
OpenMP	for	Embedded	
Systems	

Sunita	Chandrasekaran	
Asst.	Professor		

Dept.	of	Computer	&	Informa9on	Sciences	
University	of	Delaware	
schandra@udel.edu	

ACK:	Peng	Sun,	Suyang	Zhu,	Cheng	Wang,	Barbara	Chapman,	Tobias	Schuele,	Marcus	Winter	

Talk @ the OpenMP Booth #611, November 16, 2016

2	

•  Incorporates specialized processing capabilities to handle specific tasks
•  Example

•  CPU + GPU
•  ARM + GPU
•  ARM + DSP
•  CPU + FPGA

Heterogeneous Embedded Systems

Figure. Qualcomm SnapdragonTm 810 Block Diagram Figure. NVIDIA Tregra K1 Block Diagram

3	

•  Heterogeneous systems present complexity at both silicon
and system level

•  Standards and tool-chain in embedded industry are
proprietary

•  Portability and scalability issues
•  High time-to-market (TTM) solutions
•  We need industry standards

–  To offer portable and scalable software solutions and target more than
one platform

Programming Multicore Embedded Systems – A
Real Challenge

•  Not portable across more than one type of platform
except for OpenCL

•  Most models are heavy-weight for embedded
processors of limited resources

•  Most models require support from OS and compilers
–  Sometimes embedded systems are bare-metal

•  Some of the solutions are restricted to just the
homogeneous environment

4	

•  How suitable are the state-of-the-art models for
heterogeneous embedded systems?

So what do we really need?
•  Something that’s not too low-level
•  Something light-weight
•  Something that can target heterogeneous

embedded platforms (beyond CPUs-GPUs)
•  Something that can help speed time-to-market

for products
•  Last but not the least – we need industry

standards

Using industry standards
•  Two of them used for this work

– OpenMP
•  (high-level, directive-based)

– Multicore Association (MCA) APIs
•  (low-level, light-weight catered to embedded

systems)

Briefly, on OpenMP Implementations
•  Directives implemented via code

modification and insertion of runtime
library calls

–  Typical approach is outlining of
code in parallel region

–  Or generation of micro tasks
•  Runtime library responsible for

managing threads
–  Scheduling loops
–  Scheduling tasks
–  Implementing synchronization

•  Implementation effort is reasonable

OpenMP	Code Transla9on
int	main(void)	
{	
int	a,b,c;	
#pragma	omp	parallel	\	
private(c)	
do_sth(a,b,c);	
return	0;	
}

_INT32	main()	
{	
int	a,b,c;	
/*	microtask	*/	
void	__ompregion_main1()	
{	
_INT32	__mplocal_c;	
/*shared	variables	are	kept	intact,		
subs9tute	accesses	to	private	
variable*/	
do_sth(a,	b,	__mplocal_c);	
}	
…	
/*OpenMP	run9me	calls	*/	
__ompc_fork(&__ompregion_main
1);	
…	
}

7

Each compiler has custom run-time support. Quality of the
runtime system has major impact on performance.

Placeholder Footer Copy / BU Logo or Name Goes Here

8 8 8 11 11 11 11 13 13 13 15 15 17 17 19 22
26 25 26

8

History of OpenMP*

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Permanent ARB Auxiliary ARB

In spring, 7
vendors and the
DOE agree on
the spelling of
parallel loops
and form the

OpenMP ARB.
By October,

version 1.0 of
the OpenMP

specification for
Fortran is
released.

1.0

Minor
modifications.

1.1

cOMPunity, the
group of

OpenMP users,
is formed and

organizes
workshops on

OpenMP in
North America,

Europe, and
Asia.

2.0

First hybrid
applications with

MPI* and
OpenMP appear.

1.0

The merge of
Fortran

and C/C+
specifications

begins.

2.0

Unified Fortran
and C/C++:

Bigger than both
individual

specifications
combined.
The first

International
Workshop on

OpenMP is held.
It becomes a

major forum for
users to interact

with vendor.

2.5

Incorporates
task parallelism.
A hard problem

as OpenMP
struggles to
maintain its

thread-based
nature, while

accommodating
the dynamic

nature of
tasking.

3.0

Support min/max
reductions in C/

C++.

