.29

A tool initializer, described in Section 4.5.1.1, uses the function specified in its lookup argument to30
look up pointers to OMPT interface runtime entry points that the OpenMP implementation31
provides; this process is described in Section 4.2.3.1. Typically, a tool initializer obtains a pointer to32
the ompt_set_callback runtime entry point with type signature ompt_set_callback_t33
and then uses this runtime entry point to register tool callbacks for OpenMP events, as described in34
Section 4.2.4.35

474 OpenMP API – Version 5.1 November 2020

A tool initializer may use the ompt_enumerate_states runtime entry point, which has type1
signature ompt_enumerate_states_t, to determine the thread states that an OpenMP2
implementation employs. Similarly, it may use the ompt_enumerate_mutex_impls runtime3
entry point, which has type signature ompt_enumerate_mutex_impls_t, to determine the4
mutual exclusion implementations that the OpenMP implementation employs.5

If a tool initializer returns a non-zero value, the OMPT interface state remains active for the6
execution; otherwise, the OMPT interface state changes to inactive.7

Cross References8
• ompt_start_tool function, see Section 4.2.1.9

• ompt_start_tool_result_t type, see Section 4.4.1.10

• ompt_initialize_t type, see Section 4.5.1.1.11

• ompt_callback_thread_begin_t type, see Section 4.5.2.1.12

• ompt_enumerate_states_t type, see Section 4.6.1.1.13

• ompt_enumerate_mutex_impls_t type, see Section 4.6.1.2.14

• ompt_set_callback_t type, see Section 4.6.1.3.15

• ompt_function_lookup_t type, see Section 4.6.3.16

4.2.3.1 Binding Entry Points in the OMPT Callback Interface17

Functions that an OpenMP implementation provides to support the OMPT interface are not defined18
as global function symbols. Instead, they are defined as runtime entry points that a tool can only19
identify through the lookup function that is provided as an argument with type signature20
ompt_function_lookup_t to the tool initializer. A tool can use this function to obtain a21
pointer to each of the runtime entry points that an OpenMP implementation provides to support the22
OMPT interface. Once a tool has obtained a lookup function, it may employ it at any point in the23
future.24

For each runtime entry point in the OMPT interface for the host device, Table 4.1 provides the25
string name by which it is known and its associated type signature. Implementations can provide26
additional implementation-specific names and corresponding entry points. Any names that begin27
with ompt_ are reserved names.28

During initialization, a tool should look up each runtime entry point in the OMPT interface by29
name and bind a pointer maintained by the tool that can later be used to invoke the entry point. The30
entry points described in Table 4.1 enable a tool to assess the thread states and mutual exclusion31
implementations that an OpenMP implementation supports to register tool callbacks, to inspect32
registered callbacks, to introspect OpenMP state associated with threads, and to use tracing to33
monitor computations that execute on target devices.34

CHAPTER 4. OMPT INTERFACE 475

Detailed information about each runtime entry point listed in Table 4.1 is included as part of the1
description of its type signature.2

Cross References3
• ompt_enumerate_states_t type, see Section 4.6.1.1.4

• ompt_enumerate_mutex_impls_t type, see Section 4.6.1.2.5

• ompt_set_callback_t type, see Section 4.6.1.3.6

• ompt_get_callback_t type, see Section 4.6.1.4.7

• ompt_get_thread_data_t type, see Section 4.6.1.5.8

• ompt_get_num_procs_t type, see Section 4.6.1.6.9

• ompt_get_num_places_t type, see Section 4.6.1.7.10

• ompt_get_place_proc_ids_t type, see Section 4.6.1.8.11

• ompt_get_place_num_t type, see Section 4.6.1.9.12

• ompt_get_partition_place_nums_t type, see Section 4.6.1.10.13

• ompt_get_proc_id_t type, see Section 4.6.1.11.14

• ompt_get_state_t type, see Section 4.6.1.12.15

• ompt_get_parallel_info_t type, see Section 4.6.1.13.16

• ompt_get_task_info_t type, see Section 4.6.1.14.17

• ompt_get_task_memory_t type, see Section 4.6.1.15.18

• ompt_get_target_info_t type, see Section 4.6.1.16.19

• ompt_get_num_devices_t type, see Section 4.6.1.17.20

• ompt_get_unique_id_t type, see Section 4.6.1.18.21

• ompt_finalize_tool_t type, see Section 4.6.1.19.22

• ompt_function_lookup_t type, see Section 4.6.3.23

4.2.4 Monitoring Activity on the Host with OMPT24

To monitor the execution of an OpenMP program on the host device, a tool initializer must register25
to receive notification of events that occur as an OpenMP program executes. A tool can use the26
ompt_set_callback runtime entry point to register callbacks for OpenMP events. The return27
codes for ompt_set_callback use the ompt_set_result_t enumeration type. If the28
ompt_set_callback runtime entry point is called outside a tool initializer, registration of29
supported callbacks may fail with a return value of ompt_set_error.30

476 OpenMP API – Version 5.1 November 2020

TABLE 4.1: OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures

Entry Point String Name Type signature

“ompt_enumerate_states” ompt_enumerate_states_t

“ompt_enumerate_mutex_impls” ompt_enumerate_mutex_impls_t

“ompt_set_callback” ompt_set_callback_t

“ompt_get_callback” ompt_get_callback_t

“ompt_get_thread_data” ompt_get_thread_data_t

“ompt_get_num_places” ompt_get_num_places_t

“ompt_get_place_proc_ids” ompt_get_place_proc_ids_t

“ompt_get_place_num” ompt_get_place_num_t

“ompt_get_partition_place_nums” ompt_get_partition_place_nums_t

“ompt_get_proc_id” ompt_get_proc_id_t

“ompt_get_state” ompt_get_state_t

“ompt_get_parallel_info” ompt_get_parallel_info_t

“ompt_get_task_info” ompt_get_task_info_t

“ompt_get_task_memory” ompt_get_task_memory_t

“ompt_get_num_devices” ompt_get_num_devices_t

“ompt_get_num_procs” ompt_get_num_procs_t

“ompt_get_target_info” ompt_get_target_info_t

“ompt_get_unique_id” ompt_get_unique_id_t

“ompt_finalize_tool” ompt_finalize_tool_t

CHAPTER 4. OMPT INTERFACE 477

All callbacks registered with ompt_set_callback or returned by ompt_get_callback use1
the dummy type signature ompt_callback_t.2

For callbacks listed in Table 4.2, ompt_set_always is the only registration return code that is3
allowed. An OpenMP implementation must guarantee that the callback will be invoked every time4
that a runtime event that is associated with it occurs. Support for such callbacks is required in a5
minimal implementation of the OMPT interface.6

For callbacks listed in Table 4.3, the ompt_set_callback runtime entry may return any7
non-error code. Whether an OpenMP implementation invokes a registered callback never,8
sometimes, or always is implementation defined. If registration for a callback allows a return code9
of omp_set_never, support for invoking such a callback may not be present in a minimal10
implementation of the OMPT interface. The return code from registering a callback indicates the11
implementation-defined level of support for the callback.12

Two techniques reduce the size of the OMPT interface. First, in cases where events are naturally13
paired, for example, the beginning and end of a region, and the arguments needed by the callback at14
each endpoint are identical, a tool registers a single callback for the pair of events, with15
ompt_scope_begin or ompt_scope_end provided as an argument to identify for which16
endpoint the callback is invoked. Second, when a class of events is amenable to uniform treatment,17
OMPT provides a single callback for that class of events, for example, an18
ompt_callback_sync_region_wait callback is used for multiple kinds of synchronization19
regions, such as barrier, taskwait, and taskgroup regions. Some events, for example,20
ompt_callback_sync_region_wait, use both techniques.21

Cross References22
• ompt_set_result_t type, see Section 4.4.4.2.23

• ompt_set_callback_t type, see Section 4.6.1.3.24

• ompt_get_callback_t type, see Section 4.6.1.4.25

4.2.5 Tracing Activity on Target Devices with OMPT26

A target device may or may not initialize a full OpenMP runtime system. Unless it does,27
monitoring activity on a device using a tool interface based on callbacks may not be possible. To28
accommodate such cases, the OMPT interface defines a monitoring interface for tracing activity on29
target devices. Tracing activity on a target device involves the following steps:30

• To prepare to trace activity on a target device, a tool must register for an31
ompt_callback_device_initialize callback. A tool may also register for an32
ompt_callback_device_load callback to be notified when code is loaded onto a target33
device or an ompt_callback_device_unload callback to be notified when code is34
unloaded from a target device. A tool may also optionally register an35
ompt_callback_device_finalize callback.36

478 OpenMP API – Version 5.1 November 2020

TABLE 4.2: Callbacks for which ompt_set_callbackMust Return ompt_set_always

Callback name

ompt_callback_thread_begin

ompt_callback_thread_end

ompt_callback_parallel_begin

ompt_callback_parallel_end

ompt_callback_task_create

ompt_callback_task_schedule

ompt_callback_implicit_task

ompt_callback_target

ompt_callback_target_emi

ompt_callback_target_data_op

ompt_callback_target_data_op_emi

ompt_callback_target_submit

ompt_callback_target_submit_emi

ompt_callback_control_tool

ompt_callback_device_initialize

ompt_callback_device_finalize

ompt_callback_device_load

ompt_callback_device_unload

CHAPTER 4. OMPT INTERFACE 479

TABLE 4.3: Callbacks for which ompt_set_callbackMay Return Any Non-Error Code

Callback name

ompt_callback_sync_region_wait

ompt_callback_mutex_released

ompt_callback_dependences

ompt_callback_task_dependence

ompt_callback_work

ompt_callback_master // (deprecated)

ompt_callback_masked

ompt_callback_target_map

ompt_callback_target_map_emi

ompt_callback_sync_region

ompt_callback_reduction

ompt_callback_lock_init

ompt_callback_lock_destroy

ompt_callback_mutex_acquire

ompt_callback_mutex_acquired

ompt_callback_nest_lock

ompt_callback_flush

ompt_callback_cancel

ompt_callback_dispatch

480 OpenMP API – Version 5.1 November 2020

• When an OpenMP implementation initializes a target device, the OpenMP implementation1
dispatches the device initialization callback of the tool on the host device. If the OpenMP2
implementation or target device does not support tracing, the OpenMP implementation passes3
NULL to the device initializer of the tool for its lookup argument; otherwise, the OpenMP4
implementation passes a pointer to a device-specific runtime entry point with type signature5
ompt_function_lookup_t to the device initializer of the tool.6

• If a non-null lookup pointer is provided to the device initializer of the tool, the tool may use it to7
determine the runtime entry points in the tracing interface that are available for the device and8
may bind the returned function pointers to tool variables. Table 4.4 indicates the names of9
runtime entry points that may be available for a device; an implementations may provide10
additional implementation-defined names and corresponding entry points. The driver for the11
device provides the runtime entry points that enable a tool to control the trace collection interface12
of the device. The native trace format that the interface uses may be device specific and the13
available kinds of trace records are implementation defined. Some devices may allow a tool to14
collect traces of records in a standard format known as OMPT trace records. Each OMPT trace15
record serves as a substitute for an OMPT callback that cannot be made on the device. The fields16
in each trace record type are defined in the description of the callback that the record represents.17
If this type of record is provided then the lookup function returns values for the runtime entry18
points ompt_set_trace_ompt and ompt_get_record_ompt, which support collecting19
and decoding OMPT traces. If the native tracing format for a device is the OMPT format then20
tracing can be controlled using the runtime entry points for native or OMPT tracing.21

• The tool uses the ompt_set_trace_native and/or the ompt_set_trace_ompt22
runtime entry point to specify what types of events or activities to monitor on the device. The23
return codes for ompt_set_trace_ompt and ompt_set_trace_native use the24
ompt_set_result_t enumeration type. If the ompt_set_trace_native or the25
ompt_set_trace_ompt runtime entry point is called outside a device initializer, registration26
of supported callbacks may fail with a return code of ompt_set_error.27

• The tool initiates tracing on the device by invoking ompt_start_trace. Arguments to28
ompt_start_trace include two tool callbacks through which the OpenMP implementation29
can manage traces associated with the device. One callback allocates a buffer in which the device30
can deposit trace events. The second callback processes a buffer of trace events from the device.31

• If the device requires a trace buffer, the OpenMP implementation invokes the tool-supplied32
callback function on the host device to request a new buffer.33

• The OpenMP implementation monitors the execution of OpenMP constructs on the device and34
records a trace of events or activities into a trace buffer. If possible, device trace records are35
marked with a host_op_id—an identifier that associates device activities with the target36
operation that the host initiated to cause these activities. To correlate activities on the host with37
activities on a device, a tool can register a ompt_callback_target_submit_emi38
callback. Before and after the host initiates creation of an initial task on a device associated with39
a structured block for a target construct, the OpenMP implementation dispatches the40
ompt_callback_target_submit_emi callback on the host in the thread that is executing41

CHAPTER 4. OMPT INTERFACE 481

TABLE 4.4: OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures

Entry Point String Name Type Signature

“ompt_get_device_num_procs” ompt_get_device_num_procs_t

“ompt_get_device_time” ompt_get_device_time_t

“ompt_translate_time” ompt_translate_time_t

“ompt_set_trace_ompt” ompt_set_trace_ompt_t

“ompt_set_trace_native” ompt_set_trace_native_t

“ompt_start_trace” ompt_start_trace_t

“ompt_pause_trace” ompt_pause_trace_t

“ompt_flush_trace” ompt_flush_trace_t

“ompt_stop_trace” ompt_stop_trace_t

“ompt_advance_buffer_cursor” ompt_advance_buffer_cursor_t

“ompt_get_record_type” ompt_get_record_type_t

“ompt_get_record_ompt” ompt_get_record_ompt_t

“ompt_get_record_native” ompt_get_record_native_t

“ompt_get_record_abstract” ompt_get_record_abstract_t

482 OpenMP API – Version 5.1 November 2020

the task that encounters the target construct. This callback provides the tool with a pair of1
identifiers: one that identifies the target region and a second that uniquely identifies the initial2
task associated with that region. These identifiers help the tool correlate activities on the target3
device with their target region.4

• When appropriate, for example, when a trace buffer fills or needs to be flushed, the OpenMP5
implementation invokes the tool-supplied buffer completion callback to process a non-empty6
sequence of records in a trace buffer that is associated with the device.7

• The tool-supplied buffer completion callback may return immediately, ignoring records in the8
trace buffer, or it may iterate through them using the ompt_advance_buffer_cursor9
entry point to inspect each record. A tool may use the ompt_get_record_type runtime10
entry point to inspect the type of the record at the current cursor position. Three runtime entry11
points (ompt_get_record_ompt, ompt_get_record_native, and12
ompt_get_record_abstract) allow tools to inspect the contents of some or all records in13
a trace buffer. The ompt_get_record_native runtime entry point uses the native trace14
format of the device. The ompt_get_record_abstract runtime entry point decodes the15
contents of a native trace record and summarizes them as an ompt_record_abstract_t16
record. The ompt_get_record_ompt runtime entry point can only be used to retrieve17
records in OMPT format.18

• Once tracing has been started on a device, a tool may pause or resume tracing on the device at19
any time by invoking ompt_pause_trace with an appropriate flag value as an argument.20

• A tool may invoke the ompt_flush_trace runtime entry point for a device at any time21
between device initialization and finalization to cause the device to flush pending trace records.22

• At any time, a tool may use the ompt_start_trace runtime entry point to start tracing or the23
ompt_stop_trace runtime entry point to stop tracing on a device. When tracing is stopped24
on a device, the OpenMP implementation eventually gathers all trace records already collected25
on the device and presents them to the tool using the buffer completion callback.26

• An OpenMP implementation can be shut down while device tracing is in progress.27

• When an OpenMP implementation is shut down, it finalizes each device. Device finalization28
occurs in three steps. First, the OpenMP implementation halts any tracing in progress for the29
device. Second, the OpenMP implementation flushes all trace records collected for the device30
and uses the buffer completion callback associated with that device to present them to the tool.31
Finally, the OpenMP implementation dispatches any ompt_callback_device_finalize32
callback registered for the device.33

Restrictions34
Restrictions on tracing activity on devices are as follows:35

• Implementation-defined names must not start with the prefix ompt_, which is reserved for the36
OpenMP specification.37

CHAPTER 4. OMPT INTERFACE 483

Cross References1
• ompt_callback_device_initialize_t callback type, see Section 4.5.2.19.2

• ompt_callback_device_finalize_t callback type, see Section 4.5.2.20.3

• ompt_get_device_num_procs runtime entry point, see Section 4.6.2.1.4

• ompt_get_device_time runtime entry point, see Section 4.6.2.2.5

• ompt_translate_time runtime entry point, see Section 4.6.2.3.6

• ompt_set_trace_ompt runtime entry point, see Section 4.6.2.4.7

• ompt_set_trace_native runtime entry point, see Section 4.6.2.5.8

• ompt_start_trace runtime entry point, see Section 4.6.2.6.9

• ompt_pause_trace runtime entry point, see Section 4.6.2.7.10

• ompt_flush_trace runtime entry point, see Section 4.6.2.8.11

• ompt_stop_trace runtime entry point, see Section 4.6.2.9.12

• ompt_advance_buffer_cursor runtime entry point, see Section 4.6.2.10.13

• ompt_get_record_type runtime entry point, see Section 4.6.2.11.14

• ompt_get_record_ompt runtime entry point, see Section 4.6.2.12.15

• ompt_get_record_native runtime entry point, see Section 4.6.2.13.16

• ompt_get_record_abstract runtime entry point, see Section 4.6.2.14.17

4.3 Finalizing a First-Party Tool18

If the OMPT interface state is active, the tool finalizer, which has type signature19
ompt_finalize_t and is specified by the finalize field in the20
ompt_start_tool_result_t structure returned from the ompt_start_tool function, is21
called when the OpenMP implementation shuts down.22

Cross References23
• ompt_finalize_t callback type, see Section 4.5.1.224

484 OpenMP API – Version 5.1 November 2020

4.4 OMPT Data Types1

The C/C++ header file (omp-tools.h) provides the definitions of the types that are specified2
throughout this subsection.3

4.4.1 Tool Initialization and Finalization4

Summary5
A tool’s implementation of ompt_start_tool returns a pointer to an6
ompt_start_tool_result_t structure, which contains pointers to the tool’s initialization7
and finalization callbacks as well as an ompt_data_t object for use by the tool.8

Format9
C / C++

typedef struct ompt_start_tool_result_t {10
ompt_initialize_t initialize;11
ompt_finalize_t finalize;12
ompt_data_t tool_data;13

} ompt_start_tool_result_t;14

C / C++

Restrictions15
Restrictions to the ompt_start_tool_result_t type are as follows:16

• The initialize and finalize callback pointer values in an ompt_start_tool_result_t17
structure that ompt_start_tool returns must be non-null.18

Cross References19
• ompt_start_tool function, see Section 4.2.1.20

• ompt_data_t type, see Section 4.4.4.4.21

• ompt_initialize_t callback type, see Section 4.5.1.1.22

• ompt_finalize_t callback type, see Section 4.5.1.2.23

4.4.2 Callbacks24

Summary25
The ompt_callbacks_t enumeration type indicates the integer codes used to identify OpenMP26
callbacks when registering or querying them.27

CHAPTER 4. OMPT INTERFACE 485

Format1
C / C++

typedef enum ompt_callbacks_t {2
ompt_callback_thread_begin = 1,3
ompt_callback_thread_end = 2,4
ompt_callback_parallel_begin = 3,5
ompt_callback_parallel_end = 4,6
ompt_callback_task_create = 5,7
ompt_callback_task_schedule = 6,8
ompt_callback_implicit_task = 7,9
ompt_callback_target = 8,10
ompt_callback_target_data_op = 9,11
ompt_callback_target_submit = 10,12
ompt_callback_control_tool = 11,13
ompt_callback_device_initialize = 12,14
ompt_callback_device_finalize = 13,15
ompt_callback_device_load = 14,16
ompt_callback_device_unload = 15,17
ompt_callback_sync_region_wait = 16,18
ompt_callback_mutex_released = 17,19
ompt_callback_dependences = 18,20
ompt_callback_task_dependence = 19,21
ompt_callback_work = 20,22
ompt_callback_masked = 21,23
ompt_callback_master /*(deprecated)*/ = ompt_callback_masked,24
ompt_callback_target_map = 22,25
ompt_callback_sync_region = 23,26
ompt_callback_lock_init = 24,27
ompt_callback_lock_destroy = 25,28
ompt_callback_mutex_acquire = 26,29
ompt_callback_mutex_acquired = 27,30
ompt_callback_nest_lock = 28,31
ompt_callback_flush = 29,32
ompt_callback_cancel = 30,33
ompt_callback_reduction = 31,34
ompt_callback_dispatch = 32,35
ompt_callback_target_emi = 33,36
ompt_callback_target_data_op_emi = 34,37
ompt_callback_target_submit_emi = 35,38
ompt_callback_target_map_emi = 36,39
ompt_callback_error = 3740

} ompt_callbacks_t;41

C / C++

486 OpenMP API – Version 5.1 November 2020

4.4.3 Tracing1

OpenMP provides type definitions that support tracing with OMPT.2

4.4.3.1 Record Type3

Summary4
The ompt_record_t enumeration type indicates the integer codes used to identify OpenMP5
trace record formats.6

Format7
C / C++

typedef enum ompt_record_t {8
ompt_record_ompt = 1,9
ompt_record_native = 2,10
ompt_record_invalid = 311

} ompt_record_t;12

C / C++

4.4.3.2 Native Record Kind13

Summary14
The ompt_record_native_t enumeration type indicates the integer codes used to identify15
OpenMP native trace record contents.16

Format17
C / C++

typedef enum ompt_record_native_t {18
ompt_record_native_info = 1,19
ompt_record_native_event = 220

} ompt_record_native_t;21

C / C++

4.4.3.3 Native Record Abstract Type22

Summary23
The ompt_record_abstract_t type provides an abstract trace record format that is used to24
summarize native device trace records.25

CHAPTER 4. OMPT INTERFACE 487

Format1
C / C++

typedef struct ompt_record_abstract_t {2
ompt_record_native_t rclass;3
const char *type;4
ompt_device_time_t start_time;5
ompt_device_time_t end_time;6
ompt_hwid_t hwid;7

} ompt_record_abstract_t;8

C / C++

Description9
An ompt_record_abstract_t record contains information that a tool can use to process a10
native record that it may not fully understand. The rclass field indicates that the record is11
informational or that it represents an event; this information can help a tool determine how to12
present the record. The record type field points to a statically-allocated, immutable character string13
that provides a meaningful name that a tool can use to describe the event to a user. The start_time14
and end_time fields are used to place an event in time. The times are relative to the device clock. If15
an event does not have an associated start_time (end_time), the value of the start_time (end_time)16
field is ompt_time_none. The hardware identifier field, hwid, indicates the location on the17
device where the event occurred. A hwid may represent a hardware abstraction such as a core or a18
hardware thread identifier. The meaning of a hwid value for a device is implementation defined. If19
no hardware abstraction is associated with the record then the value of hwid is ompt_hwid_none.20

4.4.3.4 Record Type21

Summary22
The ompt_record_ompt_t type provides a standard complete trace record format.23

Format24
C / C++

typedef struct ompt_record_ompt_t {25
ompt_callbacks_t type;26
ompt_device_time_t time;27
ompt_id_t thread_id;28
ompt_id_t target_id;29
union {30

ompt_record_thread_begin_t thread_begin;31
ompt_record_parallel_begin_t parallel_begin;32
ompt_record_parallel_end_t parallel_end;33
ompt_record_work_t work;34
ompt_record_dispatch_t dispatch;35
ompt_record_task_create_t task_create;36

488 OpenMP API – Version 5.1 November 2020

ompt_record_dependences_t dependences;1
ompt_record_task_dependence_t task_dependence;2
ompt_record_task_schedule_t task_schedule;3
ompt_record_implicit_task_t implicit_task;4
ompt_record_masked_t masked;5
ompt_record_sync_region_t sync_region;6
ompt_record_mutex_acquire_t mutex_acquire;7
ompt_record_mutex_t mutex;8
ompt_record_nest_lock_t nest_lock;9
ompt_record_flush_t flush;10
ompt_record_cancel_t cancel;11
ompt_record_target_t target;12
ompt_record_target_data_op_t target_data_op;13
ompt_record_target_map_t target_map;14
ompt_record_target_kernel_t target_kernel;15
ompt_record_control_tool_t control_tool;16
ompt_record_error_t error;17

} record;18
} ompt_record_ompt_t;19

C / C++

Description20
The field type specifies the type of record provided by this structure. According to the type, event21
specific information is stored in the matching record entry.22

Restrictions23
Restrictions to the ompt_record_ompt_t type are as follows:24

• If type is set to ompt_callback_thread_end_t then the value of record is undefined.25

4.4.4 Miscellaneous Type Definitions26

This section describes miscellaneous types and enumerations used by the tool interface.27

4.4.4.1 ompt_callback_t28

Summary29
Pointers to tool callback functions with different type signatures are passed to the30
ompt_set_callback runtime entry point and returned by the ompt_get_callback31
runtime entry point. For convenience, these runtime entry points expect all type signatures to be32
cast to a dummy type ompt_callback_t.33

CHAPTER 4. OMPT INTERFACE 489

Format1
C / C++

typedef void (*ompt_callback_t) (void);2

C / C++

4.4.4.2 ompt_set_result_t3

Summary4
The ompt_set_result_t enumeration type corresponds to values that the5
ompt_set_callback, ompt_set_trace_ompt and ompt_set_trace_native6
runtime entry points return.7

Format8
C / C++

typedef enum ompt_set_result_t {9
ompt_set_error = 0,10
ompt_set_never = 1,11
ompt_set_impossible = 2,12
ompt_set_sometimes = 3,13
ompt_set_sometimes_paired = 4,14
ompt_set_always = 515

} ompt_set_result_t;16

C / C++

Description17
Values of ompt_set_result_t, may indicate several possible outcomes. The18
omp_set_error value indicates that the associated call failed. Otherwise, the value indicates19
when an event may occur and, when appropriate, dispatching a callback event leads to the20
invocation of the callback. The ompt_set_never value indicates that the event will never occur21
or that the callback will never be invoked at runtime. The ompt_set_impossible value22
indicates that the event may occur but that tracing of it is not possible. The23
ompt_set_sometimes value indicates that the event may occur and, for an24
implementation-defined subset of associated event occurrences, will be traced or the callback will25
be invoked at runtime. The ompt_set_sometimes_paired value indicates the same result as26
ompt_set_sometimes and, in addition, that a callback with an endpoint value of27
ompt_scope_begin will be invoked if and only if the same callback with an endpoint value of28
ompt_scope_end will also be invoked sometime in the future. The ompt_set_always value29
indicates that, whenever an associated event occurs, it will be traced or the callback will be invoked.30

490 OpenMP API – Version 5.1 November 2020

Cross References1
• Monitoring activity on the host with OMPT, see Section 4.2.4.2

• Tracing activity on target devices with OMPT, see Section 4.2.5.3

• ompt_set_callback runtime entry point, see Section 4.6.1.3.4

• ompt_set_trace_ompt runtime entry point, see Section 4.6.2.4.5

• ompt_set_trace_native runtime entry point, see Section 4.6.2.5.6

4.4.4.3 ompt_id_t7

Summary8
The ompt_id_t type is used to provide various identifiers to tools.9

Format10
C / C++

typedef uint64_t ompt_id_t;11

C / C++

Description12
When tracing asynchronous activity on devices, identifiers enable tools to correlate target regions13
and operations that the host initiates with associated activities on a target device. In addition,14
OMPT provides identifiers to refer to parallel regions and tasks that execute on a device. These15
various identifiers are of type ompt_id_t.16

ompt_id_none is defined as an instance of type ompt_id_t with the value 0.17

Restrictions18
Restrictions to the ompt_id_t type are as follows:19

• Identifiers created on each device must be unique from the time an OpenMP implementation is20
initialized until it is shut down. Identifiers for each target region and target data operation21
instance that the host device initiates must be unique over time on the host. Identifiers for parallel22
and task region instances that execute on a device must be unique over time within that device.23

CHAPTER 4. OMPT INTERFACE 491

4.4.4.4 ompt_data_t1

Summary2
The ompt_data_t type represents data associated with threads and with parallel and task regions.3

Format4
C / C++

typedef union ompt_data_t {5
uint64_t value;6
void *ptr;7

} ompt_data_t;8

C / C++

Description9
The ompt_data_t type represents data that is reserved for tool use and that is related to a thread10
or to a parallel or task region. When an OpenMP implementation creates a thread or an instance of11
a parallel, teams, task, or target region, it initializes the associated ompt_data_t object with12
the value ompt_data_none, which is an instance of the type with the data and pointer fields13
equal to 0.14

4.4.4.5 ompt_device_t15

Summary16
The ompt_device_t opaque object type represents a device.17

Format18
C / C++

typedef void ompt_device_t;19

C / C++

4.4.4.6 ompt_device_time_t20

Summary21
The ompt_device_time_t type represents raw device time values.22

Format23
C / C++

typedef uint64_t ompt_device_time_t;24

C / C++

492 OpenMP API – Version 5.1 November 2020

Description1
The ompt_device_time_t opaque object type represents raw device time values.2
ompt_time_none refers to an unknown or unspecified time and is defined as an instance of type3
ompt_device_time_t with the value 0.4

4.4.4.7 ompt_buffer_t5

Summary6
The ompt_buffer_t opaque object type is a handle for a target buffer.7

Format8
C / C++

typedef void ompt_buffer_t;9

C / C++

4.4.4.8 ompt_buffer_cursor_t10

Summary11
The ompt_buffer_cursor_t opaque type is a handle for a position in a target buffer.12

Format13
C / C++

typedef uint64_t ompt_buffer_cursor_t;14

C / C++

4.4.4.9 ompt_dependence_t15

Summary16
The ompt_dependence_t type represents a task dependence.17

Format18
C / C++

typedef struct ompt_dependence_t {19
ompt_data_t variable;20
ompt_dependence_type_t dependence_type;21

} ompt_dependence_t;22

C / C++

CHAPTER 4. OMPT INTERFACE 493

Description1
The ompt_dependence_t type is a structure that holds information about a depend clause. For2
task dependences, the variable field points to the storage location of the dependence. For doacross3
dependences, the variable field contains the value of a vector element that describes the4
dependence. The dependence_type field indicates the type of the dependence.5

Cross References6
• ompt_dependence_type_t type, see Section 4.4.4.23.7

4.4.4.10 ompt_thread_t8

Summary9
The ompt_thread_t enumeration type defines the valid thread type values.10

Format11
C / C++

typedef enum ompt_thread_t {12
ompt_thread_initial = 1,13
ompt_thread_worker = 2,14
ompt_thread_other = 3,15
ompt_thread_unknown = 416

} ompt_thread_t;17

C / C++

Description18
Any initial thread has thread type ompt_thread_initial. All OpenMP threads that are not19
initial threads have thread type ompt_thread_worker. A thread that an OpenMP20
implementation uses but that does not execute user code has thread type ompt_thread_other.21
Any thread that is created outside an OpenMP implementation and that is not an initial thread has22
thread type ompt_thread_unknown.23

4.4.4.11 ompt_scope_endpoint_t24

Summary25
The ompt_scope_endpoint_t enumeration type defines valid scope endpoint values.26

Format27
C / C++

typedef enum ompt_scope_endpoint_t {28
ompt_scope_begin = 1,29
ompt_scope_end = 2,30
ompt_scope_beginend = 331

} ompt_scope_endpoint_t;32

C / C++

494 OpenMP API – Version 5.1 November 2020

4.4.4.12 ompt_dispatch_t1

Summary2
The ompt_dispatch_t enumeration type defines the valid dispatch kind values.3

Format4
C / C++

typedef enum ompt_dispatch_t {5
ompt_dispatch_iteration = 1,6
ompt_dispatch_section = 27

} ompt_dispatch_t;8

C / C++

4.4.4.13 ompt_sync_region_t9

Summary10
The ompt_sync_region_t enumeration type defines the valid synchronization region kind11
values.12

Format13
C / C++

typedef enum ompt_sync_region_t {14
ompt_sync_region_barrier = 1, // deprecated15
ompt_sync_region_barrier_implicit = 2, // deprecated16
ompt_sync_region_barrier_explicit = 3,17
ompt_sync_region_barrier_implementation = 4,18
ompt_sync_region_taskwait = 5,19
ompt_sync_region_taskgroup = 6,20
ompt_sync_region_reduction = 7,21
ompt_sync_region_barrier_implicit_workshare = 8,22
ompt_sync_region_barrier_implicit_parallel = 9,23
ompt_sync_region_barrier_teams = 1024

} ompt_sync_region_t;25

C / C++

CHAPTER 4. OMPT INTERFACE 495

4.4.4.14 ompt_target_data_op_t1

Summary2
The ompt_target_data_op_t enumeration type defines the valid target data operation values.3

Format4
C / C++

typedef enum ompt_target_data_op_t {5
ompt_target_data_alloc = 1,6
ompt_target_data_transfer_to_device = 2,7
ompt_target_data_transfer_from_device = 3,8
ompt_target_data_delete = 4,9
ompt_target_data_associate = 5,10
ompt_target_data_disassociate = 6,11
ompt_target_data_alloc_async = 17,12
ompt_target_data_transfer_to_device_async = 18,13
ompt_target_data_transfer_from_device_async = 19,14
ompt_target_data_delete_async = 2015

} ompt_target_data_op_t;16

C / C++

4.4.4.15 ompt_work_t17

Summary18
The ompt_work_t enumeration type defines the valid work type values.19

Format20
C / C++

typedef enum ompt_work_t {21
ompt_work_loop = 1,22
ompt_work_sections = 2,23
ompt_work_single_executor = 3,24
ompt_work_single_other = 4,25
ompt_work_workshare = 5,26
ompt_work_distribute = 6,27
ompt_work_taskloop = 7,28
ompt_work_scope = 829

} ompt_work_t;30

C / C++

496 OpenMP API – Version 5.1 November 2020

4.4.4.16 ompt_mutex_t1

Summary2
The ompt_mutex_t enumeration type defines the valid mutex kind values.3

Format4
C / C++

typedef enum ompt_mutex_t {5
ompt_mutex_lock = 1,6
ompt_mutex_test_lock = 2,7
ompt_mutex_nest_lock = 3,8
ompt_mutex_test_nest_lock = 4,9
ompt_mutex_critical = 5,10
ompt_mutex_atomic = 6,11
ompt_mutex_ordered = 712

} ompt_mutex_t;13

C / C++

4.4.4.17 ompt_native_mon_flag_t14

Summary15
The ompt_native_mon_flag_t enumeration type defines the valid native monitoring flag16
values.17

Format18
C / C++

typedef enum ompt_native_mon_flag_t {19
ompt_native_data_motion_explicit = 0x01,20
ompt_native_data_motion_implicit = 0x02,21
ompt_native_kernel_invocation = 0x04,22
ompt_native_kernel_execution = 0x08,23
ompt_native_driver = 0x10,24
ompt_native_runtime = 0x20,25
ompt_native_overhead = 0x40,26
ompt_native_idleness = 0x8027

} ompt_native_mon_flag_t;28

C / C++

CHAPTER 4. OMPT INTERFACE 497

4.4.4.18 ompt_task_flag_t1

Summary2
The ompt_task_flag_t enumeration type defines valid task types.3

Format4
C / C++

typedef enum ompt_task_flag_t {5
ompt_task_initial = 0x00000001,6
ompt_task_implicit = 0x00000002,7
ompt_task_explicit = 0x00000004,8
ompt_task_target = 0x00000008,9
ompt_task_taskwait = 0x00000010,10
ompt_task_undeferred = 0x08000000,11
ompt_task_untied = 0x10000000,12
ompt_task_final = 0x20000000,13
ompt_task_mergeable = 0x40000000,14
ompt_task_merged = 0x8000000015

} ompt_task_flag_t;16

C / C++

Description17
The ompt_task_flag_t enumeration type defines valid task type values. The least significant18
byte provides information about the general classification of the task. The other bits represent19
properties of the task.20

4.4.4.19 ompt_task_status_t21

Summary22
The ompt_task_status_t enumeration type indicates the reason that a task was switched23
when it reached a task scheduling point.24

Format25
C / C++

typedef enum ompt_task_status_t {26
ompt_task_complete = 1,27
ompt_task_yield = 2,28
ompt_task_cancel = 3,29
ompt_task_detach = 4,30
ompt_task_early_fulfill = 5,31
ompt_task_late_fulfill = 6,32
ompt_task_switch = 7,33
ompt_taskwait_complete = 834

} ompt_task_status_t;35

C / C++

498 OpenMP API – Version 5.1 November 2020

Description1
The value ompt_task_complete of the ompt_task_status_t type indicates that the task2
that encountered the task scheduling point completed execution of the associated structured block3
and an associated allow-completion event was fulfilled. The value ompt_task_yield indicates4
that the task encountered a taskyield construct. The value ompt_task_cancel indicates5
that the task was canceled when it encountered an active cancellation point. The value6
ompt_task_detach indicates that a task for which the detach clause was specified completed7
execution of the associated structured block and is waiting for an allow-completion event to be8
fulfilled. The value ompt_task_early_fulfill indicates that the allow-completion event of9
the task was fulfilled before the task completed execution of the associated structured block. The10
value ompt_task_late_fulfill indicates that the allow-completion event of the task was11
fulfilled after the task completed execution of the associated structured block. The value12
ompt_taskwait_complete indicates completion of the dependent task that results from a13
taskwait construct with one or more depend clauses. The value ompt_task_switch is14
used for all other cases that a task was switched.15

4.4.4.20 ompt_target_t16

Summary17
The ompt_target_t enumeration type defines the valid target type values.18

Format19
C / C++

typedef enum ompt_target_t {20
ompt_target = 1,21
ompt_target_enter_data = 2,22
ompt_target_exit_data = 3,23
ompt_target_update = 4,24

25
ompt_target_nowait = 9,26
ompt_target_enter_data_nowait = 10,27
ompt_target_exit_data_nowait = 11,28
ompt_target_update_nowait = 1229

} ompt_target_t;30

C / C++

CHAPTER 4. OMPT INTERFACE 499

4.4.4.21 ompt_parallel_flag_t1

Summary2
The ompt_parallel_flag_t enumeration type defines valid invoker values.3

Format4
C / C++

typedef enum ompt_parallel_flag_t {5
ompt_parallel_invoker_program = 0x00000001,6
ompt_parallel_invoker_runtime = 0x00000002,7
ompt_parallel_league = 0x40000000,8
ompt_parallel_team = 0x800000009

} ompt_parallel_flag_t;10

C / C++

Description11
The ompt_parallel_flag_t enumeration type defines valid invoker values, which indicate12
how an outlined function is invoked.13

The value ompt_parallel_invoker_program indicates that the outlined function14
associated with implicit tasks for the region is invoked directly by the application on the primary15
thread for a parallel region.16

The value ompt_parallel_invoker_runtime indicates that the outlined function17
associated with implicit tasks for the region is invoked by the runtime on the primary thread for a18
parallel region.19

The value ompt_parallel_league indicates that the callback is invoked due to the creation of20
a league of teams by a teams construct.21

The value ompt_parallel_team indicates that the callback is invoked due to the creation of a22
team of threads by a parallel construct.23

500 OpenMP API – Version 5.1 November 2020

4.4.4.22 ompt_target_map_flag_t1

Summary2
The ompt_target_map_flag_t enumeration type defines the valid target map flag values.3

Format4
C / C++

typedef enum ompt_target_map_flag_t {5
ompt_target_map_flag_to = 0x01,6
ompt_target_map_flag_from = 0x02,7
ompt_target_map_flag_alloc = 0x04,8
ompt_target_map_flag_release = 0x08,9
ompt_target_map_flag_delete = 0x10,10
ompt_target_map_flag_implicit = 0x2011

} ompt_target_map_flag_t;12

C / C++

4.4.4.23 ompt_dependence_type_t13

Summary14
The ompt_dependence_type_t enumeration type defines the valid task dependence type15
values.16

Format17
C / C++

typedef enum ompt_dependence_type_t {18
ompt_dependence_type_in = 1,19
ompt_dependence_type_out = 2,20
ompt_dependence_type_inout = 3,21
ompt_dependence_type_mutexinoutset = 4,22
ompt_dependence_type_source = 5,23
ompt_dependence_type_sink = 6,24
ompt_dependence_type_inoutset = 725

} ompt_dependence_type_t;26

C / C++

CHAPTER 4. OMPT INTERFACE 501

4.4.4.24 ompt_severity_t1

Summary2
The ompt_severity_t enumeration type defines the valid severity values.3

Format4
C / C++

typedef enum ompt_severity_t {5
ompt_warning = 1,6
ompt_fatal = 27

} ompt_severity_t;8

C / C++

4.4.4.25 ompt_cancel_flag_t9

Summary10
The ompt_cancel_flag_t enumeration type defines the valid cancel flag values.11

Format12
C / C++

typedef enum ompt_cancel_flag_t {13
ompt_cancel_parallel = 0x01,14
ompt_cancel_sections = 0x02,15
ompt_cancel_loop = 0x04,16
ompt_cancel_taskgroup = 0x08,17
ompt_cancel_activated = 0x10,18
ompt_cancel_detected = 0x20,19
ompt_cancel_discarded_task = 0x4020

} ompt_cancel_flag_t;21

C / C++

4.4.4.26 ompt_hwid_t22

Summary23
The ompt_hwid_t opaque type is a handle for a hardware identifier for a target device.24

Format25
C / C++

typedef uint64_t ompt_hwid_t;26

C / C++

502 OpenMP API – Version 5.1 November 2020

Description1
The ompt_hwid_t opaque type is a handle for a hardware identifier for a target device.2
ompt_hwid_none is an instance of the type that refers to an unknown or unspecified hardware3
identifier and that has the value 0. If no hwid is associated with an4
ompt_record_abstract_t then the value of hwid is ompt_hwid_none.5

Cross References6
• ompt_record_abstract_t type, see Section 4.4.3.3.7

4.4.4.27 ompt_state_t8

Summary9
If the OMPT interface is in the active state then an OpenMP implementation must maintain thread10
state information for each thread. The thread state maintained is an approximation of the11
instantaneous state of a thread.12

Format13
C / C++

A thread state must be one of the values of the enumeration type ompt_state_t or an14
implementation-defined state value of 512 or higher.15

typedef enum ompt_state_t {16
ompt_state_work_serial = 0x000,17
ompt_state_work_parallel = 0x001,18
ompt_state_work_reduction = 0x002,19

20
ompt_state_wait_barrier = 0x010, //21
deprecated22

ompt_state_wait_barrier_implicit_parallel = 0x011,23
ompt_state_wait_barrier_implicit_workshare = 0x012,24
ompt_state_wait_barrier_implicit = 0x013, //25
deprecated26

ompt_state_wait_barrier_explicit = 0x014,27
ompt_state_wait_barrier_implementation = 0x015,28
ompt_state_wait_barrier_teams = 0x016,29

30
ompt_state_wait_taskwait = 0x020,31
ompt_state_wait_taskgroup = 0x021,32

33
ompt_state_wait_mutex = 0x040,34
ompt_state_wait_lock = 0x041,35
ompt_state_wait_critical = 0x042,36
ompt_state_wait_atomic = 0x043,37
ompt_state_wait_ordered = 0x044,38

CHAPTER 4. OMPT INTERFACE 503

1
ompt_state_wait_target = 0x080,2
ompt_state_wait_target_map = 0x081,3
ompt_state_wait_target_update = 0x082,4

5
ompt_state_idle = 0x100,6
ompt_state_overhead = 0x101,7
ompt_state_undefined = 0x1028

} ompt_state_t;9

C / C++

Description10
A tool can query the OpenMP state of a thread at any time. If a tool queries the state of a thread that11
is not associated with OpenMP then the implementation reports the state as12
ompt_state_undefined.13

The value ompt_state_work_serial indicates that the thread is executing code outside all14
parallel regions.15

The value ompt_state_work_parallel indicates that the thread is executing code within the16
scope of a parallel region.17

The value ompt_state_work_reduction indicates that the thread is combining partial18
reduction results from threads in its team. An OpenMP implementation may never report a thread19
in this state; a thread that is combining partial reduction results may have its state reported as20
ompt_state_work_parallel or ompt_state_overhead.21

The value ompt_state_wait_barrier_implicit_parallel indicates that the thread is22
waiting at the implicit barrier at the end of a parallel region.23

The value ompt_state_wait_barrier_implicit_workshare indicates that the thread24
is waiting at an implicit barrier at the end of a worksharing construct.25

The value ompt_state_wait_barrier_explicit indicates that the thread is waiting in an26
explicit barrier region.27

The value ompt_state_wait_barrier_implementation indicates that the thread is28
waiting in a barrier not required by the OpenMP standard but introduced by an OpenMP29
implementation.30

The value ompt_state_wait_barrier_teams indicates that the thread is waiting at a31
barrier at the end of a teams region.32

The value ompt_state_wait_taskwait indicates that the thread is waiting at a taskwait33
construct.34

The value ompt_state_wait_taskgroup indicates that the thread is waiting at the end of a35
taskgroup construct.36

504 OpenMP API – Version 5.1 November 2020

The value ompt_state_wait_mutex indicates that the thread is waiting for a mutex of an1
unspecified type.2

The value ompt_state_wait_lock indicates that the thread is waiting for a lock or nestable3
lock.4

The value ompt_state_wait_critical indicates that the thread is waiting to enter a5
critical region.6

The value ompt_state_wait_atomic indicates that the thread is waiting to enter an atomic7
region.8

The value ompt_state_wait_ordered indicates that the thread is waiting to enter an9
ordered region.10

The value ompt_state_wait_target indicates that the thread is waiting for a target11
region to complete.12

The value ompt_state_wait_target_map indicates that the thread is waiting for a target13
data mapping operation to complete. An implementation may report14
ompt_state_wait_target for target data constructs.15

The value ompt_state_wait_target_update indicates that the thread is waiting for a16
target update operation to complete. An implementation may report17
ompt_state_wait_target for target update constructs.18

The value ompt_state_idle indicates that the thread is idle, that is, it is not part of an19
OpenMP team.20

The value ompt_state_overhead indicates that the thread is in the overhead state at any point21
while executing within the OpenMP runtime, except while waiting at a synchronization point.22

The value ompt_state_undefined indicates that the native thread is not created by the23
OpenMP implementation.24

4.4.4.28 ompt_frame_t25

Summary26
The ompt_frame_t type describes procedure frame information for an OpenMP task.27

Format28
C / C++

typedef struct ompt_frame_t {29
ompt_data_t exit_frame;30
ompt_data_t enter_frame;31
int exit_frame_flags;32
int enter_frame_flags;33

} ompt_frame_t;34

C / C++

CHAPTER 4. OMPT INTERFACE 505

Description1
Each ompt_frame_t object is associated with the task to which the procedure frames belong.2
Each non-merged initial, implicit, explicit, or target task with one or more frames on the stack of a3
native thread has an associated ompt_frame_t object.4

The exit_frame field of an ompt_frame_t object contains information to identify the first5
procedure frame executing the task region. The exit_frame for the ompt_frame_t object6
associated with the initial task that is not nested inside any OpenMP construct is NULL.7

The enter_frame field of an ompt_frame_t object contains information to identify the latest still8
active procedure frame executing the task region before entering the OpenMP runtime9
implementation or before executing a different task. If a task with frames on the stack has not been10
suspended, the value of enter_frame for the ompt_frame_t object associated with the task may11
contain NULL.12

For exit_frame, the exit_frame_flags and, for enter_frame, the enter_frame_flags field indicates that13
the provided frame information points to a runtime or an application frame address. The same14
fields also specify the kind of information that is provided to identify the frame, These fields are a15
disjunction of values in the ompt_frame_flag_t enumeration type.16

The lifetime of an ompt_frame_t object begins when a task is created and ends when the task is17
destroyed. Tools should not assume that a frame structure remains at a constant location in memory18
throughout the lifetime of the task. A pointer to an ompt_frame_t object is passed to some19
callbacks; a pointer to the ompt_frame_t object of a task can also be retrieved by a tool at any20
time, including in a signal handler, by invoking the ompt_get_task_info runtime entry point21
(described in Section 4.6.1.14). A pointer to an ompt_frame_t object that a tool retrieved is22
valid as long as the tool does not pass back control to the OpenMP implementation.23

24

Note – A monitoring tool that uses asynchronous sampling can observe values of exit_frame and25
enter_frame at inconvenient times. Tools must be prepared to handle ompt_frame_t objects26
observed just prior to when their field values will be set or cleared.27

28

4.4.4.29 ompt_frame_flag_t29

Summary30
The ompt_frame_flag_t enumeration type defines valid frame information flags.31

506 OpenMP API – Version 5.1 November 2020

Format1
C / C++

typedef enum ompt_frame_flag_t {2
ompt_frame_runtime = 0x00,3
ompt_frame_application = 0x01,4
ompt_frame_cfa = 0x10,5
ompt_frame_framepointer = 0x20,6
ompt_frame_stackaddress = 0x307

} ompt_frame_flag_t;8

C / C++

Description9
The value ompt_frame_runtime of the ompt_frame_flag_t type indicates that a frame10
address is a procedure frame in the OpenMP runtime implementation. The value11
ompt_frame_application of the ompt_frame_flag_t type indicates that a frame12
address is a procedure frame in the OpenMP application.13

Higher order bits indicate the kind of provided information that is unique for the particular frame14
pointer. The value ompt_frame_cfa indicates that a frame address specifies a canonical frame15
address. The value ompt_frame_framepointer indicates that a frame address provides the16
value of the frame pointer register. The value ompt_frame_stackaddress indicates that a17
frame address specifies a pointer address that is contained in the current stack frame.18

4.4.4.30 ompt_wait_id_t19

Summary20
The ompt_wait_id_t type describes wait identifiers for an OpenMP thread.21

Format22
C / C++

typedef uint64_t ompt_wait_id_t;23

C / C++

Description24
Each thread maintains a wait identifier of type ompt_wait_id_t. When a task that a thread25
executes is waiting for mutual exclusion, the wait identifier of the thread indicates the reason that26
the thread is waiting. A wait identifier may represent a critical section name, a lock, a program27
variable accessed in an atomic region, or a synchronization object that is internal to an OpenMP28
implementation. When a thread is not in a wait state then the value of the wait identifier of the29
thread is undefined.30

ompt_wait_id_none is defined as an instance of type ompt_wait_id_t with the value 0.31

CHAPTER 4. OMPT INTERFACE 507

4.5 OMPT Tool Callback Signatures and Trace1

Records2

The C/C++ header file (omp-tools.h) provides the definitions of the types that are specified3
throughout this subsection. Restrictions to the OpenMP tool callbacks are as follows:4

Restrictions5
• Tool callbacks may not use OpenMP directives or call any runtime library routines described in6
Section 3.7

• Tool callbacks must exit by either returning to the caller or aborting.8

4.5.1 Initialization and Finalization Callback Signature9

4.5.1.1 ompt_initialize_t10

Summary11
A callback with type signature ompt_initialize_t initializes use of the OMPT interface.12

Format13
C / C++

typedef int (*ompt_initialize_t) (14
ompt_function_lookup_t lookup,15
int initial_device_num,16
ompt_data_t *tool_data17

);18

C / C++

Description19
To use the OMPT interface, an implementation of ompt_start_tool must return a non-null20
pointer to an ompt_start_tool_result_t structure that contains a pointer to a tool21
initializer function with type signature ompt_initialize_t. An OpenMP implementation will22
call the initializer after fully initializing itself but before beginning execution of any OpenMP23
construct or runtime library routine.24

The initializer returns a non-zero value if it succeeds; otherwise the OMPT interface state changes25
to inactive as described in Section 4.2.3.26

Description of Arguments27
The lookup argument is a callback to an OpenMP runtime routine that must be used to obtain a28
pointer to each runtime entry point in the OMPT interface. The initial_device_num argument29
provides the value of omp_get_initial_device(). The tool_data argument is a pointer to30
the tool_data field in the ompt_start_tool_result_t structure that ompt_start_tool31
returned.32

508 OpenMP API – Version 5.1 November 2020

Cross References1
• omp_get_initial_device routine, see Section 3.7.7.2

• ompt_start_tool function, see Section 4.2.1.3

• ompt_start_tool_result_t type, see Section 4.4.1.4

• ompt_data_t type, see Section 4.4.4.4.5

• ompt_function_lookup_t type, see Section 4.6.3.6

4.5.1.2 ompt_finalize_t7

Summary8
A tool implements a finalizer with the type signature ompt_finalize_t to finalize its use of the9
OMPT interface.10

Format11
C / C++

typedef void (*ompt_finalize_t) (12
ompt_data_t *tool_data13

);14

C / C++

Description15
To use the OMPT interface, an implementation of ompt_start_tool must return a non-null16
pointer to an ompt_start_tool_result_t structure that contains a non-null pointer to a tool17
finalizer with type signature ompt_finalize_t. An OpenMP implementation must call the tool18
finalizer after the last OMPT event as the OpenMP implementation shuts down.19

Description of Arguments20
The tool_data argument is a pointer to the tool_data field in the21
ompt_start_tool_result_t structure returned by ompt_start_tool.22

Cross References23
• ompt_start_tool function, see Section 4.2.1.24

• ompt_start_tool_result_t type, see Section 4.4.1.25

• ompt_data_t type, see Section 4.4.4.4.26

CHAPTER 4. OMPT INTERFACE 509

4.5.2 Event Callback Signatures and Trace Records1

This section describes the signatures of tool callback functions that an OMPT tool may register and2
that are called during runtime of an OpenMP program. An implementation may also provide a trace3
of events per device. Along with the callbacks, the following defines standard trace records. For the4
trace records, tool data arguments are replaced by an ID, which must be initialized by the OpenMP5
implementation. Each of parallel_id, task_id, and thread_id must be unique per target region. Tool6
implementations of callbacks are not required to be async signal safe.7

Cross References8
• ompt_id_t type, see Section 4.4.4.3.9

• ompt_data_t type, see Section 4.4.4.4.10

4.5.2.1 ompt_callback_thread_begin_t11

Summary12
The ompt_callback_thread_begin_t type is used for callbacks that are dispatched when13
native threads are created.14

Format15
C / C++

typedef void (*ompt_callback_thread_begin_t) (16
ompt_thread_t thread_type,17
ompt_data_t *thread_data18

);19

C / C++

Trace Record20
C / C++

typedef struct ompt_record_thread_begin_t {21
ompt_thread_t thread_type;22

} ompt_record_thread_begin_t;23

C / C++

Description of Arguments24
The thread_type argument indicates the type of the new thread: initial, worker, or other. The25
binding of the thread_data argument is the new thread.26

510 OpenMP API – Version 5.1 November 2020

Cross References1
• parallel construct, see Section 2.6.2

• teams construct, see Section 2.7.3

• Initial task, see Section 2.12.5.4

• ompt_data_t type, see Section 4.4.4.4.5

• ompt_thread_t type, see Section 4.4.4.10.6

4.5.2.2 ompt_callback_thread_end_t7

Summary8
The ompt_callback_thread_end_t type is used for callbacks that are dispatched when9
native threads are destroyed.10

Format11
C / C++

typedef void (*ompt_callback_thread_end_t) (12
ompt_data_t *thread_data13

);14

C / C++

Description of Arguments15
The binding of the thread_data argument is the thread that will be destroyed.16

Cross References17
• parallel construct, see Section 2.6.18

• teams construct, see Section 2.7.19

• Initial task, see Section 2.12.5.20

• ompt_record_ompt_t type, see Section 4.4.3.4.21

• ompt_data_t type, see Section 4.4.4.4.22

4.5.2.3 ompt_callback_parallel_begin_t23

Summary24
The ompt_callback_parallel_begin_t type is used for callbacks that are dispatched25
when a parallel or teams region starts.26

CHAPTER 4. OMPT INTERFACE 511

Format1
C / C++

typedef void (*ompt_callback_parallel_begin_t) (2
ompt_data_t *encountering_task_data,3
const ompt_frame_t *encountering_task_frame,4
ompt_data_t *parallel_data,5
unsigned int requested_parallelism,6
int flags,7
const void *codeptr_ra8

);9

C / C++

Trace Record10
C / C++

typedef struct ompt_record_parallel_begin_t {11
ompt_id_t encountering_task_id;12
ompt_id_t parallel_id;13
unsigned int requested_parallelism;14
int flags;15
const void *codeptr_ra;16

} ompt_record_parallel_begin_t;17

C / C++

Description of Arguments18
The binding of the encountering_task_data argument is the encountering task.19

The encountering_task_frame argument points to the frame object that is associated with the20
encountering task. Accessing the frame object after the callback returned can cause a data race.21

The binding of the parallel_data argument is the parallel or teams region that is beginning.22

The requested_parallelism argument indicates the number of threads or teams that the user23
requested.24

The flags argument indicates whether the code for the region is inlined into the application or25
invoked by the runtime and also whether the region is a parallel or teams region. Valid values26
for flags are a disjunction of elements in the enum ompt_parallel_flag_t.27

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a28
runtime routine implements the region associated with a callback that has type signature29
ompt_callback_parallel_begin_t then codeptr_ra contains the return address of the call30
to that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the31
return address of the invocation of the callback. If attribution to source code is impossible or32
inappropriate, codeptr_ra may be NULL.33

512 OpenMP API – Version 5.1 November 2020

Cross References1
• parallel construct, see Section 2.6.2

• teams construct, see Section 2.7.3

• ompt_data_t type, see Section 4.4.4.4.4

• ompt_parallel_flag_t type, see Section 4.4.4.21.5

• ompt_frame_t type, see Section 4.4.4.28.6

4.5.2.4 ompt_callback_parallel_end_t7

Summary8
The ompt_callback_parallel_end_t type is used for callbacks that are dispatched when a9
parallel or teams region ends.10

Format11
C / C++

typedef void (*ompt_callback_parallel_end_t) (12
ompt_data_t *parallel_data,13
ompt_data_t *encountering_task_data,14
int flags,15
const void *codeptr_ra16

);17

C / C++

Trace Record18
C / C++

typedef struct ompt_record_parallel_end_t {19
ompt_id_t parallel_id;20
ompt_id_t encountering_task_id;21
int flags;22
const void *codeptr_ra;23

} ompt_record_parallel_end_t;24

C / C++

Description of Arguments25
The binding of the parallel_data argument is the parallel or teams region that is ending.26

The binding of the encountering_task_data argument is the encountering task.27

The flags argument indicates whether the execution of the region is inlined into the application or28
invoked by the runtime and also whether it is a parallel or teams region. Values for flags are a29
disjunction of elements in the enum ompt_parallel_flag_t.30

CHAPTER 4. OMPT INTERFACE 513

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a1
runtime routine implements the region associated with a callback that has type signature2
ompt_callback_parallel_end_t then codeptr_ra contains the return address of the call to3
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the4
return address of the invocation of the callback. If attribution to source code is impossible or5
inappropriate, codeptr_ra may be NULL.6

Cross References7
• parallel construct, see Section 2.6.8

• teams construct, see Section 2.7.9

• ompt_data_t type, see Section 4.4.4.4.10

• ompt_parallel_flag_t type, see Section 4.4.4.21.11

4.5.2.5 ompt_callback_work_t12

Summary13
The ompt_callback_work_t type is used for callbacks that are dispatched when worksharing14
regions, loop-related regions, taskloop regions and scope regions begin and end.15

Format16
C / C++

typedef void (*ompt_callback_work_t) (17
ompt_work_t wstype,18
ompt_scope_endpoint_t endpoint,19
ompt_data_t *parallel_data,20
ompt_data_t *task_data,21
uint64_t count,22
const void *codeptr_ra23

);24

C / C++

Trace Record25
C / C++

typedef struct ompt_record_work_t {26
ompt_work_t wstype;27
ompt_scope_endpoint_t endpoint;28
ompt_id_t parallel_id;29
ompt_id_t task_id;30
uint64_t count;31
const void *codeptr_ra;32

} ompt_record_work_t;33

C / C++

514 OpenMP API – Version 5.1 November 2020

Description of Arguments1
The wstype argument indicates the kind of region.2

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a3
scope.4

The binding of the parallel_data argument is the current parallel region.5

The binding of the task_data argument is the current task.6

The count argument is a measure of the quantity of work involved in the construct. For a7
worksharing-loop or taskloop construct, count represents the number of iterations in the8
iteration space, which may be the result of collapsing several associated loops. For a sections9
construct, count represents the number of sections. For a workshare construct, count represents10
the units of work, as defined by the workshare construct. For a single or scope construct,11
count is always 1. When the endpoint argument signals the end of a scope, a count value of 012
indicates that the actual count value is not available.13

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a14
runtime routine implements the region associated with a callback that has type signature15
ompt_callback_work_t then codeptr_ra contains the return address of the call to that16
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return17
address of the invocation of the callback. If attribution to source code is impossible or18
inappropriate, codeptr_ra may be NULL.19

Cross References20
• Worksharing constructs, see Section 2.10.21

• Loop-related directives, see Section 2.11.22

• Worksharing-Loop construct, see Section 2.11.4.23

• taskloop construct, see Section 2.12.2.24

• ompt_data_t type, see Section 4.4.4.4.25

• ompt_scope_endpoint_t type, see Section 4.4.4.11.26

• ompt_work_t type, see Section 4.4.4.15.27

4.5.2.6 ompt_callback_dispatch_t28

Summary29
The ompt_callback_dispatch_t type is used for callbacks that are dispatched when a30
thread begins to execute a section or loop iteration.31

CHAPTER 4. OMPT INTERFACE 515

Format1
C / C++

typedef void (*ompt_callback_dispatch_t) (2
ompt_data_t *parallel_data,3
ompt_data_t *task_data,4
ompt_dispatch_t kind,5
ompt_data_t instance6

);7

C / C++

Trace Record8
C / C++

typedef struct ompt_record_dispatch_t {9
ompt_id_t parallel_id;10
ompt_id_t task_id;11
ompt_dispatch_t kind;12
ompt_data_t instance;13

} ompt_record_dispatch_t;14

C / C++

Description of Arguments15
The binding of the parallel_data argument is the current parallel region.16

The binding of the task_data argument is the implicit task that executes the structured block of the17
parallel region.18

The kind argument indicates whether a loop iteration or a section is being dispatched.19

For a loop iteration, the instance.value argument contains the logical iteration number. For a20
structured block in the sections construct, instance.ptr contains a code address that identifies21
the structured block. In cases where a runtime routine implements the structured block associated22
with this callback, instance.ptr contains the return address of the call to the runtime routine. In23
cases where the implementation of the structured block is inlined, instance.ptr contains the return24
address of the invocation of this callback.25

Cross References26
• sections and section constructs, see Section 2.10.1.27

• Worksharing-loop construct, see Section 2.11.4.28

• taskloop construct, see Section 2.12.2.29

• ompt_data_t type, see Section 4.4.4.4.30

• ompt_dispatch_t type, see Section 4.4.4.12.31

516 OpenMP API – Version 5.1 November 2020

4.5.2.7 ompt_callback_task_create_t1

Summary2
The ompt_callback_task_create_t type is used for callbacks that are dispatched when3
task regions are generated.4

Format5
C / C++

typedef void (*ompt_callback_task_create_t) (6
ompt_data_t *encountering_task_data,7
const ompt_frame_t *encountering_task_frame,8
ompt_data_t *new_task_data,9
int flags,10
int has_dependences,11
const void *codeptr_ra12

);13

C / C++

Trace Record14
C / C++

typedef struct ompt_record_task_create_t {15
ompt_id_t encountering_task_id;16
ompt_id_t new_task_id;17
int flags;18
int has_dependences;19
const void *codeptr_ra;20

} ompt_record_task_create_t;21

C / C++

Description of Arguments22
The binding of the encountering_task_data argument is the encountering task.23

The encountering_task_frame argument points to the frame object associated with the encountering24
task. Accessing the frame object after the callback returned can cause a data race.25

The binding of the new_task_data argument is the generated task.26

The flags argument indicates the kind of task (explicit or target) that is generated. Values for flags27
are a disjunction of elements in the ompt_task_flag_t enumeration type.28

The has_dependences argument is true if the generated task has dependences and false otherwise.29

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a30
runtime routine implements the region associated with a callback that has type signature31
ompt_callback_task_create_t then codeptr_ra contains the return address of the call to32
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the33

CHAPTER 4. OMPT INTERFACE 517

return address of the invocation of the callback. If attribution to source code is impossible or1
inappropriate, codeptr_ra may be NULL.2

Cross References3
• task construct, see Section 2.12.1.4

• Initial task, see Section 2.12.5.5

• ompt_data_t type, see Section 4.4.4.4.6

• ompt_task_flag_t type, see Section 4.4.4.18.7

• ompt_frame_t type, see Section 4.4.4.28.8

4.5.2.8 ompt_callback_dependences_t9

Summary10
The ompt_callback_dependences_t type is used for callbacks that are related to11
dependences and that are dispatched when new tasks are generated and when ordered constructs12
are encountered.13

Format14
C / C++

typedef void (*ompt_callback_dependences_t) (15
ompt_data_t *task_data,16
const ompt_dependence_t *deps,17
int ndeps18

);19

C / C++

Trace Record20
C / C++

typedef struct ompt_record_dependences_t {21
ompt_id_t task_id;22
ompt_dependence_t dep;23
int ndeps;24

} ompt_record_dependences_t;25

C / C++

Description of Arguments26
The binding of the task_data argument is the generated task for a depend clause on a task construct,27
the target task for a depend clause on a target construct respectively depend object in an28
asynchronous runtime routine, or the encountering implicit task for a depend clause of the ordered29
construct.30

518 OpenMP API – Version 5.1 November 2020

The deps argument lists dependences of the new task or the dependence vector of the ordered1
construct. Dependences denoted with dependency objects are described in terms of their2
dependency semantics.3

The ndeps argument specifies the length of the list passed by the deps argument. The memory for4
deps is owned by the caller; the tool cannot rely on the data after the callback returns.5

The performance monitor interface for tracing activity on target devices provides one record per6
dependence.7

Cross References8
• ordered construct, see Section 2.19.9.9

• depend clause, see Section 2.19.11.10

• ompt_data_t type, see Section 4.4.4.4.11

• ompt_dependence_t type, see Section 4.4.4.9.12

4.5.2.9 ompt_callback_task_dependence_t13

Summary14
The ompt_callback_task_dependence_t type is used for callbacks that are dispatched15
when unfulfilled task dependences are encountered.16

Format17
C / C++

typedef void (*ompt_callback_task_dependence_t) (18
ompt_data_t *src_task_data,19
ompt_data_t *sink_task_data20

);21

C / C++

Trace Record22
C / C++

typedef struct ompt_record_task_dependence_t {23
ompt_id_t src_task_id;24
ompt_id_t sink_task_id;25

} ompt_record_task_dependence_t;26

C / C++

Description of Arguments27
The binding of the src_task_data argument is a running task with an outgoing dependence.28

The binding of the sink_task_data argument is a task with an unsatisfied incoming dependence.29

CHAPTER 4. OMPT INTERFACE 519

Cross References1
• depend clause, see Section 2.19.11.2

• ompt_data_t type, see Section 4.4.4.4.3

4.5.2.10 ompt_callback_task_schedule_t4

Summary5
The ompt_callback_task_schedule_t type is used for callbacks that are dispatched when6
task scheduling decisions are made.7

Format8
C / C++

typedef void (*ompt_callback_task_schedule_t) (9
ompt_data_t *prior_task_data,10
ompt_task_status_t prior_task_status,11
ompt_data_t *next_task_data12

);13

C / C++

Trace Record14
C / C++

typedef struct ompt_record_task_schedule_t {15
ompt_id_t prior_task_id;16
ompt_task_status_t prior_task_status;17
ompt_id_t next_task_id;18

} ompt_record_task_schedule_t;19

C / C++

Description of Arguments20
The prior_task_status argument indicates the status of the task that arrived at a task scheduling21
point.22

The binding of the prior_task_data argument is the task that arrived at the scheduling point.23

The binding of the next_task_data argument is the task that is resumed at the scheduling point.24
This argument is NULL if the callback is dispatched for a task-fulfill event or if the callback signals25
completion of a taskwait construct.26

Cross References27
• Task scheduling, see Section 2.12.6.28

• ompt_data_t type, see Section 4.4.4.4.29

• ompt_task_status_t type, see Section 4.4.4.19.30

520 OpenMP API – Version 5.1 November 2020

4.5.2.11 ompt_callback_implicit_task_t1

Summary2
The ompt_callback_implicit_task_t type is used for callbacks that are dispatched when3
initial tasks and implicit tasks are generated and completed.4

Format5
C / C++

typedef void (*ompt_callback_implicit_task_t) (6
ompt_scope_endpoint_t endpoint,7
ompt_data_t *parallel_data,8
ompt_data_t *task_data,9
unsigned int actual_parallelism,10
unsigned int index,11
int flags12

);13

C / C++

Trace Record14
C / C++

typedef struct ompt_record_implicit_task_t {15
ompt_scope_endpoint_t endpoint;16
ompt_id_t parallel_id;17
ompt_id_t task_id;18
unsigned int actual_parallelism;19
unsigned int index;20
int flags;21

} ompt_record_implicit_task_t;22

C / C++

Description of Arguments23
The endpoint argument indicates that the callback signals the beginning of a scope or the end of a24
scope.25

The binding of the parallel_data argument is the current parallel or teams region. For the26
implicit-task-end and the initial-task-end events, this argument is NULL.27

The binding of the task_data argument is the implicit task that executes the structured block of the28
parallel or teams region.29

The actual_parallelism argument indicates the number of threads in the parallel region or the30
number of teams in the teams region. For initial tasks, that are not closely nested in a teams31
construct, this argument is 1. For the implicit-task-end and the initial-task-end events, this32
argument is 0.33

CHAPTER 4. OMPT INTERFACE 521

The index argument indicates the thread number or team number of the calling thread, within the1
team or league that is executing the parallel or teams region to which the implicit task region2
binds. For initial tasks, that are not created by a teams construct, this argument is 1.3

The flags argument indicates the kind of task (initial or implicit).4

Cross References5
• parallel construct, see Section 2.6.6

• teams construct, see Section 2.7.7

• ompt_data_t type, see Section 4.4.4.4.8

• ompt_scope_endpoint_t enumeration type, see Section 4.4.4.11.9

4.5.2.12 ompt_callback_masked_t10

Summary11
The ompt_callback_masked_t type is used for callbacks that are dispatched when masked12
regions start and end.13

Format14
C / C++

typedef void (*ompt_callback_masked_t) (15
ompt_scope_endpoint_t endpoint,16
ompt_data_t *parallel_data,17
ompt_data_t *task_data,18
const void *codeptr_ra19

);20

C / C++

Trace Record21
C / C++

typedef struct ompt_record_masked_t {22
ompt_scope_endpoint_t endpoint;23
ompt_id_t parallel_id;24
ompt_id_t task_id;25
const void *codeptr_ra;26

} ompt_record_masked_t;27

C / C++

522 OpenMP API – Version 5.1 November 2020

Description of Arguments1
The endpoint argument indicates that the callback signals the beginning of a scope or the end of a2
scope.3

The binding of the parallel_data argument is the current parallel region.4

The binding of the task_data argument is the encountering task.5

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a6
runtime routine implements the region associated with a callback that has type signature7
ompt_callback_masked_t then codeptr_ra contains the return address of the call to that8
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return9
address of the invocation of the callback. If attribution to source code is impossible or10
inappropriate, codeptr_ra may be NULL.11

Cross References12
• masked construct, see Section 2.8.13

• ompt_data_t type, see Section 4.4.4.4.14

• ompt_scope_endpoint_t type, see Section 4.4.4.11.15

4.5.2.13 ompt_callback_sync_region_t16

Summary17
The ompt_callback_sync_region_t type is used for callbacks that are dispatched when18
barrier regions, taskwait regions, and taskgroup regions begin and end and when waiting19
begins and ends for them as well as for when reductions are performed.20

Format21
C / C++

typedef void (*ompt_callback_sync_region_t) (22
ompt_sync_region_t kind,23
ompt_scope_endpoint_t endpoint,24
ompt_data_t *parallel_data,25
ompt_data_t *task_data,26
const void *codeptr_ra27

);28

C / C++

CHAPTER 4. OMPT INTERFACE 523

Trace Record1
C / C++

typedef struct ompt_record_sync_region_t {2
ompt_sync_region_t kind;3
ompt_scope_endpoint_t endpoint;4
ompt_id_t parallel_id;5
ompt_id_t task_id;6
const void *codeptr_ra;7

} ompt_record_sync_region_t;8

C / C++

Description of Arguments9
The kind argument indicates the kind of synchronization.10

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a11
scope.12

The binding of the parallel_data argument is the current parallel region. For the barrier-end event13
at the end of a parallel region this argument is NULL.14

The binding of the task_data argument is the current task.15

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a16
runtime routine implements the region associated with a callback that has type signature17
ompt_callback_sync_region_t then codeptr_ra contains the return address of the call to18
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the19
return address of the invocation of the callback. If attribution to source code is impossible or20
inappropriate, codeptr_ra may be NULL.21

Cross References22
• barrier construct, see Section 2.19.2.23

• Implicit barriers, see Section 2.19.3.24

• taskwait construct, see Section 2.19.5.25

• taskgroup construct, see Section 2.19.6.26

• Properties common to all reduction clauses, see Section 2.21.5.1.27

• ompt_data_t type, see Section 4.4.4.4.28

• ompt_scope_endpoint_t type, see Section 4.4.4.11.29

• ompt_sync_region_t type, see Section 4.4.4.13.30

524 OpenMP API – Version 5.1 November 2020

4.5.2.14 ompt_callback_mutex_acquire_t1

Summary2
The ompt_callback_mutex_acquire_t type is used for callbacks that are dispatched when3
locks are initialized, acquired and tested and when critical regions, atomic regions, and4
ordered regions are begun.5

Format6
C / C++

typedef void (*ompt_callback_mutex_acquire_t) (7
ompt_mutex_t kind,8
unsigned int hint,9
unsigned int impl,10
ompt_wait_id_t wait_id,11
const void *codeptr_ra12

);13

C / C++

Trace Record14
C / C++

typedef struct ompt_record_mutex_acquire_t {15
ompt_mutex_t kind;16
unsigned int hint;17
unsigned int impl;18
ompt_wait_id_t wait_id;19
const void *codeptr_ra;20

} ompt_record_mutex_acquire_t;21

C / C++

Description of Arguments22
The kind argument indicates the kind of mutual exclusion event.23

The hint argument indicates the hint that was provided when initializing an implementation of24
mutual exclusion. If no hint is available when a thread initiates acquisition of mutual exclusion, the25
runtime may supply omp_sync_hint_none as the value for hint.26

The impl argument indicates the mechanism chosen by the runtime to implement the mutual27
exclusion.28

The wait_id argument indicates the object being awaited.29

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a30
runtime routine implements the region associated with a callback that has type signature31
ompt_callback_mutex_acquire_t then codeptr_ra contains the return address of the call32
to that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the33
return address of the invocation of the callback. If attribution to source code is impossible or34
inappropriate, codeptr_ra may be NULL.35

CHAPTER 4. OMPT INTERFACE 525

Cross References1
• critical construct, see Section 2.19.1.2

• atomic construct, see Section 2.19.7.3

• ordered construct, see Section 2.19.9.4

• omp_init_lock and omp_init_nest_lock routines, see Section 3.9.1.5

• ompt_mutex_t type, see Section 4.4.4.16.6

• ompt_wait_id_t type, see Section 4.4.4.30.7

4.5.2.15 ompt_callback_mutex_t8

Summary9
The ompt_callback_mutex_t type is used for callbacks that indicate important10
synchronization events.11

Format12
C / C++

typedef void (*ompt_callback_mutex_t) (13
ompt_mutex_t kind,14
ompt_wait_id_t wait_id,15
const void *codeptr_ra16

);17

C / C++

Trace Record18
C / C++

typedef struct ompt_record_mutex_t {19
ompt_mutex_t kind;20
ompt_wait_id_t wait_id;21
const void *codeptr_ra;22

} ompt_record_mutex_t;23

C / C++

Description of Arguments24
The kind argument indicates the kind of mutual exclusion event.25

The wait_id argument indicates the object being awaited.26

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a27
runtime routine implements the region associated with a callback that has type signature28
ompt_callback_mutex_t then codeptr_ra contains the return address of the call to that29
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return30
address of the invocation of the callback. If attribution to source code is impossible or31
inappropriate, codeptr_ra may be NULL.32

526 OpenMP API – Version 5.1 November 2020

Cross References1
• critical construct, see Section 2.19.1.2

• atomic construct, see Section 2.19.7.3

• ordered construct, see Section 2.19.9.4

• omp_destroy_lock and omp_destroy_nest_lock routines, see Section 3.9.3.5

• omp_set_lock and omp_set_nest_lock routines, see Section 3.9.4.6

• omp_unset_lock and omp_unset_nest_lock routines, see Section 3.9.5.7

• omp_test_lock and omp_test_nest_lock routines, see Section 3.9.6.8

• ompt_mutex_t type, see Section 4.4.4.16.9

• ompt_wait_id_t type, see Section 4.4.4.30.10

4.5.2.16 ompt_callback_nest_lock_t11

Summary12
The ompt_callback_nest_lock_t type is used for callbacks that indicate that a thread that13
owns a nested lock has performed an action related to the lock but has not relinquished ownership14
of it.15

Format16
C / C++

typedef void (*ompt_callback_nest_lock_t) (17
ompt_scope_endpoint_t endpoint,18
ompt_wait_id_t wait_id,19
const void *codeptr_ra20

);21

C / C++

Trace Record22
C / C++

typedef struct ompt_record_nest_lock_t {23
ompt_scope_endpoint_t endpoint;24
ompt_wait_id_t wait_id;25
const void *codeptr_ra;26

} ompt_record_nest_lock_t;27

C / C++

Description of Arguments28
The endpoint argument indicates that the callback signals the beginning of a scope or the end of a29
scope.30

The wait_id argument indicates the object being awaited.31

CHAPTER 4. OMPT INTERFACE 527

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a1
runtime routine implements the region associated with a callback that has type signature2
ompt_callback_nest_lock_t then codeptr_ra contains the return address of the call to that3
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return4
address of the invocation of the callback. If attribution to source code is impossible or5
inappropriate, codeptr_ra may be NULL.6

Cross References7
• omp_set_nest_lock routine, see Section 3.9.4.8

• omp_unset_nest_lock routine, see Section 3.9.5.9

• omp_test_nest_lock routine, see Section 3.9.6.10

• ompt_scope_endpoint_t type, see Section 4.4.4.11.11

• ompt_wait_id_t type, see Section 4.4.4.30.12

4.5.2.17 ompt_callback_flush_t13

Summary14
The ompt_callback_flush_t type is used for callbacks that are dispatched when flush15
constructs are encountered.16

Format17
C / C++

typedef void (*ompt_callback_flush_t) (18
ompt_data_t *thread_data,19
const void *codeptr_ra20

);21

C / C++
Trace Record22

C / C++
typedef struct ompt_record_flush_t {23

const void *codeptr_ra;24
} ompt_record_flush_t;25

C / C++
Description of Arguments26
The binding of the thread_data argument is the executing thread.27

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a28
runtime routine implements the region associated with a callback that has type signature29
ompt_callback_flush_t then codeptr_ra contains the return address of the call to that30
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return31
address of the invocation of the callback. If attribution to source code is impossible or32
inappropriate, codeptr_ra may be NULL.33

528 OpenMP API – Version 5.1 November 2020

Cross References1
• flush construct, see Section 2.19.8.2

• ompt_data_t type, see Section 4.4.4.4.3

4.5.2.18 ompt_callback_cancel_t4

Summary5
The ompt_callback_cancel_t type is used for callbacks that are dispatched for cancellation,6
cancel and discarded-task events.7

Format8
C / C++

typedef void (*ompt_callback_cancel_t) (9
ompt_data_t *task_data,10
int flags,11
const void *codeptr_ra12

);13

C / C++

Trace Record14
C / C++

typedef struct ompt_record_cancel_t {15
ompt_id_t task_id;16
int flags;17
const void *codeptr_ra;18

} ompt_record_cancel_t;19

C / C++

Description of Arguments20
The binding of the task_data argument is the task that encounters a cancel construct, a21
cancellation point construct, or a construct defined as having an implicit cancellation22
point.23

The flags argument, defined by the ompt_cancel_flag_t enumeration type, indicates whether24
cancellation is activated by the current task, or detected as being activated by another task. The25
construct that is being canceled is also described in the flags argument. When several constructs are26
detected as being concurrently canceled, each corresponding bit in the argument will be set.27

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a28
runtime routine implements the region associated with a callback that has type signature29
ompt_callback_cancel_t then codeptr_ra contains the return address of the call to that30
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return31
address of the invocation of the callback. If attribution to source code is impossible or32
inappropriate, codeptr_ra may be NULL.33

CHAPTER 4. OMPT INTERFACE 529

Cross References1
• omp_cancel_flag_t enumeration type, see Section 4.4.4.25.2

4.5.2.19 ompt_callback_device_initialize_t3

Summary4
The ompt_callback_device_initialize_t type is used for callbacks that initialize5
device tracing interfaces.6

Format7
C / C++

typedef void (*ompt_callback_device_initialize_t) (8
int device_num,9
const char *type,10
ompt_device_t *device,11
ompt_function_lookup_t lookup,12
const char *documentation13

);14

C / C++

Description15
Registration of a callback with type signature ompt_callback_device_initialize_t for16
the ompt_callback_device_initialize event enables asynchronous collection of a trace17
for a device. The OpenMP implementation invokes this callback after OpenMP is initialized for the18
device but before execution of any OpenMP construct is started on the device.19

Description of Arguments20
The device_num argument identifies the logical device that is being initialized.21

The type argument is a character string that indicates the type of the device. A device type string is22
a semicolon-separated character string that includes at a minimum the vendor and model name of23
the device. These names may be followed by a semicolon-separated sequence of properties that24
describe the hardware or software of the device.25

The device argument is a pointer to an opaque object that represents the target device instance.26
Functions in the device tracing interface use this pointer to identify the device that is being27
addressed.28

The lookup argument points to a runtime callback that a tool must use to obtain pointers to runtime29
entry points in the device’s OMPT tracing interface. If a device does not support tracing then30
lookup is NULL.31

The documentation argument is a string that describes how to use any device-specific runtime entry32
points that can be obtained through the lookup argument. This documentation string may be a33
pointer to external documentation, or it may be inline descriptions that include names and type34

530 OpenMP API – Version 5.1 November 2020

signatures for any device-specific interfaces that are available through the lookup argument along1
with descriptions of how to use these interface functions to control monitoring and analysis of2
device traces.3

Constraints on Arguments4
The type and documentation arguments must be immutable strings that are defined for the lifetime5
of program execution.6

Effect7
A device initializer must fulfill several duties. First, the type argument should be used to determine8
if any special knowledge about the hardware and/or software of a device is employed. Second, the9
lookup argument should be used to look up pointers to runtime entry points in the OMPT tracing10
interface for the device. Finally, these runtime entry points should be used to set up tracing for the11
device.12

Initialization of tracing for a target device is described in Section 4.2.5.13

Cross References14
• ompt_function_lookup_t type, see Section 4.6.3.15

4.5.2.20 ompt_callback_device_finalize_t16

Summary17
The ompt_callback_device_initialize_t type is used for callbacks that finalize device18
tracing interfaces.19

Format20
C / C++

typedef void (*ompt_callback_device_finalize_t) (21
int device_num22

);23

C / C++

Description of Arguments24
The device_num argument identifies the logical device that is being finalized.25

Description26
A registered callback with type signature ompt_callback_device_finalize_t is27
dispatched for a device immediately prior to finalizing the device. Prior to dispatching a finalization28
callback for a device on which tracing is active, the OpenMP implementation stops tracing on the29
device and synchronously flushes all trace records for the device that have not yet been reported.30
These trace records are flushed through one or more buffer completion callbacks with type31
signature ompt_callback_buffer_complete_t as needed prior to the dispatch of the32
callback with type signature ompt_callback_device_finalize_t.33

CHAPTER 4. OMPT INTERFACE 531

Cross References1
• ompt_callback_buffer_complete_t callback type, see Section 4.5.2.24.2

4.5.2.21 ompt_callback_device_load_t3

Summary4
The ompt_callback_device_load_t type is used for callbacks that the OpenMP runtime5
invokes to indicate that it has just loaded code onto the specified device.6

Format7
C / C++

typedef void (*ompt_callback_device_load_t) (8
int device_num,9
const char *filename,10
int64_t offset_in_file,11
void *vma_in_file,12
size_t bytes,13
void *host_addr,14
void *device_addr,15
uint64_t module_id16

);17

C / C++

Description of Arguments18
The device_num argument specifies the device.19

The filename argument indicates the name of a file in which the device code can be found. A NULL20
filename indicates that the code is not available in a file in the file system.21

The offset_in_file argument indicates an offset into filename at which the code can be found. A22
value of -1 indicates that no offset is provided.23

ompt_addr_none is defined as a pointer with the value ~0.24

The vma_in_file argument indicates a virtual address in filename at which the code can be found. A25
value of ompt_addr_none indicates that a virtual address in the file is not available.26

The bytes argument indicates the size of the device code object in bytes.27

The host_addr argument indicates the address at which a copy of the device code is available in28
host memory. A value of ompt_addr_none indicates that a host code address is not available.29

The device_addr argument indicates the address at which the device code has been loaded in device30
memory. A value of ompt_addr_none indicates that a device code address is not available.31

The module_id argument is an identifier that is associated with the device code object.32

532 OpenMP API – Version 5.1 November 2020

Cross References1
• Device directives, see Section 2.14.2

4.5.2.22 ompt_callback_device_unload_t3

Summary4
The ompt_callback_device_unload_t type is used for callbacks that the OpenMP5
runtime invokes to indicate that it is about to unload code from the specified device.6

Format7
C / C++

typedef void (*ompt_callback_device_unload_t) (8
int device_num,9
uint64_t module_id10

);11

C / C++
Description of Arguments12
The device_num argument specifies the device.13

The module_id argument is an identifier that is associated with the device code object.14

Cross References15
• Device directives, see Section 2.14.16

4.5.2.23 ompt_callback_buffer_request_t17

Summary18
The ompt_callback_buffer_request_t type is used for callbacks that are dispatched19
when a buffer to store event records for a device is requested.20

Format21
C / C++

typedef void (*ompt_callback_buffer_request_t) (22
int device_num,23
ompt_buffer_t **buffer,24
size_t *bytes25

);26

C / C++
Description27
A callback with type signature ompt_callback_buffer_request_t requests a buffer to28
store trace records for the specified device. A buffer request callback may set *bytes to 0 if it does29
not provide a buffer. If a callback sets *bytes to 0, further recording of events for the device is30
disabled until the next invocation of ompt_start_trace. This action causes the device to drop31
future trace records until recording is restarted.32

CHAPTER 4. OMPT INTERFACE 533

Description of Arguments1
The device_num argument specifies the device.2

The *buffer argument points to a buffer where device events may be recorded. The *bytes argument3
indicates the length of that buffer.4

Cross References5
• ompt_buffer_t type, see Section 4.4.4.7.6

4.5.2.24 ompt_callback_buffer_complete_t7

Summary8
The ompt_callback_buffer_complete_t type is used for callbacks that are dispatched9
when devices will not record any more trace records in an event buffer and all records written to the10
buffer are valid.11

Format12
C / C++

typedef void (*ompt_callback_buffer_complete_t) (13
int device_num,14
ompt_buffer_t *buffer,15
size_t bytes,16
ompt_buffer_cursor_t begin,17
int buffer_owned18

);19

C / C++

Description20
A callback with type signature ompt_callback_buffer_complete_t provides a buffer that21
contains trace records for the specified device. Typically, a tool will iterate through the records in22
the buffer and process them.23

The OpenMP implementation makes these callbacks on a thread that is not an OpenMP primary or24
worker thread.25

The callee may not delete the buffer if the buffer_owned argument is 0.26

The buffer completion callback is not required to be async signal safe.27

Description of Arguments28
The device_num argument indicates the device for which the buffer contains events.29

The buffer argument is the address of a buffer that was previously allocated by a buffer request30
callback.31

The bytes argument indicates the full size of the buffer.32

534 OpenMP API – Version 5.1 November 2020

The begin argument is an opaque cursor that indicates the position of the beginning of the first1
record in the buffer.2