3.1

Supports
offloading

execution to
accelerator and

coprocessor
devices, SIMD

parallelism, and
more. Expands

OpenMP beyond
traditional

boundaries.

4.0

OpenMP
supports

taskloops, task
priorities,

doacross loops,
and hints for

locks. Offloading
now supports
asynchronous
execution and

dependencies to
host execution.

4.5

2016 2017 2018

?
5.0

Multicore Association APIs (MCA)

Peng Sun Nov.24 2016

Peng Sun Nov.24 2016

Multicore Association APIs
• Develops standards to reduce complexity involved in

writing software for multicore chips!
• Capturing the basic elements and abstract hardware

and system resources!
• Cohesive set of foundation APIs!

Standardize communication (MCAPI)!
Resource Sharing (MRAPI)!
Task Management (MTAPI)

11

Outline Introduction Related Work Work Completed Proposed Work Plan of Work Acknowledgment

Multicore Task Management API (MTAPI)

Unrestricted © Siemens AG 2016. All rights reservedPage 6

Programming Model
Multicore Task Management API (MTAPI)

MTAPI

� Standardized API for task-parallel
programming on a wide range of hardware
architectures

� Developed and driven by practitioners of
market-leading companies

� Part of Multicore-Association’s ecosystem
(MRAPI, MCAPI, SHIM, OpenAMP, …)

Contributing members:

Working group lead

Tasks

Tasks Queues Heterogeneous Systems
� Shared memory
� Distributed memory
� Different instruction

set architectures

The Multicore Association develops and promotes open specifications for multicore product development.

Ack: Siemens (Tobias Schuele, Urs Gleim)

OpenMP
and MCA
software

stack

MTAPI Jobs, Tasks & Action
In a nut shell

Unrestricted © Siemens AG 2016. All rights reservedPage 9

Programming Model
MTAPI for Heterogeneous Systems (cont.)

Example for the usage of MTAPI in heterogeneous systems:

Task 1

Task 2

Task 3

Job A

Job B

Action III

Node 1 (CPU)

A
pp

lic
at

io
n

Node 2 (GPU)

Node 3 (DSP)

Action I

Action II

Matrix mult.

FFT

Ack: Siemens (Tobias Schuele, Urs Gleim)

MTAPI implementations
Embedded Multicore Building
Blocks (EMB2)1
•  Open source library and runtime platform

for embedded multicore systems
•  Real-time capability, resource awareness
•  Fine-grained control over core usage (task

priorities, affinities)

MTAPI implementation developed
at the Universities of Houston /
Delaware2
•  Utilizes MCAPI for inter-node

communication and MRAPI for resource
management

•  Used as runtime system for OpenMP
programs

Unrestricted © Siemens AG 2016. All rights reservedPage 13

Performance Evaluation
MTAPI Implementations

Operating system / hypervisor

Dataflow

Application

Hardware

Containers

Task management (MTAPI)

Algorithms

Base library (abstraction layer)

Embedded Multicore Building Blocks (EMB²)1

� Open source library and runtime platform
for embedded multicore systems

� Easy parallelization of existing code
using high-level patterns

� Real-time capability, resource awareness
� Fine-grained control over core usage

(task priorities, affinities)
� Lock-/wait-free implementation

UH-MTAPI2

� MTAPI implementation developed at the
Universities of Houston / Delaware

� Utilizes MCAPI for inter-node communication
and MRAPI for resource management

� Has been used as runtime system for
OpenMP programs

1 https://github.com/siemens/embb
2 https://github.com/MCAPro2015/OpenMP_MCA_Project

Unrestricted © Siemens AG 2016. All rights reservedPage 13

Performance Evaluation
MTAPI Implementations

Operating system / hypervisor

Dataflow

Application

Hardware

Containers

Task management (MTAPI)

Algorithms

Base library (abstraction layer)

Embedded Multicore Building Blocks (EMB²)1

� Open source library and runtime platform
for embedded multicore systems

� Easy parallelization of existing code
using high-level patterns

� Real-time capability, resource awareness
� Fine-grained control over core usage

(task priorities, affinities)
� Lock-/wait-free implementation

UH-MTAPI2

� MTAPI implementation developed at the
Universities of Houston / Delaware

� Utilizes MCAPI for inter-node communication
and MRAPI for resource management

� Has been used as runtime system for
OpenMP programs

1 https://github.com/siemens/embb
2 https://github.com/MCAPro2015/OpenMP_MCA_Project