The buffer_owned argument is 1 if the data to which the buffer points can be deleted by the callback3
and 0 otherwise. If multiple devices accumulate trace events into a single buffer, this callback may4
be invoked with a pointer to one or more trace records in a shared buffer with buffer_owned = 0. In5
this case, the callback may not delete the buffer.6

Cross References7
• ompt_buffer_t type, see Section 4.4.4.7.8

• ompt_buffer_cursor_t type, see Section 4.4.4.8.9

4.5.2.25 ompt_callback_target_data_op_emi_t and10
ompt_callback_target_data_op_t11

Summary12
Theompt_callback_target_data_op_emi_t and13
ompt_callback_target_data_op_t types are used for callbacks that are dispatched when14
a thread maps data to a device.15

Format16
C / C++

typedef void (*ompt_callback_target_data_op_emi_t) (17
ompt_scope_endpoint_t endpoint,18
ompt_data_t *target_task_data,19
ompt_data_t *target_data,20
ompt_id_t *host_op_id,21
ompt_target_data_op_t optype,22
void *src_addr,23
int src_device_num,24
void *dest_addr,25
int dest_device_num,26
size_t bytes,27
const void *codeptr_ra28

);29

CHAPTER 4. OMPT INTERFACE 535

typedef void (*ompt_callback_target_data_op_t) (1
ompt_id_t target_id,2
ompt_id_t host_op_id,3
ompt_target_data_op_t optype,4
void *src_addr,5
int src_device_num,6
void *dest_addr,7
int dest_device_num,8
size_t bytes,9
const void *codeptr_ra10

);11

C / C++

Trace Record12
C / C++

typedef struct ompt_record_target_data_op_t {13
ompt_id_t host_op_id;14
ompt_target_data_op_t optype;15
void *src_addr;16
int src_device_num;17
void *dest_addr;18
int dest_device_num;19
size_t bytes;20
ompt_device_time_t end_time;21
const void *codeptr_ra;22

} ompt_record_target_data_op_t;23

C / C++

Description24
A thread dispatches a registered ompt_callback_target_data_op_emi or25
ompt_callback_target_data_op callback when device memory is allocated or freed, as26
well as when data is copied to or from a device.27

28

Note – An OpenMP implementation may aggregate program variables and data operations upon29
them. For instance, an OpenMP implementation may synthesize a composite to represent multiple30
scalars and then allocate, free, or copy this composite as a whole rather than performing data31
operations on each scalar individually. Thus, callbacks may not be dispatched as separate data32
operations on each variable.33

34

536 OpenMP API – Version 5.1 November 2020

Description of Arguments1
The endpoint argument indicates that the callback signals the beginning or end of a scope.2

The binding of the target_task_data argument is the target task region.3

The binding of the target_data argument is the target region.4

The host_op_id argument points to a tool controlled integer value, which identifies a data operation5
on a target device.6

The optype argument indicates the kind of data operation.7

The src_addr argument indicates the data address before the operation, where applicable.8

The src_device_num argument indicates the source device number for the data operation, where9
applicable.10

The dest_addr argument indicates the data address after the operation.11

The dest_device_num argument indicates the destination device number for the data operation.12

Whether in some operations src_addr or dest_addr may point to an intermediate buffer is13
implementation defined.14

The bytes argument indicates the size of data.15

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a16
runtime routine implements the region associated with a callback that has type signature17
ompt_callback_target_data_op_emi_t or ompt_callback_target_data_op_t18
then codeptr_ra contains the return address of the call to that runtime routine. If the implementation19
of the region is inlined then codeptr_ra contains the return address of the invocation of the callback.20
If attribution to source code is impossible or inappropriate, codeptr_ra may be NULL.21

Restrictions22
Restrictions to the ompt_callback_target_data_op_emi and23
ompt_callback_target_data_op callbacks are as follows:24

• These callbacks must not be registered at the same time.25

Cross References26
• map clause, see Section 2.21.7.1.27

• ompt_id_t type, see Section 4.4.4.3.28

• ompt_data_t type, see Section 4.4.4.4.29

• ompt_scope_endpoint_t type, see Section 4.4.4.11.30

• ompt_target_data_op_t type, see Section 4.4.4.14.31

CHAPTER 4. OMPT INTERFACE 537

4.5.2.26 ompt_callback_target_emi_t and1
ompt_callback_target_t2

Summary3
The ompt_callback_target_emi_t and ompt_callback_target_t types are used4
for callbacks that are dispatched when a thread begins to execute a device construct.5

Format6
C / C++

typedef void (*ompt_callback_target_emi_t) (7
ompt_target_t kind,8
ompt_scope_endpoint_t endpoint,9
int device_num,10
ompt_data_t *task_data,11
ompt_data_t *target_task_data,12
ompt_data_t *target_data,13
const void *codeptr_ra14

);15

typedef void (*ompt_callback_target_t) (16
ompt_target_t kind,17
ompt_scope_endpoint_t endpoint,18
int device_num,19
ompt_data_t *task_data,20
ompt_id_t target_id,21
const void *codeptr_ra22

);23

C / C++

Trace Record24
C / C++

typedef struct ompt_record_target_t {25
ompt_target_t kind;26
ompt_scope_endpoint_t endpoint;27
int device_num;28
ompt_id_t task_id;29
ompt_id_t target_id;30
const void *codeptr_ra;31

} ompt_record_target_t;32

C / C++

538 OpenMP API – Version 5.1 November 2020

Description of Arguments1
The kind argument indicates the kind of target region.2

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a3
scope.4

The device_num argument indicates the device number of the device that will execute the target5
region.6

The binding of the task_data argument is the generating task.7

The binding of the target_task_data argument is the target region.8

The binding of the target_data argument is the target region.9

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a10
runtime routine implements the region associated with a callback that has type signature11
ompt_callback_target_emi_t or ompt_callback_target_t then codeptr_ra12
contains the return address of the call to that runtime routine. If the implementation of the region is13
inlined then codeptr_ra contains the return address of the invocation of the callback. If attribution14
to source code is impossible or inappropriate, codeptr_ra may be NULL.15

Restrictions16
Restrictions to the ompt_callback_target_emi and ompt_callback_target callbacks17
are as follows:18

• These callbacks must not be registered at the same time.19

Cross References20
• target data construct, see Section 2.14.2.21

• target enter data construct, see Section 2.14.3.22

• target exit data construct, see Section 2.14.4.23

• target construct, see Section 2.14.5.24

• target update construct, see Section 2.14.6.25

• ompt_id_t type, see Section 4.4.4.3.26

• ompt_data_t type, see Section 4.4.4.4.27

• ompt_scope_endpoint_t type, see Section 4.4.4.11.28

• ompt_target_t type, see Section 4.4.4.20.29

CHAPTER 4. OMPT INTERFACE 539

4.5.2.27 ompt_callback_target_map_emi_t and1
ompt_callback_target_map_t2

Summary3
The ompt_callback_target_map_emi_t and ompt_callback_target_map_t types4
are used for callbacks that are dispatched to indicate data mapping relationships.5

Format6
C / C++

typedef void (*ompt_callback_target_map_emi_t) (7
ompt_data_t *target_data,8
unsigned int nitems,9
void **host_addr,10
void **device_addr,11
size_t *bytes,12
unsigned int *mapping_flags,13
const void *codeptr_ra14

);15

typedef void (*ompt_callback_target_map_t) (16
ompt_id_t target_id,17
unsigned int nitems,18
void **host_addr,19
void **device_addr,20
size_t *bytes,21
unsigned int *mapping_flags,22
const void *codeptr_ra23

);24

C / C++

Trace Record25
C / C++

typedef struct ompt_record_target_map_t {26
ompt_id_t target_id;27
unsigned int nitems;28
void **host_addr;29
void **device_addr;30
size_t *bytes;31
unsigned int *mapping_flags;32
const void *codeptr_ra;33

} ompt_record_target_map_t;34

C / C++

540 OpenMP API – Version 5.1 November 2020

Description1
An instance of a target, target data, target enter data, or target exit data2
construct may contain one or more map clauses. An OpenMP implementation may report the set of3
mappings associated with map clauses for a construct with a single4
ompt_callback_target_map_emi or ompt_callback_target_map callback to report5
the effect of all mappings or multiple ompt_callback_target_map_emi or6
ompt_callback_target_map callbacks with each reporting a subset of the mappings.7
Furthermore, an OpenMP implementation may omit mappings that it determines are unnecessary.8
If an OpenMP implementation issues multiple ompt_callback_target_map_emi or9
ompt_callback_target_map callbacks, these callbacks may be interleaved with10
ompt_callback_target_data_op_emi or ompt_callback_target_data_op11
callbacks used to report data operations associated with the mappings.12

Description of Arguments13
The binding of the target_data argument is the target region.14

The nitems argument indicates the number of data mappings that this callback reports.15

The host_addr argument indicates an array of host data addresses.16

The device_addr argument indicates an array of device data addresses.17

The bytes argument indicates an array of sizes of data.18

The mapping_flags argument indicates the kind of data mapping. Flags for a mapping include one19
or more values specified by the ompt_target_map_flag_t type.20

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a21
runtime routine implements the region associated with a callback that has type signature22
ompt_callback_target_map_t or ompt_callback_target_map_emi_t then23
codeptr_ra contains the return address of the call to that runtime routine. If the implementation of24
the region is inlined then codeptr_ra contains the return address of the invocation of the callback. If25
attribution to source code is impossible or inappropriate, codeptr_ra may be NULL.26

Restrictions27
Restrictions to the ompt_callback_target_data_map_emi and28
ompt_callback_target_data_map callbacks are as follows:29

• These callbacks must not be registered at the same time.30

Cross References31
• target data construct, see Section 2.14.2.32

• target enter data construct, see Section 2.14.3.33

• target exit data construct, see Section 2.14.4.34

• target construct, see Section 2.14.5.35

CHAPTER 4. OMPT INTERFACE 541

• ompt_id_t type, see Section 4.4.4.3.1

• ompt_data_t type, see Section 4.4.4.4.2

• ompt_target_map_flag_t type, see Section 4.4.4.22.3

• ompt_callback_target_data_op_emi_t or4
ompt_callback_target_data_op_t callback type, see Section 4.5.2.25.5

4.5.2.28 ompt_callback_target_submit_emi_t and6
ompt_callback_target_submit_t7

Summary8
The ompt_callback_target_submit_emi_t and9
ompt_callback_target_submit_t types are used for callbacks that are dispatched before10
and after the host initiates creation of an initial task on a device.11

Format12
C / C++

typedef void (*ompt_callback_target_submit_emi_t) (13
ompt_scope_endpoint_t endpoint,14
ompt_data_t *target_data,15
ompt_id_t *host_op_id,16
unsigned int requested_num_teams17

);18

typedef void (*ompt_callback_target_submit_t) (19
ompt_id_t target_id,20
ompt_id_t host_op_id,21
unsigned int requested_num_teams22

);23

C / C++

Trace Record24
C / C++

typedef struct ompt_record_target_kernel_t {25
ompt_id_t host_op_id;26
unsigned int requested_num_teams;27
unsigned int granted_num_teams;28
ompt_device_time_t end_time;29

} ompt_record_target_kernel_t;30

C / C++

542 OpenMP API – Version 5.1 November 2020

Description1
A thread dispatches a registered ompt_callback_target_submit_emi or2
ompt_callback_target_submit callback on the host before and after a target task initiates3
creation of an initial task on a device.4

Description of Arguments5
The endpoint argument indicates that the callback signals the beginning or end of a scope.6

The binding of the target_data argument is the target region.7

The host_op_id argument points to a tool controlled integer value, which identifies an initial task8
on a target device.9

The requested_num_teams argument is the number of teams that the host requested to execute the10
kernel. The actual number of teams that execute the kernel may be smaller and generally will not be11
known until the kernel begins to execute on the device.12

If ompt_set_trace_ompt has configured the device to trace kernel execution then the device13
will log a ompt_record_target_kernel_t record in a trace. The fields in the record are as14
follows:15

• The host_op_id field contains a tool-controlled identifier that can be used to correlate a16
ompt_record_target_kernel_t record with its associated17
ompt_callback_target_submit_emi or ompt_callback_target_submit18
callback on the host;19

• The requested_num_teams field contains the number of teams that the host requested to execute20
the kernel;21

• The granted_num_teams field contains the number of teams that the device actually used to22
execute the kernel;23

• The time when the initial task began execution on the device is recorded in the time field of an24
enclosing ompt_record_t structure; and25

• The time when the initial task completed execution on the device is recorded in the end_time26
field.27

Restrictions28
Restrictions to the ompt_callback_target_submit_emi and29
ompt_callback_target_submit callbacks are as follows:30

• These callbacks must not be registered at the same time.31

CHAPTER 4. OMPT INTERFACE 543

Cross References1
• target construct, see Section 2.14.5.2

• ompt_id_t type, see Section 4.4.4.3.3

• ompt_data_t type, see Section 4.4.4.4.4

• ompt_scope_endpoint_t type, see Section 4.4.4.11.5

4.5.2.29 ompt_callback_control_tool_t6

Summary7
The ompt_callback_control_tool_t type is used for callbacks that dispatch tool-control8
events.9

Format10
C / C++

typedef int (*ompt_callback_control_tool_t) (11
uint64_t command,12
uint64_t modifier,13
void *arg,14
const void *codeptr_ra15

);16

C / C++

Trace Record17
C / C++

typedef struct ompt_record_control_tool_t {18
uint64_t command;19
uint64_t modifier;20
const void *codeptr_ra;21

} ompt_record_control_tool_t;22

C / C++

Description23
Callbacks with type signature ompt_callback_control_tool_t may return any24
non-negative value, which will be returned to the application as the return value of the25
omp_control_tool call that triggered the callback.26

Description of Arguments27
The command argument passes a command from an application to a tool. Standard values for28
command are defined by omp_control_tool_t in Section 3.14.29

The modifier argument passes a command modifier from an application to a tool.30

The command and modifier arguments may have tool-specific values. Tools must ignore command31
values that they are not designed to handle.32

544 OpenMP API – Version 5.1 November 2020

The arg argument is a void pointer that enables a tool and an application to exchange arbitrary state.1
The arg argument may be NULL.2

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a3
runtime routine implements the region associated with a callback that has type signature4
ompt_callback_control_tool_t then codeptr_ra contains the return address of the call to5
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the6
return address of the invocation of the callback. If attribution to source code is impossible or7
inappropriate, codeptr_ra may be NULL.8

Constraints on Arguments9
Tool-specific values for command must be ≥ 64.10

Cross References11
• Tool control routine and types, see Section 3.14.12

4.5.2.30 ompt_callback_error_t13

Summary14
The ompt_callback_error_t type is used for callbacks that dispatch runtime-error events.15

Format16
C / C++

typedef void (*ompt_callback_error_t) (17
ompt_severity_t severity,18
const char *message,19
size_t length,20
const void *codeptr_ra21

);22

C / C++

Trace Record23
C / C++

typedef struct ompt_record_error_t {24
ompt_severity_t severity;25
const char *message;26
size_t length;27
const void *codeptr_ra;28

} ompt_record_error_t;29

C / C++

Description30
A thread dispatches a registered ompt_callback_error_t callback when an error directive31
is encountered for which the at(execution) clause is specified.32

CHAPTER 4. OMPT INTERFACE 545

Description of Arguments1
The severity argument passes the specified severity level.2

The message argument passes the string from the message clause.3

The length argument provides the length of the string.4

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a5
runtime routine implements the region associated with a callback that has type signature6
ompt_callback_error_t then codeptr_ra contains the return address of the call to that7
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return8
address of the invocation of the callback. If attribution to source code is impossible or9
inappropriate, codeptr_ra may be NULL.10

Cross References11
• error directive, see Section 2.5.4.12

• ompt_severity_t enumeration type, see Section 4.4.4.24.13

4.6 OMPT Runtime Entry Points for Tools14

OMPT supports two principal sets of runtime entry points for tools. One set of runtime entry points15
enables a tool to register callbacks for OpenMP events and to inspect the state of an OpenMP thread16
while executing in a tool callback or a signal handler. The second set of runtime entry points17
enables a tool to trace activities on a device. When directed by the tracing interface, an OpenMP18
implementation will trace activities on a device, collect buffers of trace records, and invoke19
callbacks on the host to process these records. OMPT runtime entry points should not be global20
symbols since tools cannot rely on the visibility of such symbols.21

OMPT also supports runtime entry points for two classes of lookup routines. The first class of22
lookup routines contains a single member: a routine that returns runtime entry points in the OMPT23
callback interface. The second class of lookup routines includes a unique lookup routine for each24
kind of device that can return runtime entry points in a device’s OMPT tracing interface.25

The omp-tools.h C/C++ header file provides the definitions of the types that are specified26
throughout this subsection.27

Binding28
The binding thread set for each of the entry points in this section is the encountering thread unless29
otherwise specified. The binding task set is the task executing on the encountering thread.30

Restrictions31
Restrictions on OMPT runtime entry points are as follows:32

• OMPT runtime entry points must not be called from a signal handler on a native thread before a33
native-thread-begin or after a native-thread-end event.34

• OMPT device runtime entry points must not be called after a device-finalize event for that device.35

546 OpenMP API – Version 5.1 November 2020

4.6.1 Entry Points in the OMPT Callback Interface1

Entry points in the OMPT callback interface enable a tool to register callbacks for OpenMP events2
and to inspect the state of an OpenMP thread while executing in a tool callback or a signal handler.3
Pointers to these runtime entry points are obtained through the lookup function that is provided4
through the OMPT initializer.5

4.6.1.1 ompt_enumerate_states_t6

Summary7
The ompt_enumerate_states_t type is the type signature of the8
ompt_enumerate_states runtime entry point, which enumerates the thread states that an9
OpenMP implementation supports.10

Format11
C / C++

typedef int (*ompt_enumerate_states_t) (12
int current_state,13
int *next_state,14
const char **next_state_name15

);16

C / C++

Description17
An OpenMP implementation may support only a subset of the states defined by the18
ompt_state_t enumeration type. An OpenMP implementation may also support19
implementation-specific states. The ompt_enumerate_states runtime entry point, which has20
type signature ompt_enumerate_states_t, enables a tool to enumerate the supported thread21
states.22

When a supported thread state is passed as current_state, the runtime entry point assigns the next23
thread state in the enumeration to the variable passed by reference in next_state and assigns the24
name associated with that state to the character pointer passed by reference in next_state_name.25

Whenever one or more states are left in the enumeration, the ompt_enumerate_states26
runtime entry point returns 1. When the last state in the enumeration is passed as current_state,27
ompt_enumerate_states returns 0, which indicates that the enumeration is complete.28

Description of Arguments29
The current_state argument must be a thread state that the OpenMP implementation supports. To30
begin enumerating the supported states, a tool should pass ompt_state_undefined as31
current_state. Subsequent invocations of ompt_enumerate_states should pass the value32
assigned to the variable that was passed by reference in next_state to the previous call.33

CHAPTER 4. OMPT INTERFACE 547

The value ompt_state_undefined is reserved to indicate an invalid thread state.1
ompt_state_undefined is defined as an integer with the value 0.2

The next_state argument is a pointer to an integer in which ompt_enumerate_states returns3
the value of the next state in the enumeration.4

The next_state_name argument is a pointer to a character string pointer through which5
ompt_enumerate_states returns a string that describes the next state.6

Constraints on Arguments7
Any string returned through the next_state_name argument must be immutable and defined for the8
lifetime of program execution.9

Cross References10
• ompt_state_t type, see Section 4.4.4.27.11

4.6.1.2 ompt_enumerate_mutex_impls_t12

Summary13
The ompt_enumerate_mutex_impls_t type is the type signature of the14
ompt_enumerate_mutex_impls runtime entry point, which enumerates the kinds of mutual15
exclusion implementations that an OpenMP implementation employs.16

Format17
C / C++

typedef int (*ompt_enumerate_mutex_impls_t) (18
int current_impl,19
int *next_impl,20
const char **next_impl_name21

);22

C / C++

Description23
Mutual exclusion for locks, critical sections, and atomic regions may be implemented in24
several ways. The ompt_enumerate_mutex_impls runtime entry point, which has type25
signature ompt_enumerate_mutex_impls_t, enables a tool to enumerate the supported26
mutual exclusion implementations.27

When a supported mutex implementation is passed as current_impl, the runtime entry point assigns28
the next mutex implementation in the enumeration to the variable passed by reference in next_impl29
and assigns the name associated with that mutex implementation to the character pointer passed by30
reference in next_impl_name.31

Whenever one or more mutex implementations are left in the enumeration, the32
ompt_enumerate_mutex_impls runtime entry point returns 1. When the last mutex33

548 OpenMP API – Version 5.1 November 2020

implementation in the enumeration is passed as current_impl, the runtime entry point returns 0,1
which indicates that the enumeration is complete.2

Description of Arguments3
The current_impl argument must be a mutex implementation that an OpenMP implementation4
supports. To begin enumerating the supported mutex implementations, a tool should pass5
ompt_mutex_impl_none as current_impl. Subsequent invocations of6
ompt_enumerate_mutex_impls should pass the value assigned to the variable that was7
passed in next_impl to the previous call.8

The value ompt_mutex_impl_none is reserved to indicate an invalid mutex implementation.9
ompt_mutex_impl_none is defined as an integer with the value 0.10

The next_impl argument is a pointer to an integer in which ompt_enumerate_mutex_impls11
returns the value of the next mutex implementation in the enumeration.12

The next_impl_name argument is a pointer to a character string pointer in which13
ompt_enumerate_mutex_impls returns a string that describes the next mutex14
implementation.15

Constraints on Arguments16
Any string returned through the next_impl_name argument must be immutable and defined for the17
lifetime of a program execution.18

Cross References19
• ompt_mutex_t type, see Section 4.4.4.16.20

4.6.1.3 ompt_set_callback_t21

Summary22
The ompt_set_callback_t type is the type signature of the ompt_set_callback runtime23
entry point, which registers a pointer to a tool callback that an OpenMP implementation invokes24
when a host OpenMP event occurs.25

Format26
C / C++

typedef ompt_set_result_t (*ompt_set_callback_t) (27
ompt_callbacks_t event,28
ompt_callback_t callback29

);30

C / C++

CHAPTER 4. OMPT INTERFACE 549

Description1
OpenMP implementations can use callbacks to indicate the occurrence of events during the2
execution of an OpenMP program. The ompt_set_callback runtime entry point, which has3
type signature ompt_set_callback_t, registers a callback for an OpenMP event on the4
current device, The return value of ompt_set_callback indicates the outcome of registering5
the callback.6

Description of Arguments7
The event argument indicates the event for which the callback is being registered.8

The callback argument is a tool callback function. If callback is NULL then callbacks associated9
with event are disabled. If callbacks are successfully disabled then ompt_set_always is10
returned.11

Constraints on Arguments12
When a tool registers a callback for an event, the type signature for the callback must match the13
type signature appropriate for the event.14

Restrictions15
Restrictions on the ompt_set_callback runtime entry point are as follows:16

• The entry point must not return ompt_set_impossible.17

Cross References18
• Monitoring activity on the host with OMPT, see Section 4.2.4.19

• ompt_callbacks_t enumeration type, see Section 4.4.2.20

• ompt_callback_t type, see Section 4.4.4.1.21

• ompt_set_result_t type, see Section 4.4.4.2.22

• ompt_get_callback_t host callback type signature, see Section 4.6.1.4.23

4.6.1.4 ompt_get_callback_t24

Summary25
The ompt_get_callback_t type is the type signature of the ompt_get_callback runtime26
entry point, which retrieves a pointer to a registered tool callback routine (if any) that an OpenMP27
implementation invokes when a host OpenMP event occurs.28

Format29
C / C++

typedef int (*ompt_get_callback_t) (30
ompt_callbacks_t event,31
ompt_callback_t *callback32

);33

C / C++

550 OpenMP API – Version 5.1 November 2020

Description1
The ompt_get_callback runtime entry point, which has type signature2
ompt_get_callback_t, retrieves a pointer to the tool callback that an OpenMP3
implementation may invoke when a host OpenMP event occurs. If a non-null tool callback is4
registered for the specified event, the pointer to the tool callback is assigned to the variable passed5
by reference in callback and ompt_get_callback returns 1; otherwise, it returns 0. If6
ompt_get_callback returns 0, the value of the variable passed by reference as callback is7
undefined.8

Description of Arguments9
The event argument indicates the event for which the callback would be invoked.10

The callback argument returns a pointer to the callback associated with event.11

Constraints on Arguments12
The callback argument cannot be NULL and must point to valid storage.13

Cross References14
• ompt_callbacks_t enumeration type, see Section 4.4.2.15

• ompt_callback_t type, see Section 4.4.4.1.16

• ompt_set_callback_t type signature, see Section 4.6.1.3.17

4.6.1.5 ompt_get_thread_data_t18

Summary19
The ompt_get_thread_data_t type is the type signature of the20
ompt_get_thread_data runtime entry point, which returns the address of the thread data21
object for the current thread.22

Format23
C / C++

typedef ompt_data_t *(*ompt_get_thread_data_t) (void);24

C / C++
Description25
Each OpenMP thread can have an associated thread data object of type ompt_data_t. The26
ompt_get_thread_data runtime entry point, which has type signature27
ompt_get_thread_data_t, retrieves a pointer to the thread data object, if any, that is28
associated with the current thread. A tool may use a pointer to an OpenMP thread’s data object that29
ompt_get_thread_data retrieves to inspect or to modify the value of the data object. When30
an OpenMP thread is created, its data object is initialized with value ompt_data_none.31

This runtime entry point is async signal safe.32

Cross References33
• ompt_data_t type, see Section 4.4.4.4.34

CHAPTER 4. OMPT INTERFACE 551

4.6.1.6 ompt_get_num_procs_t1

Summary2
The ompt_get_num_procs_t type is the type signature of the ompt_get_num_procs3
runtime entry point, which returns the number of processors currently available to the execution4
environment on the host device.5

Format6
C / C++

typedef int (*ompt_get_num_procs_t) (void);7

C / C++

Binding8
The binding thread set is all threads on the host device.9

Description10
The ompt_get_num_procs runtime entry point, which has type signature11
ompt_get_num_procs_t, returns the number of processors that are available on the host12
device at the time the routine is called. This value may change between the time that it is13
determined and the time that it is read in the calling context due to system actions outside the14
control of the OpenMP implementation.15

This runtime entry point is async signal safe.16

4.6.1.7 ompt_get_num_places_t17

Summary18
The ompt_get_num_places_t type is the type signature of the ompt_get_num_places19
runtime entry point, which returns the number of places currently available to the execution20
environment in the place list.21

Format22
C / C++

typedef int (*ompt_get_num_places_t) (void);23

C / C++

Binding24
The binding thread set is all threads on a device.25

Description26
The ompt_get_num_places runtime entry point, which has type signature27
ompt_get_num_places_t, returns the number of places in the place list. This value is28
equivalent to the number of places in the place-partition-var ICV in the execution environment of29
the initial task.30

This runtime entry point is async signal safe.31

552 OpenMP API – Version 5.1 November 2020

Cross References1
• place-partition-var ICV, see Section 2.4.2

• OMP_PLACES environment variable, see Section 6.5.3

4.6.1.8 ompt_get_place_proc_ids_t4

Summary5
The ompt_get_place_procs_ids_t type is the type signature of the6
ompt_get_num_place_procs_ids runtime entry point, which returns the numerical7
identifiers of the processors that are available to the execution environment in the specified place.8

Format9
C / C++

typedef int (*ompt_get_place_proc_ids_t) (10
int place_num,11
int ids_size,12
int *ids13

);14

C / C++

Binding15
The binding thread set is all threads on a device.16

Description17
The ompt_get_place_proc_ids runtime entry point, which has type signature18
ompt_get_place_proc_ids_t, returns the numerical identifiers of each processor that is19
associated with the specified place. These numerical identifiers are non-negative, and their meaning20
is implementation defined.21

Description of Arguments22
The place_num argument specifies the place that is being queried.23

The ids argument is an array in which the routine can return a vector of processor identifiers in the24
specified place.25

The ids_size argument indicates the size of the result array that is specified by ids.26

Effect27
If the ids array of size ids_size is large enough to contain all identifiers then they are returned in ids28
and their order in the array is implementation defined. Otherwise, if the ids array is too small, the29
values in ids when the function returns are unspecified. The routine always returns the number of30
numerical identifiers of the processors that are available to the execution environment in the31
specified place.32

CHAPTER 4. OMPT INTERFACE 553

4.6.1.9 ompt_get_place_num_t1

Summary2
The ompt_get_place_num_t type is the type signature of the ompt_get_place_num3
runtime entry point, which returns the place number of the place to which the current thread is4
bound.5

Format6
C / C++

typedef int (*ompt_get_place_num_t) (void);7

C / C++

Description8
When the current thread is bound to a place, ompt_get_place_num returns the place number9
associated with the thread. The returned value is between 0 and one less than the value returned by10
ompt_get_num_places, inclusive. When the current thread is not bound to a place, the routine11
returns -1.12

This runtime entry point is async signal safe.13

4.6.1.10 ompt_get_partition_place_nums_t14

Summary15
The ompt_get_partition_place_nums_t type is the type signature of the16
ompt_get_partition_place_nums runtime entry point, which returns a list of place17
numbers that correspond to the places in the place-partition-var ICV of the innermost implicit task.18

Format19
C / C++

typedef int (*ompt_get_partition_place_nums_t) (20
int place_nums_size,21
int *place_nums22

);23

C / C++

Description24
The ompt_get_partition_place_nums runtime entry point, which has type signature25
ompt_get_partition_place_nums_t, returns a list of place numbers that correspond to26
the places in the place-partition-var ICV of the innermost implicit task.27

This runtime entry point is async signal safe.28

554 OpenMP API – Version 5.1 November 2020

Description of Arguments1
The place_nums argument is an array in which the routine can return a vector of place identifiers.2

The place_nums_size argument indicates the size of the result array that the place_nums argument3
specifies.4

Effect5
If the place_nums array of size place_nums_size is large enough to contain all identifiers then they6
are returned in place_nums and their order in the array is implementation defined. Otherwise, if the7
place_nums array is too small, the values in place_nums when the function returns are unspecified.8
The routine always returns the number of places in the place-partition-var ICV of the innermost9
implicit task.10

Cross References11
• place-partition-var ICV, see Section 2.4.12

• OMP_PLACES environment variable, see Section 6.5.13

4.6.1.11 ompt_get_proc_id_t14

Summary15
The ompt_get_proc_id_t type is the type signature of the ompt_get_proc_id runtime16
entry point, which returns the numerical identifier of the processor of the current thread.17

Format18
C / C++

typedef int (*ompt_get_proc_id_t) (void);19

C / C++

Description20
The ompt_get_proc_id runtime entry point, which has type signature21
ompt_get_proc_id_t, returns the numerical identifier of the processor of the current thread.22
A defined numerical identifier is non-negative, and its meaning is implementation defined. A23
negative number indicates a failure to retrieve the numerical identifier.24

This runtime entry point is async signal safe.25

4.6.1.12 ompt_get_state_t26

Summary27
The ompt_get_state_t type is the type signature of the ompt_get_state runtime entry28
point, which returns the state and the wait identifier of the current thread.29

CHAPTER 4. OMPT INTERFACE 555

Format1
C / C++

typedef int (*ompt_get_state_t) (2
ompt_wait_id_t *wait_id3

);4

C / C++

Description5
Each OpenMP thread has an associated state and a wait identifier. If a thread’s state indicates that6
the thread is waiting for mutual exclusion then its wait identifier contains an opaque handle that7
indicates the data object upon which the thread is waiting. The ompt_get_state runtime entry8
point, which has type signature ompt_get_state_t, retrieves the state and wait identifier of the9
current thread. The returned value may be any one of the states predefined by ompt_state_t or10
a value that represents an implementation-specific state. The tool may obtain a string representation11
for each state with the ompt_enumerate_states function.12

If the returned state indicates that the thread is waiting for a lock, nest lock, critical region,13
atomic region, or ordered region then the value of the thread’s wait identifier is assigned to a14
non-null wait identifier passed as the wait_id argument.15

This runtime entry point is async signal safe.16

Description of Arguments17
The wait_id argument is a pointer to an opaque handle that is available to receive the value of the18
wait identifier of the thread. If wait_id is not NULL then the entry point assigns the value of the19
wait identifier of the thread to the object to which wait_id points. If the returned state is not one of20
the specified wait states then the value of opaque object to which wait_id points is undefined after21
the call.22

Constraints on Arguments23
The argument passed to the entry point must be a reference to a variable of the specified type or24
NULL.25

Cross References26
• ompt_state_t type, see Section 4.4.4.27.27

• ompt_wait_id_t type, see Section 4.4.4.30.28

• ompt_enumerate_states_t type, see Section 4.6.1.1.29

4.6.1.13 ompt_get_parallel_info_t30

Summary31
The ompt_get_parallel_info_t type is the type signature of the32
ompt_get_parallel_info runtime entry point, which returns information about the parallel33
region, if any, at the specified ancestor level for the current execution context.34

556 OpenMP API – Version 5.1 November 2020

Format1
C / C++

typedef int (*ompt_get_parallel_info_t) (2
int ancestor_level,3
ompt_data_t **parallel_data,4
int *team_size5

);6

C / C++

Description7
During execution, an OpenMP program may employ nested parallel regions. The8
ompt_get_parallel_info runtime entry point, which has type signature9
ompt_get_parallel_info_t, retrieves information, about the current parallel region and any10
enclosing parallel regions for the current execution context. The entry point returns 2 if a parallel11
region exists at the specified ancestor level and the information is available, 1 if a parallel region12
exists at the specified ancestor level but the information is currently unavailable, and 0 otherwise.13

A tool may use the pointer to the data object of a parallel region that it obtains from this runtime14
entry point to inspect or to modify the value of the data object. When a parallel region is created, its15
data object will be initialized with the value ompt_data_none.16

This runtime entry point is async signal safe.17

Between a parallel-begin event and an implicit-task-begin event, a call to18
ompt_get_parallel_info(0,...) may return information about the outer parallel team,19
the new parallel team or an inconsistent state.20

If a thread is in the state ompt_state_wait_barrier_implicit_parallel then a call to21
ompt_get_parallel_info may return a pointer to a copy of the specified parallel region’s22
parallel_data rather than a pointer to the data word for the region itself. This convention enables23
the primary thread for a parallel region to free storage for the region immediately after the region24
ends, yet avoid having some other thread in the team that is executing the region potentially25
reference the parallel_data object for the region after it has been freed.26

Description of Arguments27
The ancestor_level argument specifies the parallel region of interest by its ancestor level. Ancestor28
level 0 refers to the innermost parallel region; information about enclosing parallel regions may be29
obtained using larger values for ancestor_level.30

The parallel_data argument returns the parallel data if the argument is not NULL.31

The team_size argument returns the team size if the argument is not NULL.32

CHAPTER 4. OMPT INTERFACE 557

Effect1
If the runtime entry point returns 0 or 1, no argument is modified. Otherwise,2
ompt_get_parallel_info has the following effects:3

• If a non-null value was passed for parallel_data, the value returned in parallel_data is a pointer4
to a data word that is associated with the parallel region at the specified level; and5

• If a non-null value was passed for team_size, the value returned in the integer to which team_size6
point is the number of threads in the team that is associated with the parallel region.7

Constraints on Arguments8
While argument ancestor_level is passed by value, all other arguments to the entry point must be9
pointers to variables of the specified types or NULL.10

Cross References11
• ompt_data_t type, see Section 4.4.4.4.12

4.6.1.14 ompt_get_task_info_t13

Summary14
The ompt_get_task_info_t type is the type signature of the ompt_get_task_info15
runtime entry point, which returns information about the task, if any, at the specified ancestor level16
in the current execution context.17

Format18
C / C++

typedef int (*ompt_get_task_info_t) (19
int ancestor_level,20
int *flags,21
ompt_data_t **task_data,22
ompt_frame_t **task_frame,23
ompt_data_t **parallel_data,24
int *thread_num25

);26

C / C++

Description27
During execution, an OpenMP thread may be executing an OpenMP task. Additionally, the stack of28
the thread may contain procedure frames that are associated with suspended OpenMP tasks or29
OpenMP runtime system routines. To obtain information about any task on the stack of the current30
thread, a tool uses the ompt_get_task_info runtime entry point, which has type signature31
ompt_get_task_info_t.32

Ancestor level 0 refers to the active task; information about other tasks with associated frames33
present on the stack in the current execution context may be queried at higher ancestor levels.34

558 OpenMP API – Version 5.1 November 2020

The ompt_get_task_info runtime entry point returns 2 if a task region exists at the specified1
ancestor level and the information is available, 1 if a task region exists at the specified ancestor level2
but the information is currently unavailable, and 0 otherwise.3

If a task exists at the specified ancestor level and the information is available then information is4
returned in the variables passed by reference to the entry point. If no task region exists at the5
specified ancestor level or the information is unavailable then the values of variables passed by6
reference to the entry point are undefined when ompt_get_task_info returns.7

A tool may use a pointer to a data object for a task or parallel region that it obtains from8
ompt_get_task_info to inspect or to modify the value of the data object. When either a9
parallel region or a task region is created, its data object will be initialized with the value10
ompt_data_none.11

This runtime entry point is async signal safe.12

Description of Arguments13
The ancestor_level argument specifies the task region of interest by its ancestor level. Ancestor14
level 0 refers to the active task; information about ancestor tasks found in the current execution15
context may be queried at higher ancestor levels.16

The flags argument returns the task type if the argument is not NULL.17

The task_data argument returns the task data if the argument is not NULL.18

The task_frame argument returns the task frame pointer if the argument is not NULL.19

The parallel_data argument returns the parallel data if the argument is not NULL.20

The thread_num argument returns the thread number if the argument is not NULL.21

Effect22
If the runtime entry point returns 0 or 1, no argument is modified. Otherwise,23
ompt_get_task_info has the following effects:24

• If a non-null value was passed for flags then the value returned in the integer to which flags25
points represents the type of the task at the specified level; possible task types include initial,26
implicit, explicit, and target tasks;27

• If a non-null value was passed for task_data then the value that is returned in the object to which28
it points is a pointer to a data word that is associated with the task at the specified level;29

• If a non-null value was passed for task_frame then the value that is returned in the object to30
which task_frame points is a pointer to the ompt_frame_t structure that is associated with the31
task at the specified level;32

• If a non-null value was passed for parallel_data then the value that is returned in the object to33
which parallel_data points is a pointer to a data word that is associated with the parallel region34
that contains the task at the specified level or, if the task at the specified level is an initial task,35
NULL; and36

CHAPTER 4. OMPT INTERFACE 559

• If a non-null value was passed for thread_num, then the value that is returned in the object to1
which thread_num points indicates the number of the thread in the parallel region that is2
executing the task at the specified level.3

Constraints on Arguments4
While argument ancestor_level is passed by value, all other arguments to5
ompt_get_task_info must be pointers to variables of the specified types or NULL.6

Cross References7
• ompt_data_t type, see Section 4.4.4.4.8

• ompt_task_flag_t type, see Section 4.4.4.18.9

• ompt_frame_t type, see Section 4.4.4.28.10

4.6.1.15 ompt_get_task_memory_t11

Summary12
The ompt_get_task_memory_t type is the type signature of the13
ompt_get_task_memory runtime entry point, which returns information about memory ranges14
that are associated with the task.15

Format16
C / C++

typedef int (*ompt_get_task_memory_t)(17
void **addr,18
size_t *size,19
int block20

);21

C / C++

Description22
During execution, an OpenMP thread may be executing an OpenMP task. The OpenMP23
implementation must preserve the data environment from the creation of the task for the execution24
of the task. The ompt_get_task_memory runtime entry point, which has type signature25
ompt_get_task_memory_t, provides information about the memory ranges used to store the26
data environment for the current task.27

Multiple memory ranges may be used to store these data. The block argument supports iteration28
over these memory ranges.29

The ompt_get_task_memory runtime entry point returns 1 if more memory ranges are30
available, and 0 otherwise. If no memory is used for a task, size is set to 0. In this case, addr is31
unspecified.32

This runtime entry point is async signal safe.33

560 OpenMP API – Version 5.1 November 2020

Description of Arguments1
The addr argument is a pointer to a void pointer return value to provide the start address of a2
memory block.3

The size argument is a pointer to a size type return value to provide the size of the memory block.4

The block argument is an integer value to specify the memory block of interest.5

4.6.1.16 ompt_get_target_info_t6

Summary7
The ompt_get_target_info_t type is the type signature of the8
ompt_get_target_info runtime entry point, which returns identifiers that specify a thread’s9
current target region and target operation ID, if any.10

Format11
C / C++

typedef int (*ompt_get_target_info_t) (12
uint64_t *device_num,13
ompt_id_t *target_id,14
ompt_id_t *host_op_id15

);16

C / C++

Description17
The ompt_get_target_info entry point, which has type signature18
ompt_get_target_info_t, returns 1 if the current thread is in a target region and 019
otherwise. If the entry point returns 0 then the values of the variables passed by reference as its20
arguments are undefined.21

If the current thread is in a target region then ompt_get_target_info returns information22
about the current device, active target region, and active host operation, if any.23

This runtime entry point is async signal safe.24

Description of Arguments25
The device_num argument returns the device number if the current thread is in a target region.26

The target_id argument returns the target region identifier if the current thread is in a target27
region.28

If the current thread is in the process of initiating an operation on a target device (for example,29
copying data to or from an accelerator or launching a kernel), then host_op_id returns the identifier30
for the operation; otherwise, host_op_id returns ompt_id_none.31

CHAPTER 4. OMPT INTERFACE 561

Constraints on Arguments1
Arguments passed to the entry point must be valid references to variables of the specified types.2

Cross References3
• ompt_id_t type, see Section 4.4.4.3.4

4.6.1.17 ompt_get_num_devices_t5

Summary6
The ompt_get_num_devices_t type is the type signature of the7
ompt_get_num_devices runtime entry point, which returns the number of available devices.8

Format9
C / C++

typedef int (*ompt_get_num_devices_t) (void);10

C / C++

Description11
The ompt_get_num_devices runtime entry point, which has type signature12
ompt_get_num_devices_t, returns the number of devices available to an OpenMP program.13

This runtime entry point is async signal safe.14

4.6.1.18 ompt_get_unique_id_t15

Summary16
The ompt_get_unique_id_t type is the type signature of the ompt_get_unique_id17
runtime entry point, which returns a unique number.18

Format19
C / C++

typedef uint64_t (*ompt_get_unique_id_t) (void);20

C / C++

Description21
The ompt_get_unique_id runtime entry point, which has type signature22
ompt_get_unique_id_t, returns a number that is unique for the duration of an OpenMP23
program. Successive invocations may not result in consecutive or even increasing numbers.24

This runtime entry point is async signal safe.25

562 OpenMP API – Version 5.1 November 2020

4.6.1.19 ompt_finalize_tool_t1

Summary2
The ompt_finalize_tool_t type is the type signature of the ompt_finalize_tool3
runtime entry point, which enables a tool to finalize itself.4

Format5
C / C++

typedef void (*ompt_finalize_tool_t) (void);6

C / C++
Description7
A tool may detect that the execution of an OpenMP program is ending before the OpenMP8
implementation does. To facilitate clean termination of the tool, the tool may invoke the9
ompt_finalize_tool runtime entry point, which has type signature10
ompt_finalize_tool_t. Upon completion of ompt_finalize_tool, no OMPT11
callbacks are dispatched.12

Effect13
The ompt_finalize_tool routine detaches the tool from the runtime, unregisters all callbacks14
and invalidates all OMPT entry points passed to the tool in the lookup-function. Upon completion15
of ompt_finalize_tool, no further callbacks will be issued on any thread.16

Before the callbacks are unregistered, the OpenMP runtime should attempt to dispatch all17
outstanding registered callbacks as well as the callbacks that would be encountered during18
shutdown of the runtime, if possible in the current execution context.19

4.6.2 Entry Points in the OMPT Device Tracing Interface20

The runtime entry points with type signatures of the types that are specified in this section enable a21
tool to trace activities on a device.22

4.6.2.1 ompt_get_device_num_procs_t23

Summary24
The ompt_get_device_num_procs_t type is the type signature of the25
ompt_get_device_num_procs runtime entry point, which returns the number of processors26
currently available to the execution environment on the specified device.27

Format28
C / C++

typedef int (*ompt_get_device_num_procs_t) (29
ompt_device_t *device30

);31

C / C++

CHAPTER 4. OMPT INTERFACE 563

Description1
The ompt_get_device_num_procs runtime entry point, which has type signature2
ompt_get_device_num_procs_t, returns the number of processors that are available on the3
device at the time the routine is called. This value may change between the time that it is4
determined and the time that it is read in the calling context due to system actions outside the5
control of the OpenMP implementation.6

Description of Arguments7
The device argument is a pointer to an opaque object that represents the target device instance. The8
pointer to the device instance object is used by functions in the device tracing interface to identify9
the device being addressed.10

Cross References11
• ompt_device_t type, see Section 4.4.4.5.12

4.6.2.2 ompt_get_device_time_t13

Summary14
The ompt_get_device_time_t type is the type signature of the15
ompt_get_device_time runtime entry point, which returns the current time on the specified16
device.17

Format18
C / C++

typedef ompt_device_time_t (*ompt_get_device_time_t) (19
ompt_device_t *device20

);21

C / C++

Description22
Host and target devices are typically distinct and run independently. If host and target devices are23
different hardware components, they may use different clock generators. For this reason, a common24
time base for ordering host-side and device-side events may not be available.25

The ompt_get_device_time runtime entry point, which has type signature26
ompt_get_device_time_t, returns the current time on the specified device. A tool can use27
this information to align time stamps from different devices.28

Description of Arguments29
The device argument is a pointer to an opaque object that represents the target device instance. The30
pointer to the device instance object is used by functions in the device tracing interface to identify31
the device being addressed.32

564 OpenMP API – Version 5.1 November 2020

Cross References1
• ompt_device_t type, see Section 4.4.4.5.2

• ompt_device_time_t type, see Section 4.4.4.6.3

4.6.2.3 ompt_translate_time_t4

Summary5
The ompt_translate_time_t type is the type signature of the ompt_translate_time6
runtime entry point, which translates a time value that is obtained from the specified device to a7
corresponding time value on the host device.8

Format9
C / C++

typedef double (*ompt_translate_time_t) (10
ompt_device_t *device,11
ompt_device_time_t time12

);13

C / C++

Description14
The ompt_translate_time runtime entry point, which has type signature15
ompt_translate_time_t, translates a time value obtained from the specified device to a16
corresponding time value on the host device. The returned value for the host time has the same17
meaning as the value returned from omp_get_wtime.18

19

Note – The accuracy of time translations may degrade, if they are not performed promptly after a20
device time value is received and if either the host or device vary their clock speeds. Prompt21
translation of device times to host times is recommended.22

23

Description of Arguments24
The device argument is a pointer to an opaque object that represents the target device instance. The25
pointer to the device instance object is used by functions in the device tracing interface to identify26
the device being addressed.27

The time argument is a time from the specified device.28

Cross References29
• omp_get_wtime routine, see Section 3.10.1.30

• ompt_device_t type, see Section 4.4.4.5.31

• ompt_device_time_t type, see Section 4.4.4.6.32

CHAPTER 4. OMPT INTERFACE 565

4.6.2.4 ompt_set_trace_ompt_t1

Summary2
The ompt_set_trace_ompt_t type is the type signature of the ompt_set_trace_ompt3
runtime entry point, which enables or disables the recording of trace records for one or more types4
of OMPT events.5

Format6
C / C++

typedef ompt_set_result_t (*ompt_set_trace_ompt_t) (7
ompt_device_t *device,8
unsigned int enable,9
unsigned int etype10

);11

C / C++

Description of Arguments12
The device argument points to an opaque object that represents the target device instance. Functions13
in the device tracing interface use this pointer to identify the device that is being addressed.14

The etype argument indicates the events to which the invocation of ompt_set_trace_ompt15
applies. If the value of etype is 0 then the invocation applies to all events. If etype is positive then it16
applies to the event in ompt_callbacks_t that matches that value.17

The enable argument indicates whether tracing should be enabled or disabled for the event or events18
that the etype argument specifies. A positive value for enable indicates that recording should be19
enabled; a value of 0 for enable indicates that recording should be disabled.20

Restrictions21
Restrictions on the ompt_set_trace_ompt runtime entry point are as follows:22

• The entry point must not return ompt_set_sometimes_paired.23

Cross References24
• Tracing activity on target devices with OMPT, see Section 4.2.5.25

• ompt_callbacks_t type, see Section 4.4.2.26

• ompt_set_result_t type, see Section 4.4.4.2.27

• ompt_device_t type, see Section 4.4.4.5.28

566 OpenMP API – Version 5.1 November 2020

4.6.2.5 ompt_set_trace_native_t1

Summary2
The ompt_set_trace_native_t type is the type signature of the3
ompt_set_trace_native runtime entry point, which enables or disables the recording of4
native trace records for a device.5

Format6
C / C++

typedef ompt_set_result_t (*ompt_set_trace_native_t) (7
ompt_device_t *device,8
int enable,9
int flags10

);11

C / C++

Description12
This interface is designed for use by a tool that cannot directly use native control functions for the13
device. If a tool can directly use the native control functions then it can invoke native control14
functions directly using pointers that the lookup function associated with the device provides and15
that are described in the documentation string that is provided to the device initializer callback.16

Description of Arguments17
The device argument points to an opaque object that represents the target device instance. Functions18
in the device tracing interface use this pointer to identify the device that is being addressed.19

The enable argument indicates whether this invocation should enable or disable recording of events.20

The flags argument specifies the kinds of native device monitoring to enable or to disable. Each21
kind of monitoring is specified by a flag bit. Flags can be composed by using logical or to combine22
enumeration values from type ompt_native_mon_flag_t.23

To start, to pause, to flush, or to stop tracing for a specific target device associated with device, a24
tool invokes the ompt_start_trace, ompt_pause_trace, ompt_flush_trace, or25
ompt_stop_trace runtime entry point for the device.26

Restrictions27
Restrictions on the ompt_set_trace_native runtime entry point are as follows:28

• The entry point must not return ompt_set_sometimes_paired.29

Cross References30
• Tracing activity on target devices with OMPT, see Section 4.2.5.31

• ompt_set_result_t type, see Section 4.4.4.2.32

• ompt_device_t type, see Section 4.4.4.5.33

CHAPTER 4. OMPT INTERFACE 567

4.6.2.6 ompt_start_trace_t1

Summary2
The ompt_start_trace_t type is the type signature of the ompt_start_trace runtime3
entry point, which starts tracing of activity on a specific device.4

Format5
C / C++

typedef int (*ompt_start_trace_t) (6
ompt_device_t *device,7
ompt_callback_buffer_request_t request,8
ompt_callback_buffer_complete_t complete9

);10

C / C++

Description11
A device’s ompt_start_trace runtime entry point, which has type signature12
ompt_start_trace_t, initiates tracing on the device. Under normal operating conditions,13
every event buffer provided to a device by a tool callback is returned to the tool before the OpenMP14
runtime shuts down. If an exceptional condition terminates execution of an OpenMP program, the15
OpenMP runtime may not return buffers provided to the device.16

An invocation of ompt_start_trace returns 1 if the command succeeds and 0 otherwise.17

Description of Arguments18
The device argument points to an opaque object that represents the target device instance. Functions19
in the device tracing interface use this pointer to identify the device that is being addressed.20

The request argument specifies a tool callback that supplies a buffer in which a device can deposit21
events.22

The complete argument specifies a tool callback that is invoked by the OpenMP implementation to23
empty a buffer that contains event records.24

Cross References25
• ompt_device_t type, see Section 4.4.4.5.26

• ompt_callback_buffer_request_t callback type, see Section 4.5.2.23.27

• ompt_callback_buffer_complete_t callback type, see Section 4.5.2.24.28

4.6.2.7 ompt_pause_trace_t29

Summary30
The ompt_pause_trace_t type is the type signature of the ompt_pause_trace runtime31
entry point, which pauses or restarts activity tracing on a specific device.32

568 OpenMP API – Version 5.1 November 2020

Format1
C / C++

typedef int (*ompt_pause_trace_t) (2
ompt_device_t *device,3
int begin_pause4

);5

C / C++

Description6
A device’s ompt_pause_trace runtime entry point, which has type signature7
ompt_pause_trace_t, pauses or resumes tracing on a device. An invocation of8
ompt_pause_trace returns 1 if the command succeeds and 0 otherwise. Redundant pause or9
resume commands are idempotent and will return the same value as the prior command.10

Description of Arguments11
The device argument points to an opaque object that represents the target device instance. Functions12
in the device tracing interface use this pointer to identify the device that is being addressed.13

The begin_pause argument indicates whether to pause or to resume tracing. To resume tracing,14
zero should be supplied for begin_pause; To pause tracing, any other value should be supplied.15

Cross References16
• ompt_device_t type, see Section 4.4.4.5.17

4.6.2.8 ompt_flush_trace_t18

Summary19
The ompt_flush_trace_t type is the type signature of the ompt_flush_trace runtime20
entry point, which causes all pending trace records for the specified device to be delivered.21

Format22
C / C++

typedef int (*ompt_flush_trace_t) (23
ompt_device_t *device24

);25

C / C++

Description26
A device’s ompt_flush_trace runtime entry point, which has type signature27
ompt_flush_trace_t, causes the OpenMP implementation to issue a sequence of zero or more28
buffer completion callbacks to deliver all trace records that have been collected prior to the flush.29
An invocation of ompt_flush_trace returns 1 if the command succeeds and 0 otherwise.30

CHAPTER 4. OMPT INTERFACE 569

Description of Arguments1
The device argument points to an opaque object that represents the target device instance. Functions2
in the device tracing interface use this pointer to identify the device that is being addressed.3

Cross References4
• ompt_device_t type, see Section 4.4.4.5.5

4.6.2.9 ompt_stop_trace_t6

Summary7
The ompt_stop_trace_t type is the type signature of the ompt_stop_trace runtime entry8
point, which stops tracing for a device.9

Format10
C / C++

typedef int (*ompt_stop_trace_t) (11
ompt_device_t *device12

);13

C / C++

Description14
A device’s ompt_stop_trace runtime entry point, which has type signature15
ompt_stop_trace_t, halts tracing on the device and requests that any pending trace records16
are flushed. An invocation of ompt_stop_trace returns 1 if the command succeeds and 017
otherwise.18

Description of Arguments19
The device argument points to an opaque object that represents the target device instance. Functions20
in the device tracing interface use this pointer to identify the device that is being addressed.21

Cross References22
• ompt_device_t type, see Section 4.4.4.5.23

4.6.2.10 ompt_advance_buffer_cursor_t24

Summary25
The ompt_advance_buffer_cursor_t type is the type signature of the26
ompt_advance_buffer_cursor runtime entry point, which advances a trace buffer cursor to27
the next record.28

570 OpenMP API – Version 5.1 November 2020

Format1
C / C++

typedef int (*ompt_advance_buffer_cursor_t) (2
ompt_device_t *device,3
ompt_buffer_t *buffer,4
size_t size,5
ompt_buffer_cursor_t current,6
ompt_buffer_cursor_t *next7

);8

C / C++
Description9
A device’s ompt_advance_buffer_cursor runtime entry point, which has type signature10
ompt_advance_buffer_cursor_t, advances a trace buffer pointer to the next trace record.11
An invocation of ompt_advance_buffer_cursor returns true if the advance is successful12
and the next position in the buffer is valid.13

Description of Arguments14
The device argument points to an opaque object that represents the target device instance. Functions15
in the device tracing interface use this pointer to identify the device that is being addressed.16

The buffer argument indicates a trace buffer that is associated with the cursors.17

The argument size indicates the size of buffer in bytes.18

The current argument is an opaque buffer cursor.19

The next argument returns the next value of an opaque buffer cursor.20

Cross References21
• ompt_device_t type, see Section 4.4.4.5.22

• ompt_buffer_cursor_t type, see Section 4.4.4.8.23

4.6.2.11 ompt_get_record_type_t24

Summary25
The ompt_get_record_type_t type is the type signature of the26
ompt_get_record_type runtime entry point, which inspects the type of a trace record.27

Format28
C / C++

typedef ompt_record_t (*ompt_get_record_type_t) (29
ompt_buffer_t *buffer,30
ompt_buffer_cursor_t current31

);32

C / C++

CHAPTER 4. OMPT INTERFACE 571

Description1
Trace records for a device may be in one of two forms: native record format, which may be2
device-specific, or OMPT record format, in which each trace record corresponds to an OpenMP3
event and most fields in the record structure are the arguments that would be passed to the OMPT4
callback for the event.5

A device’s ompt_get_record_type runtime entry point, which has type signature6
ompt_get_record_type_t, inspects the type of a trace record and indicates whether the7
record at the current position in the trace buffer is an OMPT record, a native record, or an invalid8
record. An invalid record type is returned if the cursor is out of bounds.9

Description of Arguments10
The buffer argument indicates a trace buffer.11

The current argument is an opaque buffer cursor.12

Cross References13
• ompt_record_t type, see Section 4.4.3.1.14

• ompt_buffer_t type, see Section 4.4.4.7.15

• ompt_buffer_cursor_t type, see Section 4.4.4.8.16

4.6.2.12 ompt_get_record_ompt_t17

Summary18
The ompt_get_record_ompt_t type is the type signature of the19
ompt_get_record_ompt runtime entry point, which obtains a pointer to an OMPT trace20
record from a trace buffer associated with a device.21

Format22
C / C++

typedef ompt_record_ompt_t *(*ompt_get_record_ompt_t) (23
ompt_buffer_t *buffer,24
ompt_buffer_cursor_t current25

);26

C / C++

Description27
A device’s ompt_get_record_ompt runtime entry point, which has type signature28
ompt_get_record_ompt_t, returns a pointer that may point to a record in the trace buffer, or29
it may point to a record in thread local storage in which the information extracted from a record was30
assembled. The information available for an event depends upon its type.31

The return value of the ompt_record_ompt_t type includes a field of a union type that can32
represent information for any OMPT event record type. Another call to the runtime entry point may33
overwrite the contents of the fields in a record returned by a prior invocation.34

572 OpenMP API – Version 5.1 November 2020

Description of Arguments1
The buffer argument indicates a trace buffer.2

The current argument is an opaque buffer cursor.3

Cross References4
• ompt_record_ompt_t type, see Section 4.4.3.4.5

• ompt_device_t type, see Section 4.4.4.5.6

• ompt_buffer_cursor_t type, see Section 4.4.4.8.7

4.6.2.13 ompt_get_record_native_t8

Summary9
The ompt_get_record_native_t type is the type signature of the10
ompt_get_record_native runtime entry point, which obtains a pointer to a native trace11
record from a trace buffer associated with a device.12

Format13
C / C++

typedef void *(*ompt_get_record_native_t) (14
ompt_buffer_t *buffer,15
ompt_buffer_cursor_t current,16
ompt_id_t *host_op_id17

);18

C / C++

Description19
A device’s ompt_get_record_native runtime entry point, which has type signature20
ompt_get_record_native_t, returns a pointer that may point may point into the specified21
trace buffer, or into thread local storage in which the information extracted from a trace record was22
assembled. The information available for a native event depends upon its type. If the function23
returns a non-null result, it will also set the object to which host_op_id points to a host-side24
identifier for the operation that is associated with the record. A subsequent call to25
ompt_get_record_native may overwrite the contents of the fields in a record returned by a26
prior invocation.27

Description of Arguments28
The buffer argument indicates a trace buffer.29

The current argument is an opaque buffer cursor.30

The host_op_id argument is a pointer to an identifier that is returned by the function. The entry31
point sets the identifier to which host_op_id points to the value of a host-side identifier for an32
operation on a target device that was created when the operation was initiated by the host.33

CHAPTER 4. OMPT INTERFACE 573

Cross References1
• ompt_id_t type, see Section 4.4.4.3.2

• ompt_buffer_t type, see Section 4.4.4.7.3

• ompt_buffer_cursor_t type, see Section 4.4.4.8.4

4.6.2.14 ompt_get_record_abstract_t5

Summary6
The ompt_get_record_abstract_t type is the type signature of the7
ompt_get_record_abstract runtime entry point, which summarizes the context of a native8
(device-specific) trace record.9

Format10
C / C++

typedef ompt_record_abstract_t *(*ompt_get_record_abstract_t) (11
void *native_record12

);13

C / C++
Description14
An OpenMP implementation may execute on a device that logs trace records in a native15
(device-specific) format that a tool cannot interpret directly. The16
ompt_get_record_abstract runtime entry point of a device, which has type signature17
ompt_get_record_abstract_t, translates a native trace record into a standard form.18

Description of Arguments19
The native_record argument is a pointer to a native trace record.20

Cross References21
• ompt_record_abstract_t type, see Section 4.4.3.3.22

4.6.3 Lookup Entry Points: ompt_function_lookup_t23

Summary24
The ompt_function_lookup_t type is the type signature of the lookup runtime entry points25
that provide pointers to runtime entry points that are part of the OMPT interface.26

Format27
C / C++

typedef void (*ompt_interface_fn_t) (void);28
29

typedef ompt_interface_fn_t (*ompt_function_lookup_t) (30
const char *interface_function_name31

);32

C / C++

574 OpenMP API – Version 5.1 November 2020

Description1
An OpenMP implementation provides a pointer to a lookup routine that provides pointers to OMPT2
runtime entry points. When the implementation invokes a tool initializer to configure the OMPT3
callback interface, it provides a lookup function that provides pointers to runtime entry points that4
implement routines that are part of the OMPT callback interface. Alternatively, when it invokes a5
tool initializer to configure the OMPT tracing interface for a device, it provides a lookup function6
that provides pointers to runtime entry points that implement tracing control routines appropriate7
for that device.8

If the provided function name is unknown to the OpenMP implementation, the function returns9
NULL. In a compliant implementation, the lookup function provided by the tool initializer for the10
OMPT callback interface returns a valid function pointer for any OMPT runtime entry point name11
listed in Table 4.1.12

A compliant implementation of a lookup function passed to a tool’s13
ompt_device_initialize callback must provide non-NULL function pointers for all strings14
in Table 4.4, except for ompt_set_trace_ompt and ompt_get_record_ompt, as15
described in Section 4.2.5.16

Description of Arguments17
The interface_function_name argument is a C string that represents the name of a runtime entry18
point.19

Cross References20
• Tool initializer for a device’s OMPT tracing interface, see Section 4.2.5.21

• Tool initializer for the OMPT callback interface, see Section 4.5.1.1.22

• Entry points in the OMPT callback interface, see Table 4.1 for a list and Section 4.6.1 for23
detailed definitions.24

• Entry points in the OMPT tracing interface, see Table 4.4 for a list and Section 4.6.2 for detailed25
definitions.26

CHAPTER 4. OMPT INTERFACE 575

This page intentionally left blank

5 OMPD Interface1

This chapter describes OMPD, which is an interface for third-party tools. Third-party tools exist in2
separate processes from the OpenMP program. To provide OMPD support, an OpenMP3
implementation must provide an OMPD library that the third-party tool can load. An OpenMP4
implementation does not need to maintain any extra information to support OMPD inquiries from5
third-party tools unless it is explicitly instructed to do so.6

OMPD allows third-party tools such as debuggers to inspect the OpenMP state of a live program or7
core file in an implementation-agnostic manner. That is, a third-party tool that uses OMPD should8
work with any conforming OpenMP implementation. An OpenMP implementer provides a library9
for OMPD that a third-party tool can dynamically load. The third-party tool can use the interface10
exported by the OMPD library to inspect the OpenMP state of a program. In order to satisfy11
requests from the third-party tool, the OMPD library may need to read data from the OpenMP12
program, or to find the addresses of symbols in it. The OMPD library provides this functionality13
through a callback interface that the third-party tool must instantiate for the OMPD library.14

To use OMPD, the third-party tool loads the OMPD library. The OMPD library exports the API15
that is defined throughout this section, and the third-party tool uses the API to determine OpenMP16
information about the OpenMP program. The OMPD library must look up the symbols and read17
data out of the program. It does not perform these operations directly but instead directs the third-18
party tool to perform them by using the callback interface that the third-party tool exports.19

The OMPD design insulates third-party tools from the internal structure of the OpenMP runtime,20
while the OMPD library is insulated from the details of how to access the OpenMP program. This21
decoupled design allows for flexibility in how the OpenMP program and third-party tool are22
deployed, so that, for example, the third-party tool and the OpenMP program are not required to23
execute on the same machine.24

Generally, the third-party tool does not interact directly with the OpenMP runtime but instead25
interacts with the runtime through the OMPD library. However, a few cases require the third-party26
tool to access the OpenMP runtime directly. These cases fall into two broad categories. The first is27
during initialization where the third-party tool must look up symbols and read variables in the28
OpenMP runtime in order to identify the OMPD library that it should use, which is discussed in29
Section 5.2.2 and Section 5.2.3. The second category relates to arranging for the third-party tool to30
be notified when certain events occur during the execution of the OpenMP program. For this31
purpose, the OpenMP implementation must define certain symbols in the runtime code, as is32
discussed in Section 5.6. Each of these symbols corresponds to an event type. The OpenMP33
runtime must ensure that control passes through the appropriate named location when events occur.34
If the third-party tool requires notification of an event, it can plant a breakpoint at the matching35

577

location. The location can, but may not, be a function. It can, for example, simply be a label.1
However, the names of the locations must have external C linkage.2

5.1 OMPD Interfaces Definitions3

C / C++
A compliant implementation must supply a set of definitions for the OMPD runtime entry points,4
OMPD third-party tool callback signatures, third-party tool interface functions and the special data5
types of their parameters and return values. These definitions, which are listed throughout this6
chapter, and their associated declarations shall be provided in a header file named omp-tools.h.7
In addition, the set of definitions may specify other implementation-specific values.8

The ompd_dll_locations variable, all OMPD third-party tool interface functions, and all9
OMPD runtime entry points are external symbols with C linkage.10

C / C++

5.2 Activating a Third-Party Tool11

The third-party tool and the OpenMP program exist as separate processes. Thus, coordination is12
required between the OpenMP runtime and the third-party tool for OMPD.13

5.2.1 Enabling Runtime Support for OMPD14

In order to support third-party tools, the OpenMP runtime may need to collect and to store15
information that it may not otherwise maintain. The OpenMP runtime collects whatever16
information is necessary to support OMPD if the environment variable OMP_DEBUG is set to17
enabled.18

Cross References19
• Activating a first-party tool, see Section 4.2.20

• OMP_DEBUG environment variable, see Section 6.21.21

5.2.2 ompd_dll_locations22

Summary23
The ompd_dll_locations global variable points to the locations of OMPD libraries that are24
compatible with the OpenMP implementation.25

Format26
C

extern const char **ompd_dll_locations;27

C

578 OpenMP API – Version 5.1 November 2020

Description1
An OpenMP runtime may have more than one OMPD library. The third-party tool must be able to2
locate the right library to use for the OpenMP program that it is examining. The OpenMP runtime3
system must provide a public variable ompd_dll_locations, which is an argv-style vector of4
filename string pointers that provides the names of any compatible OMPD libraries. This variable5
must have C linkage. The third-party tool uses the name of the variable verbatim and, in particular,6
does not apply any name mangling before performing the look up.7

The architecture on which the third-party tool and, thus, the OMPD library execute does not have to8
match the architecture on which the OpenMP program that is being examined executes. The9
third-party tool must interpret the contents of ompd_dll_locations to find a suitable OMPD10
library that matches its own architectural characteristics. On platforms that support different11
architectures (for example, 32-bit vs 64-bit), OpenMP implementations are encouraged to provide12
an OMPD library for each supported architecture that can handle OpenMP programs that run on13
any supported architecture. Thus, for example, a 32-bit debugger that uses OMPD should be able to14
debug a 64-bit OpenMP program by loading a 32-bit OMPD implementation that can manage a15
64-bit OpenMP runtime.16

The ompd_dll_locations variable points to a NULL-terminated vector of zero or more17
NULL-terminated pathname strings that do not have any filename conventions. This vector must be18
fully initialized before ompd_dll_locations is set to a non-null value. Thus, if a third-party19
tool, such as a debugger, stops execution of the OpenMP program at any point at which20
ompd_dll_locations is non-null, the vector of strings to which it points shall be valid and21
complete.22

Cross References23
• ompd_dll_locations_valid global variable, see Section 5.2.3.24

5.2.3 ompd_dll_locations_valid25

Summary26
The OpenMP runtime notifies third-party tools that ompd_dll_locations is valid by allowing27
execution to pass through a location that the symbol ompd_dll_locations_valid identifies.28

Format29
C

void ompd_dll_locations_valid(void);30

C

CHAPTER 5. OMPD INTERFACE 579

Description1
Since ompd_dll_locations may not be a static variable, it may require runtime initialization.2
The OpenMP runtime notifies third-party tools that ompd_dll_locations is valid by having3
execution pass through a location that the symbol ompd_dll_locations_valid identifies. If4
ompd_dll_locations is NULL, a third-party tool can place a breakpoint at5
ompd_dll_locations_valid to be notified that ompd_dll_locations is initialized. In6
practice, the symbol ompd_dll_locations_valid may not be a function; instead, it may be a7
labeled machine instruction through which execution passes once the vector is valid.8

5.3 OMPD Data Types9

This section defines OMPD data types.10

5.3.1 Size Type11

Summary12
The ompd_size_t type specifies the number of bytes in opaque data objects that are passed13
across the OMPD API.14

Format15
C / C++

typedef uint64_t ompd_size_t;16

C / C++

5.3.2 Wait ID Type17

Summary18
A variable of ompd_wait_id_t type identifies the object on which a thread waits.19

Format20
C / C++

typedef uint64_t ompd_wait_id_t;21

C / C++

Description22
The values and meaning of ompd_wait_id_t is the same as defined for the23
ompt_wait_id_t type.24

Cross References25
• ompt_wait_id_t type, see Section 4.4.4.30.26

580 OpenMP API – Version 5.1 November 2020

5.3.3 Basic Value Types1

Summary2
These definitions represent word, address, and segment value types.3

Format4
C / C++

typedef uint64_t ompd_addr_t;5
typedef int64_t ompd_word_t;6
typedef uint64_t ompd_seg_t;7

C / C++

Description8
The ompd_addr_t type represents an address in an OpenMP process with an unsigned integer type.9
The ompd_word_t type represents a data word from the OpenMP runtime with a signed integer10
type. The ompd_seg_t type represents a segment value with an unsigned integer type.11

5.3.4 Address Type12

Summary13
The ompd_address_t type is used to specify device addresses.14

Format15
C / C++

typedef struct ompd_address_t {16
ompd_seg_t segment;17
ompd_addr_t address;18

} ompd_address_t;19

C / C++

Description20
The ompd_address_t type is a structure that OMPD uses to specify device addresses, which21
may or may not be segmented. For non-segmented architectures, ompd_segment_none is used22
in the segment field of ompd_address_t; it is an instance of the ompd_seg_t type that has the23
value 0.24

CHAPTER 5. OMPD INTERFACE 581

5.3.5 Frame Information Type1

Summary2
The ompd_frame_info_t type is used to specify frame information.3

Format4
C / C++

typedef struct ompd_frame_info_t {5
ompd_address_t frame_address;6
ompd_word_t frame_flag;7

} ompd_frame_info_t;8

C / C++

Description9
The ompd_frame_info_t type is a structure that OMPD uses to specify frame information.10
The frame_address field of ompd_frame_info_t identifies a frame. The frame_flag field of11
ompd_frame_info_t indicates what type of information is provided in frame_address. The12
values and meaning is the same as defined for the ompt_frame_flag_t enumeration type.13

Cross References14
• ompt_frame_t type, see Section 4.4.4.28.15

5.3.6 System Device Identifiers16

Summary17
The ompd_device_t type provides information about OpenMP devices.18

Format19
C / C++

typedef uint64_t ompd_device_t;20

C / C++

Description21
OpenMP runtimes may utilize different underlying devices, each represented by a device identifier.22
The device identifiers can vary in size and format and, thus, are not explicitly represented in the23
OMPD interface. Instead, a device identifier is passed across the interface via its24
ompd_device_t kind, its size in bytes and a pointer to where it is stored. The OMPD library and25
the third-party tool use the ompd_device_t kind to interpret the format of the device identifier26
that is referenced by the pointer argument. Each different device identifier kind is represented by a27
unique unsigned 64-bit integer value.28

Recommended values of ompd_device_t kinds are defined in the ompd-types.h header file,29
which is available on http://www.openmp.org/.30

582 OpenMP API – Version 5.1 November 2020

http://www.openmp.org/

5.3.7 Native Thread Identifiers1

Summary2
The ompd_thread_id_t type provides information about native threads.3

Format4
C / C++

typedef uint64_t ompd_thread_id_t;5

C / C++

Description6
OpenMP runtimes may use different native thread implementations. Native thread identifiers for7
these implementations can vary in size and format and, thus, are not explicitly represented in the8
OMPD interface. Instead, a native thread identifier is passed across the interface via its9
ompd_thread_id_t kind, its size in bytes and a pointer to where it is stored. The OMPD10
library and the third-party tool use the ompd_thread_id_t kind to interpret the format of the11
native thread identifier that is referenced by the pointer argument. Each different native thread12
identifier kind is represented by a unique unsigned 64-bit integer value.13

Recommended values of ompd_thread_id_t kinds, and formats for some corresponding native14
thread identifiers, are defined in the ompd-types.h header file, which is available on15
http://www.openmp.org/.16

5.3.8 OMPD Handle Types17

Summary18
The OMPD library defines handles for referring to address spaces, threads, parallel regions and19
tasks. The internal structure of the handles are opaque to the third-party tool.20

Format21
C / C++

typedef struct _ompd_aspace_handle ompd_address_space_handle_t;22
typedef struct _ompd_thread_handle ompd_thread_handle_t;23
typedef struct _ompd_parallel_handle ompd_parallel_handle_t;24
typedef struct _ompd_task_handle ompd_task_handle_t;25

C / C++

Description26
OMPD uses handles for address spaces (ompd_address_space_handle_t), threads27
(ompd_thread_handle_t), parallel regions (ompd_parallel_handle_t), and tasks28
(ompd_task_handle_t). Each operation of the OMPD interface that applies to a particular29
address space, thread, parallel region or task must explicitly specify a corresponding handle. A30
handle for an entity is constant while the entity itself is alive. Handles are defined by the OMPD31
library and are opaque to the third-party tool.32

CHAPTER 5. OMPD INTERFACE 583

http://www.openmp.org/

Defining externally visible type names in this way introduces type safety to the interface, and helps1
to catch instances where incorrect handles are passed by the third-party tool to the OMPD library.2
The structures do not need to be defined; instead, the OMPD library must cast incoming (pointers3
to) handles to the appropriate internal, private types.4

5.3.9 OMPD Scope Types5

Summary6
The ompd_scope_t type identifies OMPD scopes.7

Format8
C / C++

typedef enum ompd_scope_t {9
ompd_scope_global = 1,10
ompd_scope_address_space = 2,11
ompd_scope_thread = 3,12
ompd_scope_parallel = 4,13
ompd_scope_implicit_task = 5,14
ompd_scope_task = 615

} ompd_scope_t;16

C / C++

Description17
The ompd_scope_t type identifies OpenMP scopes, including those related to parallel regions18
and tasks. When used in an OMPD interface function call, the scope type and the OMPD handle19
must match according to Table 5.1.20

TABLE 5.1: Mapping of Scope Type and OMPD Handles

Scope types Handles

ompd_scope_global Address space handle for the host device

ompd_scope_address_space Any address space handle

ompd_scope_thread Any thread handle

ompd_scope_parallel Any parallel region handle

ompd_scope_implicit_task Task handle for an implicit task

ompd_scope_task Any task handle

584 OpenMP API – Version 5.1 November 2020

5.3.10 ICV ID Type1

Summary2
The ompd_icv_id_t type identifies an OpenMP implementation ICV.3

Format4
C / C++

typedef uint64_t ompd_icv_id_t;5

C / C++
The ompd_icv_id_t type identifies OpenMP implementation ICVs. ompd_icv_undefined6
is an instance of this type with the value 0.7

5.3.11 Tool Context Types8

Summary9
A third-party tool defines contexts to identify abstractions uniquely. The internal structure of these10
contexts are opaque to the OMPD library.11

Format12
C / C++

typedef struct _ompd_aspace_cont ompd_address_space_context_t;13
typedef struct _ompd_thread_cont ompd_thread_context_t;14

C / C++

Description15
A third-party tool uniquely defines an address space context to identify the address space for the16
process that it is monitoring. Similarly, it uniquely defines a thread context to identify a native17
thread of the process that it is monitoring. These contexts are opaque to the OMPD library.18

5.3.12 Return Code Types19

Summary20
The ompd_rc_t type is the return code type of an OMPD operation.21

Format22
C / C++

typedef enum ompd_rc_t {23
ompd_rc_ok = 0,24
ompd_rc_unavailable = 1,25
ompd_rc_stale_handle = 2,26
ompd_rc_bad_input = 3,27
ompd_rc_error = 4,28
ompd_rc_unsupported = 5,29
ompd_rc_needs_state_tracking = 6,30

CHAPTER 5. OMPD INTERFACE 585

ompd_rc_incompatible = 7,1
ompd_rc_device_read_error = 8,2
ompd_rc_device_write_error = 9,3
ompd_rc_nomem = 10,4
ompd_rc_incomplete = 11,5
ompd_rc_callback_error = 126

} ompd_rc_t;7

C / C++

Description8
The ompd_rc_t type is used for the return codes of OMPD operations. The return code types and9
their semantics are defined as follows:10

• ompd_rc_ok is returned when the operation is successful;11

• ompd_rc_unavailable is returned when information is not available for the specified12
context;13

• ompd_rc_stale_handle is returned when the specified handle is no longer valid;14

• ompd_rc_bad_input is returned when the input parameters (other than handle) are invalid;15

• ompd_rc_error is returned when a fatal error occurred;16

• ompd_rc_unsupported is returned when the requested operation is not supported;17

• ompd_rc_needs_state_tracking is returned when the state tracking operation failed18
because state tracking is not currently enabled;19

• ompd_rc_device_read_error is returned when a read operation failed on the device;20

• ompd_rc_device_write_error is returned when a write operation failed on the device;21

• ompd_rc_incompatible is returned when this OMPD library is incompatible with the22
OpenMP program or is not capable of handling it;23

• ompd_rc_nomem is returned when a memory allocation fails;24

• ompd_rc_incomplete is returned when the information provided on return is incomplete,25
while the arguments are still set to valid values; and26

• ompd_rc_callback_error is returned when the callback interface or any one of the27
required callback routines provided by the third-party tool is invalid.28

5.3.13 Primitive Type Sizes29

Summary30
The ompd_device_type_sizes_t type provides the size of primitive types in the OpenMP31
architecture address space.32

586 OpenMP API – Version 5.1 November 2020

Format1
C / C++

typedef struct ompd_device_type_sizes_t {2
uint8_t sizeof_char;3
uint8_t sizeof_short;4
uint8_t sizeof_int;5
uint8_t sizeof_long;6
uint8_t sizeof_long_long;7
uint8_t sizeof_pointer;8

} ompd_device_type_sizes_t;9

C / C++

Description10
The ompd_device_type_sizes_t type is used in operations through which the OMPD11
library can interrogate the third-party tool about the size of primitive types for the target12
architecture of the OpenMP runtime, as returned by the sizeof operator. The fields of13
ompd_device_type_sizes_t give the sizes of the eponymous basic types used by the14
OpenMP runtime. As the third-party tool and the OMPD library, by definition, execute on the same15
architecture, the size of the fields can be given as uint8_t.16

Cross References17
• ompd_callback_sizeof_fn_t type, see Section 5.4.2.2.18

5.4 OMPD Third-Party Tool Callback Interface19

For the OMPD library to provide information about the internal state of the OpenMP runtime20
system in an OpenMP process or core file, it must have a means to extract information from the21
OpenMP process that the third-party tool is examining. The OpenMP process on which the22
third-party tool is operating may be either a “live” process or a core file, and a thread may be either23
a “live” thread in an OpenMP process or a thread in a core file. To enable the OMPD library to24
extract state information from an OpenMP process or core file, the third-party tool must supply the25
OMPD library with callback functions to inquire about the size of primitive types in the device of26
the OpenMP process, to look up the addresses of symbols, and to read and to write memory in the27
device. The OMPD library uses these callbacks to implement its interface operations. The OMPD28
library only invokes the callback functions in direct response to calls made by the third-party tool to29
the OMPD library.30

Description of Return Codes31
All of the OMPD callback functions must return the following return codes or function-specific32
return codes:33

• ompd_rc_ok on success; or34

• ompd_rc_stale_handle if an invalid context argument is provided.35

CHAPTER 5. OMPD INTERFACE 587

5.4.1 Memory Management of OMPD Library1

The OMPD library must not access the heap manager directly. Instead, if it needs heap memory it2
must use the memory allocation and deallocation callback functions that are described in this3
section, ompd_callback_memory_alloc_fn_t (see Section 5.4.1.1) and4
ompd_callback_memory_free_fn_t (see Section 5.4.1.2), which are provided by the5
third-party tool to obtain and to release heap memory. This mechanism ensures that the library does6
not interfere with any custom memory management scheme that the third-party tool may use.7

If the OMPD library is implemented in C++ then memory management operators, like new and8
delete and their variants, must all be overloaded and implemented in terms of the callbacks that9
the third-party tool provides. The OMPD library must be implemented in a manner such that any of10
its definitions of new or delete do not interfere with any that the third-party tool defines.11

In some cases, the OMPD library must allocate memory to return results to the third-party tool.12
The third-party tool then owns this memory and has the responsibility to release it. Thus, the13
OMPD library and the third-party tool must use the same memory manager.14

The OMPD library creates OMPD handles, which are opaque to the third-party tool and may have a15
complex internal structure. The third-party tool cannot determine if the handle pointers that the16
API returns correspond to discrete heap allocations. Thus, the third-party tool must not simply17
deallocate a handle by passing an address that it receives from the OMPD library to its own18
memory manager. Instead, the OMPD API includes functions that the third-party tool must use19
when it no longer needs a handle.20

A third-party tool creates contexts and passes them to the OMPD library. The OMPD library does21
not release contexts; instead the third-party tool releases them after it releases any handles that may22
reference the contexts.23

5.4.1.1 ompd_callback_memory_alloc_fn_t24

Summary25
The ompd_callback_memory_alloc_fn_t type is the type signature of the callback routine26
that the third-party tool provides to the OMPD library to allocate memory.27

Format28
C

typedef ompd_rc_t (*ompd_callback_memory_alloc_fn_t) (29
ompd_size_t nbytes,30
void **ptr31

);32

C
Description33
The ompd_callback_memory_alloc_fn_t type is the type signature of the memory34
allocation callback routine that the third-party tool provides. The OMPD library may call the35
ompd_callback_memory_alloc_fn_t callback function to allocate memory.36

588 OpenMP API – Version 5.1 November 2020

Description of Arguments1
The nbytes argument is the size in bytes of the block of memory to allocate.2

The address of the newly allocated block of memory is returned in the location to which the ptr3
argument points. The newly allocated block is suitably aligned for any type of variable and is not4
guaranteed to be set to zero.5

Description of Return Codes6
Routines that use the ompd_callback_memory_alloc_fn_t type may return the general7
return codes listed at the beginning of Section 5.4.8

Cross References9
• ompd_size_t type, see Section 5.3.1.10

• ompd_rc_t type, see Section 5.3.12.11

5.4.1.2 ompd_callback_memory_free_fn_t12

Summary13
The ompd_callback_memory_free_fn_t type is the type signature of the callback routine14
that the third-party tool provides to the OMPD library to deallocate memory.15

Format16
C

typedef ompd_rc_t (*ompd_callback_memory_free_fn_t) (17
void *ptr18

);19

C

Description20
The ompd_callback_memory_free_fn_t type is the type signature of the memory21
deallocation callback routine that the third-party tool provides. The OMPD library may call the22
ompd_callback_memory_free_fn_t callback function to deallocate memory that was23
obtained from a prior call to the ompd_callback_memory_alloc_fn_t callback function.24

Description of Arguments25
The ptr argument is the address of the block to be deallocated.26

Description of Return Codes27
Routines that use the ompd_callback_memory_free_fn_t type may return the general28
return codes listed at the beginning of Section 5.4.29

CHAPTER 5. OMPD INTERFACE 589

Cross References1
• ompd_rc_t type, see Section 5.3.12.2

• ompd_callback_memory_alloc_fn_t type, see Section 5.4.1.1.3

• ompd_callbacks_t type, see Section 5.4.6.4

5.4.2 Context Management and Navigation5

Summary6
The third-party tool provides the OMPD library with callbacks to manage and to navigate context7
relationships.8

5.4.2.1 ompd_callback_get_thread_context_for_thread_id9
_fn_t10

Summary11
The ompd_callback_get_thread_context_for_thread_id_fn_t is the type12
signature of the callback routine that the third-party tool provides to the OMPD library to map a13
native thread identifier to a third-party tool thread context.14

Format15
C

typedef ompd_rc_t16
(*ompd_callback_get_thread_context_for_thread_id_fn_t) (17

ompd_address_space_context_t *address_space_context,18
ompd_thread_id_t kind,19
ompd_size_t sizeof_thread_id,20
const void *thread_id,21
ompd_thread_context_t **thread_context22

);23

C

Description24
The ompd_callback_get_thread_context_for_thread_id_fn_t is the type25
signature of the context mapping callback routine that the third-party tool provides. This callback26
maps a native thread identifier to a third-party tool thread context. The native thread identifier is27
within the address space that address_space_context identifies. The OMPD library can use the28
thread context, for example, to access thread local storage.29

Description of Arguments30
The address_space_context argument is an opaque handle that the third-party tool provides to31
reference an address space. The kind, sizeof_thread_id, and thread_id arguments represent a native32
thread identifier. On return, the thread_context argument provides an opaque handle that maps a33
native thread identifier to a third-party tool thread context.34

590 OpenMP API – Version 5.1 November 2020

Description of Return Codes1
In addition to the general return codes listed at the beginning of Section 5.4, routines that use the2
ompd_callback_get_thread_context_for_thread_id_fn_t type may also return3
the following return codes:4

• ompd_rc_bad_input if a different value in sizeof_thread_id is expected for the native thread5
identifier kind given by kind; or6

• ompd_rc_unsupported if the native thread identifier kind is not supported.7

Restrictions8
Restrictions on routines that use9
ompd_callback_get_thread_context_for_thread_id_fn_t are as follows:10

• The provided thread_context must be valid until the OMPD library returns from the OMPD11
third-party tool interface routine.12

Cross References13
• ompd_size_t type, see Section 5.3.1.14

• ompd_thread_id_t type, see Section 5.3.7.15

• ompd_address_space_context_t type, see Section 5.3.11.16

• ompd_thread_context_t type, see Section 5.3.11.17

• ompd_rc_t type, see Section 5.3.12.18

5.4.2.2 ompd_callback_sizeof_fn_t19

Summary20
The ompd_callback_sizeof_fn_t type is the type signature of the callback routine that the21
third-party tool provides to the OMPD library to determine the sizes of the primitive types in an22
address space.23

Format24
C

typedef ompd_rc_t (*ompd_callback_sizeof_fn_t) (25
ompd_address_space_context_t *address_space_context,26
ompd_device_type_sizes_t *sizes27

);28

C

Description29
The ompd_callback_sizeof_fn_t is the type signature of the type-size query callback30
routine that the third-party tool provides. This callback provides the sizes of the basic primitive31
types for a given address space.32

CHAPTER 5. OMPD INTERFACE 591

Description of Arguments1
The callback returns the sizes of the basic primitive types used by the address space context that the2
address_space_context argument specifies in the location to which the sizes argument points.3

Description of Return Codes4
Routines that use the ompd_callback_sizeof_fn_t type may return the general return5
codes listed at the beginning of Section 5.4.6

Cross References7
• ompd_address_space_context_t type, see Section 5.3.11.8

• ompd_rc_t type, see Section 5.3.12.9

• ompd_device_type_sizes_t type, see Section 5.3.13.10

• ompd_callbacks_t type, see Section 5.4.6.11

5.4.3 Accessing Memory in the OpenMP Program or12

Runtime13

The OMPD library cannot directly read from or write to memory of the OpenMP program. Instead14
the OMPD library must use callbacks that the third-party tool provides so that the third-party tool15
performs the operation.16