Unrestricted © Siemens AG 2016. All rights reservedPage 13

Performance Evaluation
MTAPI Implementations

Operating system / hypervisor

Dataflow

Application

Hardware

Containers

Task management (MTAPI)

Algorithms

Base library (abstraction layer)

Embedded Multicore Building Blocks (EMB²)1

� Open source library and runtime platform
for embedded multicore systems

� Easy parallelization of existing code
using high-level patterns

� Real-time capability, resource awareness
� Fine-grained control over core usage

(task priorities, affinities)
� Lock-/wait-free implementation

UH-MTAPI2

� MTAPI implementation developed at the
Universities of Houston / Delaware

� Utilizes MCAPI for inter-node communication
and MRAPI for resource management

� Has been used as runtime system for
OpenMP programs

1 https://github.com/siemens/embb
2 https://github.com/MCAPro2015/OpenMP_MCA_Project

MTAPI Scheduling

Unrestricted © Siemens AG 2016. All rights reservedPage 12

Implementation
MTAPI Scheduling

Scheduler

Core 0

Worker
thread 0

Q00 Q01 Q02

Core 1

Worker
thread 1

Q10 Q11 Q12

Node 0 (CPU)

Work stealing

Unit 0

Bare
metal

Q0

Node 1 (DSP)

Work dealing

Example for scheduling MTAPI tasks in heterogeneous systems:

Ack: Siemens (Tobias Schuele, Urs Gleim)

Work	Stealing	

•  Test beds:
NVIDIA Jetson TK1 embedded development board with a Tegra K1 Soc
(NVIDIA 4-Plus-1 Quad-Core ARM Cortex-A15 processor and a Kepler GPU
with 192 CUDA cores).

•  Compiler: Jetson (GCC 4.8.4, NVCC V6.5.30)
•  Power Architecture from Freescale

–  Consisting of Pattern Matching Engine as specialized accelerator
•  Benchmarks: 1Rodinia and 2BOTS.
•  Reference Group: 3Siemens MTAPI, GCC OpenMP

 15	

Testbed, Compiler and Benchmark

1Rodinia:
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/
Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
2BOTS: https://pm.bsc.es/projects/bots
3Siemens-MTAPI: https://github.com/siemens/embb

Normalized execution times for UH-MTAPI and
Siemens MTAPI (EMB2) for MM

Unrestricted © Siemens AG 2016. All rights reservedPage 16

Performance Evaluation
Matrix Multiplication

Normalized execution times for UH-MTAPI and Siemens MTAPI (EMB²):

� MTAPI-ARM faster than MTAPI-GPU for small matrices due to overhead for data copying
� MTAPI-GPU faster than MTAPI-ARM-GPU for larger matrices due to load imbalance
� MTAPI-ARM-GPU-Opt always fastest due to asynchronous transfers and variable block sizes

OpenMP RTL translation to MTAPI
•  Compiler	front	end	translates	
OpenMP	constructs	to	MTAPI-RTL	
func9ons	

•  RTL	comprises	of	MTAPI	func9on	calls	
and	we	convert	OpenMP	tasks	to	
MTAPI	objects	

•  Embedded	resources	will	rely	on	
MTAPI	for	management	of	resources	

Peng Sun Nov.24 2016

Peng Sun Nov.24 2016

OpenMP – MTAPI RTL Compilation Flow

34

Outline Introduction Related Work Work Completed Proposed Work Plan of Work Acknowledgment

OpenMP APP

Compiler

IR

Code Generator

CPU Binary Linker

MTAPI RTL

OpenMP-MTAPI
RTL

MTAPI Tasks

Executable

• OpenMP programs
contains task construct!
!
• OpenMP-MTAPI RTL

includes the runtime
calls of the translated
task construct!

!
• OpenMP-MTAPI RTL

incurs and dispatches
MTAPI tasks

OpenMP-> MTAPI Implementation
SparseLU

Takeaways and Summary
•  Industry standards are the way to go !
•  OpenMP-MCA incurred little to no

overhead
– Targeting heterogeneous platforms

•  Less learning curve
•  Ability to maintain single code base