5.4.3.1 ompd_callback_symbol_addr_fn_t17

Summary18
The ompd_callback_symbol_addr_fn_t type is the type signature of the callback that the19
third-party tool provides to look up the addresses of symbols in an OpenMP program.20

Format21
C

typedef ompd_rc_t (*ompd_callback_symbol_addr_fn_t) (22
ompd_address_space_context_t *address_space_context,23
ompd_thread_context_t *thread_context,24
const char *symbol_name,25
ompd_address_t *symbol_addr,26
const char *file_name27

);28

C

Description29
The ompd_callback_symbol_addr_fn_t is the type signature of the symbol-address query30
callback routine that the third-party tool provides. This callback looks up addresses of symbols31
within a specified address space.32

592 OpenMP API – Version 5.1 November 2020

Description of Arguments1
This callback looks up the symbol provided in the symbol_name argument.2

The address_space_context argument is the third-party tool’s representation of the address space of3
the process, core file, or device.4

The thread_context argument is NULL for global memory accesses. If thread_context is not5
NULL, thread_context gives the thread-specific context for the symbol lookup for the purpose of6
calculating thread local storage addresses. In this case, the thread to which thread_context refers7
must be associated with either the process or the device that corresponds to the8
address_space_context argument.9

The third-party tool uses the symbol_name argument that the OMPD library supplies verbatim. In10
particular, no name mangling, demangling or other transformations are performed prior to the11
lookup. The symbol_name parameter must correspond to a statically allocated symbol within the12
specified address space. The symbol can correspond to any type of object, such as a variable,13
thread local storage variable, function, or untyped label. The symbol can have a local, global, or14
weak binding.15

The file_name argument is an optional input parameter that indicates the name of the shared library16
in which the symbol is defined, and it is intended to help the third-party tool disambiguate symbols17
that are defined multiple times across the executable or shared library files. The shared library name18
may not be an exact match for the name seen by the third-party tool. If file_name is NULL then the19
third-party tool first tries to find the symbol in the executable file, and, if the symbol is not found,20
the third-party tool tries to find the symbol in the shared libraries in the order in which the shared21
libraries are loaded into the address space. If file_name is non-null then the third-party tool first22
tries to find the symbol in the libraries that match the name in the file_name argument, and, if the23
symbol is not found, the third-party tool then uses the same procedure as when file_name is NULL.24

The callback does not support finding either symbols that are dynamically allocated on the call25
stack or statically allocated symbols that are defined within the scope of a function or subroutine.26

The callback returns the address of the symbol in the location to which symbol_addr points.27

Description of Return Codes28
In addition to the general return codes listed at the beginning of Section 5.4, routines that use the29
ompd_callback_symbol_addr_fn_t type may also return the following return codes:30

• ompd_rc_error if the requested symbol is not found; or31

• ompd_rc_bad_input if no symbol name is provided.32

Restrictions33
Restrictions on routines that use the ompd_callback_symbol_addr_fn_t type are as34
follows:35

• The address_space_context argument must be non-null.36

• The symbol that the symbol_name argument specifies must be defined.37

CHAPTER 5. OMPD INTERFACE 593

Cross References1
• ompd_address_t type, see Section 5.3.4.2

• ompd_address_space_context_t type, see Section 5.3.11.3

• ompd_thread_context_t type, see Section 5.3.11.4

• ompd_rc_t type, see Section 5.3.12.5

• ompd_callbacks_t type, see Section 5.4.6.6

5.4.3.2 ompd_callback_memory_read_fn_t7

Summary8
The ompd_callback_memory_read_fn_t type is the type signature of the callback that the9
third-party tool provides to read data (read_memory) or a string (read_string) from an OpenMP10
program.11

Format12
C

typedef ompd_rc_t (*ompd_callback_memory_read_fn_t) (13
ompd_address_space_context_t *address_space_context,14
ompd_thread_context_t *thread_context,15
const ompd_address_t *addr,16
ompd_size_t nbytes,17
void *buffer18

);19

C

Description20
The ompd_callback_memory_read_fn_t is the type signature of the read callback routines21
that the third-party tool provides.22

The read_memory callback copies a block of data from addr within the address space given by23
address_space_context to the third-party tool buffer.24

The read_string callback copies a string to which addr points, including the terminating null byte25
(’\0’), to the third-party tool buffer. At most nbytes bytes are copied. If a null byte is not among26
the first nbytes bytes, the string placed in buffer is not null-terminated.27

Description of Arguments28
The address from which the data are to be read in the OpenMP program that29
address_space_context specifies is given by addr. The nbytes argument is the number of bytes to30
be transferred. The thread_context argument is optional for global memory access, and in that case31
should be NULL. If it is non-null, thread_context identifies the thread-specific context for the32
memory access for the purpose of accessing thread local storage.33

594 OpenMP API – Version 5.1 November 2020

The data are returned through buffer, which is allocated and owned by the OMPD library. The1
contents of the buffer are unstructured, raw bytes. The OMPD library must arrange for any2
transformations such as byte-swapping that may be necessary (see Section 5.4.4) to interpret the3
data.4

Description of Return Codes5
In addition to the general return codes listed at the beginning of Section 5.4, routines that use the6
ompd_callback_memory_read_fn_t type may also return the following return codes:7

• ompd_rc_incomplete if no terminating null byte is found while reading nbytes using the8
read_string callback; or9

• ompd_rc_error if unallocated memory is reached while reading nbytes using either the10
read_memory or read_string callback.11

Cross References12
• ompd_size_t type, see Section 5.3.1.13

• ompd_address_t type, see Section 5.3.4.14

• ompd_address_space_context_t type, see Section 5.3.11.15

• ompd_thread_context_t type, see Section 5.3.11.16

• ompd_rc_t type, see Section 5.3.12.17

• ompd_callback_device_host_fn_t type, see Section 5.4.4.18

• ompd_callbacks_t type, see Section 5.4.6.19

5.4.3.3 ompd_callback_memory_write_fn_t20

Summary21
The ompd_callback_memory_write_fn_t type is the type signature of the callback that22
the third-party tool provides to write data to an OpenMP program.23

Format24
C

typedef ompd_rc_t (*ompd_callback_memory_write_fn_t) (25
ompd_address_space_context_t *address_space_context,26
ompd_thread_context_t *thread_context,27
const ompd_address_t *addr,28
ompd_size_t nbytes,29
const void *buffer30

);31

C

CHAPTER 5. OMPD INTERFACE 595

Description1
The ompd_callback_memory_write_fn_t is the type signature of the write callback2
routine that the third-party tool provides. The OMPD library may call this callback to have the3
third-party tool write a block of data to a location within an address space from a provided buffer.4

Description of Arguments5
The address to which the data are to be written in the OpenMP program that address_space_context6
specifies is given by addr. The nbytes argument is the number of bytes to be transferred. The7
thread_context argument is optional for global memory access, and in that case should be NULL. If8
it is non-null then thread_context identifies the thread-specific context for the memory access for9
the purpose of accessing thread local storage.10

The data to be written are passed through buffer, which is allocated and owned by the OMPD11
library. The contents of the buffer are unstructured, raw bytes. The OMPD library must arrange for12
any transformations such as byte-swapping that may be necessary (see Section 5.4.4) to render the13
data into a form that is compatible with the OpenMP runtime.14

Description of Return Codes15
Routines that use the ompd_callback_memory_write_fn_t type may return the general16
return codes listed at the beginning of Section 5.4.17

Cross References18
• ompd_size_t type, see Section 5.3.1.19

• ompd_address_t type, see Section 5.3.4.20

• ompd_address_space_context_t type, see Section 5.3.11.21

• ompd_thread_context_t type, see Section 5.3.11.22

• ompd_rc_t type, see Section 5.3.12.23

• ompd_callback_device_host_fn_t type, see Section 5.4.4.24

• ompd_callbacks_t type, see Section 5.4.6.25

5.4.4 Data Format Conversion:26

ompd_callback_device_host_fn_t27

Summary28
The ompd_callback_device_host_fn_t type is the type signature of the callback that the29
third-party tool provides to convert data between the formats that the third-party tool and the30
OMPD library use and that the OpenMP program uses.31

596 OpenMP API – Version 5.1 November 2020

Format1
C

typedef ompd_rc_t (*ompd_callback_device_host_fn_t) (2
ompd_address_space_context_t *address_space_context,3
const void *input,4
ompd_size_t unit_size,5
ompd_size_t count,6
void *output7

);8

C

Description9
The architecture on which the third-party tool and the OMPD library execute may be different from10
the architecture on which the OpenMP program that is being examined executes. Thus, the11
conventions for representing data may differ. The callback interface includes operations to convert12
between the conventions, such as the byte order (endianness), that the third-party tool and OMPD13
library use and the ones that the OpenMP program use. The callback with the14
ompd_callback_device_host_fn_t type signature converts data between the formats.15

Description of Arguments16
The address_space_context argument specifies the OpenMP address space that is associated with17
the data. The input argument is the source buffer and the output argument is the destination buffer.18
The unit_size argument is the size of each of the elements to be converted. The count argument is19
the number of elements to be transformed.20

The OMPD library allocates and owns the input and output buffers. It must ensure that the buffers21
have the correct size and are eventually deallocated when they are no longer needed.22

Description of Return Codes23
Routines that use the ompd_callback_device_host_fn_t type may return the general24
return codes listed at the beginning of Section 5.4.25

Cross References26
• ompd_size_t type, see Section 5.3.1.27

• ompd_address_space_context_t type, see Section 5.3.11.28

• ompd_rc_t type, see Section 5.3.12.29

• ompd_callbacks_t type, see Section 5.4.6.30

CHAPTER 5. OMPD INTERFACE 597

5.4.5 ompd_callback_print_string_fn_t1

Summary2
The ompd_callback_print_string_fn_t type is the type signature of the callback that3
the third-party tool provides so that the OMPD library can emit output.4

Format5
C

typedef ompd_rc_t (*ompd_callback_print_string_fn_t) (6
const char *string,7
int category8

);9

C

Description10
The OMPD library may call the ompd_callback_print_string_fn_t callback function to11
emit output, such as logging or debug information. The third-party tool may set the12
ompd_callback_print_string_fn_t callback function to NULL to prevent the OMPD13
library from emitting output. The OMPD library may not write to file descriptors that it did not14
open.15

Description of Arguments16
The string argument is the null-terminated string to be printed. No conversion or formatting is17
performed on the string.18

The category argument is the implementation-defined category of the string to be printed.19

Description of Return Codes20
Routines that use the ompd_callback_print_string_fn_t type may return the general21
return codes listed at the beginning of Section 5.4.22

Cross References23
• ompd_rc_t type, see Section 5.3.12.24

• ompd_callbacks_t type, see Section 5.4.6.25

5.4.6 The Callback Interface26

Summary27
All OMPD library interactions with the OpenMP program must be through a set of callbacks that28
the third-party tool provides. These callbacks must also be used for allocating or releasing29
resources, such as memory, that the OMPD library needs.30

598 OpenMP API – Version 5.1 November 2020

Format1
C

typedef struct ompd_callbacks_t {2
ompd_callback_memory_alloc_fn_t alloc_memory;3
ompd_callback_memory_free_fn_t free_memory;4
ompd_callback_print_string_fn_t print_string;5
ompd_callback_sizeof_fn_t sizeof_type;6
ompd_callback_symbol_addr_fn_t symbol_addr_lookup;7
ompd_callback_memory_read_fn_t read_memory;8
ompd_callback_memory_write_fn_t write_memory;9
ompd_callback_memory_read_fn_t read_string;10
ompd_callback_device_host_fn_t device_to_host;11
ompd_callback_device_host_fn_t host_to_device;12
ompd_callback_get_thread_context_for_thread_id_fn_t13

get_thread_context_for_thread_id;14
} ompd_callbacks_t;15

C

Description16
The set of callbacks that the OMPD library must use is collected in the ompd_callbacks_t17
structure. An instance of this type is passed to the OMPD library as a parameter to18
ompd_initialize (see Section 5.5.1.1). Each field points to a function that the OMPD library19
must use either to interact with the OpenMP program or for memory operations.20

The alloc_memory and free_memory fields are pointers to functions the OMPD library uses to21
allocate and to release dynamic memory.22

The print_string field points to a function that prints a string.23

The architecture on which the OMPD library and third-party tool execute may be different from the24
architecture on which the OpenMP program that is being examined executes. The sizeof_type field25
points to a function that allows the OMPD library to determine the sizes of the basic integer and26
pointer types that the OpenMP program uses. Because of the potential differences in the targeted27
architectures, the conventions for representing data in the OMPD library and the OpenMP program28
may be different. The device_to_host field points to a function that translates data from the29
conventions that the OpenMP program uses to those that the third-party tool and OMPD library30
use. The reverse operation is performed by the function to which the host_to_device field points.31

The symbol_addr_lookup field points to a callback that the OMPD library can use to find the32
address of a global or thread local storage symbol. The read_memory, read_string and33
write_memory fields are pointers to functions for reading from and writing to global memory or34
thread local storage in the OpenMP program.35

The get_thread_context_for_thread_id field is a pointer to a function that the OMPD library can36
use to obtain a thread context that corresponds to a native thread identifier.37

CHAPTER 5. OMPD INTERFACE 599

Cross References1
• ompd_callback_memory_alloc_fn_t type, see Section 5.4.1.1.2

• ompd_callback_memory_free_fn_t type, see Section 5.4.1.2.3

• ompd_callback_get_thread_context_for_thread_id_fn_t type, see4
Section 5.4.2.1.5

• ompd_callback_sizeof_fn_t type, see Section 5.4.2.2.6

• ompd_callback_symbol_addr_fn_t type, see Section 5.4.3.1.7

• ompd_callback_memory_read_fn_t type, see Section 5.4.3.2.8

• ompd_callback_memory_write_fn_t type, see Section 5.4.3.3.9

• ompd_callback_device_host_fn_t type, see Section 5.4.4.10

• ompd_callback_print_string_fn_t type, see Section 5.4.511

5.5 OMPD Tool Interface Routines12

This section defines the interface provided by the OMPD library to be used by the third-party tool.13

Description of Return Codes14
All of the OMPD Tool Interface Routines must return function specific return codes or any of the15
following return codes:16

• ompd_rc_stale_handle if a provided handle is stale;17

• ompd_rc_bad_input if NULL is provided for any input argument unless otherwise specified;18

• ompd_rc_callback if a callback returned an unexpected error, which leads to a failure of the19
query;20

• ompd_rc_needs_state_tracking if the information cannot be provided while the21
debug-var is disabled;22

• ompd_rc_ok on success; or23

• ompd_rc_error for any other error.24

5.5.1 Per OMPD Library Initialization and Finalization25

The OMPD library must be initialized exactly once after it is loaded, and finalized exactly once26
before it is unloaded. Per OpenMP process or core file initialization and finalization are also27
required.28

600 OpenMP API – Version 5.1 November 2020

Once loaded, the tool can determine the version of the OMPD API that the library supports by1
calling ompd_get_api_version (see Section 5.5.1.2). If the tool supports the version that2
ompd_get_api_version returns, the tool starts the initialization by calling3
ompd_initialize (see Section 5.5.1.1) using the version of the OMPD API that the library4
supports. If the tool does not support the version that ompd_get_api_version returns, it may5
attempt to call ompd_initialize with a different version.6

5.5.1.1 ompd_initialize7

Summary8
The ompd_initialize function initializes the OMPD library.9

Format10
C

ompd_rc_t ompd_initialize(11
ompd_word_t api_version,12
const ompd_callbacks_t *callbacks13

);14

C

Description15
A tool that uses OMPD calls ompd_initialize to initialize each OMPD library that it loads.16
More than one library may be present in a third-party tool, such as a debugger, because the tool17
may control multiple devices, which may use different runtime systems that require different18
OMPD libraries. This initialization must be performed exactly once before the tool can begin to19
operate on an OpenMP process or core file.20

Description of Arguments21
The api_version argument is the OMPD API version that the tool requests to use. The tool may call22
ompd_get_api_version to obtain the latest OMPD API version that the OMPD library23
supports.24

The tool provides the OMPD library with a set of callback functions in the callbacks input25
argument which enables the OMPD library to allocate and to deallocate memory in the tool’s26
address space, to lookup the sizes of basic primitive types in the device, to lookup symbols in the27
device, and to read and to write memory in the device.28

Description of Return Codes29
This routine must return any of the general return codes listed at the beginning of Section 5.5 or any30
of the following return codes:31

• ompd_rc_bad_input if invalid callbacks are provided; or32

• ompd_rc_unsupported if the requested API version cannot be provided.33

CHAPTER 5. OMPD INTERFACE 601

Cross References1
• ompd_rc_t type, see Section 5.3.12.2

• ompd_callbacks_t type, see Section 5.4.6.3

• ompd_get_api_version routine, see Section 5.5.1.2.4

5.5.1.2 ompd_get_api_version5

Summary6
The ompd_get_api_version function returns the OMPD API version.7

Format8
C

ompd_rc_t ompd_get_api_version(ompd_word_t *version);9

C

Description10
The tool may call the ompd_get_api_version function to obtain the latest OMPD API11
version number of the OMPD library. The OMPD API version number is equal to the value of the12
_OPENMP macro defined in the associated OpenMP implementation, if the C preprocessor is13
supported. If the associated OpenMP implementation compiles Fortran codes without the use of a14
C preprocessor, the OMPD API version number is equal to the value of the Fortran integer15
parameter openmp_version.16

Description of Arguments17
The latest version number is returned into the location to which the version argument points.18

Description of Return Codes19
This routine must return any of the general return codes listed at the beginning of Section 5.5.20

Cross References21
• ompd_rc_t type, see Section 5.3.12.22

5.5.1.3 ompd_get_version_string23

Summary24
The ompd_get_version_string function returns a descriptive string for the OMPD library25
version.26

Format27
C

ompd_rc_t ompd_get_version_string(const char **string);28

C

602 OpenMP API – Version 5.1 November 2020

Description1
The tool may call this function to obtain a pointer to a descriptive version string of the OMPD2
library vendor, implementation, internal version, date, or any other information that may be useful3
to a tool user or vendor. An implementation should provide a different string for every change to its4
source code or build that could be visible to the interface user.5

Description of Arguments6
A pointer to a descriptive version string is placed into the location to which the string output7
argument points. The OMPD library owns the string that the OMPD library returns; the tool must8
not modify or release this string. The string remains valid for as long as the library is loaded. The9
ompd_get_version_string function may be called before ompd_initialize (see10
Section 5.5.1.1). Accordingly, the OMPD library must not use heap or stack memory for the string.11

The signatures of ompd_get_api_version (see Section 5.5.1.2) and12
ompd_get_version_string are guaranteed not to change in future versions of the API. In13
contrast, the type definitions and prototypes in the rest of the API do not carry the same guarantee.14
Therefore a tool that uses OMPD should check the version of the API of the loaded OMPD library15
before it calls any other function of the API.16

Description of Return Codes17
This routine must return any of the general return codes listed at the beginning of Section 5.5.18

Cross References19
• ompd_rc_t type, see Section 5.3.12.20

5.5.1.4 ompd_finalize21

Summary22
When the tool is finished with the OMPD library it should call ompd_finalize before it23
unloads the library.24

Format25
C

ompd_rc_t ompd_finalize(void);26

C

Description27
The call to ompd_finalize must be the last OMPD call that the tool makes before it unloads the28
library. This call allows the OMPD library to free any resources that it may be holding.29

The OMPD library may implement a finalizer section, which executes as the library is unloaded30
and therefore after the call to ompd_finalize. During finalization, the OMPD library may use31
the callbacks that the tool provided earlier during the call to ompd_initialize.32

CHAPTER 5. OMPD INTERFACE 603

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the2
following return code:3

• ompd_rc_unsupported if the OMPD library is not initialized.4

Cross References5
• ompd_rc_t type, see Section 5.3.12.6

5.5.2 Per OpenMP Process Initialization and Finalization7

5.5.2.1 ompd_process_initialize8

Summary9
A tool calls ompd_process_initialize to obtain an address space handle when it initializes10
a session on a live process or core file.11

Format12
C

ompd_rc_t ompd_process_initialize(13
ompd_address_space_context_t *context,14
ompd_address_space_handle_t **handle15

);16

C

Description17
A tool calls ompd_process_initialize to obtain an address space handle when it initializes18
a session on a live process or core file. On return from ompd_process_initialize, the tool19
owns the address space handle, which it must release with20
ompd_rel_address_space_handle. The initialization function must be called before any21
OMPD operations are performed on the OpenMP process or core file. This call allows the OMPD22
library to confirm that it can handle the OpenMP process or core file that context identifies.23

Description of Arguments24
The context argument is an opaque handle that the tool provides to address an address space. On25
return, the handle argument provides an opaque handle to the tool for this address space, which the26
tool must release when it is no longer needed.27

Description of Return Codes28
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the29
following return code:30

• ompd_rc_incompatible if the OMPD library is incompatible with the runtime library31
loaded in the process.32

604 OpenMP API – Version 5.1 November 2020

Cross References1
• ompd_address_space_handle_t type, see Section 5.3.8.2

• ompd_address_space_context_t type, see Section 5.3.11.3

• ompd_rc_t type, see Section 5.3.12.4

• ompd_rel_address_space_handle routine, see Section 5.5.2.3.5

5.5.2.2 ompd_device_initialize6

Summary7
A tool calls ompd_device_initialize to obtain an address space handle for a device that has8
at least one active target region.9

Format10
C

ompd_rc_t ompd_device_initialize(11
ompd_address_space_handle_t *process_handle,12
ompd_address_space_context_t *device_context,13
ompd_device_t kind,14
ompd_size_t sizeof_id,15
void *id,16
ompd_address_space_handle_t **device_handle17

);18

C

Description19
A tool calls ompd_device_initialize to obtain an address space handle for a device that has20
at least one active target region. On return from ompd_device_initialize, the tool owns the21
address space handle.22

Description of Arguments23
The process_handle argument is an opaque handle that the tool provides to reference the address24
space of the OpenMP process or core file. The device_context argument is an opaque handle that25
the tool provides to reference a device address space. The kind, sizeof_id, and id arguments26
represent a device identifier. On return the device_handle argument provides an opaque handle to27
the tool for this address space.28

Description of Return Codes29
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the30
following return code:31

• ompd_rc_unsupported if the OMPD library has no support for the specific device.32

CHAPTER 5. OMPD INTERFACE 605

Cross References1
• ompd_size_t type, see Section 5.3.1.2

• ompd_device_t type, see Section 5.3.6.3

• ompd_address_space_handle_t type, see Section 5.3.8.4

• ompd_address_space_context_t type, see Section 5.3.11.5

• ompd_rc_t type, see Section 5.3.12.6

5.5.2.3 ompd_rel_address_space_handle7

Summary8
A tool calls ompd_rel_address_space_handle to release an address space handle.9

Format10
C

ompd_rc_t ompd_rel_address_space_handle(11
ompd_address_space_handle_t *handle12

);13

C

Description14
When the tool is finished with the OpenMP process address space handle it should call15
ompd_rel_address_space_handle to release the handle, which allows the OMPD library16
to release any resources that it has related to the address space.17

Description of Arguments18
The handle argument is an opaque handle for the address space to be released.19

Restrictions20
Restrictions to the ompd_rel_address_space_handle routine are as follows:21

• An address space context must not be used after the corresponding address space handle is22
released.23

Description of Return Codes24
This routine must return any of the general return codes listed at the beginning of Section 5.5.25

Cross References26
• ompd_address_space_handle_t type, see Section 5.3.8.27

• ompd_rc_t type, see Section 5.3.12.28

606 OpenMP API – Version 5.1 November 2020

5.5.3 Thread and Signal Safety1

The OMPD library does not need to be reentrant. The tool must ensure that only one thread enters2
the OMPD library at a time. The OMPD library must not install signal handlers or otherwise3
interfere with the tool’s signal configuration.4

5.5.4 Address Space Information5

5.5.4.1 ompd_get_omp_version6

Summary7
The tool may call the ompd_get_omp_version function to obtain the version of the OpenMP8
API that is associated with an address space.9

Format10
C

ompd_rc_t ompd_get_omp_version(11
ompd_address_space_handle_t *address_space,12
ompd_word_t *omp_version13

);14

C

Description15
The tool may call the ompd_get_omp_version function to obtain the version of the OpenMP16
API that is associated with the address space.17

Description of Arguments18
The address_space argument is an opaque handle that the tool provides to reference the address19
space of the OpenMP process or device.20

Upon return, the omp_version argument contains the version of the OpenMP runtime in the21
_OPENMP version macro format.22

Description of Return Codes23
This routine must return any of the general return codes listed at the beginning of Section 5.5.24

Cross References25
• ompd_address_space_handle_t type, see Section 5.3.8.26

• ompd_rc_t type, see Section 5.3.12.27

CHAPTER 5. OMPD INTERFACE 607

5.5.4.2 ompd_get_omp_version_string1

Summary2
The ompd_get_omp_version_string function returns a descriptive string for the OpenMP3
API version that is associated with an address space.4

Format5
C

ompd_rc_t ompd_get_omp_version_string(6
ompd_address_space_handle_t *address_space,7
const char **string8

);9

C

Description10
After initialization, the tool may call the ompd_get_omp_version_string function to obtain11
the version of the OpenMP API that is associated with an address space.12

Description of Arguments13
The address_space argument is an opaque handle that the tool provides to reference the address14
space of the OpenMP process or device. A pointer to a descriptive version string is placed into the15
location to which the string output argument points. After returning from the call, the tool owns the16
string. The OMPD library must use the memory allocation callback that the tool provides to17
allocate the string storage. The tool is responsible for releasing the memory.18

Description of Return Codes19
This routine must return any of the general return codes listed at the beginning of Section 5.5.20

Cross References21
• ompd_address_space_handle_t type, see Section 5.3.8.22

• ompd_rc_t type, see Section 5.3.12.23

608 OpenMP API – Version 5.1 November 2020

5.5.5 Thread Handles1

5.5.5.1 ompd_get_thread_in_parallel2

Summary3
The ompd_get_thread_in_parallel function enables a tool to obtain handles for OpenMP4
threads that are associated with a parallel region.5

Format6
C

ompd_rc_t ompd_get_thread_in_parallel(7
ompd_parallel_handle_t *parallel_handle,8
int thread_num,9
ompd_thread_handle_t **thread_handle10

);11

C

Description12
A successful invocation of ompd_get_thread_in_parallel returns a pointer to a thread13
handle in the location to which thread_handle points. This call yields meaningful results only14
if all OpenMP threads in the parallel region are stopped.15

Description of Arguments16
The parallel_handle argument is an opaque handle for a parallel region and selects the parallel17
region on which to operate. The thread_num argument selects the thread, the handle of which is to18
be returned. On return, the thread_handle argument is an opaque handle for the selected thread.19

Description of Return Codes20
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the21
following return code:22

• ompd_rc_bad_input if the thread_num argument is greater than or equal to the23
team-size-var ICV or negative.24

Restrictions25
Restrictions on the ompd_get_thread_in_parallel function are as follows:26

• The value of thread_num must be a non-negative integer smaller than the team size that was27
provided as the team-size-var ICV from ompd_get_icv_from_scope.28

Cross References29
• ompd_parallel_handle_t type, see Section 5.3.8.30

• ompd_thread_handle_t type, see Section 5.3.8.31

• ompd_rc_t type, see Section 5.3.12.32

• ompd_get_icv_from_scope routine, see Section 5.5.9.2.33

CHAPTER 5. OMPD INTERFACE 609

5.5.5.2 ompd_get_thread_handle1

Summary2
The ompd_get_thread_handle function maps a native thread to an OMPD thread handle.3

Format4
C

ompd_rc_t ompd_get_thread_handle(5
ompd_address_space_handle_t *handle,6
ompd_thread_id_t kind,7
ompd_size_t sizeof_thread_id,8
const void *thread_id,9
ompd_thread_handle_t **thread_handle10

);11

C
Description12
The ompd_get_thread_handle function determines if the native thread identifier to which13
thread_id points represents an OpenMP thread. If so, the function returns ompd_rc_ok and the14
location to which thread_handle points is set to the thread handle for the OpenMP thread.15

Description of Arguments16
The handle argument is an opaque handle that the tool provides to reference an address space. The17
kind, sizeof_thread_id, and thread_id arguments represent a native thread identifier. On return, the18
thread_handle argument provides an opaque handle to the thread within the provided address space.19

The native thread identifier to which thread_id points is guaranteed to be valid for the duration of20
the call. If the OMPD library must retain the native thread identifier, it must copy it.21

Description of Return Codes22
This routine must return any of the general return codes listed at the beginning of Section 5.5 or any23
of the following return codes:24

• ompd_rc_bad_input if a different value in sizeof_thread_id is expected for a thread kind of25
kind.26

• ompd_rc_unsupported if the kind of thread is not supported.27

• ompd_rc_unavailable if the thread is not an OpenMP thread.28

Cross References29
• ompd_size_t type, see Section 5.3.1.30

• ompd_thread_id_t type, see Section 5.3.7.31

• ompd_address_space_handle_t type, see Section 5.3.8.32

• ompd_thread_handle_t type, see Section 5.3.8.33

• ompd_rc_t type, see Section 5.3.12.34

610 OpenMP API – Version 5.1 November 2020

5.5.5.3 ompd_rel_thread_handle1

Summary2
The ompd_rel_thread_handle function releases a thread handle.3

Format4
C

ompd_rc_t ompd_rel_thread_handle(5
ompd_thread_handle_t *thread_handle6

);7

C

Description8
Thread handles are opaque to tools, which therefore cannot release them directly. Instead, when the9
tool is finished with a thread handle it must pass it to ompd_rel_thread_handle for disposal.10

Description of Arguments11
The thread_handle argument is an opaque handle for a thread to be released.12

Description of Return Codes13
This routine must return any of the general return codes listed at the beginning of Section 5.5.14

Cross References15
• ompd_thread_handle_t type, see Section 5.3.8.16

• ompd_rc_t type, see Section 5.3.12.17

5.5.5.4 ompd_thread_handle_compare18

Summary19
The ompd_thread_handle_compare function allows tools to compare two thread handles.20

Format21
C

ompd_rc_t ompd_thread_handle_compare(22
ompd_thread_handle_t *thread_handle_1,23
ompd_thread_handle_t *thread_handle_2,24
int *cmp_value25

);26

C

Description27
The internal structure of thread handles is opaque to a tool. While the tool can easily compare28
pointers to thread handles, it cannot determine whether handles of two different addresses refer to29
the same underlying thread. The ompd_thread_handle_compare function compares thread30
handles.31

CHAPTER 5. OMPD INTERFACE 611

On success, ompd_thread_handle_compare returns in the location to which cmp_value1
points a signed integer value that indicates how the underlying threads compare: a value less than,2
equal to, or greater than 0 indicates that the thread corresponding to thread_handle_1 is,3
respectively, less than, equal to, or greater than that corresponding to thread_handle_2.4

Description of Arguments5
The thread_handle_1 and thread_handle_2 arguments are opaque handles for threads. On return6
the cmp_value argument is set to a signed integer value.7

Description of Return Codes8
This routine must return any of the general return codes listed at the beginning of Section 5.5.9

Cross References10
• ompd_thread_handle_t type, see Section 5.3.8.11

• ompd_rc_t type, see Section 5.3.12.12

5.5.5.5 ompd_get_thread_id13

Summary14
The ompd_get_thread_id maps an OMPD thread handle to a native thread.15

Format16
C

ompd_rc_t ompd_get_thread_id(17
ompd_thread_handle_t *thread_handle,18
ompd_thread_id_t kind,19
ompd_size_t sizeof_thread_id,20
void *thread_id21

);22

C

Description23
The ompd_get_thread_id function maps an OMPD thread handle to a native thread identifier.24

Description of Arguments25
The thread_handle argument is an opaque thread handle. The kind argument represents the native26
thread identifier. The sizeof_thread_id argument represents the size of the native thread identifier.27
On return, the thread_id argument is a buffer that represents a native thread identifier.28

612 OpenMP API – Version 5.1 November 2020

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 5.5 or any2
of the following return codes:3

• ompd_rc_bad_input if a different value in sizeof_thread_id is expected for a thread kind of4
kind; or5

• ompd_rc_unsupported if the kind of thread is not supported.6

Cross References7
• ompd_size_t type, see Section 5.3.1.8

• ompd_thread_id_t type, see Section 5.3.7.9

• ompd_thread_handle_t type, see Section 5.3.8.10

• ompd_rc_t type, see Section 5.3.12.11

5.5.6 Parallel Region Handles12

5.5.6.1 ompd_get_curr_parallel_handle13

Summary14
The ompd_get_curr_parallel_handle function obtains a pointer to the parallel handle for15
an OpenMP thread’s current parallel region.16

Format17
C

ompd_rc_t ompd_get_curr_parallel_handle(18
ompd_thread_handle_t *thread_handle,19
ompd_parallel_handle_t **parallel_handle20

);21

C

Description22
The ompd_get_curr_parallel_handle function enables the tool to obtain a pointer to the23
parallel handle for the current parallel region that is associated with an OpenMP thread. This call is24
meaningful only if the associated thread is stopped. The parallel handle is owned by the tool and it25
must be released by calling ompd_rel_parallel_handle.26

Description of Arguments27
The thread_handle argument is an opaque handle for a thread and selects the thread on which to28
operate. On return, the parallel_handle argument is set to a handle for the parallel region that the29
associated thread is currently executing, if any.30

CHAPTER 5. OMPD INTERFACE 613

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the2
following return code:3

• ompd_rc_unavailable if the thread is not currently part of a team.4

Cross References5
• ompd_thread_handle_t type, see Section 5.3.8.6

• ompd_parallel_handle_t type, see Section 5.3.8.7

• ompd_rc_t type, see Section 5.3.12.8

• ompd_rel_parallel_handle routine, see Section 5.5.6.4.9

5.5.6.2 ompd_get_enclosing_parallel_handle10

Summary11
The ompd_get_enclosing_parallel_handle function obtains a pointer to the parallel12
handle for an enclosing parallel region.13

Format14
C

ompd_rc_t ompd_get_enclosing_parallel_handle(15
ompd_parallel_handle_t *parallel_handle,16
ompd_parallel_handle_t **enclosing_parallel_handle17

);18

C

Description19
The ompd_get_enclosing_parallel_handle function enables a tool to obtain a pointer20
to the parallel handle for the parallel region that encloses the parallel region that21
parallel_handle specifies. This call is meaningful only if at least one thread in the parallel22
region is stopped. A pointer to the parallel handle for the enclosing region is returned in the23
location to which enclosing_parallel_handle points. After the call, the tool owns the handle; the24
tool must release the handle with ompd_rel_parallel_handle when it is no longer required.25

Description of Arguments26
The parallel_handle argument is an opaque handle for a parallel region that selects the parallel27
region on which to operate. On return, the enclosing_parallel_handle argument is set to a handle28
for the parallel region that encloses the selected parallel region.29

614 OpenMP API – Version 5.1 November 2020

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the2
following return code:3

• ompd_rc_unavailable if no enclosing parallel region exists.4

Cross References5
• ompd_parallel_handle_t type, see Section 5.3.8.6

• ompd_rc_t type, see Section 5.3.12.7

• ompd_rel_parallel_handle routine, see Section 5.5.6.4.8

5.5.6.3 ompd_get_task_parallel_handle9

Summary10
The ompd_get_task_parallel_handle function obtains a pointer to the parallel handle for11
the parallel region that encloses a task region.12

Format13
C

ompd_rc_t ompd_get_task_parallel_handle(14
ompd_task_handle_t *task_handle,15
ompd_parallel_handle_t **task_parallel_handle16

);17

C
Description18
The ompd_get_task_parallel_handle function enables a tool to obtain a pointer to the19
parallel handle for the parallel region that encloses the task region that task_handle specifies. This20
call is meaningful only if at least one thread in the parallel region is stopped. A pointer to the21
parallel regions handle is returned in the location to which task_parallel_handle points. The tool22
owns that parallel handle, which it must release with ompd_rel_parallel_handle.23

Description of Arguments24
The task_handle argument is an opaque handle that selects the task on which to operate. On return,25
the parallel_handle argument is set to a handle for the parallel region that encloses the selected task.26

Description of Return Codes27
This routine must return any of the general return codes listed at the beginning of Section 5.5.28

Cross References29
• ompd_task_handle_t type, see Section 5.3.8.30

• ompd_parallel_handle_t type, see Section 5.3.8.31

• ompd_rc_t type, see Section 5.3.12.32

• ompd_rel_parallel_handle routine, see Section 5.5.6.4.33

CHAPTER 5. OMPD INTERFACE 615

5.5.6.4 ompd_rel_parallel_handle1

Summary2
The ompd_rel_parallel_handle function releases a parallel region handle.3

Format4
C

ompd_rc_t ompd_rel_parallel_handle(5
ompd_parallel_handle_t *parallel_handle6

);7

C

Description8
Parallel region handles are opaque so tools cannot release them directly. Instead, a tool must pass a9
parallel region handle to the ompd_rel_parallel_handle function for disposal when10
finished with it.11

Description of Arguments12
The parallel_handle argument is an opaque handle to be released.13

Description of Return Codes14
This routine must return any of the general return codes listed at the beginning of Section 5.5.15

Cross References16
• ompd_parallel_handle_t type, see Section 5.3.8.17

• ompd_rc_t type, see Section 5.3.12.18

5.5.6.5 ompd_parallel_handle_compare19

Summary20
The ompd_parallel_handle_compare function compares two parallel region handles.21

Format22
C

ompd_rc_t ompd_parallel_handle_compare(23
ompd_parallel_handle_t *parallel_handle_1,24
ompd_parallel_handle_t *parallel_handle_2,25
int *cmp_value26

);27

C

616 OpenMP API – Version 5.1 November 2020

Description1
The internal structure of parallel region handles is opaque to tools. While tools can easily compare2
pointers to parallel region handles, they cannot determine whether handles at two different3
addresses refer to the same underlying parallel region and, instead must use the4
ompd_parallel_handle_compare function.5

On success, ompd_parallel_handle_compare returns a signed integer value in the location6
to which cmp_value points that indicates how the underlying parallel regions compare. A value less7
than, equal to, or greater than 0 indicates that the region corresponding to parallel_handle_1 is,8
respectively, less than, equal to, or greater than that corresponding to parallel_handle_2. This9
function is provided since the means by which parallel region handles are ordered is10
implementation defined.11

Description of Arguments12
The parallel_handle_1 and parallel_handle_2 arguments are opaque handles that correspond to13
parallel regions. On return the cmp_value argument points to a signed integer value that indicates14
how the underlying parallel regions compare.15

Description of Return Codes16
This routine must return any of the general return codes listed at the beginning of Section 5.5.17

Cross References18
• ompd_parallel_handle_t type, see Section 5.3.8.19

• ompd_rc_t type, see Section 5.3.12.20

5.5.7 Task Handles21

5.5.7.1 ompd_get_curr_task_handle22

Summary23
The ompd_get_curr_task_handle function obtains a pointer to the task handle for the24
current task region that is associated with an OpenMP thread.25

Format26
C

ompd_rc_t ompd_get_curr_task_handle(27
ompd_thread_handle_t *thread_handle,28
ompd_task_handle_t **task_handle29

);30

C

CHAPTER 5. OMPD INTERFACE 617

Description1
The ompd_get_curr_task_handle function obtains a pointer to the task handle for the2
current task region that is associated with an OpenMP thread. This call is meaningful only if the3
thread for which the handle is provided is stopped. The task handle must be released with4
ompd_rel_task_handle.5

Description of Arguments6
The thread_handle argument is an opaque handle that selects the thread on which to operate. On7
return, the task_handle argument points to a location that points to a handle for the task that the8
thread is currently executing.9

Description of Return Codes10
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the11
following return code:12

• ompd_rc_unavailable if the thread is currently not executing a task.13

Cross References14
• ompd_thread_handle_t type, see Section 5.3.8.15

• ompd_task_handle_t type, see Section 5.3.8.16

• ompd_rc_t type, see Section 5.3.12.17

• ompd_rel_task_handle routine, see Section 5.5.7.5.18

5.5.7.2 ompd_get_generating_task_handle19

Summary20
The ompd_get_generating_task_handle function obtains a pointer to the task handle of21
the generating task region.22

Format23
C

ompd_rc_t ompd_get_generating_task_handle(24
ompd_task_handle_t *task_handle,25
ompd_task_handle_t **generating_task_handle26

);27

C

Description28
The ompd_get_generating_task_handle function obtains a pointer to the task handle for29
the task that encountered the OpenMP task construct that generated the task represented by30
task_handle. The generating task is the OpenMP task that was active when the task specified by31
task_handle was created. This call is meaningful only if the thread that is executing the task that32
task_handle specifies is stopped. The generating task handle must be released with33
ompd_rel_task_handle.34

618 OpenMP API – Version 5.1 November 2020

Description of Arguments1
The task_handle argument is an opaque handle that selects the task on which to operate. On return,2
the generating_task_handle argument points to a location that points to a handle for the generating3
task.4

Description of Return Codes5
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the6
following return code:7

• ompd_rc_unavailable if no generating task region exists.8

Cross References9
• ompd_task_handle_t type, see Section 5.3.8.10

• ompd_rc_t type, see Section 5.3.12.11

• ompd_rel_task_handle routine, see Section 5.5.7.5.12

5.5.7.3 ompd_get_scheduling_task_handle13

Summary14
The ompd_get_scheduling_task_handle function obtains a task handle for the task that15
was active at a task scheduling point.16

Format17
C

ompd_rc_t ompd_get_scheduling_task_handle(18
ompd_task_handle_t *task_handle,19
ompd_task_handle_t **scheduling_task_handle20

);21

C

Description22
The ompd_get_scheduling_task_handle function obtains a task handle for the task that23
was active when the task that task_handle represents was scheduled. This call is meaningful only if24
the thread that is executing the task that task_handle specifies is stopped. The scheduling task25
handle must be released with ompd_rel_task_handle.26

Description of Arguments27
The task_handle argument is an opaque handle for a task and selects the task on which to operate.28
On return, the scheduling_task_handle argument points to a location that points to a handle for the29
task that is still on the stack of execution on the same thread and was deferred in favor of executing30
the selected task.31

CHAPTER 5. OMPD INTERFACE 619

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the2
following return code:3

• ompd_rc_unavailable if no scheduling task region exists.4

Cross References5
• ompd_task_handle_t type, see Section 5.3.8.6

• ompd_rc_t type, see Section 5.3.12.7

• ompd_rel_task_handle routine, see Section 5.5.7.5.8

5.5.7.4 ompd_get_task_in_parallel9

Summary10
The ompd_get_task_in_parallel function obtains handles for the implicit tasks that are11
associated with a parallel region.12

Format13
C

ompd_rc_t ompd_get_task_in_parallel(14
ompd_parallel_handle_t *parallel_handle,15
int thread_num,16
ompd_task_handle_t **task_handle17

);18

C

Description19
The ompd_get_task_in_parallel function obtains handles for the implicit tasks that are20
associated with a parallel region. A successful invocation of ompd_get_task_in_parallel21
returns a pointer to a task handle in the location to which task_handle points. This call yields22
meaningful results only if all OpenMP threads in the parallel region are stopped.23

Description of Arguments24
The parallel_handle argument is an opaque handle that selects the parallel region on which to25
operate. The thread_num argument selects the implicit task of the team to be returned. The26
thread_num argument is equal to the thread-num-var ICV value of the selected implicit task. On27
return, the task_handle argument points to a location that points to an opaque handle for the28
selected implicit task.29

620 OpenMP API – Version 5.1 November 2020

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the2
following return code:3

• ompd_rc_bad_input if the thread_num argument is greater than or equal to the4
team-size-var ICV or negative.5

Restrictions6
Restrictions on the ompd_get_task_in_parallel function are as follows:7

• The value of thread_num must be a non-negative integer that is smaller than the size of the team8
size that is the value of the team-size-var ICV that ompd_get_icv_from_scope returns.9

Cross References10
• ompd_parallel_handle_t type, see Section 5.3.8.11

• ompd_task_handle_t type, see Section 5.3.8.12

• ompd_rc_t type, see Section 5.3.12.13

• ompd_get_icv_from_scope routine, see Section 5.5.9.2.14

5.5.7.5 ompd_rel_task_handle15

Summary16
This ompd_rel_task_handle function releases a task handle.17

Format18
C

ompd_rc_t ompd_rel_task_handle(19
ompd_task_handle_t *task_handle20

);21

C

Description22
Task handles are opaque to tools; thus tools cannot release them directly. Instead, when a tool is23
finished with a task handle it must use the ompd_rel_task_handle function to release it.24

Description of Arguments25
The task_handle argument is an opaque task handle to be released.26

Description of Return Codes27
This routine must return any of the general return codes listed at the beginning of Section 5.5.28

Cross References29
• ompd_task_handle_t type, see Section 5.3.8.30

• ompd_rc_t type, see Section 5.3.12.31

CHAPTER 5. OMPD INTERFACE 621

5.5.7.6 ompd_task_handle_compare1

Summary2
The ompd_task_handle_compare function compares task handles.3

Format4
C

ompd_rc_t ompd_task_handle_compare(5
ompd_task_handle_t *task_handle_1,6
ompd_task_handle_t *task_handle_2,7
int *cmp_value8

);9

C
Description10
The internal structure of task handles is opaque; so tools cannot directly determine if handles at two11
different addresses refer to the same underlying task. The ompd_task_handle_compare12
function compares task handles. After a successful call to ompd_task_handle_compare, the13
value of the location to which cmp_value points is a signed integer that indicates how the underlying14
tasks compare: a value less than, equal to, or greater than 0 indicates that the task that corresponds15
to task_handle_1 is, respectively, less than, equal to, or greater than the task that corresponds to16
task_handle_2. The means by which task handles are ordered is implementation defined.17

Description of Arguments18
The task_handle_1 and task_handle_2 arguments are opaque handles that correspond to tasks. On19
return, the cmp_value argument points to a location in which a signed integer value indicates how20
the underlying tasks compare.21

Description of Return Codes22
This routine must return any of the general return codes listed at the beginning of Section 5.5.23

Cross References24
• ompd_task_handle_t type, see Section 5.3.8.25

• ompd_rc_t type, see Section 5.3.12.26

5.5.7.7 ompd_get_task_function27

Summary28
This ompd_get_task_function function returns the entry point of the code that corresponds29
to the body of a task.30

Format31
C

ompd_rc_t ompd_get_task_function (32
ompd_task_handle_t *task_handle,33
ompd_address_t *entry_point34

);35

C

622 OpenMP API – Version 5.1 November 2020

Description1
The ompd_get_task_function function returns the entry point of the code that corresponds2
to the body of code that the task executes.3

Description of Arguments4
The task_handle argument is an opaque handle that selects the task on which to operate. On return,5
the entry_point argument is set to an address that describes the beginning of application code that6
executes the task region.7

Description of Return Codes8
This routine must return any of the general return codes listed at the beginning of Section 5.5.9

Cross References10
• ompd_address_t type, see Section 5.3.4.11

• ompd_task_handle_t type, see Section 5.3.8.12

• ompd_rc_t type, see Section 5.3.12.13

5.5.7.8 ompd_get_task_frame14

Summary15
The ompd_get_task_frame function extracts the frame pointers of a task.16

Format17
C

ompd_rc_t ompd_get_task_frame (18
ompd_task_handle_t *task_handle,19
ompd_frame_info_t *exit_frame,20
ompd_frame_info_t *enter_frame21

);22

C

Description23
An OpenMP implementation maintains an ompt_frame_t object for every implicit or explicit24
task. The ompd_get_task_frame function extracts the enter_frame and exit_frame fields of25
the ompt_frame_t object of the task that task_handle identifies.26

Description of Arguments27
The task_handle argument specifies an OpenMP task. On return, the exit_frame argument points to28
an ompd_frame_info_t object that has the frame information with the same semantics as the29
exit_frame field in the ompt_frame_t object that is associated with the specified task. On return,30
the enter_frame argument points to an ompd_frame_info_t object that has the frame31
information with the same semantics as the enter_frame field in the ompt_frame_t object that is32
associated with the specified task.33

CHAPTER 5. OMPD INTERFACE 623

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 5.5.2

Cross References3
• ompt_frame_t type, see Section 4.4.4.28.4

• ompd_address_t type, see Section 5.3.4.5

• ompd_frame_info_t type, see Section 5.3.5.6

• ompd_task_handle_t type, see Section 5.3.8.7

• ompd_rc_t type, see Section 5.3.12.8

5.5.7.9 ompd_enumerate_states9

Summary10
The ompd_enumerate_states function enumerates thread states that an OpenMP11
implementation supports.12

Format13
C

ompd_rc_t ompd_enumerate_states (14
ompd_address_space_handle_t *address_space_handle,15
ompd_word_t current_state,16
ompd_word_t *next_state,17
const char **next_state_name,18
ompd_word_t *more_enums19

);20

C
Description21
An OpenMP implementation may support only a subset of the states that the ompt_state_t22
enumeration type defines. In addition, an OpenMP implementation may support23
implementation-specific states. The ompd_enumerate_states call enables a tool to24
enumerate the thread states that an OpenMP implementation supports.25

When the current_state argument is a thread state that an OpenMP implementation supports, the26
call assigns the value and string name of the next thread state in the enumeration to the locations to27
which the next_state and next_state_name arguments point.28

On return, the third-party tool owns the next_state_name string. The OMPD library allocates29
storage for the string with the memory allocation callback that the tool provides. The tool is30
responsible for releasing the memory.31

On return, the location to which the more_enums argument points has the value 1 whenever one or32
more states are left in the enumeration. On return, the location to which the more_enums argument33
points has the value 0 when current_state is the last state in the enumeration.34

624 OpenMP API – Version 5.1 November 2020

Description of Arguments1
The address_space_handle argument identifies the address space. The current_state argument must2
be a thread state that the OpenMP implementation supports. To begin enumerating the supported3
states, a tool should pass ompt_state_undefined as the value of current_state. Subsequent4
calls to ompd_enumerate_states by the tool should pass the value that the call returned in5
the next_state argument. On return, the next_state argument points to an integer with the value of6
the next state in the enumeration. On return, the next_state_name argument points to a character7
string that describes the next state. On return, the more_enums argument points to an integer with a8
value of 1 when more states are left to enumerate and a value of 0 when no more states are left.9

Description of Return Codes10
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the11
following return code:12

• ompd_rc_bad_input if an unknown value is provided in current_state.13

Cross References14
• ompt_state_t type, see Section 4.4.4.27.15

• ompd_address_space_handle_t type, see Section 5.3.8.16

• ompd_rc_t type, see Section 5.3.12.17

5.5.7.10 ompd_get_state18

Summary19
The ompd_get_state function obtains the state of a thread.20

Format21
C

ompd_rc_t ompd_get_state (22
ompd_thread_handle_t *thread_handle,23
ompd_word_t *state,24
ompd_wait_id_t *wait_id25

);26

C
Description27
The ompd_get_state function returns the state of an OpenMP thread.28

Description of Arguments29
The thread_handle argument identifies the thread. The state argument represents the state of that30
thread as represented by a value that ompd_enumerate_states returns. On return, if the31
wait_id argument is non-null then it points to a handle that corresponds to the wait_id wait32
identifier of the thread. If the thread state is not one of the specified wait states, the value to which33
wait_id points is undefined.34

CHAPTER 5. OMPD INTERFACE 625

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 5.5.2

Cross References3
• ompd_wait_id_t type, see Section 5.3.2.4

• ompd_thread_handle_t type, see Section 5.3.8.5

• ompd_rc_t type, see Section 5.3.12.6

• ompd_enumerate_states routine, see Section 5.5.7.9.7

5.5.8 Display Control Variables8

5.5.8.1 ompd_get_display_control_vars9

Summary10
The ompd_get_display_control_vars function returns a list of name/value pairs for11
OpenMP control variables.12

Format13
C

ompd_rc_t ompd_get_display_control_vars (14
ompd_address_space_handle_t *address_space_handle,15
const char * const **control_vars16

);17

C
Description18
The ompd_get_display_control_vars function returns a NULL-terminated vector of19
NULL-terminated strings of name/value pairs of control variables that have user controllable20
settings and are important to the operation or performance of an OpenMP runtime system. The21
control variables that this interface exposes include all OpenMP environment variables, settings22
that may come from vendor or platform-specific environment variables, and other settings that23
affect the operation or functioning of an OpenMP runtime.24

The format of the strings is "icv-name=icv-value".25

On return, the third-party tool owns the vector and the strings. The OMPD library must satisfy the26
termination constraints; it may use static or dynamic memory for the vector and/or the strings and is27
unconstrained in how it arranges them in memory. If it uses dynamic memory then the OMPD28
library must use the allocate callback that the tool provides to ompd_initialize. The tool must29
use the ompd_rel_display_control_vars function to release the vector and the strings.30

Description of Arguments31
The address_space_handle argument identifies the address space. On return, the control_vars32
argument points to the vector of display control variables.33

626 OpenMP API – Version 5.1 November 2020

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 5.5.2

Cross References3
• ompd_address_space_handle_t type, see Section 5.3.8.4

• ompd_rc_t type, see Section 5.3.12.5

• ompd_initialize routine, see Section 5.5.1.1.6

• ompd_rel_display_control_vars routine, see Section 5.5.8.2.7

5.5.8.2 ompd_rel_display_control_vars8

Summary9
The ompd_rel_display_control_vars releases a list of name/value pairs of OpenMP10
control variables previously acquired with ompd_get_display_control_vars.11

Format12
C

ompd_rc_t ompd_rel_display_control_vars (13
const char * const **control_vars14

);15

C

Description16
The third-party tool owns the vector and strings that ompd_get_display_control_vars17
returns. The tool must call ompd_rel_display_control_vars to release the vector and the18
strings.19

Description of Arguments20
The control_vars argument is the vector of display control variables to be released.21

Description of Return Codes22
This routine must return any of the general return codes listed at the beginning of Section 5.5.23

Cross References24
• ompd_rc_t type, see Section 5.3.12.25

• ompd_get_display_control_vars routine, see Section 5.5.8.1.26

CHAPTER 5. OMPD INTERFACE 627

5.5.9 Accessing Scope-Specific Information1

5.5.9.1 ompd_enumerate_icvs2

Summary3
The ompd_enumerate_icvs function enumerates ICVs.4

Format5
C

ompd_rc_t ompd_enumerate_icvs (6
ompd_address_space_handle_t *handle,7
ompd_icv_id_t current,8
ompd_icv_id_t *next_id,9
const char **next_icv_name,10
ompd_scope_t *next_scope,11
int *more12

);13

C
Description14
An OpenMP implementation must support all ICVs listed in Section 2.4.1. An OpenMP15
implementation may support additional implementation-specific variables. An implementation may16
store ICVs in a different scope than Table 2.3 indicates. The ompd_enumerate_icvs function17
enables a tool to enumerate the ICVs that an OpenMP implementation supports and their related18
scopes. The ICVs num-procs-var, thread-num-var, final-task-var, implicit-task-var and19
team-size-var must also be available with an ompd- prefix.20

When the current argument is set to the identifier of a supported ICV, ompd_enumerate_icvs21
assigns the value, string name, and scope of the next ICV in the enumeration to the locations to22
which the next_id, next_icv_name, and next_scope arguments point. On return, the third-party tool23
owns the next_icv_name string. The OMPD library uses the memory allocation callback that the24
tool provides to allocate the string storage; the tool is responsible for releasing the memory.25

On return, the location to which the more argument points has the value of 1 whenever one or more26
ICV are left in the enumeration. On return, that location has the value 0 when current is the last27
ICV in the enumeration.28

Description of Arguments29
The address_space_handle argument identifies the address space. The current argument must be30
an ICV that the OpenMP implementation supports. To begin enumerating the ICVs, a tool should31
pass ompd_icv_undefined as the value of current. Subsequent calls to32
ompd_enumerate_icvs should pass the value returned by the call in the next_id output33
argument. On return, the next_id argument points to an integer with the value of the ID of the next34
ICV in the enumeration. On return, the next_icv_name argument points to a character string with35
the name of the next ICV. On return, the next_scope argument points to the scope enum value of the36
scope of the next ICV. On return, the more_enums argument points to an integer with the value of 137
when more ICVs are left to enumerate and the value of 0 when no more ICVs are left.38

628 OpenMP API – Version 5.1 November 2020

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the2
following return code:3

• ompd_rc_bad_input if an unknown value is provided in current.4

Cross References5
• ompd_address_space_handle_t type, see Section 5.3.8.6

• ompd_scope_t type, see Section 5.3.9.7

• ompd_icv_id_t type, see Section 5.3.10.8

• ompd_rc_t type, see Section 5.3.12.9

5.5.9.2 ompd_get_icv_from_scope10

Summary11
The ompd_get_icv_from_scope function returns the value of an ICV.12

Format13
C

ompd_rc_t ompd_get_icv_from_scope (14
void *handle,15
ompd_scope_t scope,16
ompd_icv_id_t icv_id,17
ompd_word_t *icv_value18

);19

C

Description20
The ompd_get_icv_from_scope function provides access to the ICVs that21
ompd_enumerate_icvs identifies.22

Description of Arguments23
The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of24
scope provided in handle. The icv_id argument specifies the ID of the requested ICV. On return,25
the icv_value argument points to a location with the value of the requested ICV.26

Constraints on Arguments27
The provided handle must match the scope as defined in Section 5.3.10.28

The provided scope must match the scope for icv_id as requested by ompd_enumerate_icvs.29

CHAPTER 5. OMPD INTERFACE 629

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 5.5 or any2
of the following return codes:3

• ompd_rc_incompatible if the ICV cannot be represented as an integer;4

• ompd_rc_incomplete if only the first item of the ICV is returned in the integer (e.g., if5
nthreads-var is a list); or6

• ompd_rc_bad_input if an unknown value is provided in icv_id.7

Cross References8
• ompd_address_space_handle_t type, see Section 5.3.8.9

• ompd_thread_handle_t type, see Section 5.3.8.10

• ompd_parallel_handle_t type, see Section 5.3.8.11

• ompd_task_handle_t type, see Section 5.3.8.12

• ompd_scope_t type, see Section 5.3.9.13

• ompd_icv_id_t type, see Section 5.3.10.14

• ompd_rc_t type, see Section 5.3.12.15

• ompd_enumerate_icvs routine, see Section 5.5.9.1.16

5.5.9.3 ompd_get_icv_string_from_scope17

Summary18
The ompd_get_icv_string_from_scope function returns the value of an ICV.19

Format20
C

ompd_rc_t ompd_get_icv_string_from_scope (21
void *handle,22
ompd_scope_t scope,23
ompd_icv_id_t icv_id,24
const char **icv_string25

);26

C

Description27
The ompd_get_icv_string_from_scope function provides access to the ICVs that28
ompd_enumerate_icvs identifies.29

630 OpenMP API – Version 5.1 November 2020

Description of Arguments1
The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of2
scope provided in handle. The icv_id argument specifies the ID of the requested ICV. On return,3
the icv_string argument points to a string representation of the requested ICV.4

On return, the third-party tool owns the icv_string string. The OMPD library allocates the string5
storage with the memory allocation callback that the tool provides. The tool is responsible for6
releasing the memory.7

Constraints on Arguments8
The provided handle must match the scope as defined in Section 5.3.10.9

The provided scope must match the scope for icv_id as requested by ompd_enumerate_icvs.10

Description of Return Codes11
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the12
following return code:13

• ompd_rc_bad_input if an unknown value is provided in icv_id.14

Cross References15
• ompd_address_space_handle_t type, see Section 5.3.8.16

• ompd_thread_handle_t type, see Section 5.3.8.17

• ompd_parallel_handle_t type, see Section 5.3.8.18

• ompd_task_handle_t type, see Section 5.3.8.19

• ompd_scope_t type, see Section 5.3.9.20

• ompd_icv_id_t type, see Section 5.3.10.21

• ompd_rc_t type, see Section 5.3.12.22

• ompd_enumerate_icvs routine, see Section 5.5.9.1.23

5.5.9.4 ompd_get_tool_data24

Summary25
The ompd_get_tool_data function provides access to the OMPT data variable stored for each26
OpenMP scope.27

Format28
C

ompd_rc_t ompd_get_tool_data(29
void* handle,30
ompd_scope_t scope,31
ompd_word_t *value,32
ompd_address_t *ptr33

);34

C

CHAPTER 5. OMPD INTERFACE 631

Description1
The ompd_get_tool_data function provides access to the OMPT tool data stored for each2
scope. If the runtime library does not support OMPT then the function returns3
ompd_rc_unsupported.4

Description of Arguments5
The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of6
scope provided in handle. On return, the value argument points to the value field of the7
ompt_data_t union stored for the selected scope. On return, the ptr argument points to the ptr8
field of the ompt_data_t union stored for the selected scope.9

Description of Return Codes10
This routine must return any of the general return codes listed at the beginning of Section 5.5 or the11
following return code:12

• ompd_rc_unsupported if the runtime library does not support OMPT.13

Cross References14
• ompt_data_t type, see Section 4.4.4.4.15

• ompd_address_space_handle_t type, see Section 5.3.8.16

• ompd_thread_handle_t type, see Section 5.3.8.17

• ompd_parallel_handle_t type, see Section 5.3.8.18

• ompd_task_handle_t type, see Section 5.3.8.19

• ompd_scope_t type, see Section 5.3.9.20

• ompd_rc_t type, see Section 5.3.12.21

5.6 Runtime Entry Points for OMPD22

The OpenMP implementation must define several entry point symbols through which execution23
must pass when particular events occur and data collection for OMPD is enabled. A tool can enable24
notification of an event by setting a breakpoint at the address of the entry point symbol.25

Entry point symbols have external C linkage and do not require demangling or other26
transformations to look up their names to obtain the address in the OpenMP program. While each27
entry point symbol conceptually has a function type signature, it may not be a function. It may be a28
labeled location29

632 OpenMP API – Version 5.1 November 2020

5.6.1 Beginning Parallel Regions1

Summary2
Before starting the execution of an OpenMP parallel region, the implementation executes3
ompd_bp_parallel_begin.4

Format5
C

void ompd_bp_parallel_begin(void);6

C

Description7
The OpenMP implementation must execute ompd_bp_parallel_begin at every8
parallel-begin event. At the point that the implementation reaches9
ompd_bp_parallel_begin, the binding for ompd_get_curr_parallel_handle is the10
parallel region that is beginning and the binding for ompd_get_curr_task_handle is the11
task that encountered the parallel construct.12

Cross References13
• parallel construct, see Section 2.6.14

• ompd_get_curr_parallel_handle routine, see Section 5.5.6.1.15

• ompd_get_curr_task_handle routine, see Section 5.5.7.1.16

5.6.2 Ending Parallel Regions17

Summary18
After finishing the execution of an OpenMP parallel region, the implementation executes19
ompd_bp_parallel_end.20

Format21
C

void ompd_bp_parallel_end(void);22

C

Description23
The OpenMP implementation must execute ompd_bp_parallel_end at every parallel-end24
event. At the point that the implementation reaches ompd_bp_parallel_end, the binding for25
ompd_get_curr_parallel_handle is the parallel region that is ending and the binding26
for ompd_get_curr_task_handle is the task that encountered the parallel construct.27
After execution of ompd_bp_parallel_end, any parallel_handle that was acquired for the28
parallel region is invalid and should be released.29

CHAPTER 5. OMPD INTERFACE 633

Cross References1
• parallel construct, see Section 2.6.2

• ompd_get_curr_parallel_handle routine, see Section 5.5.6.1.3

• ompd_rel_parallel_handle routine, see Section 5.5.6.4.4

• ompd_get_curr_task_handle routine, see Section 5.5.7.1.5

5.6.3 Beginning Task Regions6

Summary7
Before starting the execution of an OpenMP task region, the implementation executes8
ompd_bp_task_begin.9

Format10
C

void ompd_bp_task_begin(void);11

C

Description12
The OpenMP implementation must execute ompd_bp_task_begin immediately before starting13
execution of a structured-block that is associated with a non-merged task. At the point that the14
implementation reaches ompd_bp_task_begin, the binding for15
ompd_get_curr_task_handle is the task that is scheduled to execute.16

Cross References17
• ompd_get_curr_task_handle routine, see Section 5.5.7.1.18

5.6.4 Ending Task Regions19

Summary20
After finishing the execution of an OpenMP task region, the implementation executes21
ompd_bp_task_end.22

Format23
C

void ompd_bp_task_end(void);24

C

634 OpenMP API – Version 5.1 November 2020

Description1
The OpenMP implementation must execute ompd_bp_task_end immediately after completion2
of a structured-block that is associated with a non-merged task. At the point that the implementation3
reaches ompd_bp_task_end, the binding for ompd_get_curr_task_handle is the task4
that finished execution. After execution of ompd_bp_task_end, any task_handle that was5
acquired for the task region is invalid and should be released.6

Cross References7
• ompd_get_curr_task_handle routine, see Section 5.5.7.1.8

• ompd_rel_task_handle routine, see Section 5.5.7.5.9

5.6.5 Beginning OpenMP Threads10

Summary11
When starting an OpenMP thread, the implementation executes ompd_bp_thread_begin.12

Format13
C

void ompd_bp_thread_begin(void);14

C

Description15
The OpenMP implementation must execute ompd_bp_thread_begin at every16
native-thread-begin and initial-thread-begin event. This execution occurs before the thread starts17
the execution of any OpenMP region.18

Cross References19
• parallel construct, see Section 2.6.20

• Initial task, see Section 2.12.5.21

5.6.6 Ending OpenMP Threads22

Summary23
When terminating an OpenMP thread, the implementation executes ompd_bp_thread_end.24

Format25
C

void ompd_bp_thread_end(void);26

C

CHAPTER 5. OMPD INTERFACE 635

Description1
The OpenMP implementation must execute ompd_bp_thread_end at every native-thread-end2
and initial-thread-end event. This execution occurs after the thread completes the execution of all3
OpenMP regions. After executing ompd_bp_thread_end, any thread_handle that was acquired4
for this thread is invalid and should be released.5

Cross References6
• parallel construct, see Section 2.6.7

• Initial task, see Section 2.12.5.8

• ompd_rel_thread_handle routine, see Section 5.5.5.3.9

5.6.7 Initializing OpenMP Devices10

Summary11
The OpenMP implementation must execute ompd_bp_device_begin at every device-initialize12
event.13

Format14
C

void ompd_bp_device_begin(void);15

C

Description16
When initializing a device for execution of a target region, the implementation must execute17
ompd_bp_device_begin. This execution occurs before the work associated with any OpenMP18
region executes on the device.19

Cross References20
• Device Initialization, see Section 2.14.1.21

5.6.8 Finalizing OpenMP Devices22

Summary23
When terminating an OpenMP thread, the implementation executes ompd_bp_device_end.24

Format25
C

void ompd_bp_device_end(void);26

C

636 OpenMP API – Version 5.1 November 2020

Description1
The OpenMP implementation must execute ompd_bp_device_end at every device-finalize2
event. This execution occurs after the thread executes all OpenMP regions. After execution of3
ompd_bp_device_end, any address_space_handle that was acquired for this device is invalid4
and should be released.5

Cross References6
• Device Initialization, see Section 2.14.1.7

• ompd_rel_address_space_handle routine, see Section 5.5.2.3.8

CHAPTER 5. OMPD INTERFACE 637

This page intentionally left blank

6 Environment Variables1

This chapter describes the OpenMP environment variables that specify the settings of the ICVs that2
affect the execution of OpenMP programs (see Section 2.4). The names of the environment3
variables must be upper case. Unless otherwise specified, the values assigned to the environment4
variables are case insensitive and may have leading and trailing white space. Modifications to the5
environment variables after the program has started, even if modified by the program itself, are6
ignored by the OpenMP implementation. However, the settings of some of the ICVs can be7
modified during the execution of the OpenMP program by the use of the appropriate directive8
clauses or OpenMP API routines.9

The following examples demonstrate how the OpenMP environment variables can be set in10
different environments:11

• csh-like shells:12

setenv OMP_SCHEDULE "dynamic"13

• bash-like shells:14

export OMP_SCHEDULE="dynamic"15

• Windows Command Line:16

set OMP_SCHEDULE=dynamic17

As defined following Table 2.1 in Section 2.4.2, device-specific environment variables extend many18
of the environment variables defined in this chapter. If the corresponding environment variable for19
a specific device number, including the host device, is set, then the setting for that environment20
variable is used to set the value of the associated ICV of the device with the corresponding device21
number. If the corresponding environment variable that includes the _DEV suffix but no device22
number is set, then the setting of that environment variable is used to set the value of the associated23
ICV of any non-host device for which the device-number-specific corresponding environment24
variable is not set. In all cases the setting of an environment variable for which a device number is25
specified takes precedence.26

Restrictions27
Restrictions to device-specific environment variables are as follows:28

• Device-specific environment variables must not correspond to environment variables that29
initialize ICVs with global scope.30

639

6.1 OMP_SCHEDULE1

The OMP_SCHEDULE environment variable controls the schedule kind and chunk size of all loop2
directives that have the schedule kind runtime, by setting the value of the run-sched-var ICV.3

The value of this environment variable takes the form:4

[modifier:]kind[, chunk]5

where6

• modifier is one of monotonic or nonmonotonic;7

• kind is one of static, dynamic, guided, or auto;8

• chunk is an optional positive integer that specifies the chunk size.9

If the modifier is not present, the modifier is set to monotonic if kind is static; for any other10
kind it is set to nonmonotonic.11

If chunk is present, white space may be on either side of the “,”. See Section 2.11.4 for a detailed12
description of the schedule kinds.13

The behavior of the program is implementation defined if the value of OMP_SCHEDULE does not14
conform to the above format.15

Examples:16

setenv OMP_SCHEDULE "guided,4"17
setenv OMP_SCHEDULE "dynamic"18
setenv OMP_SCHEDULE "nonmonotonic:dynamic,4"19

Cross References20
• run-sched-var ICV, see Section 2.4.21

• Worksharing-Loop construct, see Section 2.11.4.22

• Parallel worksharing-loop construct, see Section 2.16.1.23

• omp_set_schedule routine, see Section 3.2.11.24

• omp_get_schedule routine, see Section 3.2.12.25

6.2 OMP_NUM_THREADS26

The OMP_NUM_THREADS environment variable sets the number of threads to use for parallel27
regions by setting the initial value of the nthreads-var ICV. See Section 2.4 for a comprehensive set28
of rules about the interaction between the OMP_NUM_THREADS environment variable, the29
num_threads clause, the omp_set_num_threads library routine and dynamic adjustment of30

640 OpenMP API – Version 5.1 November 2020

threads, and Section 2.6.1 for a complete algorithm that describes how the number of threads for a1
parallel region is determined.2

The value of this environment variable must be a list of positive integer values. The values of the3
list set the number of threads to use for parallel regions at the corresponding nested levels.4

The behavior of the program is implementation defined if any value of the list specified in the5
OMP_NUM_THREADS environment variable leads to a number of threads that is greater than an6
implementation can support, or if any value is not a positive integer.7

The OMP_NUM_THREADS environment variable sets the max-active-levels-var ICV to the number8
of active levels of parallelism that the implementation supports if the OMP_NUM_THREADS9
environment variable is set to a comma-separated list of more than one value. The value of the10
max-active-level-var ICV may be overridden by setting OMP_MAX_ACTIVE_LEVELS or11
OMP_NESTED. See Section 6.8 and Section 6.9 for details.12

Example:13

setenv OMP_NUM_THREADS 4,3,214

Cross References15
• nthreads-var ICV, see Section 2.4.16

• num_threads clause, see Section 2.6.17

• omp_set_num_threads routine, see Section 3.2.1.18

• omp_get_num_threads routine, see Section 3.2.2.19

• omp_get_max_threads routine, see Section 3.2.3.20

• omp_get_team_size routine, see Section 3.2.19.21

6.3 OMP_DYNAMIC22

The OMP_DYNAMIC environment variable controls dynamic adjustment of the number of threads23
to use for executing parallel regions by setting the initial value of the dyn-var ICV.24

The value of this environment variable must be one of the following:25

true | false26

If the environment variable is set to true, the OpenMP implementation may adjust the number of27
threads to use for executing parallel regions in order to optimize the use of system resources. If28
the environment variable is set to false, the dynamic adjustment of the number of threads is29
disabled. The behavior of the program is implementation defined if the value of OMP_DYNAMIC is30
neither true nor false.31

CHAPTER 6. ENVIRONMENT VARIABLES 641

Example:1

setenv OMP_DYNAMIC true2

Cross References3
• dyn-var ICV, see Section 2.4.4

• omp_set_dynamic routine, see Section 3.2.6.5

• omp_get_dynamic routine, see Section 3.2.7.6

6.4 OMP_PROC_BIND7

The OMP_PROC_BIND environment variable sets the initial value of the bind-var ICV. The value8
of this environment variable is either true, false, or a comma separated list of primary,9
master (master has been deprecated), close, or spread. The values of the list set the thread10
affinity policy to be used for parallel regions at the corresponding nested level.11

If the environment variable is set to false, the execution environment may move OpenMP threads12
between OpenMP places, thread affinity is disabled, and proc_bind clauses on parallel13
constructs are ignored.14

Otherwise, the execution environment should not move OpenMP threads between OpenMP places,15
thread affinity is enabled, and the initial thread is bound to the first place in the place-partition-var16
ICV prior to the first active parallel region. An initial thread that is created by a teams construct is17
bound to the first place in its place-partition-var ICV before it begins execution of the associated18
structured block.19

If the environment variable is set to true, the thread affinity policy is implementation defined but20
must conform to the previous paragraph. The behavior of the program is implementation defined if21
the value in the OMP_PROC_BIND environment variable is not true, false, or a comma22
separated list of primary, master (master has been deprecated), close, or spread. The23
behavior is also implementation defined if an initial thread cannot be bound to the first place in the24
place-partition-var ICV.25

The OMP_PROC_BIND environment variable sets the max-active-levels-var ICV to the number of26
active levels of parallelism that the implementation supports if the OMP_PROC_BIND environment27
variable is set to a comma-separated list of more than one element. The value of the28
max-active-level-var ICV may be overridden by setting OMP_MAX_ACTIVE_LEVELS or29
OMP_NESTED. See Section 6.8 and Section 6.9 for details.30

Examples:31

setenv OMP_PROC_BIND false32
setenv OMP_PROC_BIND "spread, spread, close"33

642 OpenMP API – Version 5.1 November 2020

Cross References1
• bind-var ICV, see Section 2.4.2

• proc_bind clause, see Section 2.6.2.3

• omp_get_proc_bind routine, see Section 3.3.1.4

6.5 OMP_PLACES5

The OMP_PLACES environment variable sets the initial value of the place-partition-var ICV. A list6
of places can be specified in the OMP_PLACES environment variable. The value of OMP_PLACES7
can be one of two types of values: either an abstract name that describes a set of places or an8
explicit list of places described by non-negative numbers.9

The OMP_PLACES environment variable can be defined using an explicit ordered list of10
comma-separated places. A place is defined by an unordered set of comma-separated non-negative11
numbers enclosed by braces, or a non-negative number. The meaning of the numbers and how the12
numbering is done are implementation defined. Generally, the numbers represent the smallest unit13
of execution exposed by the execution environment, typically a hardware thread.14

Intervals may also be used to define places. Intervals can be specified using the <lower-bound> :15
<length> : <stride> notation to represent the following list of numbers: “<lower-bound>,16
<lower-bound> + <stride>, ..., <lower-bound> + (<length> - 1)*<stride>.” When <stride> is17
omitted, a unit stride is assumed. Intervals can specify numbers within a place as well as sequences18
of places.19

An exclusion operator “!” can also be used to exclude the number or place immediately following20
the operator.21

Alternatively, the abstract names listed in Table 6.1 should be understood by the execution and22
runtime environment. The precise definitions of the abstract names are implementation defined. An23
implementation may also add abstract names as appropriate for the target platform.24

The abstract name may be appended by a positive number in parentheses to denote the length of the25
place list to be created, that is abstract_name(num-places). When requesting fewer places than26
available on the system, the determination of which resources of type abstract_name are to be27
included in the place list is implementation defined. When requesting more resources than28
available, the length of the place list is implementation defined.29

CHAPTER 6. ENVIRONMENT VARIABLES 643

TABLE 6.1: Predefined Abstract Names for OMP_PLACES

Abstract Name Meaning

threads Each place corresponds to a single hardware thread on the
device.

cores Each place corresponds to a single core (having one or more
hardware threads) on the device.

ll_caches Each place corresponds to a set of cores that share the last
level cache on the device.

numa_domains Each place corresponds to a set of cores for which their closest
memory on the device is:
• the same memory; and
• at a similar distance from the cores.

sockets Each place corresponds to a single socket (consisting of one or
more cores) on the device.

The behavior of the program is implementation defined when the execution environment cannot1
map a numerical value (either explicitly defined or implicitly derived from an interval) within the2
OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.3
The behavior is also implementation defined when the OMP_PLACES environment variable is4
defined using an abstract name.5

The following grammar describes the values accepted for the OMP_PLACES environment variable.6

〈list〉 |= 〈p-list〉 | 〈aname〉
〈p-list〉 |= 〈p-interval〉 | 〈p-list〉,〈p-interval〉

〈p-interval〉 |= 〈place〉:〈len〉:〈stride〉 | 〈place〉:〈len〉 | 〈place〉 | !〈place〉
〈place〉 |= {〈res-list〉} | 〈res〉
〈res-list〉 |= 〈res-interval〉 | 〈res-list〉,〈res-interval〉

〈res-interval〉 |= 〈res〉:〈num-places〉:〈stride〉 | 〈res〉:〈num-places〉 | 〈res〉 | !〈res〉
〈aname〉 |= 〈word〉(〈num-places〉) | 〈word〉
〈word〉 |= sockets | cores | ll_caches | numa_domains | threads

| <implementation-defined abstract name>
〈res〉 |= non-negative integer

〈num-places〉 |= positive integer
〈stride〉 |= integer
〈len〉 |= positive integer

644 OpenMP API – Version 5.1 November 2020

Examples:1

setenv OMP_PLACES threads2
setenv OMP_PLACES "threads(4)"3
setenv OMP_PLACES4

"{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}"5
setenv OMP_PLACES "{0:4},{4:4},{8:4},{12:4}"6
setenv OMP_PLACES "{0:4}:4:4"7

where each of the last three definitions corresponds to the same 4 places including the smallest8
units of execution exposed by the execution environment numbered, in turn, 0 to 3, 4 to 7, 8 to 11,9
and 12 to 15.10

Cross References11
• place-partition-var, see Section 2.4.12

• Controlling OpenMP thread affinity, see Section 2.6.2.13

• omp_get_num_places routine, see Section 3.3.2.14

• omp_get_place_num_procs routine, see Section 3.3.3.15

• omp_get_place_proc_ids routine, see Section 3.3.4.16

• omp_get_place_num routine, see Section 3.3.5.17

• omp_get_partition_num_places routine, see Section 3.3.6.18

• omp_get_partition_place_nums routine, see Section 3.3.7.19

6.6 OMP_STACKSIZE20

The OMP_STACKSIZE environment variable controls the size of the stack for threads created by21
the OpenMP implementation, by setting the value of the stacksize-var ICV. The environment22
variable does not control the size of the stack for an initial thread.23

The value of this environment variable takes the form:24

size | sizeB | sizeK | sizeM | sizeG25

where:26

• size is a positive integer that specifies the size of the stack for threads that are created by the27
OpenMP implementation.28

• B, K, M, and G are letters that specify whether the given size is in Bytes, Kilobytes (1024 Bytes),29
Megabytes (1024 Kilobytes), or Gigabytes (1024 Megabytes), respectively. If one of these letters30
is present, white space may occur between size and the letter.31

CHAPTER 6. ENVIRONMENT VARIABLES 645

If only size is specified and none of B, K, M, or G is specified, then size is assumed to be in Kilobytes.1

The behavior of the program is implementation defined if OMP_STACKSIZE does not conform to2
the above format, or if the implementation cannot provide a stack with the requested size.3

Examples:4

setenv OMP_STACKSIZE 2000500B5
setenv OMP_STACKSIZE "3000 k "6
setenv OMP_STACKSIZE 10M7
setenv OMP_STACKSIZE " 10 M "8
setenv OMP_STACKSIZE "20 m "9
setenv OMP_STACKSIZE " 1G"10
setenv OMP_STACKSIZE 2000011

Cross References12
• stacksize-var ICV, see Section 2.4.13

6.7 OMP_WAIT_POLICY14

The OMP_WAIT_POLICY environment variable provides a hint to an OpenMP implementation15
about the desired behavior of waiting threads by setting the wait-policy-var ICV. A compliant16
OpenMP implementation may or may not abide by the setting of the environment variable.17

The value of this environment variable must be one of the following:18

active | passive19

The active value specifies that waiting threads should mostly be active, consuming processor20
cycles, while waiting. An OpenMP implementation may, for example, make waiting threads spin.21

The passive value specifies that waiting threads should mostly be passive, not consuming22
processor cycles, while waiting. For example, an OpenMP implementation may make waiting23
threads yield the processor to other threads or go to sleep.24

The details of the active and passive behaviors are implementation defined.25

The behavior of the program is implementation defined if the value of OMP_WAIT_POLICY is26
neither active nor passive.27

Examples:28

setenv OMP_WAIT_POLICY ACTIVE29
setenv OMP_WAIT_POLICY active30
setenv OMP_WAIT_POLICY PASSIVE31
setenv OMP_WAIT_POLICY passive32

Cross References33
• wait-policy-var ICV, see Section 2.4.34

646 OpenMP API – Version 5.1 November 2020

6.8 OMP_MAX_ACTIVE_LEVELS1

The OMP_MAX_ACTIVE_LEVELS environment variable controls the maximum number of nested2
active parallel regions by setting the initial value of the max-active-levels-var ICV.3

The value of this environment variable must be a non-negative integer. The behavior of the4
program is implementation defined if the requested value of OMP_MAX_ACTIVE_LEVELS is5
greater than the maximum number of nested active parallel levels an implementation can support,6
or if the value is not a non-negative integer.7

Cross References8
• max-active-levels-var ICV, see Section 2.4.9

• omp_set_max_active_levels routine, see Section 3.2.15.10

• omp_get_max_active_levels routine, see Section 3.2.16.11

6.9 OMP_NESTED (Deprecated)12

The OMP_NESTED environment variable controls nested parallelism by setting the initial value of13
the max-active-levels-var ICV. If the environment variable is set to true, the initial value of14
max-active-levels-var is set to the number of active levels of parallelism supported by the15
implementation. If the environment variable is set to false, the initial value of16
max-active-levels-var is set to 1. The behavior of the program is implementation defined if the17
value of OMP_NESTED is neither true nor false.18

If both the OMP_NESTED and OMP_MAX_ACTIVE_LEVELS environment variables are set, the19
value of OMP_NESTED is false, and the value of OMP_MAX_ACTIVE_LEVELS is greater than20
1, then the behavior is implementation defined. Otherwise, if both environment variables are set21
then the OMP_NESTED environment variable has no effect.22

The OMP_NESTED environment variable has been deprecated.23

Example:24

setenv OMP_NESTED false25

Cross References26
• max-active-levels-var ICV, see Section 2.4.27

• omp_set_nested routine, see Section 3.2.9.28

• omp_get_team_size routine, see Section 3.2.19.29

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8.30

CHAPTER 6. ENVIRONMENT VARIABLES 647

6.10 OMP_THREAD_LIMIT1

The OMP_THREAD_LIMIT environment variable sets the maximum number of OpenMP threads2
to use in a contention group by setting the thread-limit-var ICV.3

The value of this environment variable must be a positive integer. The behavior of the program is4
implementation defined if the requested value of OMP_THREAD_LIMIT is greater than the5
number of threads an implementation can support, or if the value is not a positive integer.6

Cross References7
• thread-limit-var ICV, see Section 2.4.8

• omp_get_thread_limit routine, see Section 3.2.13.9

6.11 OMP_CANCELLATION10

The OMP_CANCELLATION environment variable sets the initial value of the cancel-var ICV.11

The value of this environment variable must be one of the following:12

true|false13

If the environment variable is set to true, the effects of the cancel construct and of cancellation14
points are enabled and cancellation is activated. If the environment variable is set to false,15
cancellation is disabled and the cancel construct and cancellation points are effectively ignored.16
The behavior of the program is implementation defined if OMP_CANCELLATION is set to neither17
true nor false.18

Cross References19
• cancel-var, see Section 2.4.1.20

• cancel construct, see Section 2.20.1.21

• cancellation point construct, see Section 2.20.2.22

• omp_get_cancellation routine, see Section 3.2.8.23

6.12 OMP_DISPLAY_ENV24

The OMP_DISPLAY_ENV environment variable instructs the runtime to display the information as25
described in the omp_display_env routine section (Section 3.15).26

The value of the OMP_DISPLAY_ENV environment variable may be set to one of these values:27

true | false | verbose28

648 OpenMP API – Version 5.1 November 2020

If the environment variable is set to true, the effect is as if the omp_display_env routine is1
called with the verbose argument set to false at the beginning of the program. If the environment2
variable is set to verbose, the effect is as if the omp_display_env routine is called with the3
verbose argument set to true at the beginning of the program. If the environment variable is4
undefined or set to false, the runtime does not display any information. For all values of the5
environment variable other than true, false, and verbose, the displayed information is6
unspecified.7

Example:8

% setenv OMP_DISPLAY_ENV true9

For the output of the above example, see Section 3.15.10

Cross References11
• omp_display_env routine, see Section 3.15.12

6.13 OMP_DISPLAY_AFFINITY13

The OMP_DISPLAY_AFFINITY environment variable instructs the runtime to display formatted14
affinity information for all OpenMP threads in the parallel region upon entering the first parallel15
region and when any change occurs in the information accessible by the format specifiers listed in16
Table 6.2. If affinity of any thread in a parallel region changes then thread affinity information for17
all threads in that region is displayed. If the thread affinity for each respective parallel region at18
each nesting level has already been displayed and the thread affinity has not changed, then the19
information is not displayed again. Thread affinity information for threads in the same parallel20
region may be displayed in any order.21

The value of the OMP_DISPLAY_AFFINITY environment variable may be set to one of these22
values:23

true | false24

The true value instructs the runtime to display the OpenMP thread affinity information, and uses25
the format setting defined in the affinity-format-var ICV.26

The runtime does not display the OpenMP thread affinity information when the value of the27
OMP_DISPLAY_AFFINITY environment variable is false or undefined. For all values of the28
environment variable other than true or false, the display action is implementation defined.29

Example:30

setenv OMP_DISPLAY_AFFINITY TRUE31

The above example causes an OpenMP implementation to display OpenMP thread affinity32
information during execution of the program, in a format given by the affinity-format-var ICV. The33
following is a sample output:34

CHAPTER 6. ENVIRONMENT VARIABLES 649

nesting_level= 1, thread_num= 0, thread_affinity= 0,11
nesting_level= 1, thread_num= 1, thread_affinity= 2,32

Cross References3
• Controlling OpenMP thread affinity, see Section 2.6.2.4

• omp_set_affinity_format routine, see Section 3.3.8.5

• omp_get_affinity_format routine, see Section 3.3.9.6

• omp_display_affinity routine, see Section 3.3.10.7

• omp_capture_affinity routine, see Section 3.3.11.8

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14.9

6.14 OMP_AFFINITY_FORMAT10

The OMP_AFFINITY_FORMAT environment variable sets the initial value of the11
affinity-format-var ICV which defines the format when displaying OpenMP thread affinity12
information.13

The value of this environment variable is case sensitive and leading and trailing whitespace is14
significant.15

The value of this environment variable is a character string that may contain as substrings one or16
more field specifiers, in addition to other characters. The format of each field specifier is17

%[[[0].] size] type18

where an individual field specifier must contain the percent symbol (%) and a type. The type can be19
a single character short name or its corresponding long name delimited with curly braces, such as20
%n or %{thread_num}. A literal percent is specified as %%. Field specifiers can be provided in21
any order.22

The 0 modifier indicates whether or not to add leading zeros to the output, following any indication23
of sign or base. The . modifier indicates the output should be right justified when size is specified.24
By default, output is left justified. The minimum field length is size, which is a decimal digit string25
with a non-zero first digit. If no size is specified, the actual length needed to print the field will be26
used. If the 0 modifier is used with type of A, {thread_affinity}, H, {host}, or a type that27
is not printed as a number, the result is unspecified. Any other characters in the format string that28
are not part of a field specifier will be included literally in the output.29

650 OpenMP API – Version 5.1 November 2020

TABLE 6.2: Available Field Types for Formatting OpenMP Thread Affinity Information

Short
Name

Long Name Meaning

t team_num The value returned by omp_get_team_num().

T num_teams The value returned by omp_get_num_teams().

L nesting_level The value returned by omp_get_level().

n thread_num The value returned by omp_get_thread_num().

N num_threads The value returned by omp_get_num_threads().

a ancestor_tnum The value returned by
omp_get_ancestor_thread_num(level),
where level is omp_get_level() minus 1.

H host The name for the host device on which the OpenMP
program is running.

P process_id The process identifier used by the implementation.

i native_thread_id The native thread identifier used by the implementation.

A thread_affinity The list of numerical identifiers, in the format of a comma-
separated list of integers or integer ranges, that represent
processors on which a thread may execute, subject to
OpenMP thread affinity control and/or other external
affinity mechanisms.

Implementations may define additional field types. If an implementation does not have information1
for a field type, "undefined" is printed for this field when displaying the OpenMP thread affinity2
information.3

Example:4

setenv OMP_AFFINITY_FORMAT5
"Thread Affinity: %0.3L %.8n %.15{thread_affinity} %.12H"6

The above example causes an OpenMP implementation to display OpenMP thread affinity7
information in the following form:8

Thread Affinity: 001 0 0-1,16-17 nid0039
Thread Affinity: 001 1 2-3,18-19 nid00310

Cross References11
• Controlling OpenMP thread affinity, see Section 2.6.2.12

• omp_set_affinity_format routine, see Section 3.3.8.13

CHAPTER 6. ENVIRONMENT VARIABLES 651

• omp_get_affinity_format routine, see Section 3.3.9.1

• omp_display_affinity routine, see Section 3.3.10.2

• omp_capture_affinity routine, see Section 3.3.11.3

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13.4

6.15 OMP_DEFAULT_DEVICE5

The OMP_DEFAULT_DEVICE environment variable sets the device number to use in device6
constructs by setting the initial value of the default-device-var ICV.7

The value of this environment variable must be a non-negative integer value.8

Cross References9
• default-device-var ICV, see Section 2.4.10

• device directives, Section 2.14.11

6.16 OMP_MAX_TASK_PRIORITY12

The OMP_MAX_TASK_PRIORITY environment variable controls the use of task priorities by13
setting the initial value of the max-task-priority-var ICV. The value of this environment variable14
must be a non-negative integer.15

Example:16

% setenv OMP_MAX_TASK_PRIORITY 2017

Cross References18
• max-task-priority-var ICV, see Section 2.4.19

• Tasking Constructs, see Section 2.12.20

• omp_get_max_task_priority routine, see Section 3.5.1.21

6.17 OMP_TARGET_OFFLOAD22

The OMP_TARGET_OFFLOAD environment variable sets the initial value of the target-offload-var23
ICV. The value of the OMP_TARGET_OFFLOAD environment variable must be one of the24
following:25

mandatory | disabled | default26

652 OpenMP API – Version 5.1 November 2020

The mandatory value specifies that program execution is terminated if a device construct or1
device memory routine is encountered and the device is not available or is not supported by the2
implementation. Support for the disabled value is implementation defined. If an3
implementation supports it, the behavior is as if the only device is the host device.4

The default value specifies the default behavior as described in Section 1.3.5

Example:6

% setenv OMP_TARGET_OFFLOAD mandatory7

Cross References8
• target-offload-var ICV, see Section 2.4.9

• Device Directives, see Section 2.14.10

• Device Memory Routines, see Section 3.8.11

6.18 OMP_TOOL12

The OMP_TOOL environment variable sets the tool-var ICV, which controls whether an OpenMP13
runtime will try to register a first party tool.14

The value of this environment variable must be one of the following:15

enabled | disabled16

If OMP_TOOL is set to any value other than enabled or disabled, the behavior is unspecified.17
If OMP_TOOL is not defined, the default value for tool-var is enabled.18

Example:19

% setenv OMP_TOOL enabled20

Cross References21
• tool-var ICV, see Section 2.4.22

• OMPT Interface, see Chapter 4.23

6.19 OMP_TOOL_LIBRARIES24

The OMP_TOOL_LIBRARIES environment variable sets the tool-libraries-var ICV to a list of tool25
libraries that are considered for use on a device on which an OpenMP implementation is being26
initialized. The value of this environment variable must be a list of names of dynamically-loadable27
libraries, separated by an implementation specific, platform typical separator. Whether the value of28
this environment variable is case sensitive is implementation defined.29

CHAPTER 6. ENVIRONMENT VARIABLES 653

If the tool-var ICV is not enabled, the value of tool-libraries-var is ignored. Otherwise, if1
ompt_start_tool is not visible in the address space on a device where OpenMP is being2
initialized or if ompt_start_tool returns NULL, an OpenMP implementation will consider3
libraries in the tool-libraries-var list in a left to right order. The OpenMP implementation will4
search the list for a library that meets two criteria: it can be dynamically loaded on the current5
device and it defines the symbol ompt_start_tool. If an OpenMP implementation finds a6
suitable library, no further libraries in the list will be considered.7

Example:8

% setenv OMP_TOOL_LIBRARIES libtoolXY64.so:/usr/local/lib/9
libtoolXY32.so10

Cross References11
• tool-libraries-var ICV, see Section 2.4.12

• OMPT Interface, see Chapter 4.13

• ompt_start_tool routine, see Section 4.2.1.14

6.20 OMP_TOOL_VERBOSE_INIT15

The OMP_TOOL_VERBOSE_INIT environment variable sets the tool-verbose-init-var ICV, which16
controls whether an OpenMP implementation will verbosely log the registration of a tool.17

The value of this environment variable must be one of the following:18

disabled | stdout | stderr | <filename>19

If OMP_TOOL_VERBOSE_INIT is set to any value other than case insensitive disabled,20
stdout or stderr, the value is interpreted as a filename and the OpenMP runtime will try to log21
to a file with prefix filename. If the value is interpreted as a filename, whether it is case sensitive is22
implementation defined. If opening the logfile fails, the output will be redirected to stderr. If23
OMP_TOOL_VERBOSE_INIT is not defined, the default value for tool-verbose-init-var is24
disabled. Support for logging to stdout or stderr is implementation defined. Unless25
tool-verbose-init-var is disabled, the OpenMP runtime will log the steps of the tool activation26
process defined in Section 4.2.2 to a file with a name that is constructed using the provided27
filename prefix. The format and detail of the log is implementation defined. At a minimum, the log28
will contain the following:29

• either that tool-var is disabled, or30

• an indication that a tool was available in the address space at program launch, or31

• the path name of each tool in OMP_TOOL_LIBRARIES that is considered for dynamic loading,32
whether dynamic loading was successful, and whether the ompt_start_tool function is33
found in the loaded library.34

654 OpenMP API – Version 5.1 November 2020

In addition, if an ompt_start_tool function is called the log will indicate whether or not the1
tool will use the OMPT interface.2

Example:3

% setenv OMP_TOOL_VERBOSE_INIT disabled4
% setenv OMP_TOOL_VERBOSE_INIT STDERR5
% setenv OMP_TOOL_VERBOSE_INIT ompt_load.log6

Cross References7
• tool-verbose-init-var ICV, see Section 2.4.8

• OMPT Interface, see Chapter 4.9

6.21 OMP_DEBUG10

The OMP_DEBUG environment variable sets the debug-var ICV, which controls whether an11
OpenMP runtime collects information that an OMPD library may need to support a tool.12

The value of this environment variable must be one of the following:13

enabled | disabled14

If OMP_DEBUG is set to any value other than enabled or disabled then the behavior is15
implementation defined.16

Example:17

% setenv OMP_DEBUG enabled18

Cross References19
• debug-var ICV, see Section 2.4.20

• OMPD Interface, see Chapter 5.21

• Enabling the Runtime for OMPD, see Section 5.2.1.22

6.22 OMP_ALLOCATOR23

The OMP_ALLOCATOR environment variable sets the initial value of the def-allocator-var ICV24
that specifies the default allocator for allocation calls, directives and clauses that do not specify an25
allocator.26

The following grammar describes the values accepted for the OMP_ALLOCATOR environment27
variable.28

CHAPTER 6. ENVIRONMENT VARIABLES 655

〈allocator〉 |= 〈predef-allocator〉 | 〈predef-mem-space〉 |
〈predef-mem-space〉:〈traits〉

〈traits〉 |= 〈trait〉=〈value〉 | 〈trait〉=〈value〉,〈traits〉
〈predef-allocator〉 |= one of the predefined allocators from Table 2.10

〈predef-mem-space〉 |= one of the predefined memory spaces from Table 2.8
〈trait〉 |= one of the allocator trait names from Table 2.9
〈value〉 |= one of the allowed values from Table 2.9 | non-negative integer |

〈predef-allocator〉

value can be an integer only if the trait accepts a numerical value, for the fb_data trait the value1
can only be predef-allocator. If the value of this environment variable is not a predefined allocator,2
then a new allocator with the given predefined memory space and optional traits is created and set3
as the def-allocator-var ICV. If the new allocator cannot be created, the def-allocator-var ICV will4
be set to omp_default_mem_alloc.5

Example:6

setenv OMP_ALLOCATOR omp_high_bw_mem_alloc7
setenv OMP_ALLOCATOR omp_large_cap_mem_space:alignment=16,\8
pinned=true9
setenv OMP_ALLOCATOR omp_high_bw_mem_space:pool_size=1048576,\10
fallback=allocator_fb,fb_data=omp_low_lat_mem_alloc11

Cross References12
• def-allocator-var ICV, see Section 2.4.13

• Memory allocators, see Section 2.13.2.14

• omp_set_default_allocator routine, see Section 3.13.4.15

• omp_get_default_allocator routine, see Section 3.13.5.16

• omp_alloc and omp_aligned_alloc routines, see Section 3.13.617

• omp_calloc and omp_aligned_calloc routines, see Section 3.13.818

6.23 OMP_NUM_TEAMS19

The OMP_NUM_TEAMS environment variable sets the maximum number of teams created by a20
teams construct by setting the nteams-var ICV.21

656 OpenMP API – Version 5.1 November 2020

The value of this environment variable must be a positive integer. The behavior of the program is1
implementation defined if the requested value of OMP_NUM_TEAMS is greater than the number of2
teams that an implementation can support, or if the value is not a positive integer.3

Cross References4
• nteams-var ICV, see Section 2.4.5

• omp_get_max_teams routine, see Section 3.4.4.6

6.24 OMP_TEAMS_THREAD_LIMIT7

The OMP_TEAMS_THREAD_LIMIT environment variable sets the maximum number of OpenMP8
threads to use in each contention group created by a teams construct by setting the9
teams-thread-limit-var ICV.10

The value of this environment variable must be a positive integer. The behavior of the program is11
implementation defined if the requested value of OMP_TEAMS_THREAD_LIMIT is greater than12
the number of threads that an implementation can support, or if the value is not a positive integer.13

Cross References14
• teams-thread-limit-var ICV, see Section 2.4.15

• omp_get_teams_thread_limit routine, see Section 3.4.6.16

CHAPTER 6. ENVIRONMENT VARIABLES 657

This page intentionally left blank

A OpenMP Implementation-Defined1

Behaviors2

This appendix summarizes the behaviors that are described as implementation defined in this API.3
Each behavior is cross-referenced back to its description in the main specification. An4
implementation is required to define and to document its behavior in these cases.5

Chapter 1:6
• Processor: A hardware unit that is implementation defined (see Section 1.2.1).7

• Device: An implementation defined logical execution engine (see Section 1.2.1).8

• Device pointer: an implementation defined handle that refers to a device address (see9
Section 1.2.6).10

• Supported active levels of parallelism: The maximum number of active parallel regions that11
may enclose any region of code in the program is implementation defined (see Section 1.2.7).12

• Memory model: The minimum size at which a memory update may also read and write back13
adjacent variables that are part of another variable (as array or structure elements) is14
implementation defined but is no larger than required by the base language. The manner in which15
a program can obtain the referenced device address from a device pointer, outside the16
mechanisms specified by OpenMP, is implementation defined (see Section 1.4.1).17

Chapter 2:18
• OpenMP context: Whether the dispatch construct is added to the construct set, the accepted19
isa-name values for the isa trait, the accepted arch-name values for the arch trait, and the20
accepted extension-name values for the extension trait are implementation defined (see21
Section 2.3.1).22

• Metadirectives: The number of times that each expression of the context selector of a when23
clause is evaluated is implementation defined (see Section 2.3.4).24

• Declare variant directive: If two replacement candidates have the same score, their order is25
implementation defined. The number of times each expression of the context selector of a match26
clause is evaluated is implementation defined. For calls to constexpr base functions that are27
evaluated in constant expressions, whether any variant replacement occurs is implementation28
defined. Any differences that the specific OpenMP context requires in the prototype of the29
variant from the base function prototype are implementation defined (see Section 2.3.5).30

659

• Internal control variables: The initial values of dyn-var, nthreads-var, run-sched-var,1
def-sched-var, bind-var, stacksize-var, wait-policy-var, thread-limit-var, max-active-levels-var,2
place-partition-var, affinity-format-var, default-device-var, num-procs-var and def-allocator-var3
are implementation defined (see Section 2.4.2).4

• requires directive: Support for any feature specified by a requirement clause on a5
requires directive is implementation defined (see Section 2.5.1).6

• Dynamic adjustment of threads: Providing the ability to adjust the number of threads7
dynamically is implementation defined (see Section 2.6.1).8

• Thread affinity: For the close thread affinity policy, if T > P and P does not divide T evenly,9
the exact number of threads in a particular place is implementation defined. For the spread10
thread affinity, if T > P and P does not divide T evenly, the exact number of threads in a11
particular subpartition is implementation defined. The determination of whether the affinity12
request can be fulfilled is implementation defined. If not, the mapping of threads in the team to13
places is implementation defined (see Section 2.6.2).14

• teams construct: The number of teams that are created is implementation defined, it is greater15
than or equal to the lower bound and less than or equal to the upper bound values of the16
num_teams clause if specified or it is less than or equal to the value of the nteams-var ICV if17
its value is greater than zero. Otherwise it is greater than or equal to 1. The maximum number of18
threads that participate in the contention group that each team initiates is implementation defined19
if no thread_limit clause is specified on the construct. The assignment of the initial threads20
to places and the values of the place-partition-var and default-device-var ICVs for each initial21
thread are implementation defined (see Section 2.7).22

• sections construct: The method of scheduling the structured blocks among threads in the23
team is implementation defined (see Section 2.10.1).24

• single construct: The method of choosing a thread to execute the structured block each time25
the team encounters the construct is implementation defined (see Section 2.10.2).26

• Canonical loop nest form: The particular integer type used to compute the iteration count for27
the collapsed loop is implementation defined (see Section 2.11.1).28

• Worksharing-loop directive: The effect of the schedule(runtime) clause when the29
run-sched-var ICV is set to auto is implementation defined. The value of simd_width for the30
simd schedule modifier is implementation defined (see Section 2.11.4).31

• simd construct: The number of iterations that are executed concurrently at any given time is32
implementation defined. If the alignment parameter is not specified in the aligned clause, the33
default alignments for the SIMD instructions are implementation defined (see Section 2.11.5.1).34

• declare simd directive: If the parameter of the simdlen clause is not a constant positive35
integer expression, the number of concurrent arguments for the function is implementation36
defined. If the alignment parameter of the aligned clause is not specified, the default37
alignments for SIMD instructions are implementation defined (see Section 2.11.5.3).38

660 OpenMP API – Version 5.1 November 2020

• distribute construct: If no dist_schedule clause is specified then the schedule for the1
distribute construct is implementation defined (see Section 2.11.6.1).2

• unroll construct: If the partial clause is specified without an argument, the unroll factor is3
a positive integer that is implementation defined. If neither the partial nor the full clause is4
specified, if and how the loop is unrolled is implementation defined (see Section 2.11.9.2).5

• taskloop construct: The number of loop iterations assigned to a task created from a6
taskloop construct is implementation defined, unless the grainsize or num_tasks7
clause is specified (see Section 2.12.2).8

C++
• taskloop construct: For firstprivate variables of class type, the number of invocations9
of copy constructors to perform the initialization is implementation defined (see Section 2.12.2).10

C++
• Memory spaces: The actual storage resources that each memory space defined in Table 2.811
represents are implementation defined (see Section 2.13.1).12

• Memory allocators: The minimum partitioning size for partitioning of allocated memory over13
the storage resources is implementation defined. The default value for the pool_size allocator14
trait (see Table 2.9) is implementation defined. The associated memory space for each of the15
predefined omp_cgroup_mem_alloc, omp_pteam_mem_alloc and16
omp_thread_mem_alloc allocators (see Table 2.10) is implementation defined (see17
Section 2.13.2).18

• target construct: The maximum number of threads that participate in the contention group19
that each team initiates is implementation defined if no thread_limit clause is specified on20
the construct (see Section 2.14.5).21

• is_device_ptr clause: Support for pointers created outside of the OpenMP device data22
management routines is implementation defined (see Section 2.14.5).23

• interop directive: The foreign-runtime-id that is used if the implementation does not support24
any of the items in preference-list is implementation defined (see Section 2.15.1).25

• interop Construct: The foreign-runtime-id values for the prefer_type clause that the26
implementation supports, including non-standard names compatible with this clause, and the27
default choice when the implementation supports multiple values are implementation defined28
(see Section 2.15.1).29

• The concrete types of the values of interop properties for implementation defined30
foreign-runtime-ids are implementation defined (see Section 2.15.1).31

• atomic construct: A compliant implementation may enforce exclusive access between32
atomic regions that update different storage locations. The circumstances under which this33
occurs are implementation defined. If the storage location designated by x is not size-aligned34
(that is, if the byte alignment of x is not a multiple of the size of x), then the behavior of the35
atomic region is implementation defined (see Section 2.19.7).36

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 661

Fortran
• Data-sharing attributes: The data-sharing attributes of dummy arguments without the VALUE1
attribute are implementation defined if the associated actual argument is shared, except for the2
conditions specified (see Section 2.21.1.2).3

• threadprivate directive: If the conditions for values of data in the threadprivate objects of4
threads (other than an initial thread) to persist between two consecutive active parallel regions do5
not all hold, the allocation status of an allocatable variable in the second region is6
implementation defined (see Section 2.21.2).7

Fortran

Chapter 3:8
C / C++

• Runtime library definitions: The enum types for omp_allocator_handle_t,9
omp_event_handle_t, omp_interop_type_t and omp_memspace_handle_t are10
implementation defined. The integral or pointer type for omp_interop_t is implementation11
defined (see Section 3.1).12

C / C++
Fortran

• Runtime library definitions: Whether the include file omp_lib.h or the module omp_lib13
(or both) is provided is implementation defined. Whether the omp_lib.h file provides14
derived-type definitions or those routines that require an explicit interface is implementation15
defined. Whether any of the OpenMP runtime library routines that take an argument are16
extended with a generic interface so arguments of different KIND type can be accommodated is17
implementation defined (see Section 3.1).18

Fortran
• omp_set_num_threads routine: If the argument is not a positive integer the behavior is19
implementation defined (see Section 3.2.1).20

• omp_set_schedule routine: For implementation-specific schedule kinds, the values and21
associated meanings of the second argument are implementation defined (see Section 3.2.11).22

• omp_get_schedule routine: The value returned by the second argument is implementation23
defined for any schedule kinds other than static, dynamic and guided (see Section 3.2.12).24

• omp_get_supported_active_levels routine: The number of active levels of25
parallelism supported by the implementation is implementation defined, but must be greater than26
0 (see Section 3.2.14).27

• omp_set_max_active_levels routine: If the argument is not a non-negative integer then28
the behavior is implementation defined (see Section 3.2.15).29

662 OpenMP API – Version 5.1 November 2020

• omp_get_place_proc_ids routine: The meaning of the non-negative numerical identifiers1
returned by the omp_get_place_proc_ids routine is implementation defined. The order of2
the numerical identifiers returned in the array ids is implementation defined (see Section 3.3.4).3

• omp_set_affinity_format routine: When called from within any parallel or4
teams region, the binding thread set (and binding region, if required) for the5
omp_set_affinity_format region and the effect of this routine are implementation6
defined (see Section 3.3.8).7

• omp_get_affinity_format routine: When called from within any parallel or8
teams region, the binding thread set (and binding region, if required) for the9
omp_get_affinity_format region is implementation defined (see Section 3.3.9).10

• omp_display_affinity routine: If the format argument does not conform to the specified11
format then the result is implementation defined (see Section 3.3.10).12

• omp_capture_affinity routine: If the format argument does not conform to the specified13
format then the result is implementation defined (see Section 3.3.11).14

• omp_set_num_teams routine: If the argument is not evaluated to a positive integer the15
behavior of this routine is implementation defined (see Section 3.4.3).16

• omp_set_teams_thread_limit routine: If the argument is not a positive integer the17
behavior is implementation defined (see Section 3.4.5).18

• omp_target_memcpy_rect routine: The maximum number of dimensions supported is19
implementation defined, but must be at least three (see Section 3.8.6).20

• Lock routines: If a lock contains a synchronization hint, the effect of the hint is implementation21
defined (see Section 3.9 and Section 3.9.2).22

Chapter 4:23
• ompt_callback_sync_region_wait, ompt_callback_mutex_released,24
ompt_callback_dependences, ompt_callback_task_dependence,25
ompt_callback_work, ompt_callback_master (deprecated),26
ompt_callback_masked, ompt_callback_target_map,27
ompt_callback_target_map_emi, ompt_callback_sync_region,28
ompt_callback_reduction, ompt_callback_lock_init,29
ompt_callback_lock_destroy, ompt_callback_mutex_acquire,30
ompt_callback_mutex_acquired, ompt_callback_nest_lock,31
ompt_callback_flush, ompt_callback_cancel and32
ompt_callback_dispatch tool callbacks: If a tool attempts to register a callback with the33
string name using the runtime entry point ompt_set_callback (see Table 4.3), whether the34
registered callback may never, sometimes or always invoke this callback for the associated events35
is implementation defined (see Section 4.2.4).36

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 663

• Device tracing: Whether a target device supports tracing or not is implementation defined; if a1
target device does not support tracing, a NULL may be supplied for the lookup function to the2
device initializer of a tool (see Section 4.2.5).3

• ompt_set_trace_ompt and ompt_buffer_get_record_ompt runtime entry4
points: Whether a device-specific tracing interface will define this runtime entry point,5
indicating that it can collect traces in OMPT format is implementation defined. The kinds of6
trace records available for a device is implementation defined (see Section 4.2.5).7

• Native record abstract type: The meaning of a hwid value for a device is implementation8
defined (see Section 4.4.3.3).9

• ompt_record_abstract_t type: The set of OMPT thread states supported is10
implementation defined (see Section 4.4.4.27).11

• ompt_callback_target_data_op_t callback type: Whether in some operations12
src_addr or dest_addr might point to an intermediate buffer is implementation defined (see13
Section 4.5.2.25).14

• ompt_set_callback_t entry point type: The subset of the associated event in which the15
callback is invoked is implementation defined (see Section 4.6.1.3).16

• ompt_get_place_proc_ids_t entry point type: The meaning of the numerical17
identifiers returned is implementation defined. The order of ids returned in the array is18
implementation defined (see Section 4.6.1.8).19

• ompt_get_partition_place_nums_t entry point type: The order of the identifiers20
returned in the array place_nums is implementation defined (see Section 4.6.1.10).21

• ompt_get_proc_id_t entry point type: The meaning of the numerical identifier returned22
is implementation defined (see Section 4.6.1.11).23

Chapter 5:24
• ompd_callback_print_string_fn_t callback function: The value of category is25
implementation defined (see Section 5.4.5).26

• ompd_parallel_handle_compare operation: The means by which parallel region27
handles are ordered is implementation defined (see Section 5.5.6.5).28

• ompd_task_handle_compare operation: The means by which task handles are ordered is29
implementation defined (see Section 5.5.7.6).30

Chapter 6:31
• OMP_SCHEDULE environment variable: If the value does not conform to the specified format32
then the behavior of the program is implementation defined (see Section 6.1).33

• OMP_NUM_THREADS environment variable: If any value of the list specified leads to a number34
of threads that is greater than the implementation can support, or if any value is not a positive35
integer, then the behavior of the program is implementation defined (see Section 6.2).36

664 OpenMP API – Version 5.1 November 2020

• OMP_DYNAMIC environment variable: If the value is neither true nor false the behavior of1
the program is implementation defined (see Section 6.3).2

• OMP_PROC_BIND environment variable: If the value is not true, false, or a comma3
separated list of primary (master has been deprecated), close, or spread, the behavior is4
implementation defined. The behavior is also implementation defined if an initial thread cannot5
be bound to the first place in the OpenMP place list. The thread affinity policy is implementation6
defined if the value is true (see Section 6.4).7

• OMP_PLACES environment variable: The meaning of the numbers specified in the8
environment variable and how the numbering is done are implementation defined. The precise9
definitions of the abstract names are implementation defined. An implementation may add10
implementation-defined abstract names as appropriate for the target platform. When creating a11
place list of n elements by appending the number n to an abstract name, the determination of12
which resources to include in the place list is implementation defined. When requesting more13
resources than available, the length of the place list is also implementation defined. The behavior14
of the program is implementation defined when the execution environment cannot map a15
numerical value (either explicitly defined or implicitly derived from an interval) within the16
OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.17
The behavior is also implementation defined when the OMP_PLACES environment variable is18
defined using an abstract name (see Section 6.5).19

• OMP_STACKSIZE environment variable: If the value does not conform to the specified format20
or the implementation cannot provide a stack of the specified size then the behavior is21
implementation defined (see Section 6.6).22

• OMP_WAIT_POLICY environment variable: The details of the active and passive23
behaviors are implementation defined (see Section 6.7).24

• OMP_MAX_ACTIVE_LEVELS environment variable: If the value is not a non-negative integer25
or is greater than the maximum number of nested active parallel levels that an implementation26
can support then the behavior of the program is implementation defined (see Section 6.8).27

• OMP_NESTED environment variable (deprecated): If the value is neither true nor false28
the behavior of the program is implementation defined (see Section 6.9).29

• Conflicting OMP_NESTED (deprecated) and OMP_MAX_ACTIVE_LEVELS environment30
variables: If both environment variables are set, the value of OMP_NESTED is false, and the31
value of OMP_MAX_ACTIVE_LEVELS is greater than 1, the behavior is implementation32
defined (see Section 6.9).33

• OMP_THREAD_LIMIT environment variable: If the requested value is greater than the number34
of threads an implementation can support, or if the value is not a positive integer, the behavior of35
the program is implementation defined (see Section 6.10).36

• OMP_DISPLAY_AFFINITY environment variable: For all values of the environment37
variables other than true or false, the display action is implementation defined (see38
Section 6.13).39

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 665

• OMP_AFFINITY_FORMAT environment variable: If the value does not conform to the1
specified format then the result is implementation defined (see Section 6.14).2

• OMP_TARGET_OFFLOAD environment variable: The support of disabled is3
implementation defined (see Section 6.17).4

• OMP_TOOL_LIBRARIES environment variable: Whether the value of the environment5
variable is case sensitive or insensitive is implementation defined (see Section 6.19).6

• OMP_TOOL_VERBOSE_INIT environment variable: Support for logging to stdout or7
stderr is implementation defined. Whether the value of the environment variable is case8
sensitive when it is treated as a filename is implementation defined. The format and detail of the9
log is implementation defined (see Section 6.20).10

• OMP_DEBUG environment variable: If the value is neither disabled nor enabled the11
behavior is implementation defined (see Section 6.21).12

• OMP_NUM_TEAMS environment variable: If the value is not a positive integer or is greater than13
the number of teams that an implementation can support, the behavior of the program is14
implementation defined (see Section 6.23).15

• OMP_TEAMS_THREAD_LIMIT environment variable: If the value is not a positive integer or16
is greater than the number of threads that an implementation can support, the behavior of the17
program is implementation defined (see Section 6.24).18

666 OpenMP API – Version 5.1 November 2020

B Features History1

This appendix summarizes the major changes between OpenMP API versions since version 2.5.2

B.1 Deprecated Features3

The following features have been deprecated in Version 5.1.4

• Cray pointer support was deprecated.5

• The use of clauses supplied to the requires directive as context traits was deprecated.6

• The master affinity policy was deprecated.7

• The master construct and all combined and composite constructs of which it is a constituent8
construct were deprecated.9

• The constant omp_atv_sequential was deprecated.10

• In Fortran, specifying list items that are not of type C_PTR in a use_device_ptr or11
is_device_ptr clause was deprecated.12

• The ompt_sync_region_barrier and ompt_sync_region_barrier_implicit13
values of the ompt_sync_region_t enum were deprecated.14

• The ompt_state_wait_barrier and ompt_state_wait_barrier_implicit15
values of the ompt_state_t enum were deprecated.16

The following features have been deprecated in Version 5.0.17

• The nest-var ICV, the OMP_NESTED environment variable, and the omp_set_nested and18
omp_get_nested routines were deprecated.19

• Lock hints were renamed to synchronization hints. The following lock hint type and constants20
were deprecated:21

– the C/C++ type omp_lock_hint_t and the Fortran kind omp_lock_hint_kind;22

– the constants omp_lock_hint_none, omp_lock_hint_uncontended,23
omp_lock_hint_contended, omp_lock_hint_nonspeculative, and24
omp_lock_hint_speculative.25

667

B.2 Version 5.0 to 5.1 Differences1

• Full support of C11, C++11, C++14, C++17, C++20 and Fortran 2008 was completed (see2
Section 1.7).3

• Various changes throughout the specification were made to provide initial support of Fortran4
2018 (see Section 1.7).5

• The OpenMP directive syntax was extended to include C++ attribute specifiers (see Section 2.1).6

• The omp_all_memory reserved locator was added (see Section 2.1), and the depend clause7
was extended to allow its use (see Section 2.19.11).8

• The target_device trait set was added to the OpenMP Context (see Section 2.3.1), and the9
target_device selector set was added to context selectors (see Section 2.3.2).10

• For C/C++, the declare variant directive was extended to support elision of preprocessed code11
and to allow enclosed function definitions to be interpreted as variant functions (see12
Section 2.3.5).13

• The declare variant directive was extended with new clauses (adjust_args and14
append_args) that support adjustment of the interface between the original function and its15
variants (see Section 2.3.5).16

• The dispatch construct was added to allow users to control when variant substitution happens17
and to define additional information that can be passed as arguments to the function variants (see18
Section 2.3.6).19

• To support device-specific ICV settings the environment variable syntax was extended to support20
device-specific variables (see Section 2.4.2 and Section 6).21

• The assume directive was added to allow users to specify invariants (see Section 2.5.2).22

• To support clarity in metadirectives, the nothing directive was added (see Section 2.5.3).23

• To allow users to control the compilation process and runtime error actions, the error directive24
was added (see Section 2.5.4).25

• The masked construct was added to support restricting execution to a specific thread (see26
Section 2.8).27

• The scope directive was added to support reductions without requiring a parallel or28
worksharing region (see Section 2.9).29

• Loop transformation constructs were added (see Section 2.11.9).30

• The grainsize and num_tasks clauses for the taskloop construct were extended with a31
strict modifier to ensure a deterministic distribution of logical iterations to tasks (see32
Section 2.12.2).33

668 OpenMP API – Version 5.1 November 2020

• Support for the align clause on the allocate directive and allocator and align1
modifiers on the allocate clause was added (see Section 2.13).2

• The thread_limit clause was added to the target construct to control the upper bound on3
the number of threads in the created contention group (see Section 2.14.5).4

• The has_device_addr clause was added to the target construct to allow access to5
variables or array sections that already have a device address (see Section 2.14.5).6

• Support was added so that iterators may be defined and used in a motion clause on a7
target update directive (see Section 2.14.6) or in a map clause (see Section 2.21.7.1).8

• Support was added for indirect calls to the device version of a procedure or function in target9
regions. (see Section 2.14.7).10

• The interop directive was added to enable portable interoperability with foreign execution11
contexts used to implement OpenMP (see Section 2.15.1). Runtime routines that facilitate use of12
omp_interop_t objects were also added (see Section 3.12).13

• The nowait clause was added to the taskwait directive to support insertion of non-blocking14
join operations in a task dependence graph (see Section 2.19.5).15

• Support was added for compare-and-swap and (for C and C++) minimum and maximum atomic16
operations through the compare clause. Support was also added for the specification of the17
memory order to apply to a failed comparing atomic operation with the fail clause (see18
Section 2.19.7).19

• Specification of the seq_cst clause on a flush construct was allowed, with the same20
meaning as a flush construct without a list and without a clause (see Section 2.19.8).21

• To support inout sets, the inoutset argument was added to the depend clause (see22
Section 2.19.11).23

• Support for private and firstprivate as an argument to the default clause in C and24
C++ was added (see Section 2.21.4.1).25

• The present argument was added to the defaultmap clause (see Section 2.21.7.3).26

• The omp_set_num_teams and omp_set_teams_thread_limit runtime routines were27
added to control the number of teams and the size of those teams on the teams construct (see28
Section 3.4.3 and Section 3.4.5). Additionally, the omp_get_max_teams and29
omp_get_teams_thread_limit runtime routines were added to retrieve the values that30
will be used in the next teams construct (see Section 3.4.4 and Section 3.4.6).31

• The omp_target_is_accessible runtime routine was added to test whether host memory32
is accessible from a given device (see Section 3.8.4).33

• To support asynchronous device memory management, omp_target_memcpy_async and34
omp_target_memcpy_rect_async runtime routines were added (see Section 3.8.7 and35
Section 3.8.8).36

APPENDIX B. FEATURES HISTORY 669

• The omp_get_mapped_ptr runtime routine was added to support obtaining the device1
pointer that is associated with a host pointer for a given device (see Section 3.8.11).2

• The omp_calloc, omp_realloc, omp_aligned_alloc and omp_aligned_calloc3
API routines were added (see Section 3.13).4

• For the omp_alloctrait_key_t enum, the omp_atv_serialized value was added and5
the omp_atv_default value was changed (see Section 3.13.1).6

• The omp_display_env runtime routine was added to provide information about ICVs and7
settings of environment variables (see Section 3.15).8

• The ompt_scope_beginend value was added to the ompt_scope_endpoint_t enum9
to indicate the coincident beginning and end of a scope (see Section 4.4.4.11).10

• The ompt_sync_region_barrier_implicit_workshare,11
ompt_sync_region_barrier_implicit_parallel and12
ompt_sync_region_barrier_teams values were added to the13
ompt_sync_region_t enum (see Section 4.4.4.13).14

• Values for asynchronous data transfers were added to the ompt_target_data_op_t enum15
(see Section 4.4.4.14).16

• The ompt_state_wait_barrier_implementation and17
ompt_state_wait_barrier_teams values were added to the ompt_state_t enum18
(see Section 4.4.4.27).19

• The ompt_callback_target_data_op_emi_t, ompt_callback_target_emi_t,20
ompt_callback_target_map_emi_t and21
ompt_callback_target_submit_emi_t callbacks were added to support external22
monitoring interfaces (see Section 4.5.2.25, Section 4.5.2.26, Section 4.5.2.27 and23
Section 4.5.2.28).24

• The ompt_callback_error_t type was added (see Section 4.5.2.30).25

• The OMP_PLACES syntax was extended (see Section 6.5).26

• The OMP_NUM_TEAMS and OMP_TEAMS_THREAD_LIMIT environment variables were added27
to control the number and size of teams on the teams construct (see Section 6.23 and28
Section 6.24).29

B.3 Version 4.5 to 5.0 Differences30

• The memory model was extended to distinguish different types of flush operations according to31
specified flush properties (see Section 1.4.4) and to define a happens before order based on32
synchronizing flush operations (see Section 1.4.5).33

670 OpenMP API – Version 5.1 November 2020

• Various changes throughout the specification were made to provide initial support of C11,1
C++11, C++14, C++17 and Fortran 2008 (see Section 1.7).2

• Full support of Fortran 2003 was completed (see Section 1.7).3

• Support for array shaping (see Section 2.1.4) and for array sections with non-unit strides in C and4
C++ (see Section 2.1.5) was added to facilitate specification of discontiguous storage and the5
target update construct (see Section 2.14.6) and the depend clause (see Section 2.19.11)6
were extended to allow the use of shape-operators (see Section 2.1.4).7

• Iterators (see Section 2.1.6) were added to support expressions in a list that expand to multiple8
expressions.9

• The metadirective directive (see Section 2.3.4) and declare variant directive (see10
Section 2.3.5) were added to support selection of directive variants and declared function11
variants at a call site, respectively, based on compile-time traits of the enclosing context.12

• The target-offload-var internal control variable (see Section 2.4) and the13
OMP_TARGET_OFFLOAD environment variable (see Section 6.17) were added to support14
runtime control of the execution of device constructs.15

• Control over whether nested parallelism is enabled or disabled was integrated into the16
max-active-levels-var internal control variable (see Section 2.4.2), the default value of which is17
now implementation defined, unless determined according to the values of the18
OMP_NUM_THREADS (see Section 6.2) or OMP_PROC_BIND (see Section 6.4) environment19
variables.20

• The requires directive (see Section 2.5.1) was added to support applications that require21
implementation-specific features.22

• The teams construct (see Section 2.7) was extended to support execution on the host device23
without an enclosing target construct (see Section 2.14.5).24

• The canonical loop form was defined for Fortran and, for all base languages, extended to permit25
non-rectangular loop nests (see Section 2.11.1).26

• The relational-op in the canonical loop form for C/C++ was extended to include != (see27
Section 2.11.1).28

• The default loop schedule modifier for worksharing-loop constructs without the static29
schedule and the ordered clause was changed to nonmonotonic (see Section 2.11.4).30

• The collapse of associated loops that are imperfectly nested loops was defined for the31
worksharing-loop (see Section 2.11.4), simd (see Section 2.11.5.1), taskloop (see32
Section 2.12.2) and distribute (see Section 2.11.6.2) constructs.33

• The simd construct (see Section 2.11.5.1) was extended to accept the if, nontemporal and34
order(concurrent) clauses and to allow the use of atomic constructs within it.35

APPENDIX B. FEATURES HISTORY 671

• The loop construct and the order(concurrent) clause were added to support compiler1
optimization and parallelization of loops for which iterations may execute in any order, including2
concurrently (see Section 2.11.7).3

• The scan directive (see Section 2.11.8) and the inscan modifier for the reduction clause4
(see Section 2.21.5.4) were added to support inclusive and exclusive scan computations.5

• To support task reductions, the task (see Section 2.12.1) and target (see Section 2.14.5)6
constructs were extended to accept the in_reduction clause (see Section 2.21.5.6), the7
taskgroup construct (see Section 2.19.6) was extended to accept the task_reduction8
clause Section 2.21.5.5), and the task modifier was added to the reduction clause (see9
Section 2.21.5.4).10

• The affinity clause was added to the task construct (see Section 2.12.1) to support hints11
that indicate data affinity of explicit tasks.12

• The detach clause for the task construct (see Section 2.12.1) and the13
omp_fulfill_event runtime routine (see Section 3.11.1) were added to support execution14
of detachable tasks.15

• To support taskloop reductions, the taskloop (see Section 2.12.2) and taskloop simd16
(see Section 2.12.3) constructs were extended to accept the reduction (see Section 2.21.5.4)17
and in_reduction (see Section 2.21.5.6) clauses.18

• The taskloop construct (see Section 2.12.2) was added to the list of constructs that can be19
canceled by the cancel construct (see Section 2.20.1)).20

• To support mutually exclusive inout sets, a mutexinoutset dependence-type was added to21
the depend clause (see Section 2.12.6 and Section 2.19.11).22

• Predefined memory spaces (see Section 2.13.1), predefined memory allocators and allocator23
traits (see Section 2.13.2) and directives, clauses (see Section 2.13 and API routines (see24
Section 3.13) to use them were added to support different kinds of memories.25

• The semantics of the use_device_ptr clause for pointer variables was clarified and the26
use_device_addr clause for using the device address of non-pointer variables inside the27
target data construct was added (see Section 2.14.2).28

• To support reverse offload, the ancestor modifier was added to the device clause for29
target constructs (see Section 2.14.5).30

• To reduce programmer effort implicit declare target directives for some functions (C, C++,31
Fortran) and subroutines (Fortran) were added (see Section 2.14.5 and Section 2.14.7).32

• The target update construct (see Section 2.14.6) was modified to allow array sections that33
specify discontiguous storage.34

• The to and from clauses on the target update construct (see Section 2.14.6), the depend35
clause on task generating constructs (see Section 2.19.11), and the map clause (see36
Section 2.21.7.1) were extended to allow any lvalue expression as a list item for C/C++.37

672 OpenMP API – Version 5.1 November 2020

• Support for nested declare target directives was added (see Section 2.14.7).1

• New combined constructs master taskloop (see Section 2.16.7), parallel master (see2
Section 2.16.6), parallel master taskloop (see Section 2.16.9),3
master taskloop simd (see Section 2.16.8), parallel master taskloop simd (see4
Section 2.16.10) were added.5

• The depend clause was added to the taskwait construct (see Section 2.19.5).6

• To support acquire and release semantics with weak memory ordering, the acq_rel,7
acquire, and release clauses were added to the atomic construct (see Section 2.19.7) and8
flush construct (see Section 2.19.8), and the memory ordering semantics of implicit flushes on9
various constructs and runtime routines were clarified (see Section 2.19.8.1).10

• The atomic construct was extended with the hint clause (see Section 2.19.7).11

• The depend clause (see Section 2.19.11) was extended to support iterators and to support12
depend objects that can be created with the new depobj construct.13

• Lock hints were renamed to synchronization hints, and the old names were deprecated (see14
Section 2.19.12).15

• To support conditional assignment to lastprivate variables, the conditional modifier was16
added to the lastprivate clause (see Section 2.21.4.5).17

• The description of the map clause was modified to clarify the mapping order when multiple18
map-types are specified for a variable or structure members of a variable on the same construct.19
The close map-type-modifier was added as a hint for the runtime to allocate memory close to20
the target device (see Section 2.21.7.1).21

• The capability to map C/C++ pointer variables and to assign the address of device memory that22
is mapped by an array section to them was added. Support for mapping of Fortran pointer and23
allocatable variables, including pointer and allocatable components of variables, was added (see24
Section 2.21.7.1).25

• The defaultmap clause (see Section 2.21.7.3) was extended to allow selecting the26
data-mapping or data-sharing attributes for any of the scalar, aggregate, pointer or allocatable27
classes on a per-region basis. Additionally it accepts the none parameter to support the28
requirement that all variables referenced in the construct must be explicitly mapped or privatized.29

• The declare mapper directive was added to support mapping of data types with direct and30
indirect members (see Section 2.21.7.4).31

• The omp_set_nested (see Section 3.2.9) and omp_get_nested (see Section 3.2.10)32
routines and the OMP_NESTED environment variable (see Section 6.9) were deprecated.33

• The omp_get_supported_active_levels routine was added to query the number of34
active levels of parallelism supported by the implementation (see Section 3.2.14).35

APPENDIX B. FEATURES HISTORY 673

• Runtime routines omp_set_affinity_format (see Section 3.3.8),1
omp_get_affinity_format (see Section 3.3.9), omp_set_affinity (see2
Section 3.3.10), and omp_capture_affinity (see Section 3.3.11) and environment3
variables OMP_DISPLAY_AFFINITY (see Section 6.13) and OMP_AFFINITY_FORMAT (see4
Section 6.14) were added to provide OpenMP runtime thread affinity information.5

• The omp_pause_resource and omp_pause_resource_all runtime routines were6
added to allow the runtime to relinquish resources used by OpenMP (see Section 3.6.1 and7
Section 3.6.2).8

• The omp_get_device_num runtime routine (see Section 3.7.5) was added to support9
determination of the device on which a thread is executing.10

• Support for a first-party tool interface (see Section 4) was added.11

• Support for a third-party tool interface (see Section 5) was added.12

• Support for controlling offloading behavior with the OMP_TARGET_OFFLOAD environment13
variable was added (see Section 6.17).14

• Stubs for Runtime Library Routines (previously Appendix A) were moved to a separate15
document.16

• Interface Declarations (previously Appendix B) were moved to a separate document.17

B.4 Version 4.0 to 4.5 Differences18

• Support for several features of Fortran 2003 was added (see Section 1.7).19

• A parameter was added to the ordered clause of the worksharing-loop construct (see20
Section 2.11.4) and clauses were added to the ordered construct (see Section 2.19.9) to21
support doacross loop nests and use of the simd construct on loops with loop-carried backward22
dependences.23

• The linear clause was added to the worksharing-loop construct (see Section 2.11.4).24

• The simdlen clause was added to the simd construct (see Section 2.11.5.1) to support25
specification of the exact number of iterations desired per SIMD chunk.26

• The priority clause was added to the task construct (see Section 2.12.1) to support hints27
that specify the relative execution priority of explicit tasks. The28
omp_get_max_task_priority routine was added to return the maximum supported29
priority value (see Section 3.5.1) and the OMP_MAX_TASK_PRIORITY environment variable30
was added to control the maximum priority value allowed (see Section 6.16).31

• Taskloop constructs (see Section 2.12.2 and Section 2.12.3) were added to support nestable32
parallel loops that create OpenMP tasks.33

674 OpenMP API – Version 5.1 November 2020

• To support interaction with native device implementations, the use_device_ptr clause was1
added to the target data construct (see Section 2.14.2) and the is_device_ptr clause2
was added to the target construct (see Section 2.14.5).3

• To support unstructured data mapping for devices, the target enter data (see4
Section 2.14.3) and target exit data (see Section 2.14.4) constructs were added and the5
map clause (see Section 2.21.7.1) was updated.6

• The nowait and depend clauses were added to the target construct (see Section 2.14.5) to7
improve support for asynchronous execution of target regions.8

• The private, firstprivate and defaultmap clauses were added to the target9
construct (see Section 2.14.5).10

• The declare target directive was extended to allow mapping of global variables to be11
deferred to specific device executions and to allow an extended-list to be specified in C/C++ (see12
Section 2.14.7).13

• To support a more complete set of device construct shortcuts, the target parallel (see14
Section 2.16.16), target parallel worksharing-loop (see Section 2.16.17), target parallel15
worksharing-loop SIMD (see Section 2.16.18), and target simd (see Section 2.16.20),16
combined constructs were added.17

• The if clause was extended to take a directive-name-modifier that allows it to apply to combined18
constructs (see Section 2.18).19

• The hint clause was added to the critical construct (see Section 2.19.1).20

• The source and sink dependence types were added to the depend clause (see21
Section 2.19.11) to support doacross loop nests.22

• The implicit data-sharing attribute for scalar variables in target regions was changed to23
firstprivate (see Section 2.21.1.1).24

• Use of some C++ reference types was allowed in some data sharing attribute clauses (see25
Section 2.21.4).26

• The ref, val, and uval modifiers were added to the linear clause (see Section 2.21.4.6).27

• Semantics for reductions on C/C++ array sections were added and restrictions on the use of28
arrays and pointers in reductions were removed (see Section 2.21.5.4).29

• Support was added to the map clauses to handle structure elements (see Section 2.21.7.1).30

• Query functions for OpenMP thread affinity were added (see Section 3.3.2 to Section 3.3.7).31

• Device memory routines were added to allow explicit allocation, deallocation, memory transfers32
and memory associations (see Section 3.8).33

• The lock API was extended with lock routines that support storing a hint with a lock to select a34
desired lock implementation for a lock’s intended usage by the application code (see35

APPENDIX B. FEATURES HISTORY 675

Section 3.9.2).1

• C/C++ Grammar (previously Appendix B) was moved to a separate document.2

B.5 Version 3.1 to 4.0 Differences3

• Various changes throughout the specification were made to provide initial support of Fortran4
2003 (see Section 1.7).5

• C/C++ array syntax was extended to support array sections (see Section 2.1.5).6

• The proc_bind clause (see Section 2.6.2), the OMP_PLACES environment variable (see7
Section 6.5), and the omp_get_proc_bind runtime routine (see Section 3.3.1) were added to8
support thread affinity policies.9

• SIMD directives were added to support SIMD parallelism (see Section 2.11.5).10

• Implementation defined task scheduling points for untied tasks were removed (see11
Section 2.12.6).12

• Device directives (see Section 2.14), the OMP_DEFAULT_DEVICE environment variable (see13
Section 6.15), and the omp_set_default_device, omp_get_default_device,14
omp_get_num_devices, omp_get_num_teams, omp_get_team_num, and15
omp_is_initial_device routines were added to support execution on devices.16

• The taskgroup construct (see Section 2.19.6) was added to support more flexible deep task17
synchronization.18

• The atomic construct (see Section 2.19.7) was extended to support atomic swap with the19
capture clause, to allow new atomic update and capture forms, and to support sequentially20
consistent atomic operations with a new seq_cst clause.21

• The depend clause (see Section 2.19.11) was added to support task dependences.22

• The cancel construct (see Section 2.20.1), the cancellation point construct (see23
Section 2.20.2), the omp_get_cancellation runtime routine (see Section 3.2.8) and the24
OMP_CANCELLATION environment variable (see Section 6.11) were added to support the25
concept of cancellation.26

• The reduction clause (see Section 2.21.5.4) was extended and the declare reduction27
construct (see Section 2.21.5.7) was added to support user defined reductions.28

• The OMP_DISPLAY_ENV environment variable (see Section 6.12) was added to display the29
value of ICVs associated with the OpenMP environment variables.30

• Examples (previously Appendix A) were moved to a separate document.31

676 OpenMP API – Version 5.1 November 2020

B.6 Version 3.0 to 3.1 Differences1

• The bind-var ICV (see Section 2.4.1) and the OMP_PROC_BIND environment variable (see2
Section 6.4) were added to support control of whether threads are bound to processors.3

• The nthreads-var ICV was modified to be a list of the number of threads to use at each nested4
parallel region level and the algorithm for determining the number of threads used in a parallel5
region was modified to handle a list (see Section 2.6.1).6

• The final and mergeable clauses (see Section 2.12.1) were added to the task construct to7
support optimization of task data environments.8

• The taskyield construct (see Section 2.12.4) was added to allow user-defined task scheduling9
points.10

• The atomic construct (see Section 2.19.7) was extended to include read, write, and11
capture forms, and an update clause was added to apply the already existing form of the12
atomic construct.13

• Data environment restrictions were changed to allow intent(in) and const-qualified types14
for the firstprivate clause (see Section 2.21.4.4).15

• Data environment restrictions were changed to allow Fortran pointers in firstprivate (see16
Section 2.21.4.4) and lastprivate (see Section 2.21.4.5).17

• New reduction operators min and max were added for C and C++ (see Section 2.21.5).18

• The nesting restrictions in Section 2.22 were clarified to disallow closely-nested OpenMP19
regions within an atomic region so that an atomic region can be consistently defined with20
other OpenMP regions to include all code in the atomic construct.21

• The omp_in_final runtime library routine (see Section 3.5.2) was added to support22
specialization of final task regions.23

• Descriptions of examples (previously Appendix A) were expanded and clarified.24

• Incorrect use of omp_integer_kind in Fortran interfaces was replaced with25
selected_int_kind(8).26

B.7 Version 2.5 to 3.0 Differences27

• The definition of active parallel region was changed so that a parallel region is active if28
it is executed by a team that consists of more than one thread (see Section 1.2.2).29

• The concept of tasks was added to the OpenMP execution model (see Section 1.2.5 and30
Section 1.3).31

• The OpenMP memory model was extended to cover atomicity of memory accesses (see32
Section 1.4.1). The description of the behavior of volatile in terms of flush was removed.33

APPENDIX B. FEATURES HISTORY 677

• The definition of the nest-var, dyn-var, nthreads-var and run-sched-var internal control variables1
(ICVs) were modified to provide one copy of these ICVs per task instead of one copy for the2
whole program (see Section 2.4). The omp_set_num_threads, omp_set_nested and3
omp_set_dynamic runtime library routines were specified to support their use from inside a4
parallel region (see Section 3.2.1, Section 3.2.6 and Section 3.2.9).5

• The thread-limit-var ICV, the omp_get_thread_limit runtime library routine and the6
OMP_THREAD_LIMIT environment variable were added to support control of the maximum7
number of threads that participate in the OpenMP program (see Section 2.4.1, Section 3.2.13 and8
Section 6.10).9

• The max-active-levels-var ICV, the omp_set_max_active_levels and10
omp_get_max_active_levels runtime library routine and the11
OMP_MAX_ACTIVE_LEVELS environment variable and were added to support control of the12
number of nested active parallel regions (see Section 2.4.1, Section 3.2.15, Section 3.2.1613
and Section 6.8).14

• The stacksize-var ICV and the OMP_STACKSIZE environment variable were added to support15
control of the stack size for threads that the OpenMP implementation creates (see Section 2.4.116
and Section 6.6).17

• The wait-policy-var ICV and the OMP_WAIT_POLICY environment variable were added to18
control the desired behavior of waiting threads (see Section 2.4.1 and Section 6.7).19

• The rules for determining the number of threads used in a parallel region were modified (see20
Section 2.6.1).21

• The assignment of iterations to threads in a loop construct with a static schedule kind was22
made deterministic (see Section 2.11.4).23

• The worksharing-loop construct was extended to support association with more than one24
perfectly nested loop through the collapse clause (see Section 2.11.4).25

• Iteration variables for worksharing-loops were allowed to be random access iterators or of26
unsigned integer type (see Section 2.11.4).27

• The schedule kind auto was added to allow the implementation to choose any possible mapping28
of iterations in a loop construct to threads in the team (see Section 2.11.4).29

• The task construct (see Section 2.12) was added to support explicit tasks.30

• The taskwait construct (see Section 2.19.5) was added to support task synchronization.31

• Predetermined data-sharing attributes were defined for Fortran assumed-size arrays (see32
Section 2.21.1.1).33

• Static class members variables were allowed to appear in a threadprivate directive (see34
Section 2.21.2).35

678 OpenMP API – Version 5.1 November 2020

• Invocations of constructors and destructors for private and threadprivate class type variables was1
clarified (see Section 2.21.2, Section 2.21.4.3, Section 2.21.4.4, Section 2.21.6.1 and2
Section 2.21.6.2).3

• The use of Fortran allocatable arrays was allowed in private, firstprivate,4
lastprivate, reduction, copyin and copyprivate clauses (see Section 2.21.2,5
Section 2.21.4.3, Section 2.21.4.4, Section 2.21.4.5, Section 2.21.5.4, Section 2.21.6.1 and6
Section 2.21.6.2).7

• The firstprivate argument was added for the default clause in Fortran (see8
Section 2.21.4.1).9

• Implementations were precluded from using the storage of the original list item to hold the new10
list item on the primary thread for list items in the private clause and the value was made well11
defined on exit from the parallel region if no attempt is made to reference the original list12
item inside the parallel region (see Section 2.21.4.3).13

• The runtime library routines omp_set_schedule and omp_get_schedule were added to14
set and to retrieve the value of the run-sched-var ICV (see Section 3.2.11 and Section 3.2.12).15

• The omp_get_level runtime library routine was added to return the number of nested16
parallel regions that enclose the task that contains the call (see Section 3.2.17).17

• The omp_get_ancestor_thread_num runtime library routine was added to return the18
thread number of the ancestor for a given nested level of the current thread, (see Section 3.2.18).19

• The omp_get_team_size runtime library routine was added to return the size of the thread20
team to which the ancestor belongs for a given nested level of the current thread, (see21
Section 3.2.19).22

• The omp_get_active_level runtime library routine was added to return the number of23
nested active parallel regions that enclose the task that contains the call (see Section 3.2.20).24

• Lock ownership was defined in terms of tasks instead of threads (see Section 3.9).25

APPENDIX B. FEATURES HISTORY 679

This page intentionally left blank

Index

Symbols
_OPENMP macro, 52, 648–650

A
acquire flush, 29
affinity, 98
allocate, 181, 184
array sections, 46
array shaping, 45
assume, 86
atomic, 266
atomic construct, 661
attribute clauses, 315
attributes, data-mapping, 345
attributes, data-sharing, 302
auto, 130

B
barrier, 258
barrier, implicit, 260

C
cancel, 295
cancellation constructs, 295

cancel, 295
cancellation point, 300

cancellation point, 300
canonical loop nest form, 117
capture, atomic, 266
clauses

allocate, 184
attribute data-sharing, 315
collapse, 128
copyin, 342
copyprivate, 343

data copying, 341
data-sharing, 315
default, 315
defaultmap, 357
depend, 288
firstprivate, 318
hint, 293
if Clause, 254
in_reduction, 335
lastprivate, 321
linear, 323
map, 347
private, 318
reduction, 332
schedule, 128
shared, 316
task_reduction, 335

combined constructs, 221
masked taskloop, 228
masked taskloop simd, 229
parallel loop, 222
parallel masked, 226
parallel masked taskloop, 230
parallelmaskedtaskloopsimd,

231
parallel sections, 223
parallel workshare, 224
parallel worksharing-loop construct,

221
parallel worksharing-loop SIMD

construct, 225
target parallel, 238
target parallel loop, 242
target parallel worksharing-loop

construct, 239

681

target parallel worksharing-loop SIMD
construct, 241

target simd, 244
target teams, 245
target teams distribute, 246
target teams distribute parallel

worksharing-loop construct, 249
target teams distribute parallel

worksharing-loop SIMD construct,
251

target teams distribute simd,
247

target teams loop construct, 248
teams distribute, 233
teams distribute parallel

worksharing-loop construct, 235
teams distribute parallel

worksharing-loop SIMD construct,
236

teams distribute simd, 234
teams loop, 237

compare, atomic, 266
compilation sentinels, 52, 53
compliance, 33
conditional compilation, 52
consistent loop schedules, 125
constructs

atomic, 266
barrier, 258
cancel, 295
cancellation constructs, 295
cancellation point, 300
combined constructs, 221
critical, 255
declare mapper, 358
depobj, 287
device constructs, 186
dispatch, 69
distribute, 143
distribute parallel do, 148
distribute parallel do simd,

149
distribute parallel for, 148

distribute parallel for simd,
149

distribute parallel worksharing-loop
construct, 148

distribute parallel worksharing-loop
SIMD construct, 149

distribute simd, 147
do Fortran, 126
flush, 275
for, C/C++, 126
interop, 217
loop, 151
masked, 104
masked taskloop, 228
masked taskloop simd, 229
ordered, 283
parallel, 92
parallel do Fortran, 221
parallel for C/C++, 221
parallel loop, 222
parallel masked, 226
parallel masked taskloop, 230
parallelmaskedtaskloopsimd,

231
parallel sections, 223
parallel workshare, 224
parallel worksharing-loop construct,

221
parallel worksharing-loop SIMD

construct, 225
scope, 106
sections, 109
simd, 134
single, 112
target, 197
target data, 187
target enter data, 191
target exit data, 193
target parallel, 238
target parallel do, 239
target parallel do simd, 241
target parallel for, 239
target parallel for simd, 241

682 OpenMP API – Version 5.1 November 2020

target parallel loop, 242
target parallel worksharing-loop

construct, 239
target parallel worksharing-loop SIMD

construct, 241
target simd, 244
target teams, 245
target teams distribute, 246
target teams distribute parallel

worksharing-loop construct, 249
target teams distribute parallel

worksharing-loop SIMD construct,
251

target teams distribute simd,
247

target teams loop, 248
target update, 205
task, 161
taskgroup, 264
tasking constructs, 161
taskloop, 166
taskloop simd, 171
taskwait, 261
taskyield, 173
teams, 100
teams distribute, 233
teams distribute parallel

worksharing-loop construct, 235
teams distribute parallel

worksharing-loop SIMD construct,
236

teams distribute simd, 234
teams loop, 237
tile, 158
unroll, 160
workshare, 114
worksharing, 108
worksharing-loop construct, 126
worksharing-loop SIMD construct, 138

controlling OpenMP thread affinity, 98
copyin, 342
copyprivate, 343
critical, 255

D
data copying clauses, 341
data environment, 302
data terminology, 14
data-mapping rules and clauses, 345
data-sharing attribute clauses, 315
data-sharing attribute rules, 302
declare mapper, 358
declare reduction, 336
declare simd, 140
Declare Target, 210
declare variant, 63
default, 315
defaultmap, 357
depend, 288
depend object, 286
depobj, 287
deprecated features, 667
device constructs

declare mapper, 358
device constructs, 186
distribute, 143
distribute parallel worksharing-loop

construct, 148
distribute parallel worksharing-loop

SIMD construct, 149
distribute simd, 147
target, 197
target update, 205
teams, 100

device data environments, 26, 191, 193
device directives, 186
device information routines, 407
device memory routines, 412
directive format, 38
directives, 37

allocate, 181
assume, 86
declare mapper, 358
declare reduction, 336
declare simd, 140
Declare Target, 210
declare variant, 63

Index 683

error, 90
memory management directives, 177
metadirective, 60
nothing, 89
requires, 83
scan Directive, 154
threadprivate, 307
variant directives, 53

dispatch, 69
distribute, 143
distribute parallel worksharing-loop

construct, 148
distribute parallel worksharing-loop SIMD

construct, 149
distribute simd, 147
do, Fortran, 126
do simd, 138
dynamic, 129
dynamic thread adjustment, 660

E
environment display routine, 468
environment variables, 639

OMP_AFFINITY_FORMAT, 650
OMP_ALLOCATOR, 655
OMP_CANCELLATION, 648
OMP_DEBUG, 655
OMP_DEFAULT_DEVICE, 652
OMP_DISPLAY_AFFINITY, 649
OMP_DISPLAY_ENV, 648
OMP_DYNAMIC, 641
OMP_MAX_ACTIVE_LEVELS, 647
OMP_MAX_TASK_PRIORITY, 652
OMP_NESTED, 647
OMP_NUM_TEAMS, 656
OMP_NUM_THREADS, 640
OMP_PLACES, 643
OMP_PROC_BIND, 642
OMP_SCHEDULE, 640
OMP_STACKSIZE, 645
OMP_TARGET_OFFLOAD, 652
OMP_TEAMS_THREAD_LIMIT, 657
OMP_THREAD_LIMIT, 648
OMP_TOOL, 653

OMP_TOOL_LIBRARIES, 653
OMP_TOOL_VERBOSE_INIT, 654
OMP_WAIT_POLICY, 646

event, 443
event callback registration, 476
event callback signatures, 510
event routines, 443
execution model, 22

F
features history, 667
firstprivate, 318
fixed source form conditional compilation

sentinels, 52
fixed source form directives, 43
flush, 275
flush operation, 27
flush synchronization, 29
flush-set, 27
for, C/C++, 126
for simd, 138
frames, 505
free source form conditional compilation

sentinel, 53
free source form directives, 44

G
glossary, 2
guided, 129

H
happens before, 29
header files, 365
history of features, 667

I
ICVs (internal control variables), 71
if Clause, 254
implementation, 659
implementation terminology, 18
implicit barrier, 260
implicit flushes, 279
in_reduction, 335
include files, 365

684 OpenMP API – Version 5.1 November 2020

informational and utility directives, 83
internal control variables, 659
internal control variables (ICVs), 71
interoperability, 216
Interoperability routines, 444
introduction, 1
iterators, 49

L
lastprivate, 321
linear, 323
list item privatization, 312
lock routines, 432
loop, 151
loop terminology, 9
loop transformation constructs, 157

M
map, 347
masked, 104
masked taskloop, 228
masked taskloop simd, 229
memory allocators, 178
memory management, 177
memory management directives

memory management directives, 177
memory management routines, 451
memory model, 25
memory spaces, 177
metadirective, 60
modifying and retrieving ICV values, 77
modifying ICVs, 74

N
nesting of regions, 362
normative references, 33
nothing, 89

O
OMP_AFFINITY_FORMAT, 650
omp_aligned_alloc, 458
omp_aligned_calloc, 461
omp_alloc, 458
OMP_ALLOCATOR, 655

omp_calloc, 461
OMP_CANCELLATION, 648
omp_capture_affinity, 396
OMP_DEBUG, 655
OMP_DEFAULT_DEVICE, 652
omp_destroy_allocator, 455
omp_destroy_lock, 436
omp_destroy_nest_lock, 436
OMP_DISPLAY_AFFINITY, 649
omp_display_affinity, 395
OMP_DISPLAY_ENV, 648
omp_display_env, 468
OMP_DYNAMIC, 641
omp_free, 459
omp_fulfill_event, 443
omp_get_active_level, 385
omp_get_affinity_format, 394
omp_get_ancestor_thread_num, 384
omp_get_cancellation, 374
omp_get_default_allocator, 457
omp_get_default_device, 408
omp_get_device_num, 410
omp_get_dynamic, 373
omp_get_initial_device, 411
omp_get_interop_int, 446
omp_get_interop_name, 449
omp_get_interop_ptr, 447
omp_get_interop_rc_desc, 450
omp_get_interop_str, 448
omp_get_interop_type_desc, 450
omp_get_level, 383
omp_get_mapped_ptr, 430
omp_get_max_active_levels, 382
omp_get_max_task_priority, 402
omp_get_max_teams, 400
omp_get_max_threads, 370
omp_get_nested, 376
omp_get_num_devices, 409
omp_get_num_interop_properties,

446
omp_get_num_places, 388
omp_get_num_procs, 407
omp_get_num_teams, 397

Index 685

omp_get_num_threads, 369
omp_get_partition_num_places,

391
omp_get_partition_place_nums,

392
omp_get_place_num, 390
omp_get_place_num_procs, 389
omp_get_place_proc_ids, 389
omp_get_proc_bind, 386
omp_get_schedule, 379
omp_get_supported_active

_levels, 380
omp_get_team_num, 398
omp_get_team_size, 385
omp_get_teams_thread_limit, 401
omp_get_thread_limit, 380
omp_get_thread_num, 371
omp_get_wtick, 442
omp_get_wtime, 442
omp_in_final, 403
omp_in_parallel, 372
omp_init_allocator, 454
omp_init_lock, 434, 435
omp_init_nest_lock, 434, 435
omp_is_initial_device, 411
OMP_MAX_ACTIVE_LEVELS, 647
OMP_MAX_TASK_PRIORITY, 652
OMP_NESTED, 647
OMP_NUM_TEAMS, 656
OMP_NUM_THREADS, 640
omp_pause_resource, 404
omp_pause_resource_all, 406
OMP_PLACES, 643
OMP_PROC_BIND, 642
omp_realloc, 463
OMP_SCHEDULE, 640
omp_set_affinity_format, 393
omp_set_default_allocator, 456
omp_set_default_device, 408
omp_set_dynamic, 373
omp_set_lock, 437
omp_set_max_active_levels, 381
omp_set_nest_lock, 437

omp_set_nested, 375
omp_set_num_teams, 399
omp_set_num_threads, 368
omp_set_schedule, 376
omp_set_teams_thread_limit, 400
OMP_STACKSIZE, 645
omp_target_alloc, 412
omp_target_associate_ptr, 426
omp_target_disassociate_ptr, 429
omp_target_free, 414
omp_target_is_accessible, 417
omp_target_is_present, 416
omp_target_memcpy, 418
omp_target_memcpy_async, 422
omp_target_memcpy_rect, 419
omp_target_memcpy_rect_async,

424
OMP_TARGET_OFFLOAD, 652
OMP_TEAMS_THREAD_LIMIT, 657
omp_test_lock, 440
omp_test_nest_lock, 440
OMP_THREAD_LIMIT, 648
OMP_TOOL, 653
OMP_TOOL_LIBRARIES, 653
OMP_TOOL_VERBOSE_INIT, 654
omp_unset_lock, 439
omp_unset_nest_lock, 439
OMP_WAIT_POLICY, 646
ompd_bp_device_begin, 636
ompd_bp_device_end, 636
ompd_bp_parallel_begin, 633
ompd_bp_parallel_end, 633
ompd_bp_task_begin, 634
ompd_bp_task_end, 634
ompd_bp_thread_begin, 635
ompd_bp_thread_end, 635
ompd_callback_device_host

_fn_t, 596
ompd_callback_get_thread

_context_for_thread_id
_fn_t, 590

ompd_callback_memory_alloc
_fn_t, 588

686 OpenMP API – Version 5.1 November 2020

ompd_callback_memory_free
_fn_t, 589

ompd_callback_memory_read
_fn_t, 594

ompd_callback_memory_write
_fn_t, 595

ompd_callback_print_string
_fn_t, 598

ompd_callback_sizeof_fn_t, 591
ompd_callback_symbol_addr

_fn_t, 592
ompd_callbacks_t, 598
ompd_dll_locations_valid, 579
ompd_dll_locations, 578
ompt_callback_buffer

_complete_t, 534
ompt_callback_buffer

_request_t, 533
ompt_callback_cancel_t, 529
ompt_callback_control

_tool_t, 544
ompt_callback_dependences_t, 518
ompt_callback_dispatch_t, 515
ompt_callback_error_t, 545
ompt_callback_device

_finalize_t, 531
ompt_callback_device

_initialize_t, 530
ompt_callback_flush_t, 528
ompt_callback_implicit

_task_t, 521
ompt_callback_masked_t, 522
ompt_callback_mutex

_acquire_t, 525
ompt_callback_mutex_t, 526
ompt_callback_nest_lock_t, 527
ompt_callback_parallel

_begin_t, 511
ompt_callback_parallel

_end_t, 513
ompt_callback_sync_region_t, 523
ompt_callback_device_load_t, 532
ompt_callback_device

_unload_t, 533
ompt_callback_target_data

_emi_op_t, 535
ompt_callback_target_data

_op_t, 535
ompt_callback_target_emi_t, 538
ompt_callback_target

_map_emi_t, 540
ompt_callback_target_map_t, 540
ompt_callback_target

_submit_emi_t, 542
ompt_callback_target

_submit_t, 542
ompt_callback_target_t, 538
ompt_callback_task_create_t, 517
ompt_callback_task

_dependence_t, 519
ompt_callback_task

_schedule_t, 520
ompt_callback_thread

_begin_t, 510
ompt_callback_thread_end_t, 511
ompt_callback_work_t, 514
OpenMP compliance, 33
order clause, 125
ordered, 283

P
parallel, 92
parallel loop, 222
parallel masked construct, 226
parallel masked taskloop, 230
parallel masked taskloop simd, 231
parallel sections, 223
parallel workshare, 224
parallel worksharing-loop construct, 221
parallel worksharing-loop SIMD

construct, 225
private, 318

R
read, atomic, 266
reduction, 332
reduction clauses, 325

Index 687

release flush, 29
requires, 83
resource relinquishing routines, 404
runtime, 130
runtime library definitions, 365
runtime library routines, 365

S
scan Directive, 154
scheduling, 175
scope, 106
sections, 109
shared, 316
simd, 134
SIMD Directives, 134
Simple Lock Routines, 432
single, 112
stand-alone directives, 45
static, 129
strong flush, 27
synchronization constructs, 255
synchronization constructs and clauses, 255
synchronization hints, 293
synchronization terminology, 10

T
target, 197
target data, 187
target memory routines, 412
target parallel, 238
target parallel loop, 242
target parallel worksharing-loop

construct, 239
target parallel worksharing-loop SIMD

construct, 241
target simd, 244
target teams, 245
target teams distribute, 246
target teams distribute parallel

worksharing-loop construct, 249
target teams distribute parallel

worksharing-loop SIMD
construct, 251

target teams distribute simd, 247

target teams loop, 248
target update, 205
task, 161
task scheduling, 175
task_reduction, 335
taskgroup, 264
tasking constructs, 161
tasking routines, 402
tasking terminology, 12
taskloop, 166
taskloop simd, 171
taskwait, 261
taskyield, 173
teams, 100
teams distribute, 233
teams distribute parallel worksharing-loop

construct, 235
teams distribute parallel worksharing-loop

SIMD construct, 236
teams distribute simd, 234
teams loop, 237
teams region routines, 397
thread affinity, 98
thread affinity routines, 386
thread team routines, 368
threadprivate, 307
tile, 158
timer, 442
timing routines, 442
tool control, 465
tool initialization, 474
tool interfaces definitions, 471, 578
tools header files, 471, 578
tracing device activity, 478

U
unroll, 160
update, atomic, 266

V
variables, environment, 639
variant directives, 53

W
wait identifier, 507

688 OpenMP API – Version 5.1 November 2020

wall clock timer, 442
error, 90
workshare, 114
worksharing

constructs, 108
parallel, 221
scheduling, 133

worksharing constructs, 108
worksharing-loop construct, 126
worksharing-loop SIMD construct, 138
write, atomic, 266

Index 689

	Overview of the OpenMP API
	Scope
	Glossary
	Threading Concepts
	OpenMP Language Terminology
	Loop Terminology
	Synchronization Terminology
	Tasking Terminology
	Data Terminology
	Implementation Terminology
	Tool Terminology

	Execution Model
	Memory Model
	Structure of the OpenMP Memory Model
	Device Data Environments
	Memory Management
	The Flush Operation
	Flush Synchronization and Happens Before
	OpenMP Memory Consistency

	Tool Interfaces
	OMPT
	OMPD

	OpenMP Compliance
	Normative References
	Organization of this Document

	Directives
	Directive Format
	Fixed Source Form Directives
	Free Source Form Directives
	Stand-Alone Directives
	Array Shaping
	Array Sections
	Iterators

	Conditional Compilation
	Fixed Source Form Conditional Compilation Sentinels
	Free Source Form Conditional Compilation Sentinel

	Variant Directives
	OpenMP Context
	Context Selectors
	Matching and Scoring Context Selectors
	Metadirectives
	Declare Variant Directive
	dispatch Construct

	Internal Control Variables
	ICV Descriptions
	ICV Initialization
	Modifying and Retrieving ICV Values
	How ICVs are Scoped
	How the Per-Data Environment ICVs Work

	ICV Override Relationships

	Informational and Utility Directives
	requires Directive
	Assume Directive
	nothing Directive
	error Directive

	parallel Construct
	Determining the Number of Threads for a parallel Region
	Controlling OpenMP Thread Affinity

	teams Construct
	masked Construct
	scope Construct
	Worksharing Constructs
	sections Construct
	single Construct
	workshare Construct

	Loop-Related Directives
	Canonical Loop Nest Form
	Consistent Loop Schedules
	order Clause
	Worksharing-Loop Construct
	Determining the Schedule of a Worksharing-Loop

	SIMD Directives
	simd Construct
	Worksharing-Loop SIMD Construct
	declare simd Directive

	distribute Loop Constructs
	distribute Construct
	distribute simd Construct
	Distribute Parallel Worksharing-Loop Construct
	Distribute Parallel Worksharing-Loop SIMD Construct

	loop Construct
	scan Directive
	Loop Transformation Constructs
	tile Construct
	unroll Construct

	Tasking Constructs
	task Construct
	taskloop Construct
	taskloop simd Construct
	taskyield Construct
	Initial Task
	Task Scheduling

	Memory Management Directives
	Memory Spaces
	Memory Allocators
	allocate Directive
	allocate Clause

	Device Directives
	Device Initialization
	target data Construct
	target enter data Construct
	target exit data Construct
	target Construct
	target update Construct
	Declare Target Directive

	Interoperability
	interop Construct
	Interoperability Requirement Set

	Combined Constructs
	Parallel Worksharing-Loop Construct
	parallel loop Construct
	parallel sections Construct
	parallel workshare Construct
	Parallel Worksharing-Loop SIMD Construct
	parallel masked Construct
	masked taskloop Construct
	masked taskloop simd Construct
	parallel masked taskloop Construct
	parallel masked taskloop simd Construct
	teams distribute Construct
	teams distribute simd Construct
	Teams Distribute Parallel Worksharing-Loop Construct
	Teams Distribute Parallel Worksharing-Loop SIMD Construct
	teams loop Construct
	target parallel Construct
	Target Parallel Worksharing-Loop Construct
	Target Parallel Worksharing-Loop SIMD Construct
	target parallel loop Construct
	target simd Construct
	target teams Construct
	target teams distribute Construct
	target teams distribute simd Construct
	target teams loop Construct
	Target Teams Distribute Parallel Worksharing-Loop Construct
	Target Teams Distribute Parallel Worksharing-Loop SIMD Construct

	Clauses on Combined and Composite Constructs
	if Clause
	Synchronization Constructs and Clauses
	critical Construct
	barrier Construct
	Implicit Barriers
	Implementation-Specific Barriers
	taskwait Construct
	taskgroup Construct
	atomic Construct
	flush Construct
	Implicit Flushes

	ordered Construct
	Depend Objects
	depobj Construct

	depend Clause
	Synchronization Hints

	Cancellation Constructs
	cancel Construct
	cancellation point Construct

	Data Environment
	Data-Sharing Attribute Rules
	Variables Referenced in a Construct
	Variables Referenced in a Region but not in a Construct

	threadprivate Directive
	List Item Privatization
	Data-Sharing Attribute Clauses
	default Clause
	shared Clause
	private Clause
	firstprivate Clause
	lastprivate Clause
	linear Clause

	Reduction Clauses and Directives
	Properties Common to All Reduction Clauses
	Reduction Scoping Clauses
	Reduction Participating Clauses
	reduction Clause
	task_reduction Clause
	in_reduction Clause
	declare reduction Directive

	Data Copying Clauses
	copyin Clause
	copyprivate Clause

	Data-Mapping Attribute Rules, Clauses, and Directives
	map Clause
	Pointer Initialization for Device Data Environments
	defaultmap Clause
	declare mapper Directive

	Nesting of Regions

	Runtime Library Routines
	Runtime Library Definitions
	Thread Team Routines
	omp_set_num_threads
	omp_get_num_threads
	omp_get_max_threads
	omp_get_thread_num
	omp_in_parallel
	omp_set_dynamic
	omp_get_dynamic
	omp_get_cancellation
	omp_set_nested (Deprecated)
	omp_get_nested (Deprecated)
	omp_set_schedule
	omp_get_schedule
	omp_get_thread_limit
	omp_get_supported_active_levels
	omp_set_max_active_levels
	omp_get_max_active_levels
	omp_get_level
	omp_get_ancestor_thread_num
	omp_get_team_size
	omp_get_active_level

	Thread Affinity Routines
	omp_get_proc_bind
	omp_get_num_places
	omp_get_place_num_procs
	omp_get_place_proc_ids
	omp_get_place_num
	omp_get_partition_num_places
	omp_get_partition_place_nums
	omp_set_affinity_format
	omp_get_affinity_format
	omp_display_affinity
	omp_capture_affinity

	Teams Region Routines
	omp_get_num_teams
	omp_get_team_num
	omp_set_num_teams
	omp_get_max_teams
	omp_set_teams_thread_limit
	omp_get_teams_thread_limit

	Tasking Routines
	omp_get_max_task_priority
	omp_in_final

	Resource Relinquishing Routines
	omp_pause_resource
	omp_pause_resource_all

	Device Information Routines
	omp_get_num_procs
	omp_set_default_device
	omp_get_default_device
	omp_get_num_devices
	omp_get_device_num
	omp_is_initial_device
	omp_get_initial_device

	Device Memory Routines
	omp_target_alloc
	omp_target_free
	omp_target_is_present
	omp_target_is_accessible
	omp_target_memcpy
	omp_target_memcpy_rect
	omp_target_memcpy_async
	omp_target_memcpy_rect_async
	omp_target_associate_ptr
	omp_target_disassociate_ptr
	omp_get_mapped_ptr

	Lock Routines
	omp_init_lock and omp_init_nest_lock
	omp_init_lock_with_hint and omp_init_nest_lock_with_hint
	omp_destroy_lock and omp_destroy_nest_lock
	omp_set_lock and omp_set_nest_lock
	omp_unset_lock and omp_unset_nest_lock
	omp_test_lock and omp_test_nest_lock

	Timing Routines
	omp_get_wtime
	omp_get_wtick

	Event Routine
	omp_fulfill_event

	Interoperability Routines
	omp_get_num_interop_properties
	omp_get_interop_int
	omp_get_interop_ptr
	omp_get_interop_str
	omp_get_interop_name
	omp_get_interop_type_desc
	omp_get_interop_rc_desc

	Memory Management Routines
	Memory Management Types
	omp_init_allocator
	omp_destroy_allocator
	omp_set_default_allocator
	omp_get_default_allocator
	omp_alloc and omp_aligned_alloc
	omp_free
	omp_calloc and omp_aligned_calloc
	omp_realloc

	Tool Control Routine
	Environment Display Routine

	OMPT Interface
	OMPT Interfaces Definitions
	Activating a First-Party Tool
	ompt_start_tool
	Determining Whether a First-Party Tool Should be Initialized
	Initializing a First-Party Tool
	Binding Entry Points in the OMPT Callback Interface

	Monitoring Activity on the Host with OMPT
	Tracing Activity on Target Devices with OMPT

	Finalizing a First-Party Tool
	OMPT Data Types
	Tool Initialization and Finalization
	Callbacks
	Tracing
	Record Type
	Native Record Kind
	Native Record Abstract Type
	Record Type

	Miscellaneous Type Definitions
	ompt_callback_t
	ompt_set_result_t
	ompt_id_t
	ompt_data_t
	ompt_device_t
	ompt_device_time_t
	ompt_buffer_t
	ompt_buffer_cursor_t
	ompt_dependence_t
	ompt_thread_t
	ompt_scope_endpoint_t
	ompt_dispatch_t
	ompt_sync_region_t
	ompt_target_data_op_t
	ompt_work_t
	ompt_mutex_t
	ompt_native_mon_flag_t
	ompt_task_flag_t
	ompt_task_status_t
	ompt_target_t
	ompt_parallel_flag_t
	ompt_target_map_flag_t
	ompt_dependence_type_t
	ompt_severity_t
	ompt_cancel_flag_t
	ompt_hwid_t
	ompt_state_t
	ompt_frame_t
	ompt_frame_flag_t
	ompt_wait_id_t

	OMPT Tool Callback Signatures and Trace Records
	Initialization and Finalization Callback Signature
	ompt_initialize_t
	ompt_finalize_t

	Event Callback Signatures and Trace Records
	ompt_callback_thread_begin_t
	ompt_callback_thread_end_t
	ompt_callback_parallel_begin_t
	ompt_callback_parallel_end_t
	ompt_callback_work_t
	ompt_callback_dispatch_t
	ompt_callback_task_create_t
	ompt_callback_dependences_t
	ompt_callback_task_dependence_t
	ompt_callback_task_schedule_t
	ompt_callback_implicit_task_t
	ompt_callback_masked_t
	ompt_callback_sync_region_t
	ompt_callback_mutex_acquire_t
	ompt_callback_mutex_t
	ompt_callback_nest_lock_t
	ompt_callback_flush_t
	ompt_callback_cancel_t
	ompt_callback_device_initialize_t
	ompt_callback_device_finalize_t
	ompt_callback_device_load_t
	ompt_callback_device_unload_t
	ompt_callback_buffer_request_t
	ompt_callback_buffer_complete_t
	ompt_callback_target_data_op_emi_t and ompt_callback_target_data_op_t
	ompt_callback_target_emi_t and ompt_callback_target_t
	ompt_callback_target_map_emi_t and ompt_callback_target_map_t
	ompt_callback_target_submit_emi_t and ompt_callback_target_submit_t
	ompt_callback_control_tool_t
	ompt_callback_error_t

	OMPT Runtime Entry Points for Tools
	Entry Points in the OMPT Callback Interface
	ompt_enumerate_states_t
	ompt_enumerate_mutex_impls_t
	ompt_set_callback_t
	ompt_get_callback_t
	ompt_get_thread_data_t
	ompt_get_num_procs_t
	ompt_get_num_places_t
	ompt_get_place_proc_ids_t
	ompt_get_place_num_t
	ompt_get_partition_place_nums_t
	ompt_get_proc_id_t
	ompt_get_state_t
	ompt_get_parallel_info_t
	ompt_get_task_info_t
	ompt_get_task_memory_t
	ompt_get_target_info_t
	ompt_get_num_devices_t
	ompt_get_unique_id_t
	ompt_finalize_tool_t

	Entry Points in the OMPT Device Tracing Interface
	ompt_get_device_num_procs_t
	ompt_get_device_time_t
	ompt_translate_time_t
	ompt_set_trace_ompt_t
	ompt_set_trace_native_t
	ompt_start_trace_t
	ompt_pause_trace_t
	ompt_flush_trace_t
	ompt_stop_trace_t
	ompt_advance_buffer_cursor_t
	ompt_get_record_type_t
	ompt_get_record_ompt_t
	ompt_get_record_native_t
	ompt_get_record_abstract_t

	Lookup Entry Points: ompt_function_lookup_t

	OMPD Interface
	OMPD Interfaces Definitions
	Activating a Third-Party Tool
	Enabling Runtime Support for OMPD
	ompd_dll_locations
	ompd_dll_locations_valid

	OMPD Data Types
	Size Type
	Wait ID Type
	Basic Value Types
	Address Type
	Frame Information Type
	System Device Identifiers
	Native Thread Identifiers
	OMPD Handle Types
	OMPD Scope Types
	ICV ID Type
	Tool Context Types
	Return Code Types
	Primitive Type Sizes

	OMPD Third-Party Tool Callback Interface
	Memory Management of OMPD Library
	ompd_callback_memory_alloc_fn_t
	ompd_callback_memory_free_fn_t

	Context Management and Navigation
	ompd_callback_get_thread_context_for_thread_id_fn_t
	ompd_callback_sizeof_fn_t

	Accessing Memory in the OpenMP Program or Runtime
	ompd_callback_symbol_addr_fn_t
	ompd_callback_memory_read_fn_t
	ompd_callback_memory_write_fn_t

	Data Format Conversion: ompd_callback_device_host_fn_t
	ompd_callback_print_string_fn_t
	The Callback Interface

	OMPD Tool Interface Routines
	Per OMPD Library Initialization and Finalization
	ompd_initialize
	ompd_get_api_version
	ompd_get_version_string
	ompd_finalize

	Per OpenMP Process Initialization and Finalization
	ompd_process_initialize
	ompd_device_initialize
	ompd_rel_address_space_handle

	Thread and Signal Safety
	Address Space Information
	ompd_get_omp_version
	ompd_get_omp_version_string

	Thread Handles
	ompd_get_thread_in_parallel
	ompd_get_thread_handle
	ompd_rel_thread_handle
	ompd_thread_handle_compare
	ompd_get_thread_id

	Parallel Region Handles
	ompd_get_curr_parallel_handle
	ompd_get_enclosing_parallel_handle
	ompd_get_task_parallel_handle
	ompd_rel_parallel_handle
	ompd_parallel_handle_compare

	Task Handles
	ompd_get_curr_task_handle
	ompd_get_generating_task_handle
	ompd_get_scheduling_task_handle
	ompd_get_task_in_parallel
	ompd_rel_task_handle
	ompd_task_handle_compare
	ompd_get_task_function
	ompd_get_task_frame
	ompd_enumerate_states
	ompd_get_state

	Display Control Variables
	ompd_get_display_control_vars
	ompd_rel_display_control_vars

	Accessing Scope-Specific Information
	ompd_enumerate_icvs
	ompd_get_icv_from_scope
	ompd_get_icv_string_from_scope
	ompd_get_tool_data

	Runtime Entry Points for OMPD
	Beginning Parallel Regions
	Ending Parallel Regions
	Beginning Task Regions
	Ending Task Regions
	Beginning OpenMP Threads
	Ending OpenMP Threads
	Initializing OpenMP Devices
	Finalizing OpenMP Devices

	Environment Variables
	OMP_SCHEDULE
	OMP_NUM_THREADS
	OMP_DYNAMIC
	OMP_PROC_BIND
	OMP_PLACES
	OMP_STACKSIZE
	OMP_WAIT_POLICY
	OMP_MAX_ACTIVE_LEVELS
	OMP_NESTED (Deprecated)
	OMP_THREAD_LIMIT
	OMP_CANCELLATION
	OMP_DISPLAY_ENV
	OMP_DISPLAY_AFFINITY
	OMP_AFFINITY_FORMAT
	OMP_DEFAULT_DEVICE
	OMP_MAX_TASK_PRIORITY
	OMP_TARGET_OFFLOAD
	OMP_TOOL
	OMP_TOOL_LIBRARIES
	OMP_TOOL_VERBOSE_INIT
	OMP_DEBUG
	OMP_ALLOCATOR
	OMP_NUM_TEAMS
	OMP_TEAMS_THREAD_LIMIT

	OpenMP Implementation-Defined Behaviors
	Features History
	Deprecated Features
	Version 5.0 to 5.1 Differences
	Version 4.5 to 5.0 Differences
	Version 4.0 to 4.5 Differences
	Version 3.1 to 4.0 Differences
	Version 3.0 to 3.1 Differences
	Version 2.5 to 3.0 Differences

	Index

